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Abstract 

Although hypertension is a risk factor for end-stage renal disease, this complication develops in 

only a minority of hypertensive patients. Whether non-malignant hypertension itself is sufficient 

to cause reduced glomerular filtration rate (GFR) is unclear. We investigated whether elevated 

blood pressure (BP) was associated with accelerated GFR decline in the general population. The 

study was based on the Renal Iohexol-clearance Survey in Tromsø 6 (RENIS-T6), which 

included a representative sample of 1594 subjects aged 50 to 62 years from the general 

population without baseline diabetes, kidney or cardiovascular disease. GFR was measured as 

iohexol clearance at baseline and follow-up after a median observation time of 5.6 years. BP was 

measured according to a standardized procedure. The mean (standard deviation) GFR decline 

rate was 0.95 (2.23) mL/min/year. In multivariable adjusted linear mixed regressions with either 

baseline systolic or diastolic BP as the independent variable, there were no statistically 

significant associations with GFR decline. We conclude that elevated BP is not associated with 

accelerated mean GFR decline in the general middle-aged population. Additional genetic and 

environmental factors are probably necessary for elevated BP to develop manifest chronic 

kidney disease in some individuals. 
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Introduction 

Hypertension is a risk factor for end-stage renal disease (ESRD)1-4 and is the second most 

important cause of ESRD in the U.S.5 However, the incidence of ESRD is low relative to the 

high prevalence of hypertension. This indicates that hypertensive individuals may have a 

different susceptibility for developing kidney failure. In people without baseline chronic kidney 

disease (CKD) or diabetes, randomized controlled trials have not shown an effect of 

antihypertensive treatments on renal outcomes.6-8  

These observations have led some investigators to question whether non-malignant hypertension 

is indeed a sufficient cause of CKD, which would entail an association between elevated blood 

pressure (BP) and accelerated GFR decline at the population level.9, 10 The results of studies of 

the relationship between BP and the rate of glomerular filtration rate (GFR) decline in the 

general population have not been consistent. Although several studies have found that higher BP 

accelerated GFR decline,11-17 some have found that hypertension was associated with elevated 

GFR or hyperfiltration.18-23 The difficulty of measuring GFR in the near-normal range with 

sufficient precision is probably the most important explanation for the lack of evidence in this 

field.24 Estimates of GFR based on creatinine or cystatin C are both inaccurate in the near-

normal range and known to be confounded by non-GFR factors.25-27  

Iohexol clearance is recognized as a precise method for measuring GFR.28 We have previously 

measured GFR as iohexol clearance in a representative sample of the general middle-aged 

population in the Renal Iohexol-clearance Survey in Tromsø 6 (RENIS-T6). To our knowledge, 

this study has been the largest population-based cohort with GFR measurements.29 These 

measurements have now been repeated in the same cohort as a part of the RENIS Follow-up 

Study (RENIS-FU). The aim of this longitudinal study was to investigate whether there was an 

3 
 



association between elevated baseline BP and accelerated decline in GFR between baseline and 

follow-up.  
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Results 

In the present investigation, 1299 (81%) of the 1594 participants in the baseline cohort had a 

follow-up GFR measurement after a median (IQR) observation time of 5.63 years (5.23 – 6.03) 

(Figure 1). A total of 87 subjects had a repeated follow-up measurement of GFR. The mean 

coefficient of variation (95% confidence interval) for the intra-individual GFR variation was 

4.2% (3.4% - 4.9%). 

Except for body weight, fasting triglycerides, mean arterial pressure (MAP) and the use of “other 

antihypertensives”, all of the characteristics changed between the baseline and follow-up 

investigations (p<0.05) (Table 1). The most important changes were increases in the percentages 

of subjects receiving antihypertensives (from 17.5 to 31.2%) or lipid lowering treatments (from 

6.1 to 17.0%). Comparisons of the baseline characteristics of those included in the follow-up 

study and those lost to follow-up are shown in Supplementary Table S1. The differences were 

small, except for the percentage of current smokers (18 vs. 28, p<0.001). 

The unadjusted mean (SD) rate of change for the absolute GFR in the study period was -0.95 

(2.23) mL/min/year and was -0.84 (2.00) mL/min/1.73 m2/year for the GFR standardized to body 

surface area. A negative change signifies a decline in GFR. The unadjusted change rates 

according to change in MAP (lower or unchanged vs. higher) and change in antihypertensive 

medication (yes/no) are shown in Table 2. Subjects with an increase in MAP from baseline to 

follow-up had a slower unadjusted decline in GFR (p=0.007). The unadjusted GFR decline was 

steeper in participants using antihypertensive treatments both at baseline and follow-up than in 

participants who had never used antihypertensive medication (p=0.006) (Table 2). Subjects with 

lower or unchanged MAP had a mean (SD) body weight loss of 1.1 (4.8) kg between baseline 

and follow-up (from a mean body weight of 81.2 to 80.1 kg), whereas those with an increase in 
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MAP had a mean weight gain of 0.8 (4.2) kg (from a mean body weight of 77.5 to 78.4 kg) 

(p<0.001 for the difference in weight change between the MAP groups). 

When the GFR change rate was assessed in the linear mixed model using baseline values of BP 

and the adjustment variables, none of the BP components was associated with GFR decline 

(Table 3).  There were no statistically significant non-linear relationships between the BP 

components and GFR rate of change when fractional polynomial transformations were tested in 

the fully adjusted models.  

Subgroup analyses for subjects with hypertension at baseline and/or follow-up, with 

normotension at both baseline and follow-up, without self-reported heart disease, without 

albuminuria (ACR less than 1.92 mg/mmol for men and 2.83 mg/mmol for women) or with GFR 

greater than 60 ml/min/1.73 m2 were performed (Supplementary Table S2 and S3). The results 

were essentially the same as shown in Model 2 in Table 3, i.e. there was no statistically 

significant association between BP components and GFR decline in any of these subgroups.  

The relationships between baseline BP components and GFR decline assessed by body-surface 

adjusted measured GFR (GFRBSA), eGFRcrea and eGFRcys are shown in Supplementary Table 

S4. The same models and adjustments as in Table 3 were used. In the fully adjusted models, 

there were statistically significant negative relationships between baseline SBP, DBP and MAP 

and change in eGFRcrea, but not eGFRcys or GFRBSA.  
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Discussion 

We did not find an association between accelerated GFR decline and elevated baseline BP 

(Table 3).  To our knowledge, the present study is the first investigation of the association 

between BP and the GFR change rate in the general population using actual measurements of 

GFR. However, several investigators have studied changes in serum creatinine, estimated GFR 

or creatinine clearance.11-17, 30 The results across these trials have not been consistent. Most of 

them have found a faster GFR decline with higher BP, but there has been considerable variation 

in which BP components have been reported.11-17 In fully adjusted models, the present study also 

found statistically significant negative associations between baseline BP components and the 

eGFRcrea change rate, which were not confirmed when change rates were calculated from 

eGFRcys or iohexol clearance (Table S4).  Few of previous studies excluded subjects with 

cardiovascular disease or diabetes, or presented analyses that adjusted for these conditions.11, 13, 

15, 16 None of the studies adjusted for individual classes of antihypertensive medications.  

Our finding of a lack of association between elevated baseline BP and a steeper GFR decline 

runs contrary to the results of observational studies that have demonstrated that hypertension is a 

risk factor for both ESRD1, 2 and less severe CKD.31-35 There are at least two possible 

explanations for this apparent paradox. First, there may not be a contradiction between the lack 

of an association between BP and the mean GFR change rate and its association with progressive 

nephropathy in a minority. There is little doubt that elevated BP is an important contributing risk 

factor for progressive CKD, but additional genetic or environmental factors are probably 

necessary. Secondly, there is evidence that renal hyperfiltration, i.e., abnormally elevated GFR, 

is an early phase of hypertensive nephropathy, similar to what is observed in diabetic 

nephropathy. Cross-sectional studies have found associations between BP and elevated GFR 

both in hypertensive patients18-21 and in the general population.22 A longitudinal study found a 
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greater increase in serum creatinine after 6 years in hypertensive patients with the highest 

creatinine clearance at baseline.23  

The most important strength of the present study is its use of measured GFR in a population 

representative of the general middle-aged population rather than using GFR estimated from 

creatinine or cystatin C. The conclusions of this study would have been different if it had been 

based on eGFRcrea instead of measured GFR (Table S4). The different results from eGFRcrea may 

have been caused by the influence of non-GFR factors on creatinine or from reduced precision of 

eGFRcrea in the normal range. 25-27 Another strength was that confounding from comorbid 

conditions was limited by excluding subjects with diabetes or cardiovascular disease at baseline. 

Because we obtained three GFR measurements from a random subset of subjects, state-of-the-art 

linear mixed models rather than ordinary linear regression could be used for the analyses.36 The 

intraindividual variation in the GFR measurements calculated from this subset was lower than in 

most previous studies and indicates a low level of measurement error.25, 37 The repeated follow-

up measurements were included in the linear mixed models and allowed adjustment for 

intraindividual variation in the analyses.38 However, only two measurements for most of the 

subjects limit the precision of estimates and preclude the study of individual non-linear GFR 

trajectories. The study design was chosen as a compromise between the need to use actual 

measurements of GFR and the willingness of subjects to undergo repeated time-consuming 

examinations during the six year follow-up. 

Since assessment of GFR change depends critically on the repeatability of the measurement 

method over time, we reanalyzed frozen samples to correct for drift (see Methods). The process 

of obtaining samples, preanalytic procedures and HPLC-analysis involves several steps that 

could have changed slightly over nearly six years. We calibrated the baseline measurements, but 

cannot exclude the possibility that the drift may have introduced random error which may have 

diluted our estimates and reduced statistical power. 
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The principal limitation of the study was that it is not possible to draw firm conclusions about 

causality from an observational study.  However, our results do not support the hypothesis that 

elevated BP causes a steeper mean GFR decline in the general population. In addition to showing 

no statistically significant associations, the lower limits of the confidence intervals for the 

baseline BP regression coefficients in the fully adjusted models were greater than most estimates 

reported in previous studies (Table 3).11, 13, 14, 16, 17 

Because only middle-aged Caucasians were included, caution should be exercised when 

generalizing the results to other age groups and ethnic groups. 

We conclude that elevated BP is not associated with an accelerated mean GFR decline in the 

general middle-aged population, and that our findings do not support the hypothesis of non-

malignant high BP as a sufficient cause of faster GFR decline. Additional risk factors are 

probably necessary for the development of manifest hypertensive nephropathy. Studies with an 

even longer observation period and repeated measurements of GFR are needed to fully evaluate 

the effect of BP on kidney function. 
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Methods 

Study population 
 

This investigation is a follow-up study of RENIS-T6.29 RENIS-T6 included a representative 

sample of 1627 people between 50 and 62 years of age from the general population without self-

reported kidney disease, myocardial infarction, stroke or diabetes in the municipality of Tromsø 

in Northern Norway. Baseline GFR was measured by iohexol-clearance between October 2007 

and June 2009. The cohort has been previously described in detail.29 In the present investigation, 

33 subjects who satisfied biochemical criteria for diabetes (fasting glucose ≥ 7.0 mmol/L  and/or 

hemoglobin A1c ≥ 6.5%) at baseline were excluded, leaving 1594 subjects. Ten subjects with 

missing data for baseline hemoglobin A1c who all had fasting glucose < 7.0 mmol/L, were not 

excluded. RENIS-FU included subjects with a follow-up measurement of GFR between 

September 2013 and January 2015. All of the participants in the baseline study were invited 

except for 23 subjects who had died and 7 who had suffered a possible delayed allergic reaction 

to iohexol at baseline, leading to 1564 total people eligible (Figure 1). A random sample was 

invited to a repeated follow-up investigation to obtain a subset of subjects with three GFR 

measurements, necessary for analysis with a linear mixed regression model with random 

intercept and slope. This study was approved by the Norwegian Data Inspectorate and the 

Regional Committee for Medical and Health Research Ethics of North Norway. The study 

adhered to the Declaration of Helsinki, and all subjects provided written consent. 

Data 

Both of the baseline and follow-up investigations were conducted in the Clinical Research Unit 

at the University Hospital of North Norway. On both occasions, the assessments included a 

health questionnaire with questions on alcohol and tobacco use and all current medications. 
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Alcohol use was coded as 1 for the use of alcohol more than once a week and 0 otherwise. 

Tobacco use was coded as the number of cigarettes currently smoked daily.  

Measurements 

Iohexol Clearance 

GFR was measured at baseline and follow-up using single-sample plasma clearance of iohexol. 

This method has been validated against gold standard methods for measuring GFR.37, 39-41 The 

procedure used in RENIS-FU was the same as in the baseline RENIS-T6, which has previously 

been described in detail29. The investigation was rescheduled for subjects suffering from any 

acute illness.  

To adjust for a possible drift in the method between baseline and follow-up, a 6% random 

sample of blood samples from the baseline investigation previously frozen at -80º C were 

thawed. The older iohexol samples were randomly distributed among the newer RENIS-FU 

samples throughout the study period and were simultaneously analyzed. The mean difference in 

the GFR between follow-up and baseline was 2.28 mL/min/1.73 m2 (95% confidence interval 

1.05 to 3.51). All of the baseline GFR measurements reported in this study were adjusted by 

adding this constant to the original measurements. In a linear regression model with the GFR 

difference as the dependent variable and the baseline variables of the fully adjusted model 

described below (Model 2) as the independent variables, there was no statistically significant 

relationship between the difference and these variables (F19,84 = 1.12, p=0.35). 

To investigate intra-individual variation in the GFR measurements, we obtained a repeated 

measurement after two weeks and within two months from a 5.5% random sample of the 

subjects in the follow-up study. 
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Other measurements 

The procedure for BP measurements has been described previously.42 Subjects with systolic BP 

(SBP)  ≥ 140 mmHg, diastolic BP (DBP) ≥ 90 mmHg, or using antihypertensive medications 

were categorized as having hypertension.  Mean pulse pressure (PP) was defined as SBP minus 

DBP. Mean arterial pressure (MAP) was defined as DBP plus one-third of the PP. Fasting serum 

glucose, creatinine, cystatin C, triglycerides, and LDL- and HDL-cholesterol, hemoglobin A1C 

and the urine albumin-creatinine ratio (ACR) were measured with standard methods as described 

previously.42, 43 Serum creatinine was measured using an enzymatic assay standardized to the 

isotope dilution mass spectroscopy method (CREA Plus, Roche Diagnostics, GmbH, Mannheim, 

Germany). Cystatin C was measured by a particle-enhanced turbidimetric immunoassay 

(Gentian, Moss, Norway) and calibrated to the international reference ERM-DA471/IFCC as 

previously described.44 Estimated GFR (eGFR) was calculated from creatinine or cystatin C 

using the Chronic Kidney Disease Epidemiology Collaboration equations (eGFRcrea and 

eGFRcys).24 

Statistical methods 
 

Mean (standard deviation (SD)) or median (interquartile range (IQR)) for skewed variables were 

used for descriptive statistics. Differences between subjects in the follow-up investigation and 

those lost to follow-up were tested with two-sample t-tests, Wilcoxon rank-sum tests, two-

sample tests of proportions or Fisher’s exact test, as appropriate. Differences between baseline 

and follow-up were assessed with the paired t-test or Wilcoxon signed-rank test for continuous 

variables and McNemar’s test for paired dichotomous variables.  

The GFR measurements were analyzed in a linear mixed regression model with random intercept 

and slope.45 The subjects had from one to three GFR measurements (baseline, follow-up and/or 

repeated follow-up). Absolute GFR in mL/min was used as the dependent variable. Observation 
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time from baseline was used as the independent time variable. Effects of the baseline BP 

components (SBP, DBP, PP and MAP) on the rate of change in GFR were assessed by including 

two-way interaction terms between the BP variable in question and the time variable. Separate 

regression analyses were performed for each BP component. 

All of the linear mixed regression analyses were conducted with the following two sets of 

baseline adjustment variables: Model 1 (age; sex; body weight; height; individual dichotomous 

variables for the use of ACE-inhibitors, A2-receptor blockers, beta-blockers, calcium-blockers, 

diuretics and other antihypertensives) and model 2 (same variables as model 1 while also 

including LDL-cholesterol, HDL-cholesterol, fasting triglycerides, fasting glucose, ACR, pulse 

frequency, number of cigarettes currently smoked, and a dichotomous variable for the alcohol 

use). Subjects with missing data for alcohol use (n=6), ACR (n=5) or triglycerides (n=4) at 

baseline were excluded from the analyses. There were no missing data for the other independent 

variables or for GFR.  

Non-linear effects of the baseline BP components on the GFR rate of change were explored by 

including second-degree fractional polynomial transformations of the BP components in the 

interactions with time in the linear mixed regression models.46 Separate analyses were performed 

for each BP component. Absolute GFR (mL/min) was used as the dependent variable and the 

same independent variables as in Model 2. The Royston and Altman model-selection algorithm 

was used.46 The algorithm performs a selection of fractional polynomial terms of the 

independent variables with exponents chosen from the set -2, -1, -0.5, 0, 0.5, 1, 2 and 3. The 

exponent zero is defined as the logarithm of the independent variable. The difference in deviance 

defined as minus twice the log-likelihood was used for choosing between models. 

The same linear mixed regression analyses as described above were performed with change in 

eGFR assessed by eGFRcrea or eGFRcys as the dependent variable in separate analyses. 

13 
 



Statistical significance was set at 0.05. All of the statistical analyses were performed in 

STATA/MP 13.1 (www.stata.com).  
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Figure Legend 
 

Figure 1. Inclusion of subjects in the RENIS Follow-Up Study (RENIS-FU). Subjects had 

from one to three GFR measurements: at baseline, at follow-up and/or at a repeated 

follow-up investigation. 
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Baseline Follow-up

No No 374 (57) 508 (79) 882 (68)
-1.10 (2.00) -0.69 (2.02) -0.86 (2.02)

No Yes 145 (22) 45 (7) 190 (15)
-1.05 (2.79) -0.91 (2.00) -1.02 (2.62)

Yes No 6 (1) 6 (1) 12 (1)
0.23 (1.76) -1.79 (0.99) -0.78 (1.72)

Yes Yes 129 (20) 86 (13) 215 (17)
-1.76 (2.61) -0.48 (2.55) -1.25 (2.65)

Total 654 (100) 645 (100) 1299 (100)
-1.21 (2.34) -0.69 (2.09) -0.95 (2.23)

Negative DGFR indicates a decline in GFR from baseline to follow-up

Table 2. Unadjusted mean GFR change rates according to change in mean arterial pressure and 
antihypertensive medication between baseline and follow-up. The RENIS-FU Study.

Antihypertensive medication Change in mean arterial pressure from baseline to follow-up. N (%) and DGFR (SD), 
mL/min/year

Lower or unchanged Higher Total

Abbreviations: GFR, glomerular filtration rate; DGFR, change in GFR; RENIS-FU Study, the Renal Iohexol-clearance 
Survey Follow-up Study; SD, standard deviation.

P-values for the effects of change in antihypertensive medication, change in MAP and the interaction between these two 
were 0.006, 0.007 and 0.009, respectively.
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Systolic BP per 10 mmHg -0.05 -0.12 to 0.03 0.21 -0.02 -0.09 to 0.06 0.69

Diastolic BP per 10 mmHg -0.04 -0.17 to 0.09 0.56 0.02 -0.11 to 0.16 0.72

Pulse pressure per 10 mmHg -0.07 -0.18 to 0.03 0.17 -0.05 -0.15 to 0.06 0.41

Mean arterial pressure per 10 mmHg -0.05 -0.16 to 0.06 0.34 0.00 -0.12 to 0.12 1.00

Abbreviations: RENIS-FU Study, the Renal Iohexol-clearance Survey Follow-up Study; BP, blood pressure

Table 3. The associations between baseline blood pressure and GFR change rates in linear mixed 
regression analyses. The RENIS-FU Study

Model 1a Model 2b

Each horizontal section in the table corresponds to one linear mixed regression model. Negative coeffcients indicate a 
steeper GFR decline; positive coefficients a slower decline. 

b Adjusted as model 1 and in addition LDL-cholesterol, HDL-cholesterol, fasting triglycerides, fasting glucose, urinary ACR, 
pulse frequency, number of cigarettes currently smoked, a dichotomus variable for the weekly use of alcohol or not.

P-
value

BP component Beta 
(mL/min/yr)

95 % 
confidence 

interval

P-
value

Beta 
(mL/min/yr)

95 % 
confidence 

interval

a Model 1 adjusted for age; sex; body weight; height; individual dichotomous variables for the use of ACE-inhibitors, A2-
receptor blockers, beta-blockers, calcium-bolckers, diuretics and other antihypertensives.
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