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Abstract

In a bounded domain with a thin periodically punctures interface we study the limit behavior
of the bottom of spectrum for a Steklov type spectral problem, the Steklov boundary condition
being imposed on the perforation surface. For a certain range of parameters we construct the
effective spectral problem and justify the convergence of eigenpairs.

1 Introduction

The paper deals with homogenization of elliptic Steklov type spectral problem in a domain consisting
of two subdomains separated by a thin periodically punctured interface (sieve), Steklov spectral
condition being imposed on the surface of thin cylindrical channels that form the interface perforation.

We consider a model spectral problem for the Laplacian that reads
∆uε = 0 in Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,
∂uε
∂n = 0 on Γε,
∂uε
∂n = λεuε on γε;

(1)

∗The work of the third author was supported in part by RFBR grant (15-01-07920).

1



here Ωε is the union of two subdomains connected by the thin channels, the boundary of these
channels is denoted by γε, and Γε is the lateral boundary of the perforated interface; ε is a small
positive parameter characterizing the interface microstructure period. The domain Ωε is obtained by
removing a thin perforated interface from a fixed domain Ω ⊂ RN , N ≥ 2. The detailed description
of the geometry is given in Section 2.

Boundary-value problems in domains with perforated interfaces of infinitesimal or vanishing thick-
ness, were widely studied in the existing literature. The periodic spectral problem has been investi-
gated in [3], where the higher order terms of the asymptotics were constructed. The boundary value
problems in domains with perforation situated along an interior surface were homogenized in [6], [11].
Theory of homogenization in perforated domains got started in the works [12], [22], [20].

Neumann sieve problem with the interface of zero thickness was considered in [21] and then in [1],
[5], [7], [14], [18]. The work [8] deals with the so called “thick Neumann’s sieve” problem that reads

−∆wε + wε = f in Ωε,

wε = 0 on ∂Ω ∩ ∂Ωε,
∂wε
∂n = 0 on Γε ∪ γε,

where f ∈ L2(Ω). It was shown that wε converges to a function w ∈ H1(Ω \ Γ) that solves the
following boundary-value problem: 

−∆w + w = f in Ω \ Γ,
w = 0 on ∂Ω,
∂w−

∂n− − 1
2µ[w] = 0 on Γ,

∂w+

∂n+ − 1
2µ[w] = 0 on Γ,

where Γ is the limit infinitesimally thin interface, [w] = w+ −w− is the jump of w on Γ, where w± is
the restriction of w on Ω±, Ω = Ω+ ∪ Γ ∪Ω−, n± are the respective outward unit normals on Γ, and
µ is either a constant 0 ≤ µ < ∞, or µ = +∞, according to the ratio between the channels and the
interface thickness. In the case when µ = +∞, the limit problem reads{

−∆w + w = f in Ω,

w = 0 on ∂Ω.

See [8] for the details.
There is a vast literature devoted to homogenization of spectral problems including Steklov–type

problems, see for instance [22], [16], [21]. Some results on homogenization of Steklov problems can
be found in [4], [13], [15], [19].

In the present paper we suppose that Steklov spectral condition is imposed on the surface of the
interface channels. The limit behaviour of eigenpairs, as ε → 0, depends essentially on the ratio
between the channels diameter and the period as well as the ratio between the interface thickness and
the period. Here we assume that the channels diameter and the interface thickness are of the same
order. Then for N ≥ 3 three different cases are to be studied:

(i) the diameter is greater than Cε
N−1
N−2 (subcritical case).

(ii) the diameter is of order O(ε
N−1
N−2 ) (critical case),

(iii) the diameter is less than Cε
N−1
N−2 (supercritical case)
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This paper focuses on the subcritical case. Namely, we assume that the diameter of channels is of
order εδ with 0 ≤ δ < N−1

N−2 . In dimension 2 we assume that 0 ≤ δ < ∞. Under these conditions
we construct the limit spectral problem and justify the convergence of eigenpairs. We show that in
the subcritical case the principal eigenfunction, as well as other eigenfunctions corresponding to the
bottom of the spectrum, exhibit a regular asymptotic behaviour, in particular they have a non-trivial
limit in H1(Ω). On the contrary, in the supercritical case the principal eigenfunction localizes in the
vicinity of the interface. The critical and supercritical cases will be considered in a separate paper.

Observe that the subset of the domain boundary where the Steklov condition is imposed asymp-
totically vanishes. Moreover, in the case (ii) the surface volume of this subset also vanishes, as ε → 0.
Nevertheless, as long as the capacity of this subset remains uniformly positive, the eigenpairs related
to the bottom of spectrum in (1) show a regular behaviour, and the spectral condition of the original
problem is inherited by the limit interface between two parts of the domain.

The paper is organized as follows. In Section 2 we provide the detailed description of the geometry
and introduce the studied spectral problem. Section 3 focuses on constructing the limit spectral
problem and the proof of convergence results.

2 Problem setup

Let Ω be a connected, open bounded set of RN (N ≥ 2), with a piece-wise smooth Lipschitz continuous
boundary ∂Ω. Points in RN are denoted by x = (x′, xN ) with x′ = (x1, · · · , xN−1) ∈ RN−1. We
assume that the hyperplane {x ∈ RN : xN = 0} divides Ω into two non-empty subdomains Ω− and
Ω+ with

Ω− = {x ∈ Ω : xN < 0}, Ω+ = {x ∈ Ω : xN > 0},

and that, moreover, for some m > 0 we have Ω ∩ {x : −m < xN < m} = Σ × (−m,m). Under our
assumptions Σ is an open set in RN−1 with a Lipschitz boundary. In what follows we identify Σ with
Ω ∩ {x ∈ RN : xN = 0}. Then, Ω = Ω− ∪ Σ ∪ Ω+. Denote Γ0 = {x ∈ ∂Ω : −m < xN < m}.

Remark 2.1. The condition that Ω ∩ {x : −m < xN < m} = Σ × (−m,m) for some m > 0 is
imposed just for presentation simplicity. The results of the paper remain valid for domains of more
general structure. In particular, the results hold for any bounded Lipschitz domain Ω that satisfies
the following two conditions: (i) Ω+ and Ω− are non-empty; (ii) ∂Ω is smooth in the vicinity of the
hyperplane {xN = 0}, and for any x ∈ ∂Ω ∩ {xN = 0} the tangential hyperplane to ∂Ω does not
coincide with {xN = 0}.

Let Y be an open simply connected set in RN−1 with smooth boundary ∂Y ; we assume that
Y ⊂ (−1

2 ,
1
2)

N−1. In the two dimensional case Y is a subinterval of (−1
2 ,

1
2). For small real numbers

ε > 0, rε > 0 and hε > 0 with rε ≤ ε we define

Σε =

{
x ∈ Ω : −hε

2
≤ xN ≤ hε

2

}
, Tε =

∪
k′∈Kε

Bk′
ε ×

(
−hε

2
,
hε
2

)
,

where

Kε =
{
l′ ∈ ZN−1 : l′ +

[
− 1

2
,
1

2

]N−1
⊂ ε−1Σ

}
, and Bk′

ε = (εk′ + rεY ).
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Then we set

Sε = Σε \Tε, Ωε = Ω \Sε,

Γ±
ε =

{
x = (x′, xN ) ∈ ∂Ωε : xN = ±hε

2

}
, Γε = Γ−

ε ∪ Γ+
ε

γε =

{
x = (x′, xN ) ∈ ∂Ωε : x

′ ∈
∪

k′∈ZN−1

∂Bk′
ε , −hε

2
≤ xN ≤ hε

2

}
,

where ∂Bk′
ε denotes the (N − 2)-dimensional boundary of Bk′

ε . The set Sε represents a sieve; it is
a thin perforated layer, Bk′

ε ×
(
−hε

2 ,
hε
2

)
is a cylindrical hole with a cross-section Bk′

ε (see Figure 1).
The thickness of this cylinder is of order ε and its height is hε.

Figure 1: The Sieve Sε

Notice that the (θε)-neighbourhood of ∂Ω does not intersect with Tε where θ stands for the
distance between Y and the boundary of the cube Q = [−1/2, 1/2]N−1.

For a given function v such that v+ := v|Ω+ ∈ H1(Ω+) and v− := v|Ω− ∈ H1(Ω−), we define the
jump of v on Σ by [v] = v+(x′, 0) − v−(x′, 0). We denote by n− and n+ the exterior unit normals

to Ω− and Ω+ on Σ, and, for functions v± ∈ H2(Ω±), ∂v−

∂n− = ∂v−

∂xN
and ∂v+

∂n+ = − ∂v+

∂xN
stand for the

corresponding normal derivatives. Given a function v defined a.e. in Ωε, we denote by ṽ the zero
extension of v to Ω, i.e.

ṽ = v in Ωε, ṽ = 0 in Sε. (2)

Let us denote Γ1 = ∂Ω \ Γ0 and Γε
0 = ∂Ωε ∩ Γ0 = {x ∈ Γ0 : |xN | > hε}. We consider the following

spectral problem: 
∆uε = 0 in Ωε,

uε = 0 on Γ1,
∂uε
∂n = 0 on Γε ∪ Γε

0,
∂uε
∂n = λεuε on γε,

(3)

where n denotes the outward unit normal to ∂Ωε. We introduce the following Hilbert space :

H1(Ωε,Γ1) = {v ∈ H1(Ωε) : v|Γ1 = 0},
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Figure 2: The domain Ωε

endowed with the scalar product (v, w)H1(Ωε,Γ1) =
∫
Ωε

∇v ·∇w dx and the corresponding norm ∥v∥ =(∫
Ωε

|∇v|2 dx
)1/2

which is equivalent to the standard norm of H1(Ωε). Variational formulation of

problem (3) reads: find real numbers λε such that problem∫
Ωε

∇uε · ∇v dx = λε

∫
γε

uεv ds, ∀v ∈ H1(Ωε,Γ1), (4)

has a nonzero solution uε ∈ H1(Ωε,Γ1). Problem (3) can also be formulated in terms of the Dirichlet-
Neumann map. Consider, for any z ∈ H1/2(γε), the solution vε ∈ H1(Ωε,Γ1) of the boundary-value
problem 

∆vε = 0 in Ωε,

vε = 0 on Γ1,
∂vε
∂n = 0 on Γε ∪ Γε

0,

vε = z on γε,

(5)

then define the operator Lε from H1/2(γε) into H−1/2(γε) by

Lεz =
∂vε
∂n

∣∣∣∣
γε

.

Problem (3) is equivalent to the following spectral problem: find real numbers λε such that there is
a nonzero function zε ∈ H1/2(γε) satisfying

Lεzε = λεzε. (6)
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The operator Lε is invertible. Furthermore, (Lε)−1 is compact and self-adjoint in L2(γε), and
(z, (Lε)−1z)

L2(γε)
> 0 for z ̸= 0 (see [9]). Therefore, the spectrum of problem (6) consists of an

increasing sequence of positive eigenvalues

0 < λε,1 ≤ λε,2 ≤ · · · ≤ λεj ≤ · · · , λε,j → +∞ as j → ∞,

and there is an orthonormal sequence of the corresponding eigenvectors (zε,j)j≥1 in the space L2(γε)
endowed with the standard (N − 1)-dimensional surface measure. If we substitute (zε,j)j≥1 for z

in (5) and denote the corresponding solutions by uεj , then the sequence
(

1√
λε,j

uε,j

)
j≥1

forms an

orthonormal basis of eigenfunctions of problem (3) in H1(Ωε,Γ1) endowed with the norm
∫
Ωε

|∇v|2 dx.
Conversely, if (uε,j)j≥1 is an orthonormal sequence of eigenvectors of problem (3) then the family

(
√

λε,j zε,j)j≥1, with zε,j = uε,j |γε , is an orthonormal sequence of eigenvectors of (6). Moreover, the
following variational principle holds. Introduce the Rayleigh quotient defined for v ∈ H1(Ωε,Γ1)\{0},
by

Rε(v) =

∫
Ωε

|∇v|2 dx∫
γε
|v|2 ds

. (7)

Then,
λε,1 = min

{
Rε(v) : v ∈ H1(Ωε,Γ1)

}
, (8)

and for j ≥ 2,

λε,j = min

{
Rε(v) : v ∈ H1(Ωε,Γ1),

∫
γε

v uε,i ds = 0 for i = 1, · · · , j − 1

}
. (9)

Our aim is to investigate the asymptotic behaviour of the eigenelements (λε,j , uε,j)j≥1 of problem (3),
as ε → 0.

3 Convergence results

3.1 Homogenization theorem

As was mentioned above, we focus on the subcritical case, i.e.

rε = ε1+δ, hε = ε1+δh

with 0 ≤ δ < 1
N−2 if N ≥ 3, and δ ∈ [0,+∞) if N = 2.

We recall that the spectrum of problem (3) consists of an increasing sequence of positive eigenvalues

0 < λε,1 ≤ λε,2 ≤ · · · ≤ λεj ≤ · · · , λε,j → +∞ as j → ∞,

and there is an orthonormal basis of the corresponding eigenfunctions in the space H1(Ωε,Γ1).

Here we formulate the main homogenization result.
We should choose a normalization condition for the eigenfunctions of problem (3). It is convenient to
assume here and in what follows that the eigenfunctions uε,j satisfy the following condition:∫

Ωε

|∇uε,j |2 dx = 1, for any j ≥ 1. (10)

Recall also that ũε,j stands for the extension of uε,j to Ω as defined in (2).
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Our goal is to show that the limits Steklov-type spectral problem takes the form

∆u = 0 in Ω− ∪ Ω+,

[u] = 0 on Σ,[
∂u
∂xN

]
= −λjKu on Σ,

∂u
∂n = 0 on Γ0,

u = 0 on Γ1,

(11)

where n denotes the outward unit normal to Γ0, and

K = hmeas
N−2

(∂Y ) for N ≥ 3, K = 2h for N = 2.

Lemma 3.1. Problem (11) has a real discrete spectrum

0 < λ1 < λ2 ≤ λ3 ≤ . . . λj → +∞ as j → ∞.

There exists an orthonormal basis of eigenfunctions {uj}j≥1 in L2(Σ).

Proof. Consider two boundary value problems

∆v± = 0 in Ω±,

v± = 0 on Γ1 ∩ Ω
±
,

∂v±

∂n
= 0 on Γ0 ∩ Ω

±
,

v± = z on Σ,

and define the Dirichlet-Neumann operators L± that associate to z ∈ H1/2(Σ) the function ∂v±

∂n ∈
H−1/2(Σ). The operators L± are invertible and positive, (L±z, z) > 0 (see [9]). It is straightforward to
check that the spectrum of L−+L+ coincides with the spectrum of problem (11). Since (L−+L+)−1

is compact, self-adjoint and positive in L2(Σ), the desired statement follows.

We proceed with the main result of this work.

Theorem 3.1. Let (λε,j , uε,j)j≥1 be the sequence of eigenpairs of problem (3).
(i) If δ = 0 then for any j ≥ 1, λε,j converges, as ε → 0, towards λj, where (λj , uj) is the j-th eigenpair
of problem (11). Furthermore, for a subsequence, ũε,j converges in L2(Ω) towards u ∈ H1(Ω) being a
linear combination of the eigenfunctions uk related to the eigenvalue λj.

(ii) If 0 < δ < 1
N−2 (δ < +∞ in dimension 2), then the sequence λ̂ε,j := ε(N−1)δλε,j converges, as

ε → 0, towards the eigenvalue λj of problem (11), and, for a subsequence, ũε,j converges towards u in
L2(Ω). The function u is a linear combination of the eigenfunctions uk related to the eigenvalue λj.
Since δ > 0, for any j the eigenvalue λε,j goes to infinity, as ε → 0.

Remark 3.1. In the above theorem the whole sequence λε,j (λ̂ε,j) converges, as ε → 0. We do
not need to choose a subsequence. However, if the eigenvalue λj of the homogenized problem is not
simple, then the whole sequence of the corresponding eigenfunctions ũε,j need not converge. We can
only state the convergence of the eigenspaces related to λj. More precisely, let λj , λj+1, . . . , λj+m−1

be an eigenvalue of (11) of multiplicity m. Then the m-dimensional spaces generated by {ũε,k}j+m−1
k=j

converge in L2(Ω), as ε → 0, to the space generated by {uk}j+m−1
k=j .
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Remark 3.2. Instead of the interface with uniform thickness and cylindrical perforation one can
consider more general family of perforated thin interfaces with non-uniform thickness and periodic
microstructure like in [17]. We also assume that Steklov boundary condition is imposed on the peri-
odically situated spots on the interfaces surface. In this case the statement of Theorem 3.1 remains
valid if the following two conditions are satisfied: (i) An appropriate capacity type characteristics of
the interfaces does not vanish, as ε → 0. (ii) The scaled N − 1-dimensional volume of the spots
converges.

The first condition ensures that the limit functions do not have a jump on the interface. The
second one allows us to derive the homogenized problem similar to (11). Of course, this statement is
given in rather vague form. More accurate formulation would require some technical work.

3.2 Proof of Theorem 3.1 in the case δ = 0

The variational formulation of spectral problem (11) reads

λ1 = min
{
R(v) : v ∈ H1(Ω,Γ1)

}
, R(v) =

∫
Ω |∇v|2 dx∫
Σ |v|2 dx′

. (12)

and for j ≥ 2,

λj = min

{
R(v) : v ∈ H1(Ω,Γ1),

∫
Σ
v ui ds = 0 for i = 1, · · · , j−1

}
. (13)

We begin by proving a priori estimates for the first eigenpair (λε,1, uε,1). For brevity we denote it
by (λε, uε). Let us first show that

0 < C1 ≤ λε ≤ C2, (14)

where constants C1 and C2 do not depend on ε. The upper bound relies on the following statement.

Lemma 3.2. For any ε > 0 there is a function wε ∈ H1(Ωε,Γ1) such that Rε(wε) ≤ C with a
constant C that does not depend on ε; the functional Rε being defined in (7).

Proof. Let φ = φ(x′) be a C∞
0 (Σ) function such that φ = 1 on some Σ1 ⊂ Σ with measN−1(Σ1) > 0,

and denote by χ(xN ) a C∞
0 (−m,m) function such that χ = 1 in the vicinity of 0. It is straightforward

to check that, for sufficiently small ε > 0,∫
γε

(φ(x′)χ(xn))
2ds =

∫
γε

(φ(x′))2ds ≥ CmeasN−1(Σ1)h,

where C does not depend on ε. Since∫
Ωε

|∇(φ(x′)χ(xN ))|2dx ≤
∫
Ω

|∇(φ(x′)χ(xN ))|2dx,

this implies the desired inequality.

By (7) and Lemma 3.2 we obtain the upper bound in (14). In a similar way, using (9), one can
prove that

λε,j ≤ C2,j for all j = 1, 2, . . . (15)

The proof of lower bound in (14) relies on the following statement.
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Lemma 3.3. There exists a constant C > 0 such that for any v1 ∈ H1(Ωε) and v2 ∈ H1(Ωε) and
any κ ≥ h we have∣∣∣ ∫

γε

v1v2 ds− hmeasN−2(∂Y )

∫
Σ

v1(x
′,κε)v2(x′,κε) dx′

∣∣∣ ≤ Cε1/2∥v1∥H1(Ωε)∥v2∥H1(Ωε).

Proof. It is sufficient to prove the result in the case v1 = v2. Denote Πκ =
(
Y × [−h

2 ,
h
2 ]
)
∪
(
Q× [h2 ,κ]

)
with Q = [−1/2, 1/2]N−1, and Πε

κ = εΠκ. Let ⟨v⟩γ0 be the mean value of v over γ0 := ∂Y × [−h
2 ,

h
2 ]

that is

⟨v⟩γ0 =
∣∣γ0∣∣−1

N−1

∫
γ0

v ds.

The following two inequalities hold.∫
γ0

(
v − ⟨v⟩γ0

)2
ds ≤ C

∫
Πκ

|∇v|2 dx,
∫
Q

(
v(x′,κ)− ⟨v⟩γ0

)2
dx′ ≤ C

∫
Πκ

|∇v|2 dx. (16)

We first prove the second inequality. Since both sides of this inequality are invariant with respect to
adding an additive constant to a function v, we can assume without loss of generality that

∫
Πκ

v dx = 0.
Then, by the Poincaré inequality, ∥v∥L2(Πκ) ≤ C∥∇v∥L2(Πκ). Finally, we have∫

Q

(
v(x′,κ)− ⟨v⟩γ0

)2
dx′ ≤ 2

∫
∂Πκ

v2ds+ C(Q)⟨v⟩2γ0 ≤ C(Q, γ0)

∫
∂Πκ

v2ds ≤ C1(Q, γ0)

∫
Πκ

|∇v|2dx;

the last inequality here follows from the trace theorem. The first estimate in (16) can be proved in
the same way.

In the domain Πε
κ inequalities (16) take the form∫

εγ
0

(
v − ⟨v⟩εγ0

)2
ds ≤ Cε

∫
Πε

κ

|∇v|2 dx,
∫
εQ

(
v(x′, εκ)− ⟨v⟩εγ0

)2
dx′ ≤ Cε

∫
Πε

κ

|∇v|2 dx.

Similar inequalities hold for the sets Πε
κ + ε(j′, 0), j′ ∈ Kε. Summing up over j′ ∈ Kε, we obtain∫

γε

(
v − ⟨̂v⟩

ε)2
ds ≤ Cε

∫
Ωε

|∇v|2 dx,
∫
Σ

(
v(x′, εκ)− ⟨̂v⟩

ε)2
dx′ ≤ Cε

∫
Ωε

|∇v|2 dx,

where ⟨̂v⟩
ε
denotes the piece-wise constant function equal to the mean value of v over εγ0 + ε(j′, 0)

in each Πε
κ + ε(j′, 0). Letting K = hmeas

N−2
(∂Y ), we have∣∣∣ ∫

γε

v2 ds−K

∫
Σ

v2(x′, εκ) dx′
∣∣∣ = ∣∣∣ ∫

γε

(v − ⟨̂v⟩
ε
+ ⟨̂v⟩

ε
)2 ds−K

∫
Σ

(v(x′, εκ)− ⟨̂v⟩
ε
+ ⟨̂v⟩

ε
)2 dx′

∣∣∣
=

∣∣∣ ∫
γε

[
(v − ⟨̂v⟩

ε
)2 + 2(v − ⟨̂v⟩

ε
)⟨̂v⟩

ε]
ds−K

∫
Σ

[
(v(x′, εκ)− ⟨̂v⟩

ε
)2 + 2(v(x′, εκ)− ⟨̂v⟩

ε
)⟨̂v⟩

ε]
dx′

∣∣∣
≤ Cε

∫
Ωε

|∇v|2 dx+ Cε1/2∥v∥L2(γε)

(∫
Ωε

|∇v|2 dx
) 1

2 ≤ Cε1/2∥v∥2H1(Ωε)

This completes the proof of Lemma.
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According to Lemma 3.3,

| ∥uε∥2L2(γε)
−K∥uε(·, εh)∥2L2(Σ) | ≤ Cε1/2∥∇uε∥2L2(Ωε)

= Cε1/2.

By the trace theorem, ∥uε(·, εh)∥L2(Σ) ≤ C∥∇uε∥L2(Ωε). Combining the last two estimates yields the
lower bound in (14).

As an immediate consequence of (10) we obtain∫
Ω
|ũε|2 dx ≤ C2. (17)

Therefore, for a subsequence,

λε → λ, ũε ⇀ u in L2(Ω) weakly, as ε → 0, (18)

here and in what follows we do not relabel subsequences of ε if it does not lead to an ambiguity.
In fact, ũε converges strongly in L2(Ω). Indeed, if we denote by Iε the characteristic function of

Ω\Σε, then it easily follows from (10) that Iεũε is compact in L2(Ω). Combining the trace inequality
with the Friedrichs inequality yields∫

Ω

((1− Iε)ũε)
2dx =

∫
Tε

(ũε)
2dx

≤ Cε

∫
{xN=±hε

2
}∩Ω

(uε(x
′,±hε

2
))2dx′ + Cε2

∫
Tε

|∇uε|2dx ≤ C1(ε+ ε2).

This implies the desired strong convergence.
According to (10), u+ := u

∣∣
Ω+ ∈ H1(Ω+), u− := u

∣∣
Ω− ∈ H1(Ω−), and

∆u± = 0 in Ω±,

u± = 0 on Γ1 ∩ ∂Ω±,
∂u±

∂n = 0 on Γ0 ∩ ∂Ω±.

(19)

From (17) we also have

∇̃u
+

ε ⇀ ∇u+ in (L2(Ω
+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω

−))N weakly.
(20)

We are going to use these relations as well as (18) in order to pass to the limit in (4).
It remains to derive the transmission conditions satisfied by u on Σ. Let us first show that [u] = 0

on Σ which implies that u ∈ H1(Ω,Γ1), here H1(Ω,Γ1) stands for the space of H1(Ω) functions
vanishing on Γ1.

Lemma 3.4. The jump of u on Σ is equal to zero, that is [u] = 0.

Proof. We argue by contradiction. Assume that the jump set of u on Σ has positive (N − 1)-
dimensional measure. Then there is α > 0 such that

R := meas
N−1

{x′ ∈ Σ :
∣∣[u]∣∣ ≥ α} > 0.

Denote
T 0
ε =

∪
k′∈Kε

Bk′
ε × {0}, (21)
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and let 1T 0
ε
be the characteristic function of T 0

ε on Σ. By the definition of T 0
ε we have

1T 0
ε

⇀ meas
N−1

(Y ) weakly in L2(Σ),

as ε → 0. Then, denoting A = {x′ ∈ Σ : |[u]| ≥ α}, we get

1T 0
ε
1A ⇀ meas

N−1
(Y )1A weakly in L2(Σ).

In particular,
lim
ε→0

meas
N−1

(A ∩ T 0
ε ) = Rmeas

N−1
(Y ),

and, for all sufficiently small ε,

meas
N−1

(A ∩ T 0
ε ) ≥

1

2
Rmeas

N−1
(Y ) =: R1. (22)

Considering the L2-continuity of trace of a H1 function, we conclude that for sufficiently small ε it
holds ∥∥∥u(·,±0)− u(·,±hε

2
)
∥∥∥
L2(Σ)

≤ 1

20

√
R1α. (23)

Since ũ±ε converges to u in L2(Ω) and ∥uε∥H1(Ω\Σε)
≤ C, for all sufficiently small ε we have∥∥∥u(·,±hε

2
)− uε(·,±

hε
2
)
∥∥∥
L2(Σ)

≤ 1

20

√
R1α. (24)

Combining (22)–(24) by means of triangle inequality we get∥∥∥uε(·, hε
2
)− uε(·,−

hε
2
)
∥∥∥2
L2(T 0

ε )
≥ 1

2
R1α

2. (25)

Now, writing

uε(x
′,
hε
2
)− uε(x

′,−hε
2
) =

∫ hε
2

−hε
2

∂uε
∂xN

(x′, t) dt

and using the Cauchy-Schwarz inequality we have∣∣∣∣uε(x′, hε2 )− uε(x
′,−hε

2
)

∣∣∣∣2 ≤ hε

∫ hε
2

−hε
2

∣∣∣ ∂uε
∂xN

(x′, t)
∣∣∣2 dt.

Integrating this relation over T 0
ε yields∥∥∥∥uε(·, hε2 )− uε(·,−

hε
2
)

∥∥∥∥2
L2(T 0

ε )

≤ εh∥∇uε∥2L2(Ωε)
≤ Cε.

For sufficiently small ε this contradicts (25).

Considering (10), (14), (15) and Lemma 3.3, one can justify the following statement:

Lemma 3.5. Under normalization condition (10) there exist constants cj > 0, j = 1, 2, . . ., such
that

∥uε,j∥L2(Ωε) ≥ cj .

Proof. From (10), (14) and (15) we obtain ∥uε,j∥2L2(γε)
≥ Cj . Then, by Lemma 3.3 below, we have

∥uε,j(·, εh2 )∥
2
L2(Σ) ≥ 1

2hmeasN−2(∂Y )Cj . In view of (10) the L2(Σ) norm of function uε,j(·, s) is
continuous in s uniformly in ε. This implies the desired lower bound.
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Let us now derive the Steklov type boundary condition satisfied by u on Σ. To this end we pass
to the limit, as ε → 0, in (4). Let v ∈ H1(Ω,Γ1). It is clear that v|Ωε ∈ H1(Ωε,Γ1), then according
to (4) we have ∫

Ωε

∇uε · ∇v dx = λε

∫
γε

uεv ds. (26)

Writing ∫
Ωε

∇uε · ∇v dx =

∫
Ω
∇̃uε · ∇v dx =

∫
Ω+

∇̃u
+

ε · ∇v dx+

∫
Ω−

∇̃u
−
ε · ∇v dx,

and using (20), we obtain

lim
ε→0

∫
Ωε

∇uε · ∇v dx =

∫
Ω+

∇u+ · ∇v dx+

∫
Ω−

∇u− · ∇v dx. (27)

By Lemma 3.4, u ∈ H1(Ω,Γ1). Since u+ and u− satisfy (19), employing Green’s formula we deduce
from (27) that

lim
ε→0

∫
Ωε

∇uε · ∇v dx = −
⟨[

∂u

∂xN

]
, v

⟩
Σ

. (28)

Denote

MN =
measN−2(∂Y )

measN−1(Y )
;

here and in what follows for N = 2 we set measN−2(∂Y ) = 2. Passage to the limit on the right-hand
side of (26) relies on the following lemma.

Lemma 3.6. Let v ∈ H1(Ω,Γ1) ∩ C1(Ω). There exists C > 0 such that∣∣∣ ∫
γε

uεv ds− hMN

∫
Tε∩Σ

uε(x
′, 0)v(x′, 0) dx′

∣∣∣ ≤ C
√
ε. (29)

Proof. In the cylinder Y × (0, h/2) consider the following problem

∆Υ = 0 in Y × (0, h/2),

∂Υ

∂n
= −hMN on Y × {0},

∂Υ

∂n
= 0 on Y × {h/2},

∂Υ

∂n
= 2 on ∂Y × (0, h/2).

Denoting Υε = εΥ(x/ε), extending Υε periodically in (εk′ + εY )× (0, εh/2), k′ ∈ Kε, integrating by
parts and recalling the definition of T 0

ε in (21), we get

0 =

∫
Tε∩{xN>0}

uεv∆Υε dx = −hMN

∫
T 0
ε

uεv dx
′ + 2

∫
γε∩{xN>0}

uεv ds

−
∫

Tε∩{xN>0}

∇(uεv) · ∇Υε dx.

(30)

From the definition of Υε it easily follows that

∥∇Υε∥L2(Tε∩{xN>0}) ≤ C
√
ε. (31)
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Indeed, by construction, ∥∇Υ∥2L2(Y×(0,h/2)) < ∞. After dilatation we get ∥∇Υε∥2L2(εY×(0,εh/2) ≤ CεN .

Summing up over k′ ∈ Kε yields ∥∇Υε∥2L2(Tε∩{xn>0} ≤ Cε, and (31) follows.

Combining (30) with (31) we obtain the desired inequality (29).

In a similar way one can show that∣∣∣measN−2(∂Y )

measN−1(Y )

∫
T 0
ε

uεv dx
′ −measN−2(∂Y )

∫
Σ

uεv dx
′
∣∣∣ ≤ C

√
ε. (32)

Combining this estimates with (29) yields

lim
ε→0

∫
γε

uεv ds = hmeasN−2(∂Y )

∫
Σ
uv dx′ = K

∫
Σ
uv dx′. (33)

From (26), (28) and (33) we deduce the spectral condition on Σ. The limit integral identity reads∫
Ω

∇u∇v dx = λK

∫
Σ

uv dx′ for any v ∈ H1(Ω,Γ1).

By Lemma 3.4, u ∈ H1(Ω,Γ1). From (10) and Lemma 3.5 it follows that u ̸= 0. Therefore, (λ, u) is
an eigenpair of (11).

Let us now show that the multiplicity of λ is at least k if there are k eigenvalues λε,j1 , . . . , λε,jk ,
ji ̸= jm for i ̸= m, converging (probably for a subsequence) to λ.
Assume that (for a subsequence)

λε,ji → λ, i = 1, . . . , k, ji ̸= jm if i ̸= m.

Choosing a subsequence once again we can assume that

ũε,ji ⇀ ui weakly in L2(Ω), i = 1, . . . , k, as ε → 0. (34)

With the help of (10) and (17) one can easily show that u+ ∈ H1(Ω+), u− ∈ H1(Ω−) and u+, u−

satisfy (19), and

∇̃u
+

ε ⇀ ∇u+ in (L2(Ω
+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω

−))N weakly,
ũε → u in L2(Ω) strongly.

(35)

Due to our normalization conditions for uε,j |γε and by Lemma 3.3 we get(
ũε,ji , ũε,jm

)
L2(Σ)

= Kδmi + o(1), as ε → 0. (36)

According to (34) and (35), ∥uε,ji − ui∥L2(γε) → 0. Passing to the limit as ε → 0 in (36) yields(
ui, um

)
L2(Σ)

= Kδmi . (37)

Therefore, u1, . . . , uk are linearly independent and thus the multiplicity of λ is greater than or equal
to k.

Let us now check that any eigenvalue of the homogenized problem (11) is a limit point of the
eigenvalues of the original problem (3).

13



Lemma 3.7. Let (λj , uj) be the j-th eigenpair of problem (11). Then

lim sup
ε→0

Rε(uj) = λj , lim
ε→0

∥uj∥2L2(γε)
= K,

lim
ε→0

(uj , um)
L2(γε)

= 0 if j ̸= m.
(38)

Proof. The second and the third relations in (38) are straightforward consequences of Lemma 3.3.
The first one easily follows from the second one.

Combining (38) with variational formulae (7), (8), (9) and (12), (13), one concludes that

lim sup
ε→0

λε,j ≤ λj .

Assume that for a subsequence
lim sup

ε→0
λε,j < λj .

As was proved above in this case there exist at least j eigenvalues of problem (11) which are strictly
less than λj . This contradiction shows that

lim sup
ε→0

λε,j = λj .

The convergence of the corresponding eigenspaces has already been justified.

3.3 Proof of Theorem 3.1 in the case 0 < δ < 1
N−2

Consider the sequence of eigenpairs (λε,j , uε,j) of problem (3) satisfying the normalization condition
(10). As for the case δ = 0, we denote (λε, uε) the first eigenpair (λε,1, uε,1). It follows from the
definition of H1(Ωε,Γ1) and Γ1 that there exists a function w ∈ H1(Ωε,Γ1) such that∫

Ωε

|∇w|2 dx ≤ C, (39)

and w ≡ 1 in the vicinity of Sε for all sufficiently small ε; the constant C in (39) does not depend on
ε. Since meas

N−1

(
∂Bk′

ε × [−hε
2 ,

hε
2 ]
)
= Kε(1+δ)(N−1) with K = hmeas

N−2
(∂Y ), and the number of

channels |Kε| admits the estimate |Kε| = ε1−Nmeas
N−1

(Σ)(1 + o(1)), then∫
γε

|w|2 dσ = meas
N−1

(γε) ≃ ε(N−1)δ. (40)

From (8), (39) and (40) we derive that ε(N−1)δλε ≤ C, i.e. λ̂ε ≤ C. Similarly, using variational
formulation for higher order eigenpairs, one can show that

λ̂ε,j ≤ Cj . (41)

Using the Poincaré inequality, we deduce that (ũε)ε>0 is bounded in L2(Ω), so we can extract a
subsequence, not relabeled for convenience, such that

λ̂ε → λ̂,
ũε ⇀ u in L2(Ω) weakly, as ε → 0.

(42)

With the help of (10) and (17) one can easily show that u+ ∈ H1(Ω+), u− ∈ H1(Ω−) and u+, u−

satisfy (19), and

∇̃u
+

ε ⇀ ∇u+ in (L2(Ω
+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω

−))N weakly,
ũε → u in L2(Ω) strongly.

(43)
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Clearly, the functions u± satisfy the equation and the boundary conditions in (19). It remains to
derive the interface conditions satisfied by u on Σ. Let us first show that [u] = 0 on Σ so that
u ∈ H1(Ω,Γ1). Reasoning as in the case δ = 0, we assume, by contradiction, that u admits a jump
through Σ. Then, for any κ > 0 there exits a sequence {εk}∞k=1, εk → 0, and a set Xεk ⊂ Σ, and
constants c1 > 0, c2 > 0, such that

measN−1(Xεk) ≥ c1,∣∣uεk(x′, εkκ2 )− uεk(x
′,− εkκ

2 )
∣∣ ≥ c2, for a.e. x′ ∈ Xεk .

(44)

Without loss of generality we can assume that the origin belongs to Y . Then there is a cube Qϖ =
[−ϖ/2, ϖ/2]N−1, ϖ > 0, such that Qϖ ⊂ Y for some ϖ.

Let q < ϖ and introduce the following sets

Φ+
ε =

{
x ∈ RN−1 ×

[
hε1+δ,

εh

2q

]
, x′ ∈ 2(xN/h)Qq

}
,

Φ−
ε =

{
x ∈ RN−1 ×

[
− εh

2q
,−hε1+δ

]
, x′ ∈ −2(xN/h)Qq

}
,

Φ0
ε = ε1+δQq ×

[
− ε1+δh, ε1+δh

]
, Φε = Φ+

ε ∪ Φ0
ε ∪ Φ−

ε .

Observe that {x ∈ Φ+
ε : xN = εh/(2q)} = {x′ ∈ Qε, xN = εh/(2q)}. Letting κ = h/q and choosing

ε < ϖ, denote

X+
ε,0 =

{
x′ ∈ Qε :

∣∣∣∣uε(x′, εh2q )− uε(ε
δx′, hε1+δ)

∣∣∣∣ ≥ c2/3
}

X−
ε,0 =

{
x′ ∈ Qε :

∣∣∣∣uε(x′,−εh

2q
)− uε(ε

δx′,−hε1+δ)

∣∣∣∣ ≥ c2/3
}

X0
ε,0 =

{
x′ ∈ Qε :

∣∣∣uε(εδx′, hε1+δ)− uε(ε
δx′,−hε1+δ)

∣∣∣ ≥ c2/3
}

It is clear that the measure of at least one of these sets X+
ε,0, X

−
ε,0 and X0

ε,0 is greater than or equal

to measN−1(Xε ∩Qε)/3. Denote c01,ε = measN−1(Xε ∩Qε)/3.

First we consider the case N ≥ 3. If measN−1(X
±
ε,0) ≥ c01,ε, then by capacity arguments we obtain

c01,εc
2
2/9 ≤

∫
Qε

(
uε(x

′,±εh/(2q))− uε(ε
δx′,±ε(1+δ))

)2
dx′

≤ Cε(1+δ)(2−N)εN−1

∫
Φ±

ε

|∇uε(x)|2dx = Cε1−(N−2)δ

∫
Φ±

ε

|∇uε(x)|2dx.
(45)

If measN−1(X
0
εk,0

) ≥ c01,εk , then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(ε

δx′, ε(1+δ))− uε(ε
δx′,−ε(1+δ))

)2
dx′

≤ Cε(1+δ)ε(1−N)δ

∫
Φ0

ε

|∇uε(x)|2dx = Cε1−(N−2)δ

∫
Φ0

ε

|∇uε(x)|2dx.

In both cases ∫
Φε

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε ∩Qε)ε
δ(N−2)−1
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Similarly, ∫
Φε+ε(j,0)

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε ∩ ε(Q+ j))εδ(N−2)−1

for all j ∈ Kε. Summing up the last relations in j we obtain∫
Ωε

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε)ε
δ(N−2)−1 ≥ C−1c22c1ε

δ(N−2)−1.

If (44) holds then the integral on the left hand side tends to ∞ which contradicts (10). Therefore,
[u] = 0 on Σ.

In the case N = 2, if |X±
ε,0)| ≥ c01,ε, then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(x

′,±εh/(2q))− uε(ε
δx′,±ε(1+δ))

)2
dx′ ≤ C

δε

| log ε|

∫
Φ±

ε

|∇uε(x)|2dx. (46)

If |X0
εk,0

| ≥ c01,εk , then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(ε

δx′, ε(1+δ))− uε(ε
δx′,−ε(1+δ))

)2
dx′ ≤ Cε

∫
Φ0

ε

|∇uε(x)|2dx.

In both cases ∫
Φε

|∇uε(x)|2dx ≥ C−1c22|Xε ∩Qε|(δε)−1.

The rest of the proof is the same as in the case N ≥ 3.

Let us now derive the spectral boundary condition satisfied by u on Σ. Let v ∈ C∞(Ω)∩H1(Ω,Γ1).
We have ∫

Ωε

∇uε · ∇v dx = ε−(N−1)δ λ̂ε

∫
γε

uεv ds. (47)

As in the case δ = 0, we have

lim
ε→0

∫
Ωε

∇uε · ∇v dx = −
⟨[

∂u

∂xN

]
, v

⟩
Σ

. (48)

In order to pass to the limit on the right-hand side of (47) we make use of the following inequality:
for any w ∈ H1(Y × [−h

2 ,
h
2 ])∫

Qq

(
w(x′, h/2)− ⟨w⟩γ

)2
dx′ ≤ C

∫
Y×(−h/2,h/2)

|∇w|2 dx;

here

γ = ∂Y × [−h

2
,
h

2
], ⟨w⟩γ = |γ|

N−1

∫
γ
w ds.

This inequality can be easily derived from the Poincaré and the trace inequalities. Its scaled version
reads ∫

ε1+δQq

(
w(x′, ε1+δh/2)− ⟨w⟩

ε1+δγ

)2
dx′ ≤ Cε1+δ

∫
ε1+δ

(
Y×[−h

2
,h
2
]
) |∇w|2 dx.
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In the case N ≥ 3, combining this estimate with the second inequality in (45), we obtain∫
Qε

(
uε(x

′, εh/(2q))− ⟨uε⟩ε1+δγ

)2
dx′ ≤ Cε1−δ(N−2)

∫
Gε

|∇uε|2 dx

with Gε = ε
(
Q × [εδ h2 ,

h
2q ]

)
∪ ε1+δ

(
Y × [−h

2 ,
h
2 ]
)
∪ ε

(
Q × [− h

2q ,−εδ h2 ]
)
. Similar inequalities hold in

Gε + ε(j, 0) for all j ∈ Kε. Summing up these inequalities in j yields∫
Σ

(
uε(x

′, εh/(2q))− ⟨̂uε⟩ε1+δγ

)2
dx′ ≤ Cε1−δ(N−2)

∫
Ωε

|∇uε|2 dx,

where ⟨̂uε⟩ε1+δγ
is a piece-wise constant function equal to ⟨uε⟩(ε1+δγ+ε(j,0))

on Gε + ε(j, 0). Under our

assumptions on δ the right-hand side in the last inequality tends to zero. Therefore,∣∣∣ ∫
Σ
uε(x

′, εh/(2q))v(x′, εh/(2q)) dx′ −
∫
Σ
⟨̂uε⟩ε1+δγ

v(x′, εh/(2q)) dx′
∣∣∣ −→ 0.

For the first integral we have∫
Σ
uε(x

′, εh/(2q))v(x′, εh/(2q)) dx′ −→
∫
Σ
u(x′, 0)v(x′, 0) dx′.

For the second ∫
Σ
⟨̂uε⟩ε1+δγ

v(x′, εh/(2q)) dx′ = εN−1
∑
j∈Jε

⟨̂uε⟩ε1+δγ+ε(j,0)
v(εj, 0) + o(1)

=
εδ(1−N)

h|∂Y |N−1

∫
ε1+δγ+ε(j,0)

uε(x)v(εj, 0) ds+ o(1) =
εδ(1−N)

h|∂Y |N−1

∫
γε

uε(x)v(x) ds+ o(1);

here o(1) tends to zero as ε → 0. Finally, combining the above estimates, we obtain

εδ(1−N)

∫
γε

uε(x)v(x) ds −→ h|∂Y |N−1

∫
Σ
u(x′, 0)v(x′, 0) dx′

for any v ∈ C∞(Ω). Therefore,∫
Ω

∇u∇v dx = λ̂K

∫
Σ

uv dx′ for any v ∈ H1(Ω,Γ1) ∩ C∞(Ω).

By the density arguments this limit relation also holds for any v ∈ H1(Ω,Γ1).
The proof in the case N = 2 is similar.

The fact that u ̸= 0 relies on the following statement.

Lemma 3.8. There exists a constant C > 0 such that for any v1 ∈ H1(Ωε) and v2 ∈ H1(Ωε) and
any κ ≥ h we have ∣∣∣ε(1−N)δ

∫
γε

v1v2 ds−K

∫
Σ

v1(x
′,κε)v2(x′,κε) dx′

∣∣∣
≤ Cε

1
2
(1−(N−2)δ)∥v1∥H1(Ωε)∥v2∥H1(Ωε).
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Proof. It suffices to prove the statement of the lemma in the case v1 = v2 = v. Using capacity
arguments, we first estimate∣∣∣ ∫

Qε

v2(x′,
εh

2q
)dx′ − ε(1−N)δq1−N

∫
ε1+δQq

v2
(
x′,

ε1+δh

2

)
dx′

∣∣∣
≤

∫
Qε

(
v2(x′,

εh

2q
)− v2(εδx′,

ε1+δh

2
)
)2
dx′

≤
[ ∫
Qε

(
v(x′,

εh

2q
)− v(εδx′,

ε1+δh

2
)
)2

dx′
] 1

2
[ ∫
Qε

(
v(x′,

εh

2q
) + v(εδx′,

ε1+δh

2
)
)2

dx′
] 1

2

≤
(
Cε1−(N−2)δ

∫
Φ+

ε

|∇v|2 dx
) 1

2
[
2
(∫
Qε

v2(x′,
εh

2q
) dx′

) 1
2
+

(
Cε1−(N−2)δ

∫
Φ+

ε

|∇v|2 dx
) 1

2
]

≤ Cε
1
2
(1−(N−2)δ)

[ ∫
Φ+

ε

|∇v|2 dx+

∫
Qε

v2(x′,
εh

2q
) dx′

]

(49)

Similar inequality holds in any set Φ+
ε + ε(j, 0), j ∈ Kε. Summing up these inequalities in j ∈ Kε and

letting Qε =
∪

j∈Kε

(ε1+δQq + εj) yields

∣∣∣ ∫
Σ

v2(x′,
εh

2q
)dx′ − ε(1−N)δq1−N

∫
Qε

v2
(
x′,

ε1+δh

2

)
dx′

∣∣∣
≤ Cε

1
2
(1−(N−2)δ)

[ ∫
Ω

|∇v|2 dx+

∫
Σ

v2(x′,
εh

2q
) dx′

] (50)

Since ∥v∥L2(Σ) ≤ C∥v∥H1(Ω), we deduce from (50) that

ε(1−N)δ

∫
Qε

v2
(
x′,

ε1+δh

2

)
dx′ ≤ C∥v∥2H1(Ωε)

(51)

In the same way as in the proof of Lemma 3.3 one can prove that

ε(1−N)δ
∣∣∣ ∫
γε

v2 ds− K

qN−1

∫
Qε

v2(x′, ε1+δ h

2
) dx′

∣∣∣
≤ Cε(1−(N−2)δ)

[ ∫
Ωε

|∇v|2 dx+ ε(1−N)δ

∫
Qε

v2(x′,
ε1+δh

2
) dx′

]
≤ Cε(1−(N−2)δ)∥v∥2H1(Ωε)

Combining the last inequality with (49), we obtain∣∣∣εδ(1−N)

∫
γε

v2 ds−K

∫
Σ

v2(x′,
εh

2q
)dx′

∣∣∣ ≤ Cε
1
2
(1−(N−2)δ)∥v∥2H1(Ωε)

(52)

This gives the desired estimate for κ = h/(2q). For other values of κ ≥ h it can be easily derived
from (52) with the help of the trace theorem.

The case N = 2 can be considered in the same way.

18



From Lemma 3.8 it follows that, under our normalization conditions, for sufficiently small ε the
estimate holds ∥uε(·, hε)∥L2(Σ) ≥ C. This implies that u ̸= 0.

The remaining part of the proof follows the line of the proof in the case δ = 0. We should just
use Lemma 3.8 instead of Lemma 3.3. The proof of Theorem 3.1 is completed.
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travers des grilles de forme quelconque. Rend. Sem. Mat. Univers. Politecn. Torino, 45 (1987),
71–85.

[2] G.A. Chechkin, Asymptotic expansion of eigenvalues and eigenfunctions of an elliptic operator
in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional
case, Izvestia: Mathematics 69: 4 (2005), 805–846. Translated from Izvestia RAN. Ser. Mat. 69:
4 (2005), 161–204.

[3] G.A. Chechkin, R.R. Gadyl’shin and Yu.O. Koroleva, On the Asymptotics of a Simple Eigenvalue
to Boundary Value Problem in Domain Perforated Along the Boundary Differential Equations
47: 6 (2011), 822–831 (Translated from Differentsial’nye Uravneniya 47: 6 (2011), 819–828).

[4] A.G. Chechkina, Convergence of Solutions and Eigenelements of Steklov Type Boundary Value
Problems with Boundary Conditions of Rapidly Varying Type. Problem. Mat. Anal. 42 (2009),
129–143. (English translation: Math. Sci. (N. Y.) 162: 3 (2009), 443–458.)

[5] D. Cioranescu, A. Damlamian, G. Griso and D. Onofrei, The periodic unfolding method for
perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008) 248–277.

[6] C. Conca, Étude d’un fluide traversant une paroi perforée I, II. Comportement limite près de la
paroi, J. Math. Pures Appl. 66 (1987) 1–43, 45–69.

[7] A. Damlamian, La passoire de Neumann. Rend. Sem. Mat. Univers. Politecn. Torino, 43:3 (1985),
427–450.

[8] T. Del Vecchio, The thick Neumann’s sieve. Ann. Mat. Pura Appl., 147 (1987), 363–402.

[9] G.I. Eskin, Boundary value problems for elliptic pseudodifferential equations, AMS, 1981.

[10] R. R. Gadylshin, Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian
under singular perturbation of the boundary condition, Mat. Zametki 52:4 (1992), 42–55; English
transl., Math. Notes 52 (1992), 1020–1029.

[11] J.L. Lions, Some methods in the mathematical analysis of systems and their control, Beijing,
Gordon and Breach, (1981).

[12] V.A. Marchenko and E.Ya. Khruslov, Boundary-value problems in domains with fine-grained
boundaries, Naukova Dumka, Kiev, 1974. (in Russian).

19



[13] T.A.Mel’nyk, Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Steklov Problem
in a Thick Periodic Junction, Nonlinear Oscillations, 4: (1) (2001), 91–105. Translated from
Neliniini Kolyvannya, 4: (1) (2001), 91–105.

[14] F. Murat, The Neumann sieve, Non linear variational problems, Ed. by A. Marino, Research
Notes in Mathematics, Pitman, London, 127 (1985), 24–32.

[15] S.A. Nazarov, J. Taskinen, On the spectrum of the Steklov problem in a domain with a peak.
Vestnik St. Petersburg Univ. Math., 41: 1 (2008), 45–52.

[16] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elastity and homoge-
nization, Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Ams-
terdam (1992).

[17] D. Onofrei, The Unfolding Operator near a Hyperplane and its Applications to the Neumann
Sieve Model, Adv. Math. Sci. Appl., 16:1 (2006) 239–258.

[18] D. Onofrei and B. Vernescu, Asymptotics of a spectral problem associated with the Neumann
Sieve, Anal. Appl., 3:1 (2005) 69–87.
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[21] E. Sánchez-Palencia, Un problème d’écoulement lent d’un fluide visqueux incompressible au
travers d’une paroi finement perforée. In D. Bergman et coll., Les méthodes de l’homogénéisation:
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