
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2016005
c⃝American Institute of Mathematical Sciences
Volume 11, Number 3, September 2016 pp. X–XX

OSMOSIS FOR NON-ELECTROLYTE SOLVENTS IN

PERMEABLE PERIODIC POROUS MEDIA.

Alexei Heintz

Mathematical Sciences, Chalmers University of Technology
and the University of Gothenburg
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Abstract. The paper gives a rigorous description, based on mathematical
homogenization theory, for flows of solvents with not charged solute particles
under osmotic pressure for periodic porous media permeable for solute parti-

cles. The effective Darcy type equations for the flow under osmotic pressure
distributed within the porous media are derived. The effective Darcy law con-
tains an additional flux term representing the osmotic pressure. Coefficients
in the effective homogenized equations are related to the values of the phe-

nomenological coefficients in the Kedem-Katchalsky formulae (2).

1. Introduction. The goal of the present paper is to give a rigorous description,
based on mathematical homogenization theory, of flows of non-electrolyte solutions
(that is electrically neutral solute particles) under osmotic pressure for periodic
porous media permeable for solute particles.

Osmosis is historically the term for a phenomenon of spontaneous passage of
water or other solvents through a membrane that is permeable to the solvent but is
impermeable for solute particles. If a solution is separated by such a semipermeable
membrane from the pure solvent, the pure solvent will move through the membrane
making the solution at the other side of the membrane more dilute. This process
can be stopped by applying external counter pressure that gives an idea of osmotic
pressure.

Osmosis explains in particular how living cells as red blood cells or plant cells
adapt their shape to the environment stress by changing concentration of solutes
(sucrose in case of plants cells) inside them.

This phenomenon was discovered by French experimental physicist Jean-Antoine
Nollet in 1748 in natural membranes but was first studied in detail by a German
plant physiologist Wilhelm Pfeffer only in 1877. The term osmose or osmosis was
introduced by a British chemist, Thomas Graham in 1854.
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The Dutch chemist van’t Hoff showed in 1886 that, for dilute solutes the osmotic
pressure varies with concentration and temperature similarly to an ideal gas. A
classical formula by van’t Hoff for osmotic pressure acting on solvent at the border
of the membrane impermeable for solute particles reads [33]:

posm = ρkT (1)

where ρ is the concentration of solute particles, T is temperature and k is the Boltz-
mann constant. This relation led to practical methods for determining molecular
weights of solutes.

Osmotic pressure plays important role in biological processes as transport in
plants [19] and through cell membranes [21], [15] and also in several modern mem-
brane technologies in particular for desalination and sustainable power generation
[10], [38], [24].

There is a physical phenomenon called by chance similarly - electroosmosis.
Electro-osmotic flows in micro channels are driven by external electric fields, acting
on charged solute particles that initiate the solvent flow through the viscous interac-
tion. This phenomenon was discovered by F.F. Reuss [28] in 1809. Electroosmosis
of charged particles with corresponding electrokinetic models [25], [31] and osmosis
of neutral particles have certain similarities from the mathematical point of view,
but are rather different in physical nature.

In many situations porous membranes are not completely impermeable to solute
particles, but depending on the size of pores, obstruct to some extend the passage
of particles. The effect of osmotic pressure in this case is not concentrated on the
surface of the membrane, but is distributed within the membrane’s volume. A
combination of several complicated phenomena define the joint transport of solute
and solvent through the membrane in this case. The question about the nature of
osmotic pressure in such intermediate regimes did not have a rigorous answer up to
now.

Several phenomenological models based on general thermodynamical principles
were suggested to extend formula (1) to the case when a porous membrane is par-
tially permeable to neutral solute particles, as the Kedem-Katchalsky formulae

Ju = Lp∆p− LpD∆posm (2)

JD = −LDp∆p+ LD∆posm

that connect fluxes Ju and JD of solvent and of solute particles through the slab
of a porous material with the value of the pressure drop ∆p in the solvent and the
solute concentration jump ∆ρ [20],[21]. Here the phenomenological coefficients Lp,
LpD, LDp, LD are called coefficients of filtration, osmotic transport, ultrafiltration
and diffusion, respectively. The relation

σ = − LpD/Lp (3)

between the osmotic transport coefficient and the filtration coefficient is called mem-
branes reflection coefficient.

The goal of the present paper is to derive using mathematical homogenization
theory a consistent macroscopic model for transport of solvents and neutral so-
lutes in porous media that are permeable for solute particles. We consider as a
microscopic model a system of equations of Nernst-Planck-Stokes type describing a
slow flow of viscous fluid solvent together with the advection-diffusion of the solute
particles through a periodic porous solid microstructure with period ε ≪ 1 under
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the effect of potential forces acting on the solute particles through a potential V
concentrated along the surface of the porous structure.

Such kind of models for flows under osmotic pressure were considered in the case
of one dimensional flows in thin channels by Anderson and his coauthors [8] [7] and
were developed also in [35], [17], [16]. They were applied to simple geometries in
[37], [19], [36]. Neither rigorous mathematical analysis nor numerical analysis of
these models in case of general geometry has been done up to now.

Related mathematical problems for Nernst-Planck-Poisson and Nernst-Planck-
Poisson-Stokes systems for non-stationary electrokinetic models were considered in
papers [25], [30], [31], [6], [5]. In [25] the homogenization problem for periodic
micro-structures for the stationary Nernst-Planck-Poisson-Stokes system is consid-
ered, and formal asymptotic expansions for solutions are constructed. Rigorous
justification of convergence to homogenized solution is given for the non-stationary
Nernst-Planck-Poisson-Stokes system in [31], [6]. Similar results for non-ideal trans-
port when finite size of ions is taken into account, were obtained in [5]. A number
of works on electro-osmosis in porous media is available in physical literature, see
for example [12],[9],[29].

The main results of the present paper are following. Introduction and math-
ematical analysis of a new model for the microscopic picture of osmotic flow for
non-electrolyte (not charged) solute transport at the pore level. Derivation using
mathematical homogenization theory of new effective Darcy’s type equations for
the flow under osmotic pressure distributed within the porous media. The new for-
mula (5.3) for the distribution of osmotic pressure inside the porous media gives a
quantitative answer about the nature of the osmotic transport. Coefficients in the
derived homogenized equations relate values of the phenomenological coefficients in
(2) with properties of the osmotic flow at the pore level.

The present paper deals with the stationary transport of neutral solute particles
where the potential of forces acting on the particles is given and can grow infinitely
for points approaching the boundary. This leads to possible degeneracy of the dif-
fusion equation in the vicinity of the boundary and to corresponding complications
in mathematical analysis. In this respect the considered model is mathematically
more complicated than models for electro-osmosis where the potential satisfies the
Poisson equation and is regular. One of the new features of the studied problem is
the choice of boundary conditions for the flow equations describing a flow through
a reservoir with prescribed pressure drop between the inflow and outflow parts of
the boundary.

We consider in the present paper an N -dimensional porous structure with N =
2, 3, that fills an open domain Ω surrounded by solid lateral walls Γ0 and by flat
inflow and outflow boundaries S1 and S2 in two planes orthogonal to one of the
coordinate axes. It is assumed that Γ0 is a Lipschitz continuous surface.

Through this paper we suppose that the boundary of the porous structure is a
Lipschitz continuous and periodic surface. The periodicity cell is denoted by Y.

Without loss of generality we suppose that Y = [0, 1)
N
. We denote by YF an

open set on Y and assume that it is Lipschitz and its periodic extension to RN

is a connected set. In what follows we refer to YF as the fluid part of the porous
medium. YS = Y \YF denotes the solid part of the structure in Y . The scaled
periodicity cell is denoted by Y ε. Cells including the structure match exactly the
outflow and inflow boundaries S1 and S2 of Ω.
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Ωε denotes the fluid part of the domain Ω together with the porous structure,

Ωε = Ω ∩
(

∪
i∈Zn

ε (YF + i)

)
,

and ∂Ωε is its boundary. Γε is the solid part of the boundary ∂Ωε of the flow domain
including the structure boundary and the solid boundary Γ0 of Ω. The inflow and
outflow parts of ∂Ωε are denoted by Sε

1 and Sε
2 .

We denote by Cε the union of scaled periodicity cells that are completely included
into the domain Ω:

Cε = ∪
i∈Kε

ε (Y + i) , Kε =
{
i ∈ ZN : ε (Y + i) ⊂ Ωε

}
(4)

The fluid solvent is described by the Stokes equations for velocity uε and pressure
pε with external forces coming from friction between the particles and the fluid. We
impose non-slip boundary conditions for the velocity uε in the Stokes equations
on the solid boundary Γε and impose boundary conditions on the inflow and out-
flow boundaries Sε

1 and Sε
2 for pressure pε as constant values P 1 and P 2, and for

tangential component of velocity as uε,τ = 0.
The solute concentration ρε satisfies the advection diffusion equation with drift

force defined in terms of the potential Vε with support concentrated along the
solid boundaries. V is a periodic function on Y, and we denote the scaled potential
by Vε(x) = V

(
x
ε

)
. We apply zero normal flux boundary condition for the solute

concentration ρε on the solid boundary Γε and the Dirichlet boundary conditions
for ρε on inflow and outflow boundaries Sε

1 and Sε
2 defined as Sε

i = Si∩Ωε, i = 1, 2.
We consider a boundary value problem for the system of PDEs consisting of the

Stokes equations for velocity uε and pressure pε of the solvent with the osmotic
force ρε∇Vε and the advection-diffusion equation with advection velocity uε and
drift term div (κρε∇Vε) .

The strong formulation of the boundary value problem reads:

µ∆uε −∇pε − ρε∇Vε = 0, x ∈ Ωε; (5a)

div(uε) = 0, x ∈ Ωε; (5b)

uε = 0, x ∈ Γε; (5c)

pε = P i, uε,τ = 0, x ∈ Sε
i , i = 1, 2. (5d)

for the Stokes equations and

∆ρε +
κ

λ
div (ρε∇Vε) =

1

λ
div (ρεuε) , x ∈ Ωε; (6a)(

∇ρε +
κ

λ
(ρε∇Vε)−

1

λ
ρεuε

)
· n = 0, x ∈ Γε; (6b)

ρε = 0, x ∈ Sε
1 , ρε = θ2βε(x), x ∈ Sε

2 , (6c)

for the advection-diffusion equation. Here µ is viscosity, λ is diffusion constant, κ
is the mobility of solute particles, θ2 ≥ 0 is a constant, and βε(x) = exp(−κ

λVε(x));
n is the exterior normal on ∂Ωε.

The weak formulation of problem (5)-(6) and conditions for well posedness of
this problem are given in Sections 2 and 3.

We notice that according to the Einstein–Smoluchowski relation [14], [34]

λ

κ
= kT (7)
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where T is absolute temperature and k is the Boltzmann constant, and van’t Hoffs
formula (1) for osmotic pressure can in our notations be rewritten as

pε,osm = ρε

(
λ

κ

)
(8)

To illuminate the effects of osmosis in the Stokes equation we observe that

− ρε∇Vε = −
(
λ

κ

)
βε∇

(
ρεβ

−1
ε

)
+

(
λ

κ

)
∇ρε (9)

and rewrite the equation (5a) as

µ∆uε −∇pε +
(
λ

κ

)
∇ρε −

(
λ

κ

)
βε∇

(
ρεβ

−1
ε

)
= 0, x ∈ Ωε. (10)

with the expression
(
λ
κ

)
∇ρε = ∇pε,osm for the osmotic pressure (8) included

explicitly.
We formulate here also a boundary value problem for pressure that follows from

(5)

∆pε = −div (ρε∇Vε) , x ∈ Ωε; (11)

∇pε · n = 0, x ∈ Γε

pε = P i, x ∈ Sε
i , i = 1, 2.

Only the difference δP = P 1 − P 2 between pressure values at the inflow and
outflow boundaries S1 and S2 has physical meaning. We will control only δP and
will normalize pressure by the condition∫

Ωε

pεdx = 0 (12)

The main result of the work is deriving a limit macroscopic system consisting of
an effective diffusion equation (95) and a Darcy type equation (96) with additional
flux representing the effect of the osmotic pressure distributed within the structure.
In the case of a flat membrane, the corresponding effective matrices BD and Bosm

(90) in (96), are related to the filtration and osmotic transport coefficients Lp and
LpD in the Kedem-Katchalsky formula (2).

The paper is organized as follows. In Section 2 we provide the problem setup
and obtain apriori estimates in weighted Sobolev spaces for solutions of the studied
system. In the second part of this section we use contraction arguments to justify
the well posedness of the system under consideration.

In Section 3 we pass to the two-scale limit in the advection-diffusion equation
with potential forces. Here we use two-scale convergence in the variable spaces
approach [39].

Section 4 is devoted to the homogenization of velocity and pressure satisfying
the Stokes system with osmotic forces originated in potential forces acting on the
solute and in the density gradient of the solute.

The goal of Section 5 is to derive the macroscopic Darcy’s law with osmotic
pressure distributed within the porous structure. The result is obtained by excluding
the fast variable from the two-scaled effective system of equations.

Finally, in the Appendix we adapt results on the Friedrichs and Poincare type
inequalities from [22] and [27] to the weighted Sobolev spaces specific for our prob-
lems. Also we provide nontrivial examples of potentials and corresponding weights
such that the desired Friedrichs and Poincare inequalities hold true.
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2. Weak formulation of the problems and a priori estimates.

2.1. Apriori estimates for the advection diffusion equation with drift by
osmotic forces. We derive in this section a week formulation of problem (6) in
terms of weighted spaces L2 (Ωε, βε), W

1
2 (Ωε, βε) with scalar products

(θ, ξ)L2(Ωε,βε)
=

∫
Ωε

(θξ)βεdx (13)

(θ, ξ)W 1
2 (Ωε,βε)

=

∫
Ωε

(θξ +∇θ · ∇ξ)βεdx (14)

and weight

βε(x) = exp(−κ
λ
V (x/ε)). (15)

The space Lp (Ωε, βε) is defined by the norm

∥θ∥pLp(Ωε,βε)
=

∫
Ωε

|θ|p βεdx. (16)

Typical potentials Vε(x) in our problems are nonnegative and bounded on compact
subsets of Ωε, and are rising, may be infinitely, for points tending to the solid part
Γε of the boundary of Ωε.

By using the formula:

βε∇
(
ρεβ

−1
ε

)
= ∇ρε +

κ

λ
(ρε∇Vε) (17)

with β−1
ε = 1/(βε), the following symmetrization

div

[
βε

(
1

λ

(
ρεβ

−1
ε uε

)
−∇

(
ρεβ

−1
ε

))]
= 0 (18)

of the advection diffusion equation with potential forces is achieved.
We multiply the advection-diffusion equation (6a) by an arbitrary function of the

form ψβ−1
ε ∈ W 1

2 (Ωε, βε) and integrate the resulting relation by parts using (18).
Boundary conditions imply that after integration by parts the sum of all fluxes on
the solid boundary Γε is zero.∫

Ωε

∇
(
ρεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε dx− 1

λ

∫
Ωε

(
ρεβ

−1
ε

)
uε · ∇

(
ψβ−1

ε

)
βεdx (19)

=
1

λ

∑
i

∫
Si

(
ψβ−1

ε

) [
uεn

(
ρεβ

−1
ε

)]
βεdσ +

∑
i

∫
Si

(
ψβ−1

ε

) [ ∂
∂n

(
ρεβ

−1
ε

)]
βεdσ.

The last formulation motivates the introduction of the Hilbert space W 1
2 (Ωε, βε)

defined in (14).
Conditions on potential. We consider the weighted space W 1

2 (Ωε, βε) with
the weight βε = exp(−κ

λVε) and suppose that

• the Friedrichs inequality in Ωε with zero boundary conditions f = 0 on Sε
i ,

i = 1, 2 is valid:∫
Ωε

|f |2 βεdx ≤ C

[
N∑
i=1

∫
Ωε

∣∣∣∣ ∂∂xi f
∣∣∣∣2 βεdx

]
(20)
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• the spacesW 1
2 (Ωε, βε) and

o

W 1
2 (Ωε, βε) are compactly embedded into the space

L2(Ωε, βε). It implies that the Poincare inequality∫
Ωε

|f |2 βεdx ≤ C1

[(∫
Ωε

βεdx

)−1 ∣∣∣∣∫
Ωε

f βεdx

∣∣∣∣2 + N∑
i=1

∫
Ωε

∣∣∣∣ ∂∂xi f
∣∣∣∣2 βεdx

]
(21)

is valid for all f ∈W 1
2 (Ωε, βε).

• the space W 1
2 (Ωε, βε) is continuously embedded into L6

(
Ωε, (βε)

3
)
.

If 0 < c < βε < C < +∞ on Ωε these conditions are satisfied in dimensions
2 and 3.

The connectedness of Ωε and positivity of βε on Ωε implies that the measure βεdx
is ergodic in the sense of Zhikov [39]. By other words the equality

∫
Ωε

|∇f |2 βε dx =
0 implies that f is constant almost everywhere with respect to the measure βε dx.

Potentials Vε(x) appearing in the problems of interest are natural to interpret as
functions of the distance dΓ(x) from the solid boundary Γε: Vε(x) = Vε(dΓ(x)). If
the potential Vε(x) goes to infinity when x approaches the solid boundary Γε, that
can naturally happen in applications, the weight βε(x) degenerates at Γε.

We provide in the Appendix a number of sufficient conditions for the Friedrichs
inequality and the Poincare inequality in weighted Sobolev spaces from [27]. We
also give examples of potentials Vε(dΓ(x)) such that these conditions are satisfied
for the weight βε(x) = exp

{
−κ

λVε(dΓ(x))
}
.

For later analysis of the coupled advection-diffusion and Stokes equations we
consider first two auxiliary problems for the equation (19): one with homogeneous
boundary conditions on Sε

1 ∪Sε
2 with a given right hand side, and another one with

inhomogeneous boundary conditions and zero right hand side.

The first problem in weak form reads: given G ∈ [L2(Ωε, βε)]
N

find bεβ
−1
ε ∈

W 1
2 (Ωε, βε) such that bεβ

−1
ε satisfies the integral relation:∫

Ωε

∇
(
bεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε dx =

∫
Ωε

G · ∇
(
ψβ−1

ε

)
βε dx. (22)

and the boundary conditions

bε|Sε
1∪Sε

2
= 0;

(
−Gn + bε

κ

λ

∂Vε
∂n

+
∂bε
∂n

)∣∣∣∣
Γε

= 0.

for an arbitrary function ψβ−1
ε ∈W 1

2 (Ωε, βε) that satisfies boundary conditions

ψ|Sε
1∪Sε

2
= 0.

on the inflow and outflow parts Sε
1 and Sε

2 of the boundary. Here Gn stands for the
normal component of the vector function G. For the coupled system of advection-
diffusion and Stokes equations we will substitute G with G = 1

λ

(
ρεβ

−1
ε

)
uε.

The Friedrichs inequality implies that problem (22) is coercive and the solution

operator R1 (G) = bεβ
−1
ε is bounded from [L2(Ωε, βε)]

N
to W 1

2 (Ωε, βε). Namely
the following bound holds:

∥R1 (G)∥W 1
2 (Ωε,βε)

≤ CR1 ∥G∥[L2(Ωε,βε)]N
. (23)

Notice that according to (20) the constant CR1 does not depend on ε.
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The second auxiliary problem in weak form reads: find aεβ
−1
ε ∈W 1

2 (Ωε, βε) such
that aε satisfies the integral relation:∫

Ωε

∇
(
aεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε dx = 0 (24)

and the boundary conditions

aεβ
−1
ε

∣∣
Sε
1
= 0; aεβ

−1
ε

∣∣
Sε
2
= θ2;

(
aε
κ

λ

∂Vε
∂n

+
∂aε
∂n

)∣∣∣∣
Γε

= 0 (25)

for an arbitrary function ψβ−1
ε ∈W 1

2 (Ωε, βε) that satisfies boundary conditions

ψ|Sε
1∪Sε

2
= 0.

In order to construct a solution of this problem, we first introduce a function
ãε(x)β

−1
ε ∈W 1

2 (Ωε, βε) such that with constant θ2 > 0

ãε(x)β
−1
ε (x) = θ2, x ∈ Sε

2 ; ãε(x)β
−1
ε (x) = 0, x ∈ Sε

1 ;
∂ãεβ

−1
ε

∂n
= 0, x ∈ Γε,

and ∥ãε∥W 1
2 (Ωε,βε)

≤ Cθ2.

We represent aεβ
−1
ε ∈ W 1

2 (Ωε, βε) as the sum aε = gε + ãε with gεβ
−1
ε ∈

W 1
2 (Ωε, βε) satisfying the following integral relation∫

Ωε

∇
(
gεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε dx = −

∫
Ωε

∇
(
ãεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε dx (26)

for an arbitrary function ψβ−1
ε ∈W 1

2 (Ωε, βε) such that

ψ|Sε
1∪Sε

2
= 0, (27)

and the boundary conditions

gε(x)β
−1
ε (x) = 0, x ∈ Sε

1 ∪ Sε
2 ;

∂gεβ
−1
ε

∂n
= 0, x ∈ Γε (28)

Combining an energy estimate following from (26) with ψβ−1
ε = gεβ

−1
ε and the

weighted Friedrichs inequality (20) we obtain by means of the Lax - Milgram lemma
the existence and uniqueness of solutions to (26).

The corresponding solution operator R2(θ2) = aεβ
−1
ε is bounded and satisfies

the estimate:

∥R2(θ2)∥W 1
2 (Ωε,βε)

≤ CR2θ2 (29)

2.2. Weak formulation and apriori estimates for the Stokes equation. We
introduce the space

D#(Ωε) =
{
φ ∈ [C∞ (Ωε)]

N
: div (φ) = 0, φ|Γε

= 0, φτ |Sε
1∪Sε

2
= 0
}

(30)

of smooth solenoidal vector valued functions equal to zero on the solid part Γε of
the boundary, having zero tangential component φτ on the inflow and outflow parts
of the boundary Sε

1 ∪ Sε
2 , and possibly non zero normal component φn on Sε

1 ∪ Sε
2 .

We will also use the space

J#
1 (Ωε) =

{
φ ∈

[
W 1

2 (Ωε)
]N

: div(φ) = 0, φ|Γε
= 0, φτ |Sε

1∪Sε
2
= 0

}
, (31)

and the space

#

W 1
2 (Ωε) =

{
φ ∈

[
W 1

2 (Ωε)
]N

: φ|Γε
= 0, φτ |Sε

1∪Sε
2
= 0

}
. (32)
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A weak formulation of the Stokes boundary value problem with given constant
pressure pε = P i and tangential velocity uε,τ = 0 on the inflow and outflow bound-
aries Sε

i , i = 1, 2, is formulated following ideas in [13] and [18].

We find a function uε ∈ J#
1 (Ωε) that for arbitrary φ ∈ J#

1 (Ωε) satisfies the
integral relation:

µ (∇uε,∇φ) +
λ

κ

(
βε∇

(
ρεβ

−1
ε

)
, φ
)

= −
∫
Sε
1

(
P 1 − P 2 +

λ

κ
θ2βε

)
φ · ndσ; φ ∈ J#

1 (Ωε).
(33)

To derive the weak formulation (33) from the strong one we multiply the Stokes
equation (10) by a solenoidal test function φ ∈ D#(Ωε) and integrate by parts
taking into account boundary conditions: uε = φ = 0 on the solid boundary Γε;
pε = Pi and uε,τ = φτ = 0 on the inflow and outflow boundaries Sε

i , i = 1, 2. This
yields∫

Ω

∆uε · φdx = −
∑
i,k

∫
Ω

∂uε,i
∂xk

∂φi

∂xk
dx+

∫
Sε
1∪Sε

2

∂uε,n
∂n

φndS +

∫
Sε
1∪Sε

2

∂uε,τ
∂n

· φτdS.

We observe that in the case of dimension N = 3, for two orthogonal tangential
directions τ1 and τ2 on Sε

1 ∪ Sε
2

∂uε,n
∂n

+
∂uε,τ1
∂xτ1

+
∂uε,τ2
∂xτ2

= div(uε) = 0.

Condition uε,τ = 0 on Sε
1 ∪Sε

2 implies that
∂uε,τ1

∂xτ1
+

∂uε,τ2

∂xτ2
≡ 0 on Sε

1 ∪Sε
2 . Therefore

∂uε,n

∂n ≡ 0 on Sε
1 ∪ Sε

2 and it leads to the following simplification:∫
Ω

∆uε · φdx = −
∫
Ω

∑
i,k

∂uε,i
∂xk

∂φi

∂xk
dx.

Similar formula evidently holds for dimension N = 2. Together with the relation∫
Ω

(
∇pε −

λ

κ
∇ρε

)
· φdx =

∑
i=1,2

∫
Sε
i

(
P i − λ

κ
ρεβε

)
φ · ndσ

=

∫
Sε
1

(
P 1 − P 2 +

λ

κ
θ2βε

)
φ · ndσ

following from the constraint div(φ) = 0 and from the boundary conditions (6c),
(5d) for ρε, pε it implies the equation (33).

Suppose that βε(x) ∈W
1/2
2 (Sε

i ) and ∥βε∥W 1/2
2 (Sε

i )
≤ Cβ with constant Cβ inde-

pendent of ε. It is valid for most reasonable potentials V for example for V (x) =

[dΓ(x)]
−k

, k > 0, because the tangential gradient of βε(x) on Sε
i is ∇τβε(x) =

−
(
κ
λ

)
∇τV (xε ) exp(−

κ
λV (xε )) and the restriction of βε(x) on S

ε
i is a periodic func-

tion with period ε on cells of dimension N − 1. There is an auxiliary function
Πε ∈W 1

2 (Ωε) such that

Πε(x) = P 2 − λ

κ
θ2βε(x/ε)

for x ∈ Sε
2 , Πε(x) = P 1 for x ∈ Sε

1 , and

∥Πε∥W 1
2 (Ωε)

≤ C(
∣∣P 1 − P 2

∣∣+ λ

κ
θ2) (34)
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with the constant C independent of ε. We reformulate the equation (33) by sub-

stracting Πε(x) from the pressure pε. Find function uε ∈ J#
1 (Ωε), that for arbitrary

φ ∈ J#
1 (Ωε), satisfies the integral relation:

µ (∇uε,∇φ) +
λ

κ

(
βε∇

(
ρεβ

−1
ε

)
, φ
)
− (∇Πε, φ) = 0; φ ∈ J#

1 (Ωε) (35)

similar to (33) but with zero boundary terms on Sε
i .

For a fixed ρεβ
−1
ε ∈ W 1

2 (Ωε, βε) and for Πε ∈ W 1
2 (Ωε) this equation and the

equivalent equation (33) have a unique solution in J#
1 (Ωε) by the Lax Milgram

Lemma since the linear functional L(φ) =
(
βε∇

(
ρεβ

−1
ε

)
, φ
)
− (∇Πε, φ) is bounded

in J#
1 (Ωε). This argument is classical, see [23],[13], [18]. We consider corresponding

estimates in more detail later.
We deal in this section with estimating solutions of the Stokes equation. This

estimate is crucial for the homogenization analysis.
We consider first a general form of the Stokes equations with zero boundary

terms on Sε
1 and Sε

2 :

µ (∇uε,∇φ)[L2(Ωε)]
N2 − (Q,φ)[L2(Ωε)]

N = 0; φ ∈ J#
1 (Ωε). (36)

Consider this integral relation for φ = uε:

µ ∥∇uε∥2[L2(Ωε)]
N2 + (Q, uε)[L2(Ωε)]

N = 0;uε ∈ J#
1 (Ωε) (37)

The scaling argument for Friedrichs inequality on the periodicity cell implies∣∣∣(Q,uε)[L2(Ωε)]
N

∣∣∣ ≤ ∥Q∥[L2(Ωε)]
N ∥uε∥[L2(Ωε)]

N ≤ Cε ∥Q∥[L2(Ωε)]
N ∥∇uε∥[L2(Ωε)]

N2 ;

and

µ ∥∇uε∥[L2(Ωε)]
N2 ≤ C

[
ε ∥Q∥[L2(Ωε)]

N

]
.

and after one more similar argument an a priory estimate for the [L2 (Ωε)]
N

norm
of uε follows:

µ ∥uε∥[L2(Ωε)]
N ≤ C

[
ε2 ∥Q∥[L2(Ωε)]

N

]
. (38)

Therefore the solution operator S1(βε∇
(
ρεβ

−1
ε

)
) for the problem (36) with Q =

λ
κβε∇

(
ρεβ

−1
ε

)
satisfies the estimates∥∥S1(βε∇
(
ρεβ

−1
ε

)
)
∥∥
[L2(Ωε)]

N2 ≤ ε2
λ

κµ
C
∥∥ρεβ−1

ε

∥∥
W 1

2 (Ωε,βε)
; (39)∥∥S1(βε∇

(
ρεβ

−1
ε

)
)
∥∥
[W 1

2 (Ωε)]
N ≤ ε1

λ

κµ
C
∥∥ρεβ−1

ε

∥∥
W 1

2 (Ωε,βε)
.

The problem

µ (∇uε,∇φ)− (∇Πε, φ) = 0; φ ∈ J#
1 (Ωε). (40)

with the potential Πε representing as above, the effect of the hydrostatic pressure
drop P 1 − P 2 between Sε

1 and Sε
2 together with the classical osmotic pressure λ

κρε,
has a solution operator S2 satisfying estimates∥∥S2

(
P 1, P 2, θ2

)∥∥
[L2(Ωε)]

N ≤ ε2
1

µ
CS2

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
; (41)

∥∥S2

(
P 1, P 2, θ2

)∥∥
[W 1

2 (Ωε)]
N ≤ ε

1

µ
CS2

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
;
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Remark. Notice that if the density ρε of the solute has a constant value r2 on Sε
2

and is zero on Sε
1 , the last estimates depend just on a simple balance between the

hydrostatic pressure drop P 1 − P 2 and the osmotic pressure posm = λ
κr2:∥∥S2

(
P 1, P 2, θ2

)∥∥
[L2(Ωε)]

N ≤ ε2
1

µ
CS2

(∣∣∣∣P 1 − P 2 +
λ

κ
r2

∣∣∣∣) (42)

∥∥S2

(
P 1, P 2, θ2

)∥∥
[W 1

2 (Ωε)]
N ≤ ε

1

µ
CS2

(∣∣∣∣P 1 − P 2 +
λ

κ
r2

∣∣∣∣)

3. Abstract contraction argument for quadratic non-linearity and apriori
estimates for the coupled system. We consider now the following joint system
of equations for flow and advection-diffusion. Structure interacts with the solute
through the potential Vε and by that acts on the solvent. The Stokes equations
and the advection-diffusion equation are coupled here through the first order terms.
The joint system in weak form reads:∫

Ωε

∇
[
(ρε)β

−1
ε

]
· ∇
(
ψβ−1

ε

)
βε dx

=
1

λ

∫
Ωε

(
(ρε)β

−1
ε

)
uε · ∇

(
ψβ−1

ε

)
βε dx

(43a)

µ (∇uε,∇φ)[L2(Ωε)]
N2 +

λ

κ

(
βε∇

(
ρεβ

−1
ε

)
, φ
)
[L2(Ωε)]

N

− (∇Πε, φ)[L2(Ωε)]
N = 0,

(43b)

with velocity uε ∈ J#
1 (Ωε), arbitrary φ ∈ J#

1 (Ωε), scaled concentration ρεβ
−1
ε

∈ W 1
2 (Ωε, βε), arbitrary ψβ

−1
ε ∈

#

W 1
2 (Ωε, βε), with ρε(x)β

−1
ε (x) = θ2 for x ∈ Sε

2 ,
and ρε(x)β

−1
ε (x) = 0 for x ∈ Sε

1 .
We reformulate this system of equations in abstract form using notations for

solution operators of the decoupled auxiliary equations considered above:

ρεβ
−1
ε =

1

λ
R1

(
ρεβ

−1
ε uε

)
+R2 (θ2) (44a)

uε = S1(βε∇
(
ρεβ

−1
ε

)
) + S2

(
P 1, P 2, θ2

)
(44b)

Formally we can write down a non-linear operator equation for ρε only:

ρεβ
−1
ε =

1

λ
R1

(
ρεβ

−1
ε

[
S1(βε∇

(
ρεβ

−1
ε

)
)
])

+
1

λ
R1

(
ρεβ

−1
ε

[
S2

(
P 1, P 2, θ2

)])
+R2 (θ2)

(45)

and want to show that for small ε the nonlinear operator

B
(
ρεβ

−1
ε

)
=

1

λ
R1

(
ρεβ

−1
ε

[
S1(βε∇

(
ρεβ

−1
ε

)
)
])

+
1

λ
R1

(
ρεβ

−1
ε

[
S2

(
P 1, P 2, θ2

)]) (46)

in the right hand side of (45) is a contraction in W 1
2 (Ωε, βε).

To reach this goal we estimate first R1

(
ρεβ

−1
ε uε

)
and

(
ρεβ

−1
ε

)
uε that appear

in the weak form of the advection-diffusion equation. The Hölder inequality, the
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estimate βε ≤ 1 and the Sobolev imbedding theorems W
1/2
2 (Ωε) ↪→ L3(Ωε) and

W 1
2 (Ωε, βε) ↪→ L6(Ωε, (βε)

3
) for weighted Sobolev spaces yield∥∥(ρεβ−1

ε

)
uε
∥∥
[L2(Ωε,βε)]

[N] ≤ ∥uε∥[L3(Ωε)]
N

∥∥(ρεβ−1
ε

) ∥∥
L6(Ωε,(βε)

3)

≤ C ∥uε∥[
W

1/2
2 (Ωε)

]N ∥∥(ρεβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)
.

(47)

We point out that despite the fact that Ωε depends on ε, the last estimates are
uniform with respect to ε→ 0 because the porous structure boundary Γε is Lipschitz
on the periodicity cell Y and therefore admits a uniformly bounded extension within
the same Sobolevs class.

The interpolation inequality

∥uε∥[
W

1/2
2 (Ωε)

]N ≤ C ∥uε∥1/2[L2(Ωε)]
N ∥uε∥1/2

[W 1
2 (Ωε)]

N (48)

together with the earlier estimates (41) for the Stokes solution operators implies
that∥∥S1(βε∇

(
ρεβ

−1
ε

)
)
∥∥[

W
1/2
2 (Ωε)

]N ≤ ε3/2
λ

κµ
C
(∥∥[ρεβ−1

ε

]∥∥
W 1

2 (Ωε,βε)

)
, (49)

∥∥S2

(
P 1, P 2, θ2

)∥∥[
W

1/2
2 (Ωε)

]N ≤ ε3/2µ−1C

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
.

Using estimates (49) and (47), for the operators R1

((
θβ−1

ε

) [
S1(βε∇

(
ρεβ

−1
ε

)
)
])

and R1

((
ρεβ

−1
ε

) [
S2

(
P 1, P 2, θ2

)])
we obtain the following inequalities :∥∥R1

((
θβ−1

ε

) [
S1(βε∇

(
ρεβ

−1
ε

)
)
])∥∥

W 1
2 (Ωε,βε)

≤

C
∥∥(θβ−1

ε

)
S1(βε∇

(
ρεβ

−1
ε

)
)
∥∥
[L2(Ωε,βε)]

N ≤ (50)

C
∥∥S1(βε∇

(
ρεβ

−1
ε

)
)
∥∥[

W
1/2
2 (Ωε)

]N ∥∥(θβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)
≤

C
∥∥S1(βε∇

(
ρεβ

−1
ε

)
)
∥∥1/2
[L2(Ωε)]

N

∥∥S1(βε∇
(
ρεβ

−1
ε

)
)
∥∥1/2
[W 1

2 (Ωε)]
N

∥∥(θβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)
≤

C
λ

κµ

(
ε2
∥∥[ρεβ−1

ε

]∥∥
W 1

2 (Ωε,βε)

)1/2 (
ε
∥∥[ρεβ−1

ε

]∥∥
W 1

2 (Ωε,βε)

)1/2 ∥∥(θβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)
=

ε3/2
λ

κµ
C
∥∥[ρεβ−1

ε

]∥∥
W 1

2 (Ωε,βε)

∥∥(θβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)

and similarly ∥∥R1

((
ρεβ

−1
ε

) [
S2

(
P 1, P 2, θ2

)])∥∥
W 1

2 (Ωε,βε)
≤

C
∥∥S2(P 1, P 2, θ2)

∥∥[
W

1/2
2 (Ωε)

]N ∥∥(ρεβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)
≤ (51)

ε3/2µ−1C

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)∥∥(ρεβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)

The last two estimates imply that in any ball of radius R0 in W 1
2 (Ωε, βε) for a

sufficiently small ε the operator B
(
ρεβ

−1
ε

)
is a contraction. Indeed,

λ
[
B
(
ρεβ

−1
ε

)
− B

(
θεβ

−1
ε

)]
=

R1

{
ρεβ

−1
ε

[
S1(βε∇

(
ρεβ

−1
ε

)
)
]
− θβ−1

ε

[
S1(βε∇

(
θεβ

−1
ε

)
)
]}

+

R1

{
[(ρε − θε)]β

−1
ε

[
S2

(
P 1, P 2, θ2

)]}
=
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R1

{
ρεβ

−1
ε

[
S1(βε∇

(
ρεβ

−1
ε

)
)
]
− ρεβ

−1
ε

[
S1(βε∇

(
θεβ

−1
ε

)
)
]}

+ (52)

R1

{
ρεβ

−1
ε [S1(θε∇Vε)]− θεβ

−1
ε [S1(θε∇Vε)]

}
+R1

{
[(ρε − θε)]β

−1
ε

[
S2

(
P 1, P 2, θ2

)]}
=

R1

{
ρεβ

−1
ε S1((βε∇

(
[ρε − θε]β

−1
ε

)
))
}
+

R1

{
[ρε − θε]β

−1
ε S1

(
βε∇

(
θεβ

−1
ε

))}
+R1

{
[ρε − θε]β

−1
ε

[
S2

(
P 1, P 2, θ2

)]}
and finally

λ
∥∥B (ρεβ−1

ε

)
− B

(
θεβ

−1
ε

)∥∥
W 1

2 (Ωε,βε)
≤

ε3/2
λ

κµ
C
∥∥[ρεβ−1

ε

]∥∥
W 1

2 (Ωε,βε)

∥∥([ρεβ−1
ε − θεβ

−1
ε

]) ∥∥
W 1

2 (Ωε,βε)
(53)

+ε3/2
λ

κµ
C
∥∥[[ρεβ−1

ε − θεβ
−1
ε

]]∥∥
W 1

2 (Ωε,βε)

∥∥(θεβ−1
ε

) ∥∥
W 1

2 (Ωε,βε)

ε3/2
C

µ

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)∥∥([ρεβ−1
ε − θεβ

−1
ε

]) ∥∥
W 1

2 (Ωε,βε)
≤

ε3/2
C

µ

[
λ

κ

(∥∥[ρεβ−1
ε

]∥∥
W 1

2 (Ωε,βε)
+
∥∥(θεβ−1

ε

) ∥∥
W 1

2 (Ωε,βε)

)
+(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)]∥∥([ρε − θε]β
−1
ε

) ∥∥
W 1

2 (Ωε,βε)

Choosing ε0 so that

(ε0)
3/2 C

λµ

[
λ

κ
2R0 +

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)]
< 1/2 (54)

we conclude that for any ε ≤ ε0 the operator B is a contraction in the ball of radius
R0 in W 1

2 (Ωε, βε) and maps this ball into itself.

Theorem 3.1. For 0 < ε ≤ ε0 with ε0 satisfying (54), the nonlinear operator
equation (45) corresponding to the system of equations (43) has a unique solu-
tion ρεβ

−1
ε ∈ W 1

2 (Ωε, βε) .The system of equations (43) has a unique solution(
ρεβ

−1
ε , uε

)
with ρεβ

−1
ε ∈ W 1

2 (Ωε, βε) and uε ∈ J#
1 (Ωε) satisfying the following

estimates with constants C independent of ε:∥∥ρεβ−1
ε

∥∥
W 1

2 (Ωε,βε)
≤ C θ2 (55)

∥uε∥[W 1
2 (Ωε)]

N ≤ ε

µ
C

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
(56)

∥uε∥[L2(Ωε)]
N ≤ ε2

µ
C

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
(57)

We notice that P 1 −P 2 is the pressure drop between inflow and outflow parts of
the boundary Sε

1 and Sε
2 , and the expression λ

κθ2 is similar to the classical formula
(8) for the osmotic pressure in the vicinity of an impermeable membrane.

4. Homogenization by two-scale convergence for the concentration of so-
lute particles. This and the next section are devoted to passing to the two-scale
limit [3] [26] in the system of equations (43) and obtaining a homogenized limit
problem. Uniformity of the obtained estimates lets extend solutions uε,

(
ρεβ

−1
ε

)
to

the whole domain Ω in such a way that estimates (55)-(57) hold for the extended
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functions with a constant C that does not depend on ε, see [1]. We also extend
βε by zero outside Ωε for convenience. We keep here the same notations for the
extended functions.

We rewrite the weak formulation of our problem (5)-(6) introducing an indicator
function 1Ωε , test functions ψβ−1

ε ∈ W 1
2 (Ω, βε) vanishing on Sε

1 ∪ Sε
2 , and test

functions φ ∈ J#
1 (Ωε):∫

Ω

∇
(
ρεβ

−1
ε

)
· ∇
(
ψβ−1

ε

)
βε 1Ωεdx =

1

λ

∫
Ω

(
ρεβ

−1
ε

)
uε · ∇

(
ψβ−1

ε

)
βε 1Ωεdx (58)∫

Ω

µ∇uε ·(1Ωε∇φ) dx+
∫
Ω

βε∇
(
ρεβ

−1
ε

)
·(1Ωεφ) dx−

∫
Ω

∇Πε ·(1Ωεφ) dx = 0, (59)

Estimate (55) for concentration is formulated in terms of weighted Sobolev space
depending on the parameter ε. It makes two-scale convergence of functions ρεβ

−1
ε

and ∇
(
ρεβ

−1
ε

)
in weighted Sobolev spaces W 1

2

(
RN ,1Ωεβεdx

)
depending on the

parameter ε an appropriate tool for deriving a homogenized model. We refer here
to several relevant definitions and results from [39].

Let µ be a periodic Borel measure normalized on the periodicity cell Y : µ (Y ) = 1
and µε be the scaled measure defined by

µε (B) = εNµ
(
ε−1B

)
for each Borel set B. The measure µε converges weakly to the Lebesgue measure
dx in the sense that

∫
RN φdµε →

∫
RN φdx for any φ ∈ C0(RN ).

We consider a sequence of measures µε and a sequence of functions zε ∈ L2(Ω,
dµε) and test functions Φ(x, y) = φ(x)ψ(y) with φ ∈ C∞

0 (Ω) and ψ ∈ C∞
per(Y ),

where C∞
per(Y ) stands for the space of smooth periodic functions on Y .

Definition 4.1. The sequence zε such that ∥zε∥L2(Ω,dµε)
≤ const is weakly two-

scale convergent to a periodic in y ∈ Y function z = z(x, y) ∈ L2(Ω × Y, dxdµ) =

L2(Ω× Y ) , or zε(x)
2s
⇀ z(x, y), if

lim
ε→0

∫
Ω

Φ(x, ε−1x)zε(x)dµε =

∫
Ω

∫
Y

Φ(x, y)z(x, y)dxdµ

for each test function Φ(x, y).

Proposition 1. If the sequence zε is bounded in L2(Ω, dµε), then there is a sub-
sequence that converges weakly two-scale to some z = z(x, y) ∈ L2(Ω × Y, dxdµ)
periodic in y ∈ Y .

Definition 4.2. The sequence zε is strongly two-scale convergent to a periodic in

y ∈ Y function z = z(x, y) ∈ L2(Ω× Y, dxdµ) = L2(Ω× Y ) , or zε(x)
2s→ z(x, y), if

lim
ε→0

∫
Ω

vε(x)zε(x)dµε =

∫
Ω

∫
Y

v(x, y)z(x, y)dxdµ

for any two-scale weakly convergent vε(x)
2s
⇀ v(x, y) .

Taking vε(x) = zε(x) gives

lim
ε→0

∫
Ω

(zε(x))
2
dµε =

∫
Ω

∫
Y

z2(x, y)dxdµ. (60)

Proposition 2. The following properties of weak two-scale convergence are useful.

1. If zε(x)
2s
⇀ z(x, y) and a ∈ L∞(Y, µ) is a periodic function on Y , then

a
(
ε−1x

)
zε(x)

2s
⇀ a(y)z(x, y)



OSMOSIS IN PERIODIC POROUS MEDIA. 15

2. If zε(x)
2s
⇀ z(x, y), then zε(x)⇀

∫
Y
z(x, y)dµ = z(x)

3. Weak two-scale convergence zε(x)
2s
⇀ z(x, y) together with (60) implies strong

two-scale convergence.

Theorem 4.3. [39]. Let µ be an ergodic measure, and assume that the following
conditions hold:

zε(x)
2s
⇀ z(x, y)

ε ∥∇zε(x)∥[L2(Ω,dµε)]
N → 0

Then the two-scale limit z(x, y) is independent of y: z(x, y) = z(x).

Theorem 4.4. [39]. Let µ be an ergodic measure, zε ∈
o

W
1

2(Ω, µε), zε and ∇zε be

bounded in [L2(Ω, dµε)]
N

and

zε(x)
2s
⇀ z(x)

∇zε(x)
2s
⇀ p(x, y)

Then z(x) ∈
o

W
1

2(Ω) and

∇zε(x)
2s
⇀ ∇z + v(x, y)

where v ∈ L2(Ω, Vpot), and Vpot is the closure of gradients of smooth periodic func-
tions on Y in norm L2(Y, βdy). Poincare inequality implies that in our case any
such function is a gradient of a periodic function from W 1

2 (Y, βdy).

Turning to our problem notice that the measure dµε = βε 1Ωεdx converges weakly
to the measure 1Ωβdx with

β =

∫
YF

β(y)dy

in the sense that
∫
RN βε1Ωεφdx→

∫
RN 1Ωβφdx for any φ ∈ C0(RN ).

Theorem 4.5. The diffusion component ρεβ
−1
ε of the solution

(
uε, ρεβ

−1
ε

)
to sys-

tem (43) converges strongly in L2(Ω, dµε) to a solution Θ0 of the boundary value
problem:

div
(
Aeff∇Θ0

)
= 0 (61)

with boundary conditions for Θ0(x) the same as in the original problem:

Θ0
∣∣
S1

= 0, Θ0
∣∣
S2

= θ2 (62)

Aeff∇Θ0 · n
∣∣
Γ0

= 0.

with a positive definite matrix Aeff defined by

Aeff =

∫
Y

(I + [∇yχ(y)])β(y)1YF
(y)dy (63)

Here χ(y) is the periodic solution to the cell problem

div (β(y) (∇yχ+ I)) = 0 (64)

∂

∂yn
(χ) = −n(y), y ∈ ∂YS ;
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Proof. The L2(Ω, dµε) uniform estimates for ρεβ
−1
ε and ∇

(
ρεβ

−1
ε

)
and the ergod-

icity of the measure 1Ωε
βεdx imply according to the properties of the two-scale

convergence above that for a subsequence ε→ 0 it holds

ρεβ
−1
ε ⇀ Θ0(x), (65)

∇
(
ρεβ

−1
ε

) 2s
⇀ ∇xΘ

0(x) +∇yΘ
1(x, y), (66)

where Θ0 ∈W 1
2 (Ω, βdx), Θ

1(x, y) ∈ L2(Ω,W
1
2 (Y, β)).

Choosing in (58) a test function ψβ−1
ε = ε φ1

(
x
ε

)
φ2 (x) with smooth φ1 (y)

periodic in y ∈ Y , and φ2 (x) ∈ C∞
0 (Ω) , and passing to the two-scale limit we

obtain the following equation:∫
Y

∫
Ω

(
∇xΘ

0(x) +∇yΘ
1(x, y)

)
· ∇yφ1 (y)φ2 (x)β(y)1YF

(y)dxdy = 0, (67)

where YF is the fluid part of the periodic cell Y and 1YF
(y) is its characteristic

function. Zero limit for the right hand side is an immediate consequence of the
estimates (55)-(57) for solutions. This yields that∫

Y

(
∇xΘ

0(x) +∇yΘ
1(x, y)

)
· ∇yφ1 (y)β(y)1YF

(y)dy = 0

for almost all x ∈ Ω. Therefore

Θ1(x, y) = χ(y) · ∇xΘ
0(x) (68)

with χ(y) being a periodic solution to the cell problem (64). The cell problem is
well posed since apriori estimates on W 1

2 (Y, dµ) are fulfilled.
Choosing now an arbitrary test function φ ∈ C∞(Ω), φ = 0 in the vicinity of

Sε
1 ∪ Sε

2 , in the weak form of the advection-diffusion equation∫
Ω

∇
(
ρεβ

−1
ε

)
· ∇ (φ)βε 1Ωεdx =

∫
Ω

(
ρεβ

−1
ε

)
uε · ∇ (φ)βε 1Ωεdx

we in a similar way get∫
Ω

∫
Y

(
∇xΘ

0(x) + [∇yχ(y)]∇xΘ
0(x)

)
β(y)1YF

(y)dy · ∇φ (x) dx = 0

and ∫
Ω

{∫
Y

(I + [∇yχ(y)])β(y)1YF
(y)dy

}
∇xΘ

0(x) · ∇φ (x) dx = 0

Integration with respect to y yields∫
Ω

Aeff∇xΘ
0(x) · ∇φ (x) dx = 0 (69)

which is the weak formulation of (61). The boundary conditions (62) are evidently
inherited from the original system. Strong convergence of ρεβ

−1
ε to Θ0 follows from

the apriori estimates (55) and the compactness of the embedding from W 1
2 (Ωε, βε)

to L2(Ωε, βε).

We notice that the limit equation for the scaled concentration ρεβ
−1
ε is decoupled

from the flow equation. But ρεβ
−1
ε plays a role in the Stokes part of the system

and its limit Θ0 enters a homogenized Darcy type equation for flow.
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5. Homogenization by two-scale convergence for the velocity and pres-
sure of the solvent. Now we consider the two-scale limit for the Stokes equations
(33). We need to extend the velocity field and pressure to the whole domain Ω to
consider two-scale limits of solutions in a fixed domain. Velocity uε is extended in
a trivial way by zero with apriori estimates preserved for the extended function:

ũε =

{
uε in Ωε

0 in Ω\Ωε

The extension of the pressure pε is more tricky and needs sophisticated estimates
uniform with respect to ε to carry out a limit when ε→ 0.

5.1. Extension of pressure. The homogenization of the Stokes equations relies
on an extension of pressure and on uniform with respect to ε estimates for pressure:
[32], [2]. The following technical lemma from [11] is used here in the construction.

Lemma 5.1. Let g ∈ L2(Ωε) and
∫
Ωε
gdx = 0, and assume that the cell domain

YF can be represented as a finite union of domains with Lipschitz boundaries. Then

there is a vector valued function wε ∈
[

o

W 1
2 (Ωε)

]N
, such that div(wε)(x) = g(x)

and the following estimates are satisfied:

∥wε∥[L2(Ωε)]
N ≤ C ∥g∥L2(Ωε)

; ∥∇wε∥[L2(Ωε)]
N2 ≤ 1

ε
C ∥g∥L2(Ωε)

(70)

with C > 0 independent of ε and g.

Lemma 5.2. For the pressure pε normalized by
∫
Ωε
pεdx = 0 and satisfying the

equations (5) the following estimate holds:

∥pε∥L2(Ωε)
≤ C

[(∣∣P 1 − P 2

∣∣)+ λ

κ
θ2

]
(71)

with C > 0 independent of ε.

Proof. Using lemma 5.1 and recalling our normalization for pressure we construct

a function wε ∈
[

o

W 1
2 (Ωε)

]N
such that div(wε) = pε in Ωε, and

∥∇wε∥[L2(Ωε)]
N ≤ 1

ε
C ∥pε∥L2(Ωε)

(72)

∥wε∥[L2(Ωε)]
N ≤ C ∥pε∥L2(Ωε)

Multiplying the Stokes equation repeated here from (10)

µ∆uε −∇pε +
(
λ

κ

)
∇ρε −

(
λ

κ

)
βε∇

(
ρεβ

−1
ε

)
= 0, x ∈ Ωε

by wε, integrating the resulting relation by parts over Ωε we obtain

(pε, div (wε))L2(Ωε)
= µ (∇uε,∇wε)[L2(Ωε)]

N2 +

((
λ

κ

)
ρε,div (wε)

)
L2(Ωε)

+

((
λ

κ

)
βε∇

(
ρεβ

−1
ε

)
, wε

)
[L2(Ωε)]

N
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and pointing out that
∫
Ωε

div(wε)dx = 0, we get

∥pε∥2L2(Ωε)
= µ (∇uε,∇wε)[L2(Ωε)]

N2 +

((
λ

κ

)
ρε, pε

)
L2(Ωε)

+

((
λ

κ

)
βε∇

(
ρεβ

−1
ε

)
, wε

)
[L2(Ωε)]

N

(73)

Combining estimates∣∣∣∣∣
(
λ

κ
βε∇

(
ρεβ

−1
ε

)
, wε

)
[L2(Ωε)]

N

∣∣∣∣∣ ≤ λ

κ

∥∥ρεβ−1
ε

∥∥
W 1

2 (Ωε,βε)
∥pε∥L2(Ωε)∣∣∣∣∣

((
λ

κ

)
ρε, pε

)
L2(Ωε)

∣∣∣∣∣ ≤ λ

κ

∥∥ρεβ−1
ε

∥∥
L2(Ωε,βε)

∥pε∥L2(Ωε)

with estimates (55), (56), (72) for ρε, uε, ∇wε, wε we receive the following estimate
for pressure pε:

∥pε∥2L2(Ωε)
≤ C

(∣∣P 1 − P 2

∣∣+ λ

κ
θ2

)
∥pε∥L2(Ωε)

+
λ

κ

∥∥ρεβ−1
ε

∥∥
W 1

2 (Ωε,βε)
∥pε∥L2(Ωε,βε)

,

which yields (71).
Denoting Y ε

i,F = ε(YF + i), Y ε
i,S = ε(YS + i), i ∈ ZN , and using the estimate

(71) we can extend pressure from Ωε to Ω by

P ε =


1∣∣∣Y ε
i,F

∣∣∣
∫
Y ε
i,F

pεdx, in Y ε
i,S

pε, in Y ε
i,F

. (74)

as in [2] for Y ε
i,S ⊂ Cε. If the porous structure crosses the lateral boundary Γ0 of Ω

one can [2] complete this definition by extending pε by zero on Ω\Cε:

P ε = pε in (Ω\Cε) ∩ Ωε, P ε = 0 in (Ω\Cε)\Ωε

5.2. Homogenization for velocity and pressure in the Stokes equations
with osmotic forces. In this section we deal with the Stokes part of the system
(58)-(59) and consider properties of the two-scale limits of the extended velocity ũε
and pressure P ε. The estimates (56), (57), (71) for velocity and pressure imply that

there are functions u0(x, y) ∈ L2(Ω;
[
W 1

2 (Y )
]N

), ξ0(x, y) ∈ L2(Ω; [L2(Y )]
N2

), and

p0(x, y) ∈ L2(Ω× Y ) periodic with respect to y ∈ Y , such that extensions µε−2ũε,
µε−1∇ũε, P ε converge two-scale to these functions:

µε−2ũε
2s
⇀ u0(x, y) (75)

µε−1∇ũε
2s
⇀ ξ0(x, y)

P ε 2s
⇀ p0(x, y)

It means that

lim
ε→0

∫
Ω

µε−2ũεΨ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)Ψ (x, y) dydx (76)
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lim
ε→0

∫
Ω

µε−1∇ũεΞ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

ξ0(x, y)Ξ (x, y) dydx

lim
ε→0

∫
Ω

P εΦ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

p0(x, y)Φ (x, y) dydx

for any Ψ ∈ C∞
0

[
Ω;
[
C∞

per(Y )
]N]

, any Ξ ∈ C∞
0

[
Ω;
[
C∞

per(Y )
]N2]

and any Φ ∈
C∞

0

[
Ω;C∞

per(Y )
]
.

Integrating by parts in the second of equations (76) and passing to the two-scale
limit leads in a standard way to∫

Ω

∫
Y

ξ0(x, y)Ξ (x, y) dydx = lim
ε→0

∫
Ω

µε−1∇ũε Ξ
(
x,
x

ε

)
dx =

lim
ε→0

∫
Ω

µε−2ũε

(
εdivx

(
Ξ
(
x,
x

ε

))
+ divy

(
Ξ
(
x,
x

ε

)))
dx =

lim
ε→0

∫
Ω

µε−2ũεdivy

(
Ξ
(
x,
x

ε

))
dx =

∫
Ω

∫
Y

u0divy (Ξ (x, y)) dxdy

and after integration by parts with respect to y over the periodicity cell Y to the
relation

ξ0(x, y) = ∇yu0. (77)

The two-scale limit p0(x, y) has a specific structure that is one of the main results
of the present paper. We express it in the following lemma.

Lemma 5.3. The two scale limit p0(x, y) of P
ε is the sum of a function p(x) that

can be interpreted as hydrodynamic pressure, and a term expressing local osmotic
pressure:

p0(x, y) = p(x)− λ

κ
Θ0(x)β(y) (78)

Proof. Multiplying the Stokes equation (10) by a test function εψ(x, xε ) where

ψ(x, y) ∈ C∞
[
Ω; [C∞(Y )]

N
]
and has finite support in Ω × Yf , and integrating

the resulting relation by parts we get

εµ

(
∇uε,∇xψ +

1

ε
∇yψ

)
[L2(Ωε)]

N

+ ε
(
βε∇

(
ρεβ

−1
ε

)
, ψ
)
[L2(Ωε)]

N +

ε(Pε − βε
λ

κ

(
ρεβ

−1
ε

)
, divxψ +

1

ε
divyψ)L2(Ωε) = 0

Passing to the two-scale limit in

lim
ε→0

ε
[
µ (∇uε,∇xψ)[L2(Ωε)]

N2 + ε−1µ (∇uε,∇yψ)[L2(Ωε)]
N2

]
− (79)

lim
ε→0

ε

[(
λ

κ
βε
(
ρεβ

−1
ε

)
, divxψ

)
[L2(Ωε)]

N

+ ε−1(
λ

κ
βε
(
ρεβ

−1
ε

)
, divyψ)L2(Ωε)

]
(80)

+ lim
ε→0

ε
[
(Pε,divxψ)L2(Ωε) + ε−1(Pε, divyψ)L2(Ωε)

]
+ lim

ε→0
ε
[(
βε∇

(
ρεβ

−1
ε

)
, ψ
)
[L2(Ωε)]

N

]
= 0 (81)
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and using (66) and (68) implies a relation between the two scale limit p0(x, y) of
pressure P ε and the two scale limit Θ0 of the scaled concentration ρεβ

−1
ε :∫

Ω

∫
Y

[
p0(x, y) +

λ

κ
Θ0(x)β(y)

]
divyψ(x, y)dxdy = 0

Taking into account that ψ(x, y) is arbitrary we yield the desired formula (78).

Remark 1. We point out that a similar formula was derived in [8] in one dimen-
sional case for an infinitely long cylindric channel.

The same argument in situation without osmotic forces leads to the conclusion
that the two scale limit p0(x, y) = p(x) is independent of y.

We proceed with clarifying properties of the two-scale limit u0(x, y) of velocity.
The incompressibility conditions for u0(x, y) and u(x) =

∫
Y
u0(x, y)dy and bound-

ary conditions for u0(x, y) and u(x) are formulated in the following lemma.

Lemma 5.4.

divyu0(x, y) = 0 in Ω× Y (82)

divx

[∫
Y

u0(x, y)dy

]
= 0 in Ω

u0(x, y) = 0 in Ω× YS[∫
Y

u0(x, y)dy

]
· n = 0 on Γ0

Proof. Integrating by parts the equation div (ũε) = 0 with a test function λ(x)
that is zero on ∂Ω, passing to the two-scale limit and integrating by parts again we
obtain

0 =

∫
Ω

div (ũε)λ(x)dx = −
∫
Ω

ũε · ∇λ(x)dx→ −
∫
Ω

u · ∇λ(x)dx =

∫
Ω

div(u)λ(x)dx

and conclude that divx(u) = divx
(∫

Y
u0(x, y)dy

)
= 0.

Integrating by parts the equation div (ũε) = 0 with a test function λ(x) that is
zero only on the inflow and outflow part S1 ∪ S2 of the boundary ∂Ω, taking into
account the boundary condition ũε = 0 on Γ0, passing to the two-scale limit, and
integrating by parts again

0 =

∫
Ω

div (ũε)λ(x)dx =

∫
S1∪S2

ũε · nλ(x)dσ +

∫
Γ0

ũε · n λ(x)dσ −
∫
Ω

ũε · ∇λ(x)dx

→
ε→0

−
∫
Ω

u · ∇λ(x)dx =

∫
Γ0

u · n λ(x)dσ +

∫
Ω

div(u)λ(x)dx =

∫
Γ0

u · nλ(x)dσ

we conclude that u(x) · n =
(∫

Y
u0(x, y)dy

)
· n = 0 for x ∈ Γ0.

Integrating by parts the equation div (ũε) = 0 with the test function ελ(x, x/ε)
that is zero on ∂Ω, passing to the two-scale limit and integrating by parts again

0 = ε

∫
Ω

div (ũε)λ(x, x/ε)dx = −ε
∫
Ω

ũε · ∇xλ(x, x/ε)dx−
∫
Ω

ũε · ∇yλ(x, x/ε)dx

→
ε→0

−
∫
Y

∫
Ω

u0(x, y) · ∇yλ(x, y)dxdy =

∫
Y

∫
Ω

divy (u0(x, y)) λ(x, y)dxdy
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we conclude that divy (u0(x, y)) = 0.

6. Darcy’s law with distributed osmotic forces.

Theorem 6.1. The extension
((
µε−2

)
ũε, Pε

)
of the week solution (35) to the

Stokes equations (5) with osmotic forces defined by the solution ρε to the advection-
diffusion equation (6) and with fixed pressure drop δP between Sε

1 and Sε
2 two-

scale converges to (u0(x, y), p0(x, y)) with p0(x, y) = p(x) − λ
κΘ

0(x)β(y), where
(u0(x, y), p(x)) is the unique solution of the two-scale homogenized problem

−∆yyu0(x, y) = −∇yp1(x, y)−∇xp(x)

+
λ

κ
[I −∇yχ(y)]β(y)∇xΘ

0(x) in Ω× YS

divyu0(x, y) = 0 in Ω× Y ; divx

[∫
Y

u0(x, y)dy

]
= 0 in Ω (83)

u0(x, y) = 0 in Ω× YS[∫
Y

u0(x, y)dy

]
· n = 0 in Γ0,

∫
Ω

pdx = 0

P 1 − P 2 = δP ; p(x) = P i in Si; u0(x, ·) is periodic in Y,

χ(y) is the solution to the cell diffusion problem (64) and Θ0 is the solution of the
homogenized problem (61),(62).

Proof. We follow the way of reasoning from [4]. Choose a test function ψ(x, y) ∈

C∞
0

(
Ω; [C∞ (Y )]

N
)
with ψ(x, y) ≡ 0 in Ω × YS , so that ψ(x, x/ε) ∈

[
o

W 1
2 (Ωε)

]N
.

We suppose also that ψ(x, y) satisfies incompressibility conditions divyψ(x, y) = 0,
divx

[∫
Y
ψ(x, y)dy

]
= 0. Multiplication of the Stokes equation in form (10) by the

test function ψ(x, xε ), taking into account the incompressibility condition for ψ in
y, and integration by parts yields∫

Ωε

pε(x)divx

(
ψ(x,

x

ε
)
)
dx−

∫
Ωε

[
λ

κ
ρε(x)

]
divx

(
ψ(x,

x

ε
)
)
dx

−
∫
Ωε

[
λ

κ
βε∇

(
ρεβ

−1
ε

)]
ψ(x,

x

ε
)dx (84)

=

∫
Ωε

µε−1∇uε(x) · ∇yψ(x,
x

ε
)dx+

∫
Ωε

µ∇uε(x) · ∇xψ(x,
x

ε
)dx.

We can replace the integration domain in the last equation with Ω and pε with Pε

since the test function ψ(x, xε ) is zero outside Ωε.
Passing to the two-scale limit in the first term in (84) gives the expression

−
∫
Ω×Y

λ

κ
Θ0(x)β(y)divx (ψ(x, y)) dxdy

because the first term in the two-scale limit p0(x, y) = p(x)− λ
κΘ

0(x)β(y) of Pε does

not depend on y and ψ satisfies divx
[∫

Y
ψ(x, y)dy

]
= 0. Passing to the two-scale

limit in other terms in (84) and using (66) and (68) gives∫
Ω×Y

[
−λ
κ
Θ0(x)β(y)

]
divxψ(x, y)dxdy
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−
∫
Ω×Y

λ

κ
Θ0(x)β(y)divxψ(x, y)dxdy (85)

−
∫
Ω×Y

[
λ

κ
[I +∇yχ(y)]∇xΘ

0(x)β(y)

]
· ψ(x, y)dxdy

=

∫
Ω×Y

∇yu0(x, y) · ∇yψ(x, y)dxdy

The boundary term disappears because of the boundedness of ψ(x, xε ) and its sup-
port. The last term in the right hand side of (84) disappears by the estimates for
∇uε(x). Finally after integration by parts, taking into account boundary conditions
for p(x) and Θ0(x) and cancelling two integrals with λ

κΘ
0(x)β(y), the variational

form of the homogenized equation with osmotic forces reads∫
Ω×Y

λ

κ
[I −∇yχ(y)]β(y)∇xΘ

0(x)ψ(x, y)dxdy

=

∫
Ω×Y

∇yu0(x, y) · ∇yψ(x, y)dxdy (86)

By density the last equation holds for ψ(x, y) in the Hilbert space V of functions
periodic in y ∈ Y , defined by

ψ(x, y) ∈ L2
[
Ω;W 1

2 (Y )
N
]

(87)

divyψ(x, y) = 0 in Ω× Y, divx

[∫
Y

ψ(x, y)dy

]
= 0 in Ω

ψ(x, y) = 0 in Ω× YS[∫
Y

ψ(x, y)dy

]
· n = 0 in Γ0

One can check that the Lax-Milgram lemma holds for the problem (86) and that it
has therefore a unique solution u0(x, y) ∈ V. Let L2,per (Y ) be the space of periodic
on Y , square integrable functions with standard scalar product.

By a variant of the Weyl decomposition, see [4] we conclude that the orthogonal

complement V⊥ of V with respect to the scalar product in L2
[
Ω; [L2,per (Y )]

N
]

coincides with vector fields of the form ∇xq(x) + ∇yq1(x, y) with q(x) ∈ W 1
2 (Ω)

and q1(x, y) ∈ L2 [Ω;L2,per (YF )] having zero mean values over Ω and YF corre-
spondingly. Using this statement and integrating by parts in (86) we get the strong
form (83) of the two-scale homogenized limit for our problem. We must show that
the pressure like expression p(x) − λ

κΘ
0(x)β(y) arising from the incompressibility

constraint divx
[∫

Y
u0(x, y)dy

]
= 0 is the same as the two-scale limit p0(x, y) of the

pressure P ε. We multiply the Stokes equation (10) by a test function ψ(x, y) that
is divergence free only in y: divyψ(x, y) = 0, integrate the resulting expression by
parts as in (85) and identify two-scale limits:∫

Ω×Y

p(x)divxψ(x, y)dxdy

+

∫
Ω×Y

[
λ

κ
[I −∇yχ(y)]∇xΘ

0(x)β(y)

]
· ψ(x, y)dxdy (88)

=

∫
Ω×Y

∇yu0(x, y) · ∇yψ(x, y)dxdy
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Since the system (83) has a unique solution (u0(x, y), p(x)), the entire sequence
(ũε, P

ε) converges to
(
u0(x, y), p(x)− λ

κΘ
0(x)βε(y)

)
.

We are in the position to separate variables in the two-scale homogenized system
(83) and reduce it to a periodic cell problem of y variable on Y and a homogenized
problem of x variable only in the domain Ω.

Theorem 6.2. The extension (ũε, P
ε) of the velocity and pressure (uε, pε) satisfying

the system (5)-(6) converges weakly in [L2(Ω)]
N ×

[
L2 (Ω)

]
to the unique solution

(u, p) of the homogenized problem

u(x) = BD (−∇p) +Bosm

(
∇Θ0

)
in Ω

div (u) = 0 in Ω

u · n = 0 in Γ0;

p = P i in Si, P 1 − P 2 = δP

(89)

where u(x) =
∫
YF
u0(x, y)dy, the values P1 and P2 are uniquely defined by the

normalization
∫
Ω
pdx = 0 and the pressure drop δP . BD and Bosm are constant

symmetric matrices with entries defined by

BDei =

∫
Y

wi(y)dy (90)

Bosmei =

∫
Y

Wi(y)dy

where for 1 ≤ i ≤ N , wi(y) and Wi(y) are unique periodic solutions to the cell
Stokes problems

∇yqi −∆yywi = ei, div(wi) = 0 in YF (91)

wi = 0 in YS

and

∇yQi −∆yyWi =
λ

κ
[I −∇yχ(y)]β(y)ei, div(Wi) = 0 in YF (92)

Wi = 0 in YS

Proof. The two-scale homogenized problem (83) is equivalent to (89) through the
relation

u0(x, y) =
3∑

i=1

wi(y)

(
− ∂

∂xi
p

)
+

3∑
i=1

Wi(y)

(
∂

∂xi
Θ0(x)

)
(93)

p1(x, y) =
3∑

i=1

qi(y)

(
− ∂

∂xi
p

)
+

3∑
i=1

Qi(y)

(
∂

∂xi
Θ0(x)

)
(94)

The incompressibility condition for u0(x, y) implies∫
Y

divx

{
3∑

i=1

wi(y)

(
− ∂

∂xi
p

)
+

3∑
i=1

Wi(y)

(
∂

∂xi
Θ0(x)

)}
dy = 0

After integrating the last expression over Y and recalling the problem (61), (62) for
Θ0 we arrive at the following macroscopic system of equations for p(x) and Θ0:

div
(
Aeff∇Θ0

)
= 0 (95a)

divx (BD (∇xp))− divx
(
Bosm∇xΘ

0(x)
)

= 0 (95b)
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with boundary conditions

Θ0
∣∣
S1

= 0, Θ0
∣∣
S2

= θ2 (96a)

Aeff∇Θ0 · n
∣∣
Γ0

= 0. (96b)

p = P i in Si , P 1 − P 2 = δP (96c)(
BD (∇xp)−Bosm∇xΘ

0(x)
)
· n = 0 in Γ0 ;

∫
Ω

pdx = 0. (96d)

where the values P1 and P2 are uniquely defined by the normalization
∫
Ω
pdx = 0

and the pressure drop δP . An expression for u(x) follows:

u(x) = BD (−∇p) +
(
Bosm∇Θ0

)
. (97)

Remark. We notice that the limit macroscopic system (95) consists of a decou-
pled effective diffusion equation and a Darcy type equation with an additional flux
term Bosm∇xΘ

0(x) representing the osmotic pressure effect well known in physi-
cal chemistry. The input of the present paper is a rigorous description of flows of
non-electrolytic solutions under osmotic pressure in intermediate regimes when a
porous media is permeable for solvent particles. Diagonal elements in matrices BD

and Bosm are related to the filtration and osmotic transport coefficients Lp and LpD

in the Kedem-Katchalsky formula (2) in the case of a flat porous membrane.
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Appendix. Poincare and Friedrichs inequalities in weighted Sobolev
spaces. Potentials Vε(x) acting in the problems of interest are natural to interpret
as functions of the distance dΓ(x) from the solid boundary Γε: Vε(x) = Vε(dΓ(x)).
The weight that appears in our problems is βε(x) = exp {−Vε(dΓ(x))} depends on
the point x through dΓ(x). If the potential Vε(x) goes to infinity when x approaches
the solid boundary Γε, that can naturally happen in applications, the weight βε(x)
degenerates at Γε .

We provide below some specific results about conditions implying Friedrichs in-
equality (20) and the Poincare inequality (21) as well as embedding of W 1

2 (Ωε, βε)

into L6(Ωε, [βε]
6
) in weighted Sobolev spaces and give nontrivial examples of po-

tentials Vε(dΓ(x)) such that these conditions are satisfied for the weight βε(x) =
exp

(
−κ

λVε(x)
)
.

General Hardy inequalities in one dimension. The most flexible and practical
results for embedding, and Poincare and Fridrichs inequalities in weighted Sobolev
spaces with weights degenerate only on the boundary follow from one dimensional
Hardy inequalities on a finite interval and estimates on a thin stripe along the
boundary. For Lipschitz domains and weights depending on the distance from the
boundary corresponding estimates are similar to ones for the interval because the
distance to the graph of a Lipschitz function along the corresponding coordinate
direction and the usual distance d(x) are equivalent for small distances.
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The following results on one-dimensional Hardy inequalities from [27] are useful
both for estimates and for embedding results in weighted Sobolev spaces with par-
ticular choice of weights degenerating on the boundary of Lipschitz domains. Global
results (20), (21) can be reduced in this case to local one-dimensional estimates by
considering a thin stripe along the boundary similarly as in [22].

In domains with periodic perforated structure these results can be gained by
combining the Friedrichs and Poincare inequalities in reference domains that do
not depend on the small parameter, and by scaling arguments.

Let W (a, b) be the set of measurable positive functions finite almost everywhere
on (a, b).

Theorem 6.3. [27] Let 1 ≤ p ≤ q ≤ ∞, v, w ∈W (a, b). Define

FR(x) = FR(x; a, b, w, v, q, p) =

[∫ x

a

w(s)ds

]1/q [∫ b

x

v−1/(p−1)(s)ds

](p−1)/p

,

(98)
and

BR = BR(a, b, w, v, q, p) = sup
a<x<b

FR(x). (99)

Then the Hardy inequality[∫ b

a

uq(s)w(s)ds

]1/q
≤ CR

[∫ b

a

[
u

′
(s)
]p
v(s)ds

]1/p
,

or

∥u∥Lq((a,b),w) ≤ CR ∥u′∥Lp((a,b),v)
(100)

is valid if and only if BR = BR(a, b, w, v, q, p) < ∞. The best possible constant CR

satisfies

BR ≤ CR ≤ BR

((
1 +

q

p

)1/q (
1 +

p′

q

)1/p′)
.

This result can be also formulated as the boundedness of the Hardy operator HR

(HRf) (x) =

∫ b

x

f(s)ds (101)

as acting from Lp(a, b; v) to Lq(a, b;w).

Theorem 6.4. [27] Let 1 ≤ p ≤ q ≤ ∞, v, w ∈ W (a, b).The Hardy operator
HR : Lp(a, b; v) → Lq(a, b;w) defined by (101) is compact if and only if BR =
BR(a, b, w, v, q, p) <∞ and limx→b− FR(x) = limx→a+ FR(x) = 0.

Example. We check that conditions of Theorem 6.4 are fulfilled for weights
w(x) = exp (−β/xn) and v(x) = exp (−α/xn) with α ≤ β and p = q = 2 on
the interval (0, b) for functions equal to zero on the right endpoint. It implies as in
[22] that Poincare and Friedrichs inequalities are valid in the Lipschitz domain Ωε for
weights w(x) = exp (−β/ (dΓ(x))n) and v(x) = exp (−α/ (dΓ(x))n) corresponding
to potentials with singularity V (d) ∼ 1/dn , n > 0, at the boundary.
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It is sufficient to verify compactness of the operator HR (101) acting from
L2(0, b; v) to L2(0, b;w). Corresponding value of the function FR(x) is:

FR(x) =

[∫ x

0

exp (−β/sn) ds
]1/2 [∫ b

x

exp (α/sn) ds

]1/2
= [F1,n(x)]

1/2
[F2,n(x)]

1/2
.

We estimate integral F1,n(x) =
∫ x

0
exp (−β/sn) ds by introducing variable y = β/sn,

s = (β/y)
1/n

.

F1,n(x) =

∫ x

0

exp (−β/sn) ds

= β
1
n

∫ β/xn

+∞
exp (−y) d

dy
(y)

− 1
n dy =

1

n
β

1
n

∫ +∞

β/xn

exp (−y) (y)−(
1
n+1) dy =

=
1

n
β

1
n exp

(
− β

xn

)(
β

xn

)−( 1
n+1)

− β
1
n
1

n

(
1

n
+ 1

)∫ +∞

β/xn

exp (−y) (y)−(
1
n+2) dy

=
1

n
β

1
n

{
e−

β
xn

(
β

xn

)−( 1
n+1)

−
(
1

n
+ 1

)
e−

β
xn

(
β

xn

)−( 1
n+2)

}

+
1

n
β

1
n

{(
1

n
+ 1

)(
1

n
+ 2

)∫ ∞

( β
xn )

e−yy−(
1
n+3)dy

}

≤ 1

n
β

1
n

{
e−

β
xn

(
β

xn

)−( 1
n+1)

−
(
1

n
+ 1

)
e−

β
xn

(
β

xn

)−( 1
n+2)

}

+
1

n
β

1
n

(
β

xn

)−2(
1

n
+ 1

)(
1

n
+ 2

)∫ ∞

( β
xn )

e−yy−(
1
n+1)dy

=
1

n
β

1
n

{
e−

β
xn

(
β

xn

)−( 1
n+1)

−
(
1

n
+ 1

)
e−

β
xn

(
β

xn

)−( 1
n+2)

}

+

(
β

xn

)−2(
1

n
+ 1

)(
1

n
+ 2

)
F1,n(x).

This yields

F1,n(x) ≤
1

n
β

1
n

{
e−

β
xn

(
β

xn

)−( 1
n+1)

−
(
1

n
+ 1

)
e−

β
xn

(
β

xn

)−( 1
n+2)

}

×

[
1−

(
β

xn

)−2(
1

n
+ 1

)(
1

n
+ 2

)]−1

.

We estimate integral F2,n(x) =
∫ b

x
exp (α/sn) ds by introducing variable y =

α/sn, s = (α/y)
1/n

, d
dy s =

d
dy (α/y)

1/n
= − (α)

1
n 1

n (y)
−( 1

n+1). Then

F2,n(x) = − (α)
1
n
1

n

∫ α/bn

α/xn

exp (y) y−(
1
n+1)dy
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= α
1
n
1

n

{
e

α
xn

( α
xn

)−( 1
n+1)

− e
α
bn

( α
bn

)−( 1
n+1)

+

(
1

n
+ 1

)∫ α
bn

α
xn

eyy−(
1
n+2) dy

}
≤ (α)

1
n
1

n

{
e

α
xn

( α
xn

)−( 1
n+1)

− e
α
bn

( α
bn

)−( 1
n+1)

}
+

(
1

n
+ 1

)( α
xn

)−1

F2,n(x)

F2,n(x) ≤ (α)
1
n
1

n

{
e

α
xn

( α
xn

)−( 1
n+1)

− e
α
bn

( α
bn

)−( 1
n+1)

}
×
[
1−

(
1

n
+ 1

)( α
xn

)−1
]−1

.

It is easy to observe that we have the following relation for x→ 0+

[F1,n(x)] [F2,n(x)] =
1

n
β

1
n exp (−β/xn) (β/xn)−(

1
n+1)

× exp (α/xn) (α/xn)
−( 1

n+1) (α)
1
n
1

n
[1 +O(x)] .

Therefore

lim
x→0+

FR(x) = 0. (102)

We also observe that FR(x) is bounded, and

lim
x→b−

FR(x) = 0. (103)

It implies that the operator HR is compact from L2(0, b; exp (−β/xn)) to itself.
Checking boundedness of HR acting from the space Lp(0, b; exp (−α/xn)) to the

space Lq(0, b; exp (−β/xn)) we observe that

FR(x) =

[∫ x

a

w(s)ds

]1/q [∫ b

x

v−1/(p−1)(s)ds

](p−1)/p

≤ e
α

xnp e−
β

xnq

{
1

n
β

1
n

{(
β

xn

)−( 1
n+1)

−
(
1

n
+ 1

)(
β

xn

)−( 1
n+2)

}} 1
q

×


[
1−

(
β

xn

)−2(
1

n
+ 1

)(
1

n
+ 2

)]−1


1/q

×

{(
α

p− 1

) 1
n 1

n

{(
α

xn (p− 1)

)−( 1
n+1)

−
(

α

bn (p− 1)

)−( 1
n+1)

}} p−1
p

×


[
1−

(
1

n
+ 1

)(
α

xn (p− 1)

)−1
]−1


p−1
p

.

The main term to estimate is e−
β

xnq e
α

xnp . It is bounded in the case α/p ≤ β/q.
Similarly as above limx→0+ FR(x) = 0 and limx→b− FR(x) = 0 in this case. It
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means that HR will be both bounded and compact from Lp(0, b; exp (−α/xn)) to
Lq(0, b; exp (−β/xn)) if α/p ≤ β/q.
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