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Abstract

We classify invariant almost complex structures on homogeneous
manifolds of dimension 6 with semi-simple isotropy. Those with non-
degenerate Nijenhuis tensor have the automorphism group of dimen-
sion either 14 or 9. An invariant almost complex structure with semi-
simple isotropy is necessarily either of specified 6 homogeneous types
or a left-invariant structure on a Lie group. For integrable invariant al-
most complex structures we classify all compatible invariant Hermitian
structures on these homogeneous manifolds, indicate their integrabil-
ity properties (Kähler, SNK, SKT) and mark the other interesting
geometric properties (including the Gray-Hervella type).

1 Introduction and main results

Consider an almost complex manifold (M,J), J2 = −1. If M is closed, the
automorphisms of J form a Lie group [BKW]. In general the automorphism
group can be infinite-dimensional, but finite-dimensionality can be guaran-
teed by additional local (non-degeneracy of the Nijenhuis tensor [K1]) or
global (Kobayashi partial hyperbolicity [Ko, KO]) conditions.

An almost complex structure is integrable if the Nijenhuis tensor NJ van-
ishes [NW]. In real dimension 6 (complex dimension 3) non-degeneracy of
the Nijenhuis tensor means that NJ : Λ2

CTM → TM is a (C-antilinear) iso-
morphism. Such structures are important in applications to critical points
of the Hitchin-type functionals and nearly Kähler geometry [Br, V].

As proven in [K2] the local automorphism group G of the structure J on
M6 with non-degenerate NJ has dimension at most 14, and that this bound
is achieved only for the G2-invariant almost complex structures1: either Gc2-
invariant J on S6 or G∗2-invariant J on its non-compact version S2,4. It

1We denote the compact real form of G2 by Gc2 ⊂ SO(7) and the split real form with
the trivial center by G∗2 ⊂ SO(3, 4).
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is natural to ask what is the next submaximal (= maximal among struc-
tures that are not locally G2-invariant) dimension of the automorphism
group.

As one can expect this is still transitive, we confine to (locally) homogeneous
structures. But their classification is cumbersome, and so we restrict further
by requiring the isotropy group H to be semi-simple. This generalizes the
assumption of [Wo]. In this reference the almost complex structures on G/H
with irreducible isotropyH were classified. Here we extend this classification
in dimension 6. The obtained structures J possess abundant symmetries
(dimG ≥ 9) by construction.
Theorem 1. The only homogeneous almost complex structures on the ho-
mogeneous space M6 = G/H with semi-simple isotropy group H are (up to
a covering and a quotient by a discrete central subgroup):

(I) the homogeneous almost complex structure on S6 = Gc2/SU(3) or on
S2,4 = G∗2/SU(1, 2);

(II1) 4-parametric family on U(3)/SU(2), U(2, 1)/SU(2);

(II2) 4-parametric family on U(2, 1)/SU(1, 1),
and 2-parametric on GL(3)/SU(1, 1);

(III) left-invariant almost complex structures on a 6D Lie group.

The tables of the latter structures are given in the Appendix, see also Theo-
rem 3. The structures of type II are described in Section 6.
Remark 1. As written above, the possible M6 are obtained from the uni-
versal covering group G by additional discrete quotient M = Γ\G/H. These
central subgroups Γ ⊂ G can be completely described. For instance, instead
of U(3)/SU(2) we get G = R1 × SU(3), H = SU(2) and Γ is one of the
4 obvious discrete subgroups of the center Z(G) = R × Z3. Similarly, we
get G = R × ˜SU(2, 1) or R × S̃L(3) for other type II cases. However the
invariant almost complex structure J on M depends only on 2 parameters
in these cases (the torus is covered by a cylinder), see the details in Section
6.
Remark 2. In dimension 4 all complex representations with semi-simple
H ⊂ GL(2,C) lead to the flat structure G = H n C2 and so M4 = C2. If
we allow H to be reductive, then 4 new cases appear:

• SU(3)/U(2) = CP 2,

• SU(2, 1)/U(2) = B4,

• SU(2, 1)/U(1, 1) = CP 2 \ {pt} ' CP 1 × C

• SL(3)/U(1, 1) = RP 2 × RP 2∨ \ P{(v, p) : v · p = 0} ' TRP 2.
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In all these cases J is integrable (complex structure). Our method can be
used to extend the classification to the reductive isotropy H in dimension 6
as well, including such complex manifolds as CP 3 = SU(4)/U(3).

We will also examine the invariant (pseudo-)Riemannian and almost sym-
plectic structures on these homogeneous 6-manifolds G/H, specifying (in
the case they are compatible with the almost complex structure) which of
them are Hermitian, Kähler, strongly nearly Kähler (SNK), strongly Kähler
with torsion (SKT) and discuss the Gray-Hervella classes of them.

The SNK condition is closely related with the condition of non-degeneracy
of NJ (recall that this means NJ(Λ2TM) = TM). For the Calabi almost
complex structure J on S6 it is known that its automorphism group is the
compact real formGc2. Similarly the split real formG∗2 is the symmetry group
of the homogeneous structure J on the pseudo-sphere S2,4 (in both cases
dim Aut(M,J) = 14). It turns out that for the other cases of Theorem 1
with non-degenerate tensor NJ the local symmetries of J (and hence the
global ones) are only the obvious ones.
Theorem 2. Let J be an invariant almost complex structure on the ho-
mogeneous space M = G/H from Theorem 1 of types II or III (i.e. J is
not G2-invariant). Assume that the Nijenhuis tensor NJ is non-degenerate.
Then the (local and global) automorphisms of J in the connected component
of unity are only those coming from G, whence dim Aut(M,J) = 9.

Some calculations from this work used symbolic packages of Maple; the
corresponding worksheets are available from arXiv:1401.8187.

2 Classification result via representation theory

Consider a homogeneous manifold M = G/H, i.e. a connected manifold M
on which a connected Lie group G acts transitively with the stabilizer H of
a point o ∈M . We will always assume that G acts effectively on M , i.e. no
non-trivial subgroup of H is normal in G.

In this case the isotropy representation j : H → GL(ToM) is almost faithful
(has finite kernel) provided the stabilizer group H is reductive (in particular,
semi-simple that is our running assumption). When M has a G-invariant
almost complex structure J whose Nijenhuis tensor NJ is non-degenerate,
then this is also the case by [K2].

Let g, h be the Lie algebras of the Lie groups G,H and m = ToM the model
tangent space of G/H, o = eH. The isotropy representation makes the
space m into h-module. The above data (h subalgebra, m representation)
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can be summarized in the following exact 3-sequence of h-modules

0→ h −→ g −→ m→ 0.

Our hypothesis that h is semi-simple yields the splitting of the sequence
via an embedding m ⊂ g as an H-invariant complement, and we get the
reductive decomposition

g = h + m, [h, h] ⊂ h, [h,m] ⊂ m.

Our strategy for classification is to start with the pure algebraic data, and
then reconstruct the Lie groups G,H and the manifold M with its geome-
try.

Reconstructing g = h ⊕ m from the representation (h,m) amounts to the
following. The brackets Bh : Λ2h → h and Bh,m : h ∧ m → m are given by
the Lie algebra structure of h and the h-module structure of m respectively.
The missing ingredient is the map Bm : Λ2m → g, determining the full
bracket

B = Bh + Bh,m + Bm : Λ2g = Λ2h⊕ (h ∧m)⊕ Λ2m→ g = h⊕m.

Lemma 1. The Jacobi identity of the resulting bracket B : Λ2g → g, in-
volving an element from h, is equivalent to h-equivariancy of Bm. If Bm is
h-equivariant, then the bracket B defines the Lie algebra structure on g iff
the Jacobi map Jacm : Λ3m→ g vanishes, where

Jacm(x, y, z) = B(x,Bm(y, z)) + B(y,Bm(z, x)) + B(z,Bm(x, y)).

The Lie algebra g defined by such Bm is called the Lie algebra extension of
the h-module m.

Proof. The Jacobi relation involving 3 elements from h holds as h is a Lie
algebra. The Jacobi relation involving 2 elements from h and 1 from m holds
as m is an h-representation. Finally the Jacobi relation involving 1 element
from h and 2 from m is precisely the equivariancy of the map Bm.

Since h is semi-simple, the construction of Bm ∈ Homh(Λ2m, g) goes as fol-
lows. Decompose into irreducible h-modules (including the trivial): Λ2m =
⊕ ri ·ui = ⊕ (ui⊗Rri), g = h⊕m = ⊕ si ·ui = ⊕ (ui⊗Rsi). Then by Schur’s
lemma

Homh(Λ2m, g) =
⊕

glh(ui)⊗Hom(Rri ,Rsi) = ⊕Matsi×ri ,

where the space Mats×r consists of real, complex or quaternionic s× r ma-
trices (the algebra of splitting operators glh(ui) = R, C or H).
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Thus h-equivariancy of Bm can be effectively checked via the representation
theory. On the contrary, vanishing of Jacm(Λ3m) is a set of linear and
quadratic relations on Bm to be checked directly (representation theory helps
here too through h-equivariancy of the map Jacm).

Invariant almost complex structures J on M bijectively corresponds to h-
invariant tensors (here endomorphisms2)

J ∈ (m∗ ⊗m)h = Endh(m) with J2 = −1.

Similarly, invariant pseudo-Riemannian metrics and almost symplectic struc-
tures on M are in bijective correspondence with non-degenerate h-invariant
tensors g ∈ (S2m∗)h and ω ∈ (Λ2m∗)h respectively.

Our aim is to classify 6-dimensional homogeneous manifolds M = G/H
with semisimple H, admitting an invariant almost complex structure J . Let
g = h + m be the associated reductive decomposition. By effectivity the
isotropy representation ad : h→ gl(m) is exact (due to this all elements of g
act as non-trivial symmetries) and it preserves the complex structure J on
m. Therefore we identify h ⊂ gl(m, J) ' gl3(C).

2.1 Classification result

Our strategy is the following:

1. Enumerate all semi-simple subalgebras h ⊂ gl3(C), hence, all 6-dimensional
h-modules m with an invariant complex structure J .

2. Describe all h-equivariant linear maps Bm : Λ2m→ g by decomposing the
module Λ2m into irreducible submodules.

3. Compute all Lie algebra extensions g of the h-module m by solving the
equations Jacm = 0 ∈ Λ3m∗ ⊗ g on the parameters in Bm.

4. Determine the homogeneous almost complex manifolds M = G/H asso-
ciated with the Lie algebra g = h + m and the complex structure J .

The trivial bracket Bm = 0 defines the semidirect product Lie algebra g =
h n C3 corresponding to the manifold M = C3 with the standard complex
structure and the obvious action of the semi-direct Lie group G = H n C3.
We call such structure flat and exclude them from consideration.

Below we use the following notations. For a classical simple Lie algebra
h denote by V the standard (tautological) h-module. It has the natural
complex structure if h is sl2(C), sl3(C), su(3) or su(2, 1). For h = su(2) we

2Endomorphisms are R-linear and h-equivariant transformations of the module.
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identify the module V with the spaceH of quaternions and the algebra h with
imaginary quaternions Im(H) acting from the left. Similarly for h = su(1, 1)
we identify the module V with the space Hs of split quaternions and the
algebra h with split imaginary quaternions Im(Hs) acting from the left. The
space of invariant complex structures on V consists of right multiplications
Rq : x 7→ xq by a quaternion q with q2 = −1. Such complex structures
(quaternions q) are parametrized by the unit sphere S2 ⊂ Im(H) in the first
case and the unit pseudosphere S1,1 ⊂ Im(Hs) in the second case.

We identify the trivial 2-dimensional representation of h and a complex
structure J with the standard pair (C, i). We denote by ad the adjoint rep-
resentation of the Lie algebra h. If h is real, the invariant complex structures
on the module adC = ad⊕ ad are parametrized by

J(v,w) =
(
r v− 1+r2

t w, tv− rw
)
, (1)

the same concerns the complexified tautological representation V C of sl3(R).
Theorem 3. There are 7 different real semi-simple subalgebras in the com-
plex Lie algebra gl3(C) (up to conjugation):

• h = su(2) or su(1, 1), representations V + C, adC;

• h = sl2(C), representations V + C, ad;

• h = sl3(R), representation V C;

• h = su(3) or su(2, 1) or sl3(C), representation V .

For the cases of su(2), su(1, 1) the possible Lie algebras g with the speci-
fied representations m are tabulated in the Appendix. For sl2(C) the ad-
joint representation gives only g = sl2(C) ⊕ sl2(C) (so that M = SL2(C) ⊕
SL2(C)/ SLdiag

2 (C)), while V + C leads to 2 cases for g from the Appendix.
For su(3) the corresponding g is the Lie algebra of the exceptional group Gc2.
For su(2, 1) the corresponding g is the Lie algebra of the exceptional group
G∗2. The other cases sl3(R) and sl3(C) give only the flat structures (in which
case M6 = C3 or its quotient).

The proof of this theorem is a straightforward (but lengthy) calculation, we
sketch it in the next section.

2.2 Proof of Theorem 1

On the level of Lie algebras Theorem 1 follows instantly from Theorem 3
and the tables from the Appendix.

The passage to the Lie groups is straightforward for types I and II, because in
these cases we indicate the pair (G,H), and it remains to treat only different
discrete quotients. But for type III we need to establish existence of the Lie
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group G such that h exponentiates into its Lie subgroup. In general a Lie
groups H with a homomorphic embedding of Lie algebras ι : h = Lie(H) ⊂ g
does not have a homomorphic embedding j : H ↪→ G into a Lie group G
with g = Lie(G) and ι = dj, see counter-examples in [B, GOV].

In our case, however the Lie functor works nicely. The output of Theorem
3 yields the structure of Lie algebra on g = h + m, and we should consider
only the cases, when m is closed with respect to these brackets, i.e. [, ]hm =
0 in terms of splitting of the bracket Bm. Indeed, when m ⊂ g is not
a Lie subalgebra (types I and II in Theorem 1) we have an obvious Lie
subgroup H ⊂ G withM = G/H the required homogeneous almost complex
manifold.
Proposition 1. The pairs (g, h) of Lie algebra/subalgebra from the Tables
of the Appendix with m being a Lie algebra correspond to the pairs (G,H)
of Lie group/subgroup of type III in Theorem 1.

This statement concerns the cases A1-A6 from the Tables except for the
cases A1.4 and A3.5, which correspond to type II (case A6 is rather simple
and was already discussed in Theorem 3).

Proof. Let M be the simply connected Lie group corresponding to m (for
the representation V + C the Lie algebra m is solvable and so M ' R6 as a
manifold, for the representation adC the choice of M is obvious). Consider
the representation ρ : h → End(m). Then there exists a homomorphism
R : H → GL(m) such that dR = ρ. By virtue of Proposition 4.2 of [VO,
Chapter 2] the semi-direct product G = H nR M is the desired simply-
connected Lie group. The main idea of this approach follows Cartan’s proof
of the third Lie theorem [C].

Another proof is based on the Palais’ criterion [P] for a transformation
group to be a Lie group. Namely, M acts on itself by left translations and
H ⊂ Diff(M) is a closed subgroup (as it is the stabilizer of the unity and
closed inGL(TeM)). BothM andH generate a closed subgroup in the group
of diffeomorphisms, which is a Lie group G with Lie(G) = g = hnm.

Thus, when m ⊂ g is a Lie subalgebra we also get representation M = G/H
and this finishes the proof of Theorem 1.

3 Proof of the classification result

Representation part of Theorem 3 (list of 7 cases) is obvious from the general
theory of representations of semi-simple Lie algebras. The difficult part is
the reconstruction of possible Lie brackets on g = h + m.
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Let us consider the case, when h = su(2) and the isotropy as a complex
representation has type m = V + C. Identify h with the Lie algebra of
imaginary quaternions Im(H) and V with the left h-module H. The endo-
morphism ring of V is the algebra H acting from the right (we will use this
freedom to change the basis in V ). The following easy claim will be used
repeatedly.
Lemma 2. The h-invariant complex structure J on the module m = V +C
is given via a unit imaginary quaternion q ∈ S2 ⊂ Im(H) by the formula

J(x, η) = (xq, iη), x ∈ V = H, η ∈ C.

It is possible to fix q to be equal to i ∈ H by an endomorphism, but as noticed
above we use this freedom to simplify the brackets. On the other hand,
though on the 2-dimensional trivial h-module R2 there is a 2-parametric
family of complex structures, we fix one (equal to i, turning this submodule
into C) as this freedom does not help to simplify the brackets.

The first task in constructing the map Bm is to decompose the h-module
Λ2m = Λ2(V + C) = Λ2V + V ⊗ C + Λ2C into irreducibles. From the
representation viewpoint (without complex structure J) C is the trivial 2-
dimensional real module R2, so Λ2C ' R1 and V ⊗ C = V + V .
Lemma 3. As an h-module Λ2V = ad + R3.

Proof. Let us give two proofs, one via the representation theory of simple
Lie algebras and the other straightforward.

The complexified Lie algebra hC = sl(2,C) has the same standard repre-
sentation V (it is not absolutely irreducible). Changing the real form to
h′ = su(1, 1) ' sl(2,R) we obtain by the highest weight decomposition
V = W + W , where W is the standard representation of sl(2,R). Now
Λ2(W +W ) = Λ2(W )⊗ R2 + S2W + R = ad + R3 yields the claim.

A more direct proof is as follows. Let us identify V ' V ∗ using the h-
invariant metric on V = H: g(x, y) = Re(xȳ), x, y ∈ V . Consider the
2-forms ωb, ωb ∈ Λ2V ∗ given by (check both are skew-symmetric!)

ωb(x, y) = Re(xbȳ), ωb(x, y) = Re(xȳb), b ∈ Im(H).

The group H = SU(2) ' S2 ⊂ Im(H) acts on them as follows (q ∈ H)

ωb(qx, qy) = Re(qxb qy) = Re(qxbȳq̄) = Re(xbȳ|q|2) = ωb(x, y),
ωb(qx, qy) = Re(qx qy b) = Re(qxȳq̄b) = Re(xȳq−1bq) = ωAd−1

q b(x, y).

Consequently the 6-dimensional space Λ2V ∗ has two 3-dimensional submod-
ules {ωb} and {ωb}. By the above the first of them has type ad and the
second is trivial R3. They do not intersect and so span the whole Λ2V ∗.

16



Lemma 4. Let g = ad + V + C be a Lie algebra extension of the h-module
V + C. Then the brackets on m are

[V, V ] ⊂ ad + C, [V,C] ⊂ V, [C,C] ⊂ C.

Here from the naked representation theory viewpoint C = R2, but we shall
use the structure i on it. The lemma has the following implications.

• C is a Lie subalgebra of g and it is solvable: Λ2C 7→ R ⊂ C. There
exists a J-adapted basis e, ie of C such that [e, ie] = εe for some
ε ∈ {0, 1} (for ε = 1 this determines e uniquely).

• Since C is the trivial h-module, the bracket V ⊗C→ V is composed of
endomorphisms, i.e. [x, η] = Aη(x), where η 7→ −Aη is the homomor-
phism of Lie algebras C → Lie(EndR(V )) = R ⊕ h ' u(2). Since the
latter has no non-trivial solvable subalgebras, the homomorphism is
not injective when the subalgebra C is not abelian (ε = 1 ⇒ Ae = 0).

• The V -bracket Λ2V → g for some λ ∈ R, b, b′ ∈ Im(H) equals

[x, y] = λ · Im(xȳ) +
(
ωb(x, y)e + ωc(x, y)ie

)
.

Elaborating upon Lemma 1 with these choices g is a Lie algebra iff the
V -Jacobi identity holds – Jacm : Λ3V → g is zero and in addition

ωb(Aiex, y) + ωb(x,Aiey) = εωb(x, y),
ωb(Aex, y) + ωb(x,Aey) = −εωc(x, y), (2)
ωc(Aηx, y) + ωc(x,Aηy) = 0, η ∈ C.

It is also important to notice that since H is a division algebra, then every
nonzero operator Aη ∈ EndR(V ) = H is invertible. Now we consider the
following possibilities (if λ = 0, then m is a Lie algebra).

(A1.1) λ = 0, [V, V ] 6= 0 and the subalgebra AC ⊂ H is nonzero. We claim
that the map A has a kernel. Indeed, for ε = 1 we have Ae = 0. For ε = 0
denoting Aη(x) = xq, q ∈ H, then (2) implies Re(x(qd+dq̄)ȳ) = 0, where d is
any linear combination of b, c ∈ Im(H). As b, c are not simultaneously zero,
this yields a kernel, which can be accommodated into e (using GL(1,C)-
freedom of change of basis in the C-module for ε = 0).

Then the Jacobi identity Jacm(Λ3V ) = 0 and the remark about invertibility
imply that c = 0. Using the endomorphism freedom in the choice of basis
in V , we can assume b = α i. From (2) we obtain Aie(x) = x( ε2 + ri)
for some r ∈ R. Thus in this case m is a Lie algebra with the structure
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equations3

[x, y] = αRe(xiȳ)e, [x, ie] = x( ε2 + ri), [e, ie] = εe.

In other words, m is obtained in two steps. First we construct the central
extension of abelian algebra V by the 2-form ωi - we get the Heisenberg Lie
algebra heis(V ) = V + Re. Then we take its 1-dimensional extension of by
the derivation4 adie. In Table A1 this case is called A1.1.

(A1.2) λ = 0, [V, V ] 6= 0 and the subalgebra AC ⊂ H is zero. In this
case the subalgebra C must be abelian, and then the Jacobi identity holds
Jacm(Λ3V ) = 0 identically. We can normalize (by rescaling e) b = i and
c = p ∈ Im(H) is arbitrary.

Thus m is the Lie algebra, which is a 2-dimensional central extension of
abelian V by two 2-forms ωi, ωp. This is the case A1.2 of Table A1.

(A1.3) λ = 0, [V, V ] = 0. Here the Jacobi identity is satisfied and we only
need to normalize the map η 7→ Aη. If ε 6= 0, then Ae = 0 and we choose a
basis in V such that Aie(x) = x(β + ri), β, r ∈ R.

On the other hand, if ε = 0, then AC ⊂ H is either 1-dimensional or 2-
dimensional subalgebra, which is possible only for Ae(x) = xα, Aie(x) =
x(β + ri), α, β, r ∈ R. Clearly we can normalize α = 0 or 1.

Thus m is a Lie algebra, which is either an extension of abelian V by two
commuting derivations ade, adie or an extension of abelian V + Re by one
derivation adie. This is the case A1.3 of Table A1.

(A1.4) λ 6= 0. Here m is not a Lie subalgebra of g. In this case the Jacobi
identity implies that C has a central element (in particular C is abelian).
We choose it to be ie. Then Aie = 0, c = 0. We can normalize (by endo-
morphisms) λ = ±1, b = i. The Jacobi identity yields Ae(x) = 3λxi.

The obtained Lie algebra g is isomorphic to u(3) for λ = 1 and to u(1, 2)
for λ = −1. The associated almost complex manifolds are U(3)/SU(2) and
U(2, 1)/SU(2) respectively. In Table A1 this case is called A1.4.

Thus we obtained the complete classification of the homogeneous structures
M = G/H in the first case from the list of Theorem 3. Invariant almost

3Here and in what follows we adopt the convention that x, y ∈ V are arbitrary elements,
but e ∈ C is a fixed element, in particular e, ie is a real basis of C.

4The central ("left") extension and extension by derivations ("right") g̃ of the Lie algebra
g (via f) are given respectively by the exact sequences

0→ f→ g̃→ g→ 0, 0→ g→ g̃→ f→ 0.

Then g is respectively the quotient/subalgebra of g̃ and its bracket can/cannot change
upon the extension.
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complex structure on M is obtained from the h-invariant structure J on m
as in Lemma 2. Its Nijenhuis tensor is computed by the formula

NJ(X,Y ) = π([JX, JY ]− J [X, JY ]− J [JX, Y ]− [X,Y ]), X, Y ∈ m,

where [, ] : Λ2m → g are the brackets in the Lie algebra g and π : g → m
is the projection along h. Similarly the differential of the almost symplectic
structure ω on m is computed by the Cartan formula using only the brackets
on m. This explains all entries in Table A1.

Consider the other representation m = adC of h = su(2). Here it is more
convenient to involve Levi decomposition: g = gss ⊕ r, where the first sum-
mand is a semi-simple part and the second is the radical. The factor gss can
be chosen to contain h, and so can be one of the following:

• gss = su(2)3, h = su(2)diag,

• gss = su(2)⊕ sl(2,C), h = su(2)diag,

• gss = su(2)2, h = su(2)diag,

• gss = sl(2,C), h ⊂ sl(2,C).

The last case is disqualified as h acts by zero on g/gss (no 3-dimensional
nontrivial representation for gss). The first three give the cases A2.1, A2.2,
A2.3 of Table A2 respectively.

Finally, it is possible that gss = h, whence m = r. Since this is solvable
of module type adC, the only non-trivial brackets in terms of the splitting
m = m1 + m2 (grading) are the following (case A2.4)

[x1, y1] = [x, y]2, x, y ∈ ad ' h.

The corresponding analysis for h = su(1, 1) is similar (for instance, Lemma
2 holds true with H changed to Hs), but a special care should be taken as in
this non-compact case there are null elements on the representation V with
respect to its unique (up to scale) h-invariant metric (that’s why Table A3
is bigger than A1). The cases h = sl2(C), sl3(R), sl3(C) are much simpler.
The details of computations can be found in [Wi]. For the largest algebras
su(3) and su(2, 1) arising in the symmetry analysis the computations are
done in [K2].

This finishes the proof of Theorem 3.
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4 Automorphism groups of nondegenerate struc-
tures J

Here we prove Theorem 2 – find the symmetry algebra of the structures J
with non-degenerate Nijenhuis tensor NJ . It follows from the tables that
NJ can be non-degenerate only for isotropy algebras su(2), su(1, 1) or su(3),
su(2, 1). In the latter two cases J is locally isomorphic to the G2-invariant
almost complex structure on either S6 or S2,4 and if the automorphism group
has dimension 14, it is one of the two forms of the group G2, see [K2] for
details. In what follows we consider the former two cases.

According to [K2] the isotropy sym(J)o of the symmetry algebra sym(J)
at any point o ∈ M is 1-jet determined: the proof of Theorem 1 loc.cit.
implies
Theorem 4. If the Nijenhuis tensor NJ on a connected almost complex
manifold (M6, J) is non-degenerate, then any vector field X ∈ sym(J), is
uniquely determined by its 1-jet [X]1o. Consequently, the isotropy algebra
satisfies:

sym(J)o = {X : LX(J) = 0, X(o) = 0} ⊂ gl(m, J).

4.1 Symmetries via derivations

Theorem 4 hints to the following statement concerning the symmetry algebra
of the homogeneous models A1.1, A2, A3.1, A3.2 and A4 according to the
numeration in Appendix.
Proposition 2. Let M = G/H be the homogeneous almost complex mani-
fold associated with one of the Lie algebra extensions of the h-module m in
the case when m is a Lie algebra (subalgebra in g) and h is either su(2) or
su(1, 1). If the Nijenhuis tensor NJ of the almost complex structure J is
non-degenerate, then the full symmetry algebra as a vector space is

sym(J) = m + sym(J)o

and the full isotropy algebra equals

sym(J)o = der(m) ∩ gl(m, J) = {A ∈ der(m) : AJ = JA}.

Otherwise said, we are given the pair (g, h) with m = g/h and h-invariant J
on m. The claim is that if we can find an extension (g̃, h̃) ⊃ (g, h) with the
same property, then still h̃ acts on m by derivations.

Below we denote by π : g̃→ m the projection along h̃ and use the labels for
almost complex homogeneous spaces from the Appendix.
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Proof. Let g̃ = sym(J) be the full symmetry algebra. By [K1, K2] the full
isotropy algebra h̃ = sym(J)o ⊂ g̃ is at most 8-dimensional. If J is not
locally isomorphic to the Gc2-invariant almost complex structure on S6 or
G∗2-invariant almost complex structure on S2,4, then dim h̃ ≤ 5. Indeed,
this is so in any non-exceptional case of canonical forms NDG(1-4) of [K1],
exceptions are the two cases given by formulae (16) and (17) of [K2, Section
7] when h̃ is equal to su(2, 1) or su(3) respectively. The structure of g
recovers uniquely and M = G∗2/SU(2, 1) or M = Gc2/SU(3) respectively;
the structure J in every case is unique. Any proper subalgebra of su(2, 1) is
at most 5-dimensional, and that of su(3) is at most 4-dimensional, whence
the claim.

Since already J has 3-dimensional isotropy h by construction, the additional
subspace r ⊂ h̃ is the radical of dim r ≤ 2.

We start with the adC representation of h = su(2) on m. Then by h-
equivariance of the brackets, r is in the radical r̃ of g̃.

If m is either su(2) ⊕ su(2) or sl(2,C) (A2.1,A2.2), then g is semi-simple,
so extension of h to h̃ is by radical r only, whence [r,m] ⊂ r and hence the
added summand r acts non-effectively, which is prohibited.

If m = su(2) + R3 (A2.3), the radical of g̃ is r̃ = r + R3 and so we have:
[r, su(2)] = 0 and [r,R3] ⊂ r + R3. By J-invariancy of π ◦ adr(m) we get
π([r,m]) = 0, meaning the action of r on m is non-effective – contradiction.

If m = a1 ⊕ a2 (A2.4), the Lie algebra structure is graded and the h-
representation on ai ' R3 is adjoint. In the radical r̃ = m + r the h-
representation r is the trivial submodule, whence from h-equivariance we
get: [r,m] ⊂ m. This means that r acts by derivations, as required.

The case h = su(1, 1) is similar except for the last type m = a1 ⊕ a2. Then
another possibility occurs that r is the standard representation R(λ1) of
h ' sl2(R), where R(w) is the representation of highest weight w. As
ai = R(2λ1) and R(λ1)⊗R(2λ1) = R(λ1) +R(3λ1), h-equivariance implies
[r,m] ⊂ r, so the action is non-effective.

Consider now the second possible representation of h: m = V + C. Start-
ing with h = su(2) we note the additional subspace r is the trivial h-
module. Again h-equivariance and Schur’s lemma imply [r, V ] ⊂ V . Since
0 6= [V, V ] ⊂ C and π ◦ adr|m commutes with J , the Jacobi identity implies
[r,C] ⊂ 〈[V, V ], J [V, V ]〉 = C. Thus [r,m] ⊂ m and r acts by derivations, as
claimed.

When h = su(1, 1) and r as h-representation is trivial, the argument is the
same. So let r ' R2 be the standard representation U of h ' sl2(R). In this
case V = UC is 2R(λ1) as h-representation. Therefore as R(λ1)⊗R(λ1) =
R(0) +R(2λ1) = R+ S2U , we get by h-equivariance: [r, V ] ⊂ h + C. Since
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0 6= [V, V ] ⊂ C, [V,C] ⊂ V , [h, V ] = V and π ◦ adr|m commutes with J , the
Jacobi identity yields [r,C] ⊂ [h + C, V ] = V .

Let us show that [r, V ] does not have h component. Indeed, since [r, r] ⊂ h+C
by h-equivariance, the Jacobi identity implies

V ⊃ [[r, r], V ] ⊂ [r, [r, V ]] ⊂ [r, h + C] ⊂ r + V.

Since [r, h] = r, the presence of h component implies non-trivial r component
in the last summand of the above display formula. To study it consider the
bracket-maps ψ : r × h → r and φ : r × V → h (for the latter we post-
compose with the projection). The Jacobi identity and the above display
formula imply ψ(r1, φ(r2, v)) = ψ(r2, φ(r1, v)) for all r1, r2 ∈ r, v ∈ V . Since
the maps ψ, φ depend only on the h-module structure and as such r = U ,
V = U ⊕ U , we change the maps to

Ψ : U × h→ U, Φ : U × U → h with Ψ(u1,Φ(u2, u3)) = Ψ(u2,Φ(u1, u3)).

Here Ψ is the standard representation, and Φ is proportional to the sym-
metric multiplication (u1, u2) 7→ λu1u2, λ ∈ R, because S2U = h. This
isomorphism is given by a choice of h-invariant area form ω on U . Let
p, q ∈ U be the canonical basis, ω(p, q) = 1. Then

Ψ(p,Φ(q, p)) = λΨ(p, qp) = λp 6= Ψ(q,Φ(p, p)) = λΨ(q, p2) = −2λp

unless λ = 0. Thus the h component vanishes and [r, V ] ⊂ C.

Therefore [r,m] ⊂ m and r acts by derivations.

This finishes the proof of Proposition 2.

4.2 Proof of Theorem 2

To find the derivations we can use the exact sequence

0→ Z(m) −→ m
ad−→ der(m) −→ H1(m,m)→ 0, (3)

where Z(m) is the center of the Lie algebra m.

Consider at first the case h = su(2), representation adC. In all four cases
here m ⊂ g is a Lie subalgebra.

In the first two cases A2.1, A2.2 m is semi-simple: su(2) ⊕ su(2) or sl2(C).
By Whitehead lemma H1(m,m) = 0, so all derivations are inner. Thus
der(m) = {adX : X ∈ m} ' m from (3).

We claim that if adX commutes with J , then adJX does not. Elsewise

NJ(X,Y ) = [adJX , J ](Y )− J [adX , J ](Y ) = 0,
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and the Nijenhuis tensor is degenerate (even DG2 in terminology of [K1]).
Therefore sym(J)o is totally real in m and so cannot have dimension > 3.
But dimension 3 is guaranteed since sym(J)o ⊃ h. Consequently sym(J) =
g.

Next case A2.3 is m = h n R3. Clearly sym(J)o ⊂ der(m) must preserve
the radical R3. The operator Jr = J − r1 is invariant, where 1 is the
identity operator – see formula (1). Therefore the full isotropy also preserves
the semi-simple part JrR3 = h, and the action on h induces the action on
R3. Again any derivation on h is inner and so dim sym(J)o ≤ 3 implying
sym(J) = g.

In the last case A2.4 the graded nilpotent Lie algebra m = a1 ⊕ a2 with
ai ' R3, Jr : a1 → a2 and the bracket is [ξ, η] = Jr(ξ×η), ξ, η ∈ a1, with the
cross product × being the Lie bracket on R3 = su(2). This relation shows
that a2 = [m,m] equipped with × product (so the bracket is Λ2a2 3 ξ ∧ η 7→
[J−1
r ξ, J−1

r η] ∈ a2) must be preserved by the derivations. Since this algebra
(a2,×) is isomorphic to su(2), we obtain sym(J) = g as before.

Secondly let representation m of h be V ⊕ C. Only one of the cases A1.1,
with m being a Lie algebra, has non-degenerate NJ . In this case the space
of derivations of m commuting with J is obtained by the straightforward
computation with the case split according to parameters; these tedious com-
putations are done in Maple. The result is the same as above.

The case h = su(1, 1) is very similar to the considered su(2). The only
difference is that in V + C representation there is one more case.

Now to complete the proof of Theorem 2, we have to consider the homoge-
neous structures of type II in Theorem 1 (when m is not a Lie algebra: A1.4,
A3.5). For such M = G/H the Lie group G is reductive, g = gss + z with
1-dimensional center z and 8-dimensional semi-simple part gss, and the Lie
algebra g̃ = sym(J) contains g.

From the proof of Proposition 2 we know that h̃ = h+r, where the semi-direct
summand r is the radical in h̃ and dim r ≤ 2. This implies (by inspection
of the Levi decomposition of g̃) that z + r ⊂ g̃ is a subalgebra, which is
either semi-simple or the radical of g̃. In any case, because m = m0 + z for
m0 = m ∩ gss ⊂ gss, we get [r,m] ⊂ [r,m0] + [r, z] ⊂ r + z. Consequently
π ◦ adr(m) ⊂ z for the projection π : g̃→ m along h̃. Since π ◦ adr ⊂ gl(m, J)
yields J-invariance of π ◦ adr(m), we conclude that by dimensional reasons
π([r,m]) = 0. Consequently the action of r on m is not effective, so r =
0.

This finishes the proof of Theorem 2.
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5 Almost Hermitian structures and their integra-
bility

The existence of a homogeneous almost Hermitian, almost symplectic or
almost complex structure depends only on the isotropy representation, in
contrast with the various integrability conditions (Kähler, etc.) for such
structures which generally depend on the Lie algebra structure.

Pseudo-Riemannian metrics on the almost complex homogeneous manifold
M = G/H with the isotropy h-module m and h-invariant complex structure
J on m correspond to non-degenerate h-invariant quadratic forms g ∈ S2m∗.
Invariant almost Hermitian structures are elements of the set

S2
Jm
∗ = {g ∈ (S2m∗)h : g(Jξ, Jη) = g(ξ, η),det(g) 6= 0}.

Likewise invariant compatible almost symplectic structures are elements of
the set

Λ2
Jm
∗ = {ω ∈ (Λ2m∗)h : ω(Jξ, Jη) = ω(ξ, η), ω3 6= 0}.

The Kähler form ω ∈ Λ2
Jm
∗ associated to g ∈ S2

Jm
∗ is defined by ω(ξ, η) =

g(Jξ, η). This formula makes a bijective correspondence S2
Jm
∗ ' Λ2

Jm
∗.

Note that two invariant almost Hermitian metrics g, g̃ define a symmetric
(with respect to both g and g̃) invertible operator A : m → m by g̃(ξ, η) =
g(Aξ, η), which has to commute with both h and J . Thus the operator A
belongs to the complex endomorphism ring Endh(m, J).

5.1 Classification of almost Hermitian structures

Let us list all invariant almost Hermitian structures according to the types
of h-modules as in Theorem 3 (we’ll omit the word "almost" for the met-
ric).

Case 1: h = su(2), m = V ⊕ C, where V ' H. There are Hermitian
metrics g1 on V , g2 on C. Since Endh(m, J) = C ⊕ C and the symmetric
endomorphisms are A ∈ R⊕ R, the general invariant compatible metric on
m is g = a g1 +b g2. Its signature is (2k, 6−2k) depending on a, b 6= 0.

The almost-symplectic form is up to scaling ω(ξ, η) = g1(ξ1q, η1)+g2(iξ2, η2)
for some q ∈ Im(H) \ 0, where ξ = ξ1 + ξ2, η = η1 + η2 ∈ V ⊕ C.

Case 2: h = su(2), m = adC. The operator J induces the equivariant
splitting m = ad⊕ Jad. The Riemannian metric g, which is the direct sum
of the Killing forms on each summand, is compatible. Since Endh(m, J) = C
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and the symmetric endomorphisms are A ∈ R, the invariant compatible
metric is unique up to scaling (but g depends on J).

Decomposing into irreducible h-modules Λ2m = 3ad⊕W 5⊕R1, we conclude
that the only almost symplectic form ω is the Kähler form of the metric
g.

Case 3: h = su(1, 1), m = V ⊕C. Here V = UC for the standard sl2 repre-
sentation U . Similar to Case 1, the general invariant metric is g = a g1+b g2,
a, b 6= 0. The metric g1 is of split signature, g2 is Riemannian, so g has type
(4, 2) (or (2, 4), but we will not distinguish the opposite signatures).

Since Λ2V = ad⊕R3, the space of invariant 2-forms is 3-dimensional. Indeed,
Endh(V ) = gl2 ' Hs, and so up to scaling an almost symplectic form is
ω(ξ, η) = g1(ξ1q, η1) + g2(iξ2, η2), q ∈ Im(Hs), q2 6= 0.

Case 4: h = su(1, 1), m = adC. This is similar to Case 2: the (invariant)
almost symplectic structure ω is unique up to scale; it is J-independent and
is J-compatible for every J ∈ Endh(m), J2 = −1. The Hermitian metric
g = −iJω depends on J and has signature (4, 2).

Case 5: h = sl2(C), m = V + C. There are no sl2(C)-invariant metric on
the V component. The almost symplectic form ω1(x, y) = g1(xq, y) on V
from Case 1 is sl2(C)-invariant iff q ∈ Im(H) ∩ iIm(H), i.e. q ⊥ i. Thus the
space of invariant almost symplectic structures on m up to scaling is given
by 2 parameters: ω = ω1 + ω2.

Case 6: h = sl2(C), m = ad, J = i. The Killing form K provides an
invariant metric on ad, but it is not Hermitian as K(Jξ, Jη) = −K(ξ, η).
Since any other metric or 2-form must be related to K by an operator
A ∈ Endh(m) = C, no compatible metric and no almost-symplectic form
exists. Instead we have two invariant anti-compatible metrics K(ξ, η) and
K(Jξ, η). The homogeneous space M = SL2(C)2/ SL2(C)diag ' SL2(C) is
complex.

Case 7: h = su(3), m = V . m has an invariant Hermitian metric g of signa-
ture (6, 0). Since Endh(m, J) = C and only A ∈ R are symmetric, g is unique
up to scaling. The almost symplectic form is unique and compatible.

The corresponding homogeneous manifold is S6, and J is the unique invari-
ant almost complex structure. Known as the Calabi structure, it is well
studied. In particular, the triple (g, J, ω) is strongly nearly Kähler (SNK)
and the Hermitian metric g is 3-symmetric and Einstein.

Case 8: h = su(2, 1), m = V . m has an invariant pseudo-Hermitian metric
g of signature (4, 2). As in Case 7 the pseudo-Riemannian metric g and
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the almost symplectic form ω are both unique (up to scaling) and compati-
ble.

The corresponding homogeneous manifold is S2,4 ' S2 × R4, and J is the
unique invariant almost complex structure. It is non-degenerate, and is the
split analog of the Calabi structure. The triple (g, J, ω) is strongly nearly
pseudo-Kähler and the Hermitian metric g is Einstein.

5.2 Kähler and nearly Kähler structures

Examining the list of all our homogeneous structures we conclude that the
only pseudo-Kähler metrics are the cases A1.1, A3.1 and A1.3, A3.4 from the
Appendix. Even though the groups on which the structures live are solvable
(the topology is rather simple), the metric properties are non-trivial. We
summarize the results.
Theorem 5. The only pseudo-Kähler homogeneous 6D manifolds with semi-
simple (nontrivial) isotropy are quotients M = G/H with H = SU(2) or
H = SU(1, 1) with reducible isotropy representation m = V + C. As an
H-module V = H or resp. V = Hs.

This M is a Lie group; its Lie algebra m given by the following relations
(two cases). Below 0 6= α, r ∈ R, ε ∈ {0, 1} are the parameters, and the
vectors x, y ∈ V, e, ie ∈ C. The almost complex structure J(x, e) = (xi, ie).

1) m : [x, y] = α Re(xiȳ)e, [x, ie] = x(1
2 + ri), [e, ie] = e.

This m6 is 1-dimensional "right5 extension" of the 5D Heisenberg algebra.
The symplectic form is ω = ωV + c ωC, ωV (x, y) = Re(xiȳ), ωC(e, ie) = 1.
The pseudo-Hermitian metric is g(ξ, η) = ω(ξ, Jη); its signature is (6, 0) for
h = su(2), c > 0 and (4, 2) else. Moreover g is Einstein with the cosmological
constant −4, and is not conformally flat.

2) m : [x, ie] = rxi, [e, ie] = εe.

This m6 is a 1-dimensional "right extension" of the 5D Abelian algebra.
The symplectic form is ω = ωV + c ωC. The pseudo-Hermitian metric is
g(ξ, η) = ω(ξ, Jη); its signature is (6, 0) for h = su(2), c > 0 and (4, 2) else.
The metric is not Einstein or conformally flat unless ε = 0, when g is flat.

It is important to study when (M, g, J, ω) is strongly nearly Kähler (SNK),
meaning that for the Levi-Civita connection ∇ the tensor ∇ω is (nonzero)
totally skew symmetric: ∇ω = 1

3dω 6= 0. This is a restrictive condition.
5This means extension by derivations; terminology comes from Fuks [F], and is opposed

to left=central extensions. For a Lie algebra g its "right extensions" are enumerated by
the cohomology group H1(g, g) and "left extensions" by H2(g).
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For instance, the Nijenhuis tensor NJ is non-degenerate and the geometry
is constrained by the ’splitting principle’ of P.-A. Nagy [Na]. As classified
by J.-B. Butruilles [Bu], homogeneous SNK structures in 6D up to quotient
are:

• S6 = Gc2/SU(3),

• S3 × S3 = SU(2)× SU(2)× SU(2)/SU(2)diag

• CP 3 = SU(4)/(SU(3)× U(1)) = Sp(4)/(SU(2)× U(1)),

• the flag variety F(1, 2) = SU(3)/(U(1)× U(1)).

The first two belong to our list (the invariant structure J on S3 × S3 corre-
sponds to the case A2.1 from the Tables with parameters (r, t) = ±

( 1√
3 ,

2√
3
)
,

so it has more symmetry than observed in [Bu]), while the last two do not
(as they have reductive and Abelian isotropy respectively).

Homogeneous pseudo-SNK structures of signature (2, 4) (this is given by
the same condition: ∇ω nonzero totally skew symmetric) with semi-simple
isotropy can be extracted from our classification6:

• S2,4 = G∗2/SU(1, 2),

• SL(2) × SL(2) = SU(2, 1) × SU(2, 1) × SU(2, 1)/SU(2, 1)diag (the
invariant structure J on this M6 corresponds to the case A4.1 of the
Tables with parameters (r, t) = ±

( 1√
3 ,

2√
3
)
)

• the left-invariant structure on the solvable Lie group corresponding to
the case A3.2 with the parameters (after rescaling ω) r = − 3

2t , ε = +1,
α = 0, p = t(i+ j) ∈ Hs, u = −1

2k ∈ Hs, q = i and b = 1
2 t i ∈ Hs.

Remark 3. Since the latter homogeneous pseudo-SNK structure on M6 =
G9/H3 has no SNK analog, we write it explicitly. Let ei be a basis of m and
θi be the dual basis of m∗. The structure equations are (θij = θi ∧ θj, t 6= 0):

dθ1 = 3
2(θ35 − θ25)− θ16 + 1

2θ46, dθ2 = 3
2(θ15 + θ45)− θ26 − 1

2θ36,

dθ3 = 3
2(θ15 + θ45)− θ36 − 1

2θ26, dθ4 = 3
2(θ25 − θ35)− θ46 + 1

2θ16,

dθ5 = t(θ13 − θ12 + θ24 − θ34)− θ56, dθ6 = 0

and the almost complex structure J and the metric g are given by the for-
mulae

J = (e2 ⊗ θ1 − e1 ⊗ θ2 + e3 ⊗ θ4 − e4 ⊗ θ3) + (e6 ⊗ θ5 − e5 ⊗ θ6),
g = 1

2 t (θ2
1 + θ2

2 − θ2
3 − θ2

4) + θ2
5 + θ2

6.

6There are obvious pseudo-SNK analogs of signature (2, 4) of the last two entries in
Bitruilles’ list, but we present here only the spaces G/H with semi-simple H.
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5.3 SKT and Gray-Hervella classes

Strong Kähler with torsion (SKT) structures are defined by property ∂∂̄ω =
0 (in addition to NJ = 0). They are important in generalized Kähler geom-
etry and supersymmetric nonlinear sigma models, see e.g. [FPS]. The SKT
property is equivalent to

d2
Jω = 0, dJ = d ◦ J

(where J◦σ = σ(J ·, J ·, ..)), and we shall study generalizations when dkJω = 0
for larger k (and J not necessarily integrable). For instance, the standard
almost Hermitian structure (g, J, ω) on S6 is not SKT, d3

Jω 6= 0, but d4
Jω =

0.

There are many structures J of type III, which are not SKT, but satisfy the
condition d3

Jω = 0. The only occasions of SKT are these:
Theorem 6. The only homogeneous Hermitian manifolds M6 with semi-
simple isotropy, which satisfy the SKT property but do not belong to either
Kähler or pseudo-Kähler class, are equivalent to the following.

1) The structure of case A1.2 with parameters q = cos θ · i + sin θ · j, p =
±
√

3 sin2 θ − 1 · q + sin θ · k. The Lie algebra m is the central extension

0→ R2 −→ m −→ R4 → 0,

whence the homogeneous space is M = G/H is an R2-bundle over R4.

2) The structure of case A1.3 with parameters q = i, α = 0, β = −1
2 , ε = 1

or of case A3.4 with the same parameters and in addition p = 0, u = λ i.
The Lie algebra m is the "right" extension (R4 = V = H or resp. Hs)

0→ R4 −→ m −→ s2 → 0,

where s2 = Lie(S2) is the solvable non-abelian 2D Lie algebra of the Lie group
S2, represented via rank 1 homomorphism S2 → C∗

diag
↪→ GL2(C) ⊂ GL4(R).

The homogeneous space is M = G/H ' R4 o S2.

3) The structure of case A3.4 with parameters q = i, α = 0, ε = 1, p =
1
2(i + j), u = −1

2k and β = −1 or β = 1
2 . The Lie algebra m is the "right"

extension given by the same sequence as in 2), but now the homomorphism
ϕ : S2 → GL2(C) ⊂ GL4(R) has rank 2: ϕ(e) = R 1

2 (i+j), ϕ(ie) = Rβ− 1
2k
,

where Rh(x) = xh, h ∈ Hs. Again M = G/H ' R4 o S2.

It is interesting which Gray-Hervella (GH) classes of almost Hermitian man-
ifolds are realizable within our class of homogeneous 6D manifolds with
semi-simple isotropy. In the work [GH] 16 classes of such manifolds were
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encoded by subsets σ ⊂ {1, 2, 3, 4} and u(3)-modules Wσ = ∪i∈σWi. Denote
the corresponding class of structures by Wσ.

The class corresponding to the empty set ∅ is the Kähler class K. The class
W for σ = {1, 2, 3, 4} consists of all almost Hermitian manifolds.

In order to represent the general classW by a disjoint union, we modify the
Gray-Hervella classes to the following (strict) GH-classes

W̃σ =Wσ \
(
∪i∈σWσ\{i}

)
.

For instance, W̃i =Wi\K, W̃i,j = (Wi⊕Wj)\(Wi∪Wj) for i 6= j etc.

We already discussed and classified the Kähler K and nearly Kähler W1 =
NK classes, which yields the description of strictly nearly Kähler class W̃1.
Inspection of the tables (we refer only to Tables A1 and A2 corresponding
to almost Hermitian manifolds) rules out the class W2 = AK of almost
Kähler manifolds with the exception of the Kähler structures (observe from
the Tables A1-A2 that whenever dω = 0, then also NJ = 0, so the structure
belongs to the Kähler class K). The classW3 = H∩SK of special Hermitian
manifolds is realized only (again with the exception of the Kähler class K)
by the Tables A1.2 (several parametric cases) and A2.2 (r = 0, t = ±1); the
latter is M = SL2(C) with the standard complex structure. The class W̃4
(containing locally conformally Kähler but non-Kähler manifolds) is realized
only by the Table A1.4 (q = ±i), in particular for ε = −1 we obtain the
Calabi-Eckmann structure on S1 × S5. For the other classes we have:
Theorem 7. The GH-classes, realized as homogeneous almost Hermitian
manifolds M6 with semi-simple isotropy, are precisely the following: K,
W̃1, W̃3, W̃4, W̃1,2, W̃1,3, W̃2,3, W̃3,4, W̃1,2,3, W̃1,2,4, W̃1,3,4, W̃2,3,4, W̃ =
W̃1,2,3,4.

Thus the non-realizable (via our models) GH-classes are W̃2, W̃1,4, W̃2,4.

Proof. The proof is the direct calculation (in this algebraic computation we
used Maple). Let us indicate, which sub-classes in Tables A1 and A2 realize
the GH-classes (omitting the precise values of the parameters):

A1.1: K, W̃3,4, W̃1,2,3, W̃. A2.1: W̃1, W̃1,3.
A1.2: W̃3, W̃1,2, W̃3,4, W̃1,2,3, W̃. A2.2: W̃3, W̃1,3.
A1.3: K, W̃3,4, W̃1,2,3, W̃. A2.3: W̃1,3.
A1.4: W̃4, W̃1,2, W̃1,3, W̃2,3, W̃i,j,k (i < j < k), W̃. A2.4: W̃1,3.

Notice that for Table A2 the structures are never in the general W̃ class
because they always satisfy the condition δω = 0 of W1 ⊕W2 ⊕W3 by the
h-equivariance of the divergence and the module type, but in fact they all
satisfy the stronger condition of W1 ⊕W3.
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Remark 4. The cocalibrated structures of Hervella-Vidal type G1 = W1 ⊕
W3 ⊕ W4 are those admitting a Hermitian connection with totally skew-
symmetric torsion studied in [AFS, S]. Our computation confirms the results
of these papers about the GH-type of such structures with parallel torsion.

6 Investigation of homogeneous models of type
II

The G2-invariant almost complex structures on S6 and S2,4 (type I) are well-
studied [E, G, Ka, K2], type III structures are described in Appendix - the
corresponding manifolds have simple topology. In this section we describe
the almost complex models of type II (some examples of these appeared
in [S]).

Notice that by Section 5 none of type II models possesses a Kähler structure
with the symmetry group G of dimension 9. This does not mean that they
do not have Kähler structures at all. We shall describe them topologically
and see that in some cases such a structure exists, however it is not G-
invariant.

6.1 Homogeneous models of type II1

Structures of type II1 have m = V + C as h-representation. Interpreting
h = su(2) as imaginary quaternions we can identify V with the space of
quaternions H (as the module, not algebra). In particular, the set of h-
invariant complex structures is the standard unit sphere S2 = {q ∈ Im(H) :
q · q = −1}.

Thus the set of h-invariant (almost) complex structures on (representation)
m is Je = S2 × {1} ' S2.

IIa1. The Lie group SU(3) acts transitively on S5 with the stabilizer SU(2).
Therefore we have the following diffeomorphism:

M = U(3)/SU(2) = U(1)× SU(3)/SU(2) ' S1 × S5.

The complex structure J on this manifold is obtained from Hopf fibration
S5 → CP 2 with the fiber S1 and the standard connection H ⊂ TS5, so that
M is the T2 fibration over CP 2.

This is the well-known Calabi-Eckmann complex structure J0: at every
point it is the sum of the standard complex structure on the connection
(flat CR-structure) and a complex structure on T2 = S1 × S1 (given by 2
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parameters, which disappear if we pass to the universal cover). Clearly, M
is not symplectic and so is not Kähler.

There is however a 2-parameter family of deformations of this structure to
almost complex structure on the universal cover M̃ = R1 × S5. Indeed, this
is given by the construction of (g, h,m, J), see Tables in the Appendix. To
describe J fix a point, say a = (0, 0, 1) ∈ S5 ⊂ C3. The CR-hyperplane
C2 ' Ha ⊂ TaS5 as h-representation is isomorphic to H, and so the space
of invariant structures is S2. We translate this to any other point b ∈ S5

by an element of SU(3) and obtain an invariant CR-structure J ′ on the
connection H (in fact, we have the trivial S2-bundle of almost complex
structures on the connection H over S5). This is extended to J = J ′ + J ′′

by complementing J ′ with (any) complex shift invariant structure J ′′ on the
cylinder R1×S1 ' C/Z. The space of obtained structures is Je ' S2.

Since normalization of the Lie algebra structure on g involves complex mul-
tiplication J0 = i on m, there are two preferred complex structures ±J0 on
this sphere. Moving along the fiber of the Hopf fibration S5 → CP 2 rotates
the sphere S2 along the axis through these antipodal points (the differen-
tial of this maps Im(H) 3 q 7→ [q, i] ∈ TS2). Only ±J0 are (integrable)
complex structures; for all other choices of J , the Nijenhuis tensor NJ is
non-degenerate.

When we compactify M to S1 × S5, we get two more parameters coming
from the torus T2 ⊂ U(3)/SU(2) (quotient of the cylinder), as the space of
complex structures on it is given by the fundamental domain Σ2 = {|z| ≥
1, |Re(z)| ≤ 1

2 , Im(z) > 0} ⊂ C. Thus the space of parameters of U(3)-
invariant complex structures on this compact M6 is J+ = Je × Σ2. The
latter deformation does not change integrability: NJ depends only on the
first factor, and so is as described above.

IIb1. Similarly, the Lie group SU(2, 1) acts transitively on the pseudo-sphere
N5 = {z ∈ C3 : |z1|2+|z2|2−|z3|2 = −1} with the stabilizer SU(2) (inducing
the action on the unit ball B4 ' PN5 with the stabilizer U(2), important
for the canonical/flat CR-structure on S3 = ∂B4). Since N5 ' S1 ×B4, we
obtain the following diffeomorphism:

M = U(2, 1)/SU(2) ' U(1)× SU(2, 1)/SU(2) ' T2 ×B4.

The invariant complex structure J on this M , as well as on the universal
cover M̃ = C × B4, is however not the obvious one, since (M,J, ω) is not
Kähler: the structure J ′ on the factor B4 has to be SU(2, 1)-invariant.

Again the space of moduli of all SU(2)-invariant structures J on M̃ is Je '
S2 and on M it is J+ = Je×Σ2. Indeed, at every point a ∈ N5 the natural
contact space Ha ⊂ TaN

5 is isomorphic to H as h-module, and the space
of invariant complex structures on H is the trivial S2-bundle over N5. This
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gives the complex structure J ′, and the shift invariant complex structure J ′′
on the factor T2 resp.C yields the structure J = J ′ + J ′′ on M resp. M̃ .
The integrable structures among these J are J0 = ±i only, for others the
tensor NJ is non-degenerate.

Concerning the integrability properties for the structures from Je the fol-
lowing statement describes the generalized SKT property.
Proposition 3. For the compatible invariant almost symplectic form ω and
the operator dJ = d ◦ J we have: d2

Jω 6= 0 always; d3
Jω 6= 0 unless J = J0 =

±i or J ⊥ J0 ⇔ J = cos t · j + sin t · k, t ∈ R (in these cases d3
Jω vanishes);

d4
Jω = 0 for any other parameter value.

Thus we obtain that not only the poles, but also the equator between them
in Je = S2 consists of distinguished almost complex structures.

6.2 Homogeneous models of type II2

Structures of type II2 also have m = V + C as h-representation. For h =
su(1, 1), considered as imaginary split quaternions, we identify V with the
module of split quaternions Hs. The set of h-invariant complex structures
Jq(v) = v · q, q ∈ Im(Hs) is the two sheet hyperboloid Z2 = {q ∈ Im(Hs) :
q · q = −1}. Thus the set of h-invariant (almost) complex structures on
V + C is Jh = Z2 × {1} ' D2 × Z2.

Notice also that on V there are (almost) product structures Iq(v) = v · q
forming the set Y 2 = {q ∈ Im(Hs) : q · q = +1}, which is the one sheet
hyperboloid homeomorphic to the cylinder S1 × R1.

IIa2. The Lie group SU(2, 1) acts transitively on the unit pseudo-sphere in
C3 ' R4+2 with the metric of the signature (4, 2): Q5 = {(z1, z2, z3) ∈ C3 :
|z1|2 + |z2|2 − |z3|2 = 1} ' S3 × C. Thus

M = U(2, 1)/SU(1, 1) = U(1)× SU(2, 1)/SU(1, 1) ' S1 × S3 × C.

To see the invariant complex structure, notice that S1 acts on Q5, w 7→ eitw,
and the quotient is

Q5/S1 = C2#CP 2 ' CP 2 \ {pt} ' CP 1 × C;

the structure J is obtained similarly to case 1 above.

Namely, the CR-connection H ⊂ TQ carries the space Jh of G-invariant
almost complex structures J ′, which form a trivial 2D bundle over Q. Com-
plementing this with any shift invariant complex structure J ′′ on the torus
T2, which is the fiber of the discussed map M6 → CP 1 × C, we get the al-
most complex structure J = J ′ + J ′′ on M = U(2, 1)/SU(1, 1). The moduli
space of these structures is J+ = Jh × Σ2.
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If we consider the universal cover M̂ = R1×S3×C, then the above torus be-
comes the cylinder R1×S1 and (since on the cylinder all complex structures
are equivalent) the moduli space becomes not 4- but 2-dimesional, namely
we get Jh.

Again there are two preferred structures, corresponding to J ′ = ±i. Indeed,
moving along the orbit S1 of U(1)-action the space Jh ' D2 × Z2 rotates
around its axis of symmetry through ±i. Only these two corresponding
structures J are integrable, the others have non-degenerate Nijenhuis tensor
NJ .

IIb2. Finally, let us discuss

M = GL(3)/SU(1, 1) = GL(3)/SL(2).

It has two connected components, each being simply-connected.

We can identify M with the space {(v,Π2, ω)}, where v ∈ R3 is a nonzero
vector, Π2 63 v a transversal 2-plane and ω ∈ Λ2Π∗ \ 0 an area form on
it. Indeed, GL(3) acts transitively on this space with the stabilizer SL(2).
Furthermore, we have

M6 = R∗ ×N5, where N5 = SL(3)/SL(2),

and SL(2) is embedded into SL(3) as the lower 2× 2 block.

We identify N5 = {(v, p) ∈ R3×(R3)∗ : 〈v, p〉 = 1} by choosing covector p in
the annihilator of Π. At a = (v, p) ∈ N the stabilizer SL(2) acts on TaN =
{(w, q) : 〈w, p〉+〈v, q〉 = 0}. This has the invariant subspace Ha = H1

a⊕H2
a ,

where H1
a = {(w, 0) : 〈w, p〉 = 0} and H2

a = {(0, q) : 〈v, q〉 = 0}.

We have: H2
a = (H1

a)∗. The SL(2)-invariant area form ω on H1
a is obtained

as ιvΩ, where Ω is the volume form in R3. The invariant almost complex
structure is now given by Jrt(ξ) = r ξ+ t ξ̂, where ξ ∈ H1

a and ξ̂ = ιξω ∈ H2
a ,

r, t ∈ R. Requirement J2
rt = −1 implies Jrt(ξ̂) = −1+r2

t ξ−r ξ̂. Complement-
ing this by requirement that Jrt maps the complement {(λv,−λp)} ⊂ TaN5

to TaR∗ we obtain the almost complex structure on M parametrized by the
pair (r, t) or equivalently by the space Jh. Direct calculation shows that
none of these structures Jrt is integrable.

The integrability properties generalizing SKT for the structures from Jh are
given by the following statement.
Proposition 4. For the compatible invariant almost symplectic form ω and
the operator dJ = d ◦ J we have: d2

Jω 6= 0 always; d3
Jω 6= 0 unless J = J0 =

±i in the case G = U(2, 1) (p = i in the case A3.5) or J = cosh t·i+sinh t·k,
t ∈ R in the case G = GL(3) (p = j in the case A3.5; in terms of the
parameters of the Table this means q = α i + β k, α2 − β2 = 1) – only in
these cases d3

Jω vanishes; and d4
Jω = 0 for any other parameter value.
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Notice that for H = SU(1, 1) there are less invariant structures (J, ω) with
d3
Jω = 0 than for H = SU(2). Actually, for G = U(2, 1) the additional

plane {q ∈ Im(Hs) : q ⊥ i} = 〈j, k〉 consists of the product structures q2 = 1;
for G = GL(3) and p = j (we refer to the case A3.5 in Table A3) the plane
{q ∈ Im(Hs) : q ⊥ j} = 〈i, k〉 contains the indicated two-component curve of
complex structures q2 = −1.

7 Concluding remarks

In this paper we classified special homogeneous almost complex structures
in dimension 6. Most of them turn out to be the left-invariant structures
on Lie groups and, with some notable exceptions, most of these are solv-
able. Passing to quotient nil- or solv-manifolds destroys the isotropy, so our
classification easily implies
Theorem 8. The only compact homogeneous almost complex manifolds in
dimension 6 with semi-simple (nontrivial) isotropy are S6, S1×S5 and S3×S3

and their finite quotients, equipped with the almost complex structures as
described in Theorem 1.
Remark 5. The possible quotients, that carry general parameter almost
complex structures J from Theorem 1, are S1 × (S5/Z3), S1×̃(S5/Z3) =
(S1 × S5)/Z3, RP3 × S3 and RP3 × RP3. For some exceptional values of
parameters there are further quotients, e.g. the Calabi-Eckmann structure
descends onto the direct product S1 × (S5/Zn) for any n.

Some items from our list easily generalize to higher dimensions, provid-
ing examples of non-integrable almost complex structures with abundant
symmetries. Previously some invariant almost complex structure appeared
in [Wo, WG]. Here are some new examples.

For every Lie algebra h and a complex vector space (V, i) consider the space
m = h ⊗ V with the h-invariant almost complex structure given by J(h ⊗
v) = h ⊗ (i · v). Fixing a commutative associative bilinear multiplication
Q : S2V → V we define the Lie algebra structure on m by the formula

[h⊗ v, h′ ⊗ v′] = [h, h′]h ⊗Q(v, v′).

Then g = hnm is a Lie algebra, and the corresponding Lie groupM = G/H
carries G-invariant almost complex structure J .

All 4 structures in Table A2 for h = su(2) resp. Table A4 for h = su(1, 1)
are of this type with V = R2. The above family of generalized gradings
contains the 2-step graded nilpotent algebra m = h1 ⊕ h2, with the bracket
[h1, h

′
1] = [h, h′]2, where h 3 h ↔ hi ∈ hi ' h (and similarly for h′). The

corresponding Lie group M = exp(m) carries the left-invariant structure J
with non-degenerate Nijenhuis tensor in the sense NJ(Λ2TM) = TM .
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Another example is the "right extension"M4n+2 of the Heisenberg group over
the quaternion space Hn. We describe the corresponding Lie algebra. Let
I, J,K be the standard Sp(n)-invariant complex structures on Hn, g(x, y) =
xt · ȳ be the standard hyper-Hermitian structure and ωq(x, y) = g(xq, y) be
the symplectic structure parametrized by q ∈ S2 ⊂ R3(I, J,K), x, y ∈ Hn.
Then with fixed e ∈ C we have the following brackets onm (ε ∈ {0, 1}):

[x, y] = ωI(x, y)e, [x, ie] = x(1
2ε+ βI), [e, ie] = εe.

Notice that Hn⊕〈e〉 is the Heisenberg algebra and m its extension by deriva-
tions. The almost complex structure Jq(x, e) = (xq, ie) on M is invariant
with respect to the Lie group G = Sp(n) n exp(m). The "twistor space"
of this M (= the bundle of moduli of the invariant almost complex struc-
tures) is the 4(n+1)-dimensional manifold M † = M ×S2 equipped with the
canonical almost complex structure

J†(x, e, ξ) = (xq, ie, ξq), ξ ∈ TqS2.

This structure J† is non-integrable (its Nijenhuis tensor is encoded by NJ),
but has some natural pseudoholomorphic foliations.

Finally let us notice that for type II spaces from Theorem 1 the set of invari-
ant almost complex structures J is two-dimensional (if we consider simply
connected model M): it is parametrized by S2 for h = su(2) and by Z2×D2

for h = su(1, 1). The space of all these structures — the 8-dimensional
"twistor space" M6 × J — has a natural almost complex structure, but its
Nijenhuis tensor is nonzero. For type II1 spaces on M = U(3)/SU(2) or
M = U(2, 1)/SU(2) (where the space of almost complex structures is given
by 4 parameters) the corresponding "twistor space" M6 × J × Σ2 is 10-
dimensional and it also possesses the natural non-integrable almost complex
structure.

A Tables of the structure of (g, h,m, J, ω)

Here we list the data for Theorems 1, 3 and indicate some integrability
properties for the structures. These completely encode all non-flat homoge-
neous almost complex manifolds with semi-simple isotropy, only excluding
the special cases Gc2/SU(3) = S6 and G∗2/SU(2, 1) = S2,4.

Imaginary quaternions are generated by anti-commuting i, j, k = ij, which
satisfy i2 = −1, j2 = −1, k2 = −1. In tables A1,A2 we identify h =
Im(H).

Imaginary split quaternions are generated by anti-commuting i, j, k = ij,
with i2 = −1, j2 = 1, k2 = 1. In tables A3,A4 we identify h = Im(Hs).

35



The brackets [h, h] and [h,m] are straightforward and are not included into
the tables. We include only the non-trivial brackets [m,m].

The almost complex structure J is indicated in terms of its 2 parameters for
tables A1-A4 (beware that the parameter r has different meaning in different
tables). J has no parameters in tables A5-A6. In the case of representation
adC we use formula (1) for J .

We list only non-trivial values of the Nijenhuis tensor in the minimal amount
due to the identity NJ(Jx, y) = NJ(x, Jy) = −JNJ(x, y).

We write NDG to indicate that the tensor NJ is non-degenerate; DG2 indi-
cates that the image of NJ : Λ2

CTM → TM is a real rank 2 subdistribution
of TM , DG1 means it is a real rank 4 subdistribution (in DGk the number
k is the complex codimension of Im(NJ), see [K1]).

The Hermitian metric is given by g(ξ, η) = ω(ξ, Jη) as in Section 5. Thus
we describe only the almost symplectic form ω and its differential.

Recall that V stands for the standard representation, C for the trivial com-
plex and ad for the adjoint representation.
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Table A1: isotropy h = su(2), representation V + C:

m as h-representation m = V ⊕ C = H⊕ C. h acts from the left, adImH ⊂ EndR(H)
vectors & parameters e ∈ C is fixed. x, y ∈ H are arbitrary. q, p, b ∈ Im(H), α, β, r, ε ∈ R
structure J on m J = (q, i), q2 = −1. q acts from the right: J(x, e) = (xq, ie)
structure ω on m ω = ωH + ωC, ωH(x, y) = Re(xbȳ), ωC(e, ie) = 1 (b 6= 0)
compatibility of J and ω b ∈ Rq

Lie algebra structure of g tensor NJ & condition for dω = 0 notes
A1.1 [x, y] = αRe(xiȳ)e NJ(x, y) =α(Re(xq[q, i]ȳ)− iRe(x[q, i]ȳ))e ε ∈ {0, 1}, α 6= 0

[x, ie] = x( ε2 + ri) NJ(x, e) = rx[q, i] NDG unless r = 0
[e, ie] = εe dω = 0 iff ε = 1, b = αi or q = ±i

A1.2 [x, y] = NJ(x, y) = Re(x(q[q, i] + [q, p])ȳ)e+ DG2 unless
= (Re(xiȳ) + iRe(xpȳ))e +Re(x(q[q, p]− [q, i])ȳ)ie, dω 6= 0 [p, q] = q[q, i]

A1.3 [x, e] = αx NJ(x, e) = rx[q, i] (ε, α) ∈ {(0, 0),
[x, ie] = x(β + ri) dω = 0 iff α = β = 0, b ∈ Ri (0, 1), (1, 0)}
[e, ie] = εe DG1 or NDG

A1.4 [x, y] = Re(xiȳ)e + ε · adIm(xȳ) NJ(x, y) = (Re(xq[q, i]ȳ)− iRe(x[q, i]ȳ))e ε = ±1
[x, e] = 3εxi NJ(x, e) = 3εxq[q, i], ε = −1⇒ g = u(3)

dω 6= 0 ε = 1⇒ g = u(2, 1)
NDG unless q = ±i

Table A2: isotropy h = su(2), representation adC:

m as h-representation m = ad⊕ ad = adC, the complex adjoint representation of h
vectors & parameters x, y ∈ m. If m = ma ⊕mb, we decompose x = xa + xb. r, t ∈ R
structure J on m J(u, 0) = (ru, tu), u ∈ ad and J2 = −1
structure ω on m Let K1, K2 be the Killing forms of su(2) on each copy of ad and

J0(u, v) = (−v, u), u, v ∈ ad. Then ω(x, y) = (K1 +K2)(J0x, y)
compatibility of J and ω ω is always compatible, never closed

Lie algebra structure of g tensor NJ & condition for dω = 0 notes
A2.1 m = su(2)1 ⊕ su(2)2 NJ(x1, y1) = −(r2 + 1)[x, y]1 + t(t− 2r)[x, y]2 1, 2 are not gradings,

semi-simple NDG always
A2.2 m = sl2(C) – simple, NJ(x, y) = (1 + r2 − t2 + 2rti)[x, y] NJ = 0 for J = ±i,

su(2)⊕ i su(2) NDG else
A2.3 m = su(2)0 ⊕ su(2)1 NJ(x0, y0) = −(r2 + 1)[x, y]0 − 2rt[x, y]1 Graded

su(2)1 abelian. NDG always
A2.4 m = su(2)1 ⊕ su(2)2 NJ(x1, y1) = 2(r3+r)

t [x, y]1 + (3r2 − 1)[x, y]2 Graded
2-step nilpotent NDG always
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Table A3: isotropy h = su(1, 1), representation V + C:

m as h-representation m = V ⊕ C = Hs ⊕ C. h acts from the left, adImHs ⊂ EndR(Hs)
vectors & parameters e ∈ C - fixed. x, y ∈ Hs - arbitrary. q, p, u, b ∈ Im(Hs), α, β, r, ε ∈ R
structure J on m J = (q, i), q2 = −1. q acts from the right: J(x, e) = (xq, ie)
structure ω on m ω = ωHs + ωC, ωHs(x, y) = Re(xbȳ), ωC(e, ie) = 1 (b 6= 0)
compatibility of J and ω b ∈ Rq

Lie algebra structure of g tensor NJ & condition for dω = 0 notes
A3.1 [x, y] = Re(xpȳ)e NJ(x, y) = (Re(xq[q, p]ȳ)− iRe(x[q, p]ȳ))e ε ∈ {1, 0}, p2 6= 0

[x, ie] = x( ε2 + rp) NJ(x, e) = rx[q, p] NDG unless r = 0
[e, ie] = εe dω = 0 iff ε = 1, [p, b] = p− b or q ∈ Rp

A3.2 [x, y] = Re(xpȳ)e NJ(x, y) = (Re(xq[q, p]ȳ)− iRe(x[q, p]ȳ))e ε ∈ {1, 0}, p2 = 0
[x, e] = rxp NJ(x, e) = x(rq[q, p] + [q, u]) [p, u] = (ε+ 2αδ0

r )p
[x, ie] = x(ε+ αδ0

r + u) p 6= 0; NDG unless
[e, ie] = εe dω = 0 iff [u, b] = p− 2(ε+ sδ0

r )b [u, q] = rq[q, p]
A3.3 [x, y] = (Re(xpȳ) + iRe(xuȳ))e NJ(x, y) = Re(x(q[q, p] + [q, u])ȳ)e+ DG2 if [u, q] 6= q[q, p]

+Re(x(q[q, u]− [q, p])ȳ)ie, dω 6= 0 NJ = 0 else
A3.4 [x, e] = x(α+ p) NJ(x, e) = x(q[q, p] + [q, u]) ε = p = 0;

[x, ie] = x(β + u) or ε = 1, [p, u] = p,
[e, ie] = εe dω = 0 iff [b, p] = [b, u] = 0, α = β = 0 p2 = 0, α = 0

DG1 or NJ = 0
A3.5 [x, y] = Re(xpȳ)e + adIm(xȳ) NJ(x, y) = (Re(xq[q, p]ȳ)− iRe(x[q, p]ȳ))e p ∈ {i, j}

[x, e] = 3εxp NJ(x, e) = 3εxq[q, p] p = i⇒ g = u(2, 1)
p2 = −ε = ±1 dω 6= 0 p = j ⇒ g = gl3

NDG unless p = ±q

Table A4: isotropy h = su(1, 1), representation adC:

m as h-representation m = ad⊕ ad = adC, the complex adjoint representation of h
structure J on m J(u, 0) = (ru, tu), u ∈ ad and J2 = −1
structure ω on m Let K1, K2 be the Killing forms of su(1, 1) on each copy of ad and

J0(u, v) = (−v, u), u, v ∈ ad. Then ω(x, y) = (K1 +K2)(J0x, y)
compatibility of J and ω ω is always compatible, never closed
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Lie algebra structure of g tensor NJ & condition for dω = 0 notes
A4.1 m = su(1, 1)1 ⊕ su(1, 1)2 NJ(x1, y1) = −(r2 + 1)[x, y]1 + t(t− 2r)[x, y]2 1, 2 are not gradings,

semi-simple NDG always
A4.2 m = sl2(C) – simple NJ(x, y) = (1 + r2 − t2 + 2rti)[x, y] NJ = 0 for J = ±i,

su(1, 1)⊕ i su(1, 1) NDG else
A4.3 m = su(1, 1)0 ⊕ su(1, 1)1 NJ(x0, y0) = −(r2 + 1)[x, y]0 − 2rt[x, y]1 Graded

su(1, 1)1 Abelian NDG always
A4.4 m = su(1, 1)1 ⊕ su(1, 1)2 NJ(x1, y1) = 2(r3+r)

t [x, y]1 + (3r2 − 1)[x, y]2 Graded
2-step nilpotent NDG always

39



Table A5: isotropy h = sl2(C), representation V + C:

m as h-representation m = V ⊕ C. V ' C2

vectors & parameters e ∈ C is fixed. x, y ∈ V are arbitrary. α, β, γ, r, ε ∈ R
structure J on m J = i on both submodules V and C.
structure ω on m Let ω0 be the sl2(C)-invariant form 2-on V with C-values.

Then ω = ωV + ωC, ωV = Re(λω0), λ ∈ C, ωC(e, ie) = 1
compatibility of J and ω ω is never compatible and never closed.

Lie algebra structure of g tensor NJ & condition for dω = 0 notes
A5.1 [x, e] = αx NJ = 0 (ε, α) ∈ {(0, 0),

[x, ie] = (β + γi)x (0, 1), (1, 0)}
[e, ie] = εe J is integrable

A5.2 [x, y] = (Re + rIm)ω0(x, y)e NJ(x, y) = 2(1− r) i ω0(x, y)e DG2 unless r = 1

Table A6: isotropy h = sl2(C), representation ad:
The only possible structure is m = sl2(C) and J is integrable, see §5.

There are no h-invariant nonzero 2-forms on m.
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