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Abstract

For an almost complex structure J in dimension 6 with non-degene-
rate Nijenhuis tensor NJ , the automorphism group G = Aut(J) of
maximal dimension is the exceptional Lie group G2. In this paper
we establish that the sub-maximal dimension of automorphism groups
of almost complex structures with non-degenerate NJ , i.e. the largest
realizable dimension that is less than 14, is dimG = 10. Next we
prove that only 3 spaces realize this, and all of them are strictly nearly
(pseudo-) Kähler and globally homogeneous.

1 Introduction and main results

Consider an almost complex manifold (M,J), J2 = −1, of real dimension
6 (complex dimension 3). The Nijenhuis tensor NJ is non-degenerate when
NJ : Λ2

CTM → TM is a (C-antilinear) isomorphism of real vector spaces.
For brevity, we will call an almost complex structure J non-degenerate or
NDG when J gives rise to a non-degenerate NJ . Some important examples
of non-degenerate almost complex structures are the critical points of the
Hitchin-type functionals [Br, V], and strictly nearly Kähler (SNK) structures
[Na]. In this paper we also consider the indefinite analog, strictly nearly
pseudo-Kähler (SNPK) structures, which are Hermitian triples (g, ω, J) on
M with g of indefinite signature, that satisfy the same condition as in the
case of definite signature:

∇gω ∈ Ω3M.

The non-degeneracy of an almost complex structure guarantees that the
automorphism group Aut(J) is a Lie group, in particular it is finite dimen-
sional [K1] and at most of dimension 14 [K2]. Moreover, this 14 is only
achieved when either G = Gc2 ⊂ SO(7), the compact form of the excep-
tional complex group G2 and M = S6 with the Calabi almost complex
structure J , or G = G∗2 ⊂ SO(3, 4), the split real form of the same act-
ing on S2,4(See [Gr, Ka] for a description of the homogeneous structures).
These two are the maximally symmetric non-degenerate almost complex
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structures. The sub-maximal structures are then the maximally symmetric
among those that are not G2-invariant. The purpose of this paper is to
determine the structures with sub-maximal symmetry.

In addition to the automorphism group Aut(J), we also consider the in-
finitesimal symmetry algebra sym(J). Notice that dim sym(J) ≥ dim Aut(J).
Theorem 1. Assume J is not (locally) G2-symmetric. Then dim sym(J) ≤
10. In the case of equality, the regular orbits of the symmetry algebra sym(J)
are open (local transitivity) and J is equivalent near regular points to an
invariant structure on one of the homogeneous spaces

• Sp(2)/U(2), which is SNK;
• Sp(1, 1)/U(2), which is SNPK of signature (4,2);
• Sp(4,R)/U(1, 1), which is SNPK of signature (4,2).

Corollary 1. The gap between maximal and sub-maximal symmetry di-
mensions of sym(J) for dimM = 6 is the same for non-degenerate almost
complex structures as for SNK and SNPK.
Remark 1. The topological types of the three homogeneous models from
Theorem 1 are respectively CP 3, CP 1×C2 and a C-line bundle over CP 1×C.

We also investigate the possibility of singular orbits of the submaximal sym-
metry group, with the conclusion that there are none. For simplicity we
formulate the global version.
Theorem 2. Let (M,J) be a connected non-degenerate almost complex
manifold with dim Aut(J) = 10. Then M is equal to the regular orbit of
its automorphism group, and hence it is a global homogeneous space of one
of three types indicated in Theorem 1.

The rest of this paper constitutes a proof of the above theorems. Some
computations in the DifferentialGeometry package for Maple are available
as a supplement to this paper.

Acknowledgements: Henrik Winther is grateful to Ilka Agricola for her
hospitality during his DGF-funded research stay at the University of Mar-
burg. Both authors were partially supported by the Norwegian Research
Council and DAAD project of Germany.

2 Possible Isotropy Algebras

Proposition 1. The isotropy algebra of the symmetries of NDG almost
complex structures in 6D that has dimension ≥ 3 is either one of the special
(pseudo-) unitary algebras su(3), su(1, 2), or a subalgebra of these.

Recall [K2] that with a Nijenhuis tensor we associate a bilinear (1,1)-form

h(v, w) = Tr[NJ(v,NJ(w, ·)) +NJ(w,NJ(v, ·))]
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and a holomorphic 3-form

ζ(u, v, w) = alt[h(NJ(u, v), w)− i h(NJ(u, v), Jw)]

(alt is the total skew-symmetrizer). When both are non-degenerate the
symmetry of (J,NJ) has to preserve the (pseudo-)Hermitian metric and the
holomorphic volume form, whence it is a subgroup of the special unitary
group (of proper signature).

The proof of Proposition 1 follows the algebraic classification of NDG types
of the Nijenhuis tensors [K1], [K2]:

1. N(X1, X2) = X2, N(X1, X3) = λX3, N(X2, X3) = eiφX1
2. N(X1, X2) = X2, N(X1, X3) = X2 +X3, N(X2, X3) = eiφX1
3. N(X1, X2) = e−iψX3, N(X1, X3) = −eiψX2, N(X2, X3) = eiφX1
4. N(X1, X2) = X1, N(X1, X3) = X2, N(X2, X3) = X2 +X3

Here φ, ψ, λ ∈ R.

NDG(1). For this class the form h is non-degenerate with the exception of
parameters λ = 1, ϕ = 0, π and λ = −1, ϕ = ±π/2. The signature of the
metric is (4,2), the form ζ is a holomorphic volume form (for all parameters),
so the isotropy of the non-exceptional case is a subalgebra of su(2, 1); in the
case of equality the structure is G∗2-symmetric.

For exceptional parameters note that all of them are equivalent (by a change
of the complex basis {Xi}3i=1) to the case λ = 1, ϕ = 0, i.e.

NJ(X1, X2) = X2, NJ(X1, X3) = X3, NJ(X2, X3) = X1.

The kernel of h is the complex 2-plane 〈X2, X3〉C (it is also distinguished by
the property X ∈ Im(NJ(X, ·))), and hence also the complex line 〈X1〉C =
C · NJ(X2 ∧ X3) is distinguished. Thus the symmetry of the pair (J,NJ)
is block-diagonal, and it is easy to compute to be equal to (as the space of
3× 3 complex matrices)

H0 =
{(

e2iθ 0
0 A

)
: θ ∈ Rmodπ, eiθA ∈ SL(2,R)

}
.

Indeed, we write the general form Φ(X1) = e2iθX1, Φ(X2) = e−iθ(aX2 +
bX3), Φ(X3) = e−iθ(cX2 + dX3) of Φ ∈ GL(3,C), and substitute to the
defining relations Φ ◦ J = J ◦Φ, Φ ◦NJ = NJ ◦Λ2Φ, to find a, b, c, d, θ ∈ R,
with ad− bc = 1.

Thus the isotropy h0 = u(1, 1) acts on C3 = m with (complex) irreducible
decomposition m = C⊕ V . This is the block embedding of h0 = u(1, 1) into
su(1, 2). Its subalgebras h of dimension 3 are su(1, 1) and u(1) ⊕ b2, where
the latter summand is the Borel subalgebra.
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NDG(2). For this class h is non-degenerate with the exception of parame-
ters ϕ = 0, π. The signature of the metric is (4,2), the form ζ is is a holomor-
phic volume form for all parameters, so the isotropy of the non-exceptional
case is a subalgebra of su(2, 1).

The Nijenhuis tensor with the exceptional parameters is (ε = ±1)

NJ(X1, X2) = X2, NJ(X1, X3) = X3 +X2, NJ(X2, X3) = εX1.

For a degenerate Hermitian structure we have:
Ker(h) = 〈X2〉C, ImNJ(X2, ·) = 〈X1, X2〉C, 〈X1, X2〉⊥hC = 〈X2, X3〉C, and
finally C ·NJ(X2 ∧X3) = 〈X1〉C. Thus the symmetry of (J,NJ) is given by
block-diagonal (in complex coordinates) matrix with blocks of size 1×1 and
2×2, the latter being upper-triangular. Now it is easy to compute that this
group is precisely

H0 =


e2iθ 0 0

0 εe−iθ βeiθ

0 0 εe−iθ

 : θ ∈ Rmodπ, ε = ±1, β ∈ R

 .
Thus for this type the isotropy is at most 2D, and so should not be considered
for the sub-maximal (or sub-sub maximal) problem.

NDG(3).1 For this class h is non-degenerate with the exception of pa-
rameters ψ = ±1

4π,±
3
4π; ϕ + ψ = ±1

2π; ϕ − ψ = ±1
2π. Let us call these

exceptional parameters of the first kind. The signature of the metric can
be both (6,0) and (4,2) (as well as the opposite (0,6), (2,4), but we do not
distinguish).

The form ζ is a holomorphic volume form with the exception of parameters
(ψ,ϕ) ∈ {(±π

6 ,±
π
2 ), (±π

3 , 0), (±π
3 , π)} (here we use freedom of change of

coordinates X2 ↔ X3 resulting in identification (ψ,ϕ) ∼ (ψ + π, ϕ + π)).
Call these exceptional parameters of the second kind.

Therefore the isotropy of the non-exceptional case is a subalgebra of su(3)
or su(2, 1); the case of equality corresponds to G2 or G∗2-symmetric struc-
tures J .

Consider at first exceptional parameters of the first kind. The Nijenhuis
tensor with the exceptional parameters is obtained by substitution of the
above values to

NJ(X1, X2) = e−iψX3, NJ(X1, X3) = −eiψX2, NJ(X2, X3) = εX1.

1This form differs in [K1] and [K2], and we use expression from the latter (the former
form, though it looks differently, is equivalent).
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Change of basis X2 ↔ X3 results in (ψ,ϕ) 7→ (ψ + π, ϕ + π), so we can fix
ψ = ±1

4π in the first case, but cannot modify the conditions on exceptional
parameters any more.

For the exceptional parameters (as listed) we have: Ker(h) is 〈X1〉C, 〈X2〉C
or 〈X3〉C respectively in the generic exceptional case or 〈X1, X2〉C, 〈X1, X3〉C
and 〈X2, X3〉C in the case of strong degeneration (intersection of two condi-
tions).

For any of the 3+3 exceptional cases we get: C ·NJ(X1 ∧X2) = 〈X3〉C, C ·
NJ(X1∧X3) = 〈X2〉C, C ·NJ(X2∧X3) = 〈X1〉C; ImNJ(X1, ·) = 〈X2, X3〉C,
ImNJ(X2, ·) = 〈X1, X3〉C, ImNJ(X3, ·) = 〈X1, X2〉C. Thus in any case the
symmetry acts by block-diagonal matrix with 1× 1 and 2× 2 blocks (where
Ker(h) is 1 × 1 block in the first 3 cases, and 2 × 2 block in the second 3
cases).

Consider at first generic exceptional cases. If Ker(h) = 〈X1〉C, then the
complex-linear operator Z 7→ NJ(X1, NJ(X1, Z)) has eigenvalues i,−i on
〈X2, X3〉C, and this distinguishes 〈X2〉C and 〈X3〉C, so the symmetry is a
subgroup of the diagonal S1 × S1 × S1 ⊂ GL(3,C), and we compute it to
be

H0 = {diag(eiα, eiβ, eiγ) : α+ β + γ = 0 mod 2π}.

This is 2D, so is discarded. The same happens if Ker(h) = 〈X2〉C with the
complex-linear operator Z 7→ NJ(X2, NJ(X2, Z)) on 〈X1, X3〉C, and also if
Ker(h) = 〈X3〉C with the complex-linear operator Z 7→ NJ(X3, NJ(X3, Z))
on 〈X1, X2〉C. Thus generic exceptional cases do not carry a sub-maximally
symmetric NDG almost complex structure.

Consider now the cases of strong degeneration. If Ker(h) = 〈X1, X2〉C (ψ =
±1

4π, ϕ = ±1
2π−ψ), then the complex-linear operator Z 7→ NJ(X1, NJ(X1, Z))

has eigenvalues i (double) or −i (double), so we cannot reduce to the diag-
onal case. So consider the general block from.

Our parameters are ψ = ε1
π
4 , ϕ = ε2

π
2 − ε1

π
4 , and for them

NJ(X1, X2) = 1√
2(X3 − ε1JX3), NJ(X1, X3) = − 1√

2(X2 + ε1JX2),

NJ(X2, X3) = 1√
2(ε1ε2X1 + ε2JX1);

where ε1, ε2 are equal to ±1. Now we write the general form Φ(X1) =
e−iθ(aX1 +bX2), Φ(X2) = e−iθ(cX1 +dX2), Φ(X3) = e2iθX3, and substitute
to the defining relations Φ ◦ J = J ◦ Φ, Φ ◦ NJ = NJ ◦ Λ2Φ. Then we get
either ε1ε2 = 1 and

H0 =


 ei(α−θ) cos ν ei(β−θ) sin ν 0
−e−i(β+θ) sin ν e−i(α+θ) cos ν 0

0 0 e2iθ

 : α, β, θ, ν ∈ R

 ,
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or ε1ε2 = −1 and

H0 =


 ei(α−θ) cosh ν ei(β−θ) sinh ν 0
e−i(β+θ) sinh ν e−i(α+θ) cosh ν 0

0 0 e2iθ

 : α, β, θ, ν ∈ R

 .
These groups equal SU(2) × S1 and SU(1, 1) × S1, and so h0 = u(2) or
h0 = u(1, 1), respectively. The cases of Ker(h) = 〈X1, X3〉C and Ker(h) =
〈X2, X3〉C are treated similarly, and result in the same symmetry groups.

Now let us consider exceptional parameters of the second kind. Recall from
[K1] that we have two anti-holomorphic maps Φ1 : CP 2 → GrC2 (3) ' CP 2,
C〈X〉 7→ ImN(X, ·), and Φ2 : GrC2 (3)→ CP 2, C2〈Y, Z〉 7→ C〈N(Y, Z)〉. For
non-degenerate NJ the composition Φ = Φ2 ◦ Φ1 is a bi-holomorphism of
CP 2.

Direct computation shows that it has precisely 3 fixed points 〈X1〉C, 〈X2〉C,
〈X3〉C, provided ψ 6≡ ±ϕmodπ and 2ψ 6≡ 0 modπ. Our exceptional pa-
rameters of the second kind satisfy these inequalities, so the symmetry is a
subgroup of the diagonal S1 × S1 × S1 ⊂ GL(3,C), and we compute it to
be

H0 = {diag(eiα, eiβ, eiγ) : α+ β + γ = 0 mod 2π}.

This is 2D, so is discarded.

NDG(4). For this class h is non-degenerate (without exceptions) with the
signature (4,2). The form ζ is a holomorphic volume form for all parameters.
Hence the isotropy is a subalgebra of su(2, 1).

3 The case of locally transitive Aut(J)

By [K2] we know that if G preserves a non-degenerate J , then the isotropy
representation is faithful on the isotropy algebra h ⊂ g. By Proposition 1, h
is a subalgebra of either su(3) or su(1, 2) in their standard representations.
We may assume that h is a proper subalgebra, because otherwise G has
dimension 14 and hence is maximal.

From [Bu] we know that there is an invariant SNK structure on Sp(2)/U(2),
and SNK always has NDG NJ . This is a non-degenerate structure J with
10D symmetry. To achieve symmetry of dimension ≥ 10 as in Theorem 1, we
have to consider the case when dim h ≥ dim u(2) = 4. Thus, up to conjugacy
the possible h for sub-maximal almost complex structures are:

• u(2) ⊂ su(3).
• u(2) ⊂ su(1, 2).
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• u(1, 1) ⊂ su(1, 2).
• The (only) parabolic subalgebra p ⊂ su(1, 2) of dimension 5.
• A 4D maximal subalgebra r of p.

The last type of subalgebra is most easily described by considering the Z-
grading which exists on a parabolic subalgebra.
Proposition 2. The algebra p = ⊕i∈Zpi is solvable and graded, with dim(p0) =
2, dim(p1) = 2, dim(p2) = 1 and dim(pi) = 0 for all other i. As a Lie al-
gebra it is the extension of the 3D Heisenberg algebra heis3 = C ⊕ R by
derivations gl(1,C) ⊂ gl2(R) ⊂ Der(heis3).

The proper subalgebras h of p with dim h = 4 are then given as a 1D family of
subalgebras r, which have dim(r∩p0) = 1, specified by which 1D subalgebra
of p0 is included.

The list of subalgebras of su(1, 2) is the same as the one found in [PWZ], but
their naming convention is different. All algebras given here come equipped
with a representation m, the restriction of the tautological representations of
su(3) or su(1, 2). These algebras are not all reductive, so the representation
of h on g may not split into a direct sum of m and h. This means that the
homogeneous space may not be reductive. The quotient h-module g/h must
however be of the given type m.

3.1 The h-module structure of g

In the event that g does not split into a direct sum of h and m, we choose
an arbitrary complement of h which we will still denote by m, even though
it is not a submodule. We have

[h,m] = µ(m)h+ hm ∈ h⊕m

for some µ : m → End(h). Here hm denotes the action of h on the module
m = g/h. Let us change the complement m by some operator A : m→ h, so
that the new complement is mnew = {(A(m),m)|m ∈ m}. Then

[h,m+Am] = µ(m)h+ [h,Am]−A(hm) + hm+A(hm) ∈ h⊕m

and the first three terms describe µnew. If we denote by dh the Lie algebra
differential in the complex Λ∗h∗ ⊗ m∗ ⊗ h of Hom(m, h)-valued forms on h,
this can be written as

µnew = µ+ dhA.

Moreover, from the Jacobi identity between elements m,h1, h2 we get that
dhµ = 0, so µ is a cocycle. This gives the following statement (it can also
be seen as a result of the isomorphism Ext1

h(m, h) = H1(h,Hom(m, h)) and
the extension obstruction for modules [Gi]).
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Lemma 1. The equivalence classes of h-modules g with g/h ' m are given
by the Lie algebra cohomology H1(h,Hom(m, h)). In particular, if the coho-
mology vanishes, then g = h⊕m is a direct sum.

The computation of this cohomology was performed in Maple, and work-
sheets are available in the supplement. The result is the following.
Proposition 3. For the reductive subalgebras h of su(3) or su(1, 2) with
dim h ≥ 4, we have dimH1(h,Hom(m, h)) = 0. Let s ∈ p be the grading
element. For the solvable subalgebras h with dim h ≥ 4, we have

• dimH1(p,Hom(m, p)) = 0,
• dimH1(r,Hom(m, r)) = 6 when s ∈ r,
• dimH1(r,Hom(m, r)) = 0 when s 6∈ r,

Hence the h-module g decomposes into a direct sum g = m ⊕ h when h
is reductive, h = p or h = r for s 6∈ r. In the case h = r, s ∈ r, there
are non-decomposable h-modules g which satisfy g/h = m, and these are
parameterized by elements of the cohomology.

3.2 Lie algebra structures on the h-module g

Let h be a Lie algebra and g be an h-module such that h ⊂ g as a submodule.
By a Lie algebra extension1 of h on g, we mean a bracket operation

[, ] : Λ2g→ g

which satisfies the usual Lie algebra axioms and the restriction criteria
that

[, ] : Λ2h→ h

[, ] : h ∧ g→ g

are respectively the Lie bracket of h and the module action of h on g.
Lemma 2. Those Jacobi identities of the bracket [, ] which involve an ele-
ment from h are equivalent to the h-equivariancy of [, ].

Proof. Let m be a complement to h in g as a vector space. The Jacobi
relation involving 3 elements from h, Jach : Λ3h → h, vanishes as h is a
Lie algebra. The Jacobi relation involving 2 elements from h and 1 from m
vanishes as m is an h-module. Finally the Jacobi relation involving 1 element
from h and 2 from m is precisely the equivariancy of the map [, ].

Corollary 2. The bracket [, ] ∈ (Λ2g∗ ⊗ g)h which satisfies the restriction
criteria is a Lie algebra extension iff the Jacobi identity Jacm vanishes on a
complement m of h in g.

1This is different from "right" or extensions by derivations [F].
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We denote the space of elements of g∗ which vanish on h by m∗. This can be
identified with the dual space of a complement m to h, and m∗ is a submodule
of g∗. Thus

(Λ2m∗ ⊗ g)h ⊂ (Λ2g∗ ⊗ g)h

is also a submodule. We call B(h, g) = (Λ2m∗⊗g)h the space of h-equivariant
brackets. We have that if θ ∈ (Λ2g∗ ⊗ g)h satisfies the restriction criterion
and φ ∈ B(h, g), then θ+φ also satisfies the criterion. Thus the Lie algebra
extensions are contained in an affine subspace of (Λ2g∗⊗g)h which is modeled
on B(h, g). By Corollary 2, the bracket φ+θ defines a Lie algebra extension
iff it satisfies Jacm(φ+ θ) = 0.

3.2.1 Solvable Isotropy

The list of possible isotropy algebras h and h-modules g which preserve an
almost complex structure and Nijenhuis tensor on g/h = m with dimm = 6
is given by Lemma 1 and Proposition 3. The h-modules g are parameterized
by choosing representatives µ ∈ h∗ ⊗ m∗ ⊗ h, dhµ = 0 via a splitting of the
canonical projection Z1(h,m∗ ⊗ h)→ H1(h,m∗ ⊗ h).

Given an arbitrary complement m to h in g, these representatives are maps
µ : h × m → h. The representation then consists of block matrices with
respect to the decomposition g = h⊕m, and µ describes the upper-triangular
block. In particular, the representation matrices are block diagonal when
the cohomology vanishes.

Consider α ∈ Λ2m∗ ⊗ g. We have that α ∈ B(h, g) if hα = 0 for all
h ∈ h. When the cohomology does not vanish, this system consists of
linear equations in the parameters of α, and quadratic equations in the
parameters of both µ and α. Let α0 be an element in the solution space of
the linear equations. The Jacobi identity for α0 is a system of equations in
the parameters of α0 and µ which contains linear equations in the parameters
of µ. These imply in each case that µ = 0 whenever the Jacobi identity is
satisfied. This yields the following proposition.
Proposition 4. The only h-modules g which admit Lie algebra extensions
are the direct sums g = h⊕m.

The module g is thus unique for each h, and we may compute the space
of invariant brackets, parameterize this, and solve the system of linear and
quadratic equations in the parameters given by the Jacobi identity.

The solvable isotropy algebras are p ⊂ su(1, 2) and the subalgebras of p. The
sum of the center and the Borel subalgebra in u(1, 1) is also solvable, has
too low dimension to be considered. The algebras p and r have dimensions
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5 and 4, and hence could be the isotropy of a sub-maximal model. These
relate to Theorem 1.

h dim(B(h, g)) solutions to Jacobi
p 2 0
r 2 1

In this table, the third column indicates the number of families of solutions
to the Jacobi equations, and they always come with some free parameters.
This number is not invariant and depends on the parametrization used for
the solution set. The solution to the Jacobi equations corresponds to a
homogeneous space equipped with an invariant almost complex structure
J . We compute (in Maple) the Nijenhuis tensor NJ from the structure
constants given by the solution, with the following result:
Proposition 5. The invariant almost complex structures on the homoge-
neous spaces with solvable isotropy algebra have degenerate Nijenhuis tensor.

This shows that there are no cases of non-degenerate homogeneous almost
complex structures with solvable isotropy algebra h, dim h ≥ 4. What re-
mains is to rule out sufficiently big non-transitive symmetry algebras. This
will be done in section 4.

3.2.2 Non-Solvable Isotropy

When the isotropy algebra is not solvable, then either h = u(2), h =
u(1, 1).Thus dim h = 4. The isotropy representation decomposes into sub-
modules (see Proposition 1 and the beginning of Section 3):

m = V ⊕ C.

The C term is a trivial representation of hss = su(2) or hss = su(1, 1) (hss
is the semi-simple part of h), but it is irreducible with respect to the center
u(1) of h, and V is equivalent to the tautological action of h on C2. By the
Levi decomposition, either g = h ⊕ m is semi-simple, or there is a solvable
radical r ⊂ g.

Let’s consider the semi-simple case first. Since dim(g) = 10, the algebra g is
a real form of B2 ' C2. The real forms of B2 are so(5) ' sp(2), so(1, 4) '
sp(1, 1), and so(2, 3) ' sp(4,R). Since these g are pseudo-orthogonal, an
embedding into them is the same as a real "defining" representation ϕ :
h → End(R5) which preserves a non-degenerate symmetric bilinear form
g. The signature of g then determines the algebra g. We may compute the
isotropy representation of h on g/h from ϕ by the g-equivariant isomorphism
Λ2R5 ' so(R5, g) = g ⊂ End(R5). The following comes as a result of simple
case-by-case considerations.
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Proposition 6. The only defining representation ϕ : h → g which pro-
duces the correct isotropy representation m = g/h is the one with h−module
decomposition R⊕ V = R5.

Thus g must be a sum of invariant forms on each submodule. For h = u(1, 1),
the invariant form on V has signature (2, 2), so g has signature (2, 3) ' (3, 2).
For h = u(2), the invariant form on V has signature (4, 0) ' (0, 4), so g has
signature (4, 1) ' (1, 4) or (5, 0) ' (0, 5) depending on the sign of the R-
component.
Corollary 3. There are only 3 embeddings of h into the real forms of B2
with the given isotropy:

• h = u(1, 1)→ so(2, 3)
• h = u(2)→ so(5)
• h = u(2)→ so(1, 4).

These injective Lie algebra homomorphisms integrate into injective homo-
morphisms of Lie groups H → G. We may explicitly compute NJ for the
invariant J in each case, with the following result:
Proposition 7. For each of these embeddings there are (up to overall sign)
two G-invariant almost complex structures J on G/H. One corresponds to a
(pseudo-) Kähler structure and has vanishing NJ , and the other to a SN(P)K
structure and has non-degenerate NJ . Both have the same signature. For
g = so(2, 3) and g = so(1, 4) the signature of the metric is (4,2), and for
g = so(5) the signature is (6,0).

Since we showed in the previous section that the possibility of 5D h = p is
not realized, these examples equipped with the almost complex structure J ,
which is SNPK, realize sub-maximal symmetry dimension.

Suppose now that m is semi-simple. Then g = u(1)⊕hss⊕m, but u(1) is not
central, as we prescribed the action of h = u(1) ⊕ hss, hence u(1) acts as a
derivation of h⊕m. By Whitehead’s lemma [F] all derivations of semi-simple
Lie algebras are inner derivations, that is belong to the image of the map
ad : g → Der(gss) = Der(hss ⊕ m) ' hss ⊕ m. For dimensional reasons this
map has a non-trivial kernel. Since the kernel is a 1D h−submodule of g,
it must be u(1), thus u(1) is central, but u(1) acts as a non-zero derivation,
and this is a contradiction.

Suppose the semi-simple Levi factor gss of g is larger than hss, but smaller
than g. By the above, it shall not contain m. A semi-simple subalgebra has
dimension at least 3, which means that the radical of g is the h-submodule
V . The derived subalgebra of the radical is also an h-submodule (because
h are derivations of V ). The radical is solvable, so its derived subalgebra is
a proper submodule. Therefore the radical is Abelian. Hence the Nijenhuis
tensor is degenerate.
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Finally let’s consider the case where gss = hss, so the radical of g is r =
m ⊕ u(1). Then the derived subalgebra of r is m, as it must be a proper
submodule of r including m (due to the action of u(1)). Then m is nilpotent,
and the derived subalgebra of m will be either C or V . In either case one
h-submodule will not be in the image of the brackets on m, and since these
modules are complex, the same module is not in the image of the Nijenhuis
tensor. Hence the Nijenhuis tensor is degenerate. This concludes the proof
of Theorem 1.

4 Locally intransitive Aut(J)

When the symmetry group G is not locally transitive, the G-manifoldM (or
its invariant open subset) is not (naturally, locally) homogeneous. Therefore
the full range of algebraic tools we used in the previous section is unavailable
to us. Instead, we can find a foliation by G-orbits in a neighbourhood of any
regular point x ∈M . The leaves must have positive codimension, and each
leaf is a local homogeneous space of G = Aut(J) in its own right. We may
therefore investigate the existence of lower dimension homogeneous spaces O
whose isotropy algebra admits the existence of an invariant non-degenerate
Nijenhuis tensor on the tangent space m of a regular point ofM . This means
that the full isotropy representation m must be one of those discussed in the
previous section.

The tangent space TxO = o of the orbit through x must be an invariant
subspace of m for the isotropy algebra h. The isotropy h is still represented
effectively (now on o) as before, so the dimension of the symmetry algebra
g is dim g = dim o + dim h. This means the possible pairs (h, o) which have
combined dimension dim g ≥ 9 are the following:

• h = p ⊂ su(1, 2), dim o = 4.
• h = r ⊂ su(1, 2), dim o = 5, this r is the unique possible 4D isotropy
which has a 5D submodule (s ∈ r).

We also have the following lemma:
Lemma 3. The quotient h-module m/o is a trivial module.

Proof. The orbits locally foliate M . There exist local coordinates (x, y) on
M such that the leaves (which are the flows of g) have the form {(x, y) :
yi = ci} for constants ci. In these coordinates g is generated by vector fields
of the form X = f i(x, y)∂xi , and h has block form, which is equivalent to
the claim.

Neither of the possible choices (h,m, o), which satisfy dim h ≥ 3, also sat-
isfies this condition, hence these triples must be discarded. Indeed in both
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cases, the grading element s ∈ h acts non-trivially on m/o. We conclude
that no non-degenerate almost complex structure J with locally intransitive
symmetry algebra g satisfies dim g ≥ 9.

5 The sub-maximal models are globally homoge-
neous

In this section we prove Theorem 2. In Sections 3 and 4, we proved that
the regular orbits Oreg of the sub-maximal models are open in M , and are
homogeneous spaces of G. Let us write Oreg = G/Hreg, with G and Hreg as
found in Section 3, i.e. G is one of Sp(2), Sp(1, 1), Sp(4,R) and Hreg is a 4D
subgroup. Throughout this section, g is sp(2), sp(1, 1) or sp(4, R).

In addition to the regular (open) orbits described in Section 3, there could
a priori be singular orbits (of positive codimension). Such orbits must also
be homogeneous spaces of the symmetry group G.

The candidates for homogeneous singular orbits are enumerated by conju-
gacy classes of subalgebras h ⊂ g with dim h > dim hreg = 4. In addition to
g itself, we must consider the maximal subalgebras (and their subalgebras).
By [M] (see also [GOV]), for a real semi-simple Lie algebra g a maximal
subalgebra is parabolic, semi-simple or the stabilizer of a pseudo-torus. The
list of such subalgebras with dim h > 4 is

• h = p1 ⊂ sp(4,R), dim h = 7, parabolic,
• h = p2 ⊂ sp(4,R), dim h = 7, parabolic,
• h = p2 ⊂ sp(1, 1), dim h = 7, parabolic,
• h = so(4), dim h = 6, semi-simple,
• h = so(1, 3), dim h = 6, semi-simple,
• h = so(2, 2), dim h = 6, semi-simple.

The parabolics p1 and p2 are labelled with respect to the name for g specified
(Dynkin diagram C2), so p1 excludes the root space of the shorter simple
root of sp(4,R), and p2 excludes the longer. Where the embedding is not
specified, there are embeddings to several different g. All the pseudo-toric
stabilizers have dimension ≤ 4, and that’s why they are excluded from the
list.

The orbit itself does not need to be almost complex, but the almost complex
structure on M still yields some structure on the orbit O. Let o = TxO
denote the tangent space of a point x ∈ O.
Proposition 8. Suppose O is a singular orbit. Then either O admits a
G-invariant complex distribution L2 or L4 (J-invariant subspaces of o), or
O is totally real (meaning Jo ∩ o = {0}, o 6= 0), or O is an invariant point
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(that is, o = 0).

Proof. Consider the restriction of J to o. Since J and O are G-invariant,
the intersection between the image Jo ⊂ TxM and o at the point x ∈ O is
H-invariant, where H is the stabilizer of x. Call this space Lx = Jo ∩ o.
The distribution L given by Lx for each x ∈ O is thus G-invariant. Since
J2 = −1, J |L is an almost complex structure on L. Hence the dimension
of L can be 0, 2 or 4, while 6 is not possible since O is singular. If the
dimension is 0 then O is totally real or an invariant point.

We treat each case separately.

5.1 Invariant points

At an invariant point x, h = g. Since g is a simple algebra, the isotropy
representation g→ End(TxM) is either faithful or trivial. It cannot be faith-
ful, because the smallest nontrivial complex module V of C2 has dimC V =
4.

Thus the isotropy representation is trivial. Recall the Thurston stability
theorem [T], which states that if a nontrivial Lie group action has a fixed
point with trivial isotropy representation, then H1(G,R) 6= 0. Nonzero
cohomology classes in H1(G,R) correspond to nontrivial homomorphisms
from G to R, and since G is a simple Lie group in our case there are no such
homomorphisms. Therefore H1(G,R) = 0 and the sub-maximal model has
no invariant points.

5.2 Totally real orbits

If O is totally real, it can at most have dimension 3. On the other hand, the
maximal dimension of a proper subalgebra h of g is 7 (achieved by maximal
parabolics of sp(1, 1) and sp(4,R)), while dim g = 10. Therefore we have
dimO = 3.
Lemma 4. If O is a totally real orbit of dimension 3, there exists at least
one nontrivial h-invariant map Λ2o→ o.

Proof. Since o is totally real, o ⊕ Jo = TxM and this decomposition is H-
invariant, which yields an invariant projection π : TxM → o. The Nijenhuis
tensor NJ is non-degenerate, so the restriction NJ |o : Λ2ox → TxM is
injective. Write L = NJ(Λ2o), so dimL = 3. At least one of the maps
π : L → o and π ◦ J : L → o must be nonzero, call such a map p. Then
p ◦NJ : Λ2o→ o is a nontrivial H-invariant map.
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The 7D maximal parabolics are p2 ⊂ sp(1, 1), which is |1|-graded, p2 ⊂
sp(4,R), which is |1|-graded, and p1 ⊂ sp(4,R), which is |2|-graded. Each
parabolic has a grading element, which acts on o as a real scalar when the
parabolic is |1|-graded. Since a scalar action with weight λ 6= 0 on o will
have weight 2λ on Λ2o, the |1|-graded parabolics do not admit any maps
of the type we constructed in Lemma 4. Hence only the |2|-graded p1 is
interesting. In this case there is a splitting o = o1 ⊕ o2, with dim o1 = 2
and dim o2 = 1, which is invariant with respect to the 0-graded piece of p1,
(p1)0 ' sl(2) ⊕ R. Here the R term is generated by the grading element,
which acts with weight 1 on o1 and 2 on o2. The action of sl(2) on o1 is
equivalent to the tautological action on R2, which admits a scalar valued
invariant 2-form, and on o2 the action is trivial. This meas that there is a
(p1)0 equivariant map Λ2o1 → o2, which can be extended (uniquely) by 0
to a (p1)0 equivariant map Λ2o → o. However, this map is not equivariant
with respect to (p1)1, which maps o2 to o1 in a nontrivial way. Thus all the
possible maximal parabolic h lack the necessary map from Lemma 4, and
we conclude that there are no 3D totally real orbits.

5.3 Orbits with a complex distribution

5.3.1 Subalgebras of parabolics

In this subsection we find all subalgebras h with dim h ≥ 5 of the maximal
parabolics. We consider first all cases where h ⊂ p2 ⊂ sp(1, 1). The parabolic
subalgebra p2 is naturally |1|−graded, and can be described as p2 = (su(2)⊕
Rs2) n R3, where s2 is the grading element, R3 is Abelian and the action
of su(2) on R3 = ad(su(2)) is the tautological action of so(3), which is
irreducible. We denote g0 = su(2)⊕ Rs2.

Suppose that h has dimension 5 or 6. Then the intersection Π = h ∩ g0 is
nontrivial (because of dimension) and of dimension at least 2, and Π is a
subalgebra of g0. The subalgebras of g0 of dimensions 2 and 3 are unique
(up to conjugation in the former case), they are Rt⊕ Rs2 and su(2), where
Rt is a 1D subalgebra of su(2). Note that if g0 ⊂ h and dim h > 4, then
h = p2 because of the irreducible action on R3. Thus up to conjugation in
sp(1, 1) there is one subalgebra of dimension 5, h = (Rt ⊕ Rs2) n R3, and
one subalgebra of dimension 6, h = su(2)nR3.

Next we consider all cases where h ⊂ p2 ⊂ sp(4,R) or h ⊂ p1 ⊂ sp(4,R).
For both of these, we have g0 ' sl2(R)⊕Rsi, where si ∈ pi is the respective
grading element, but keep in mind that these subalgebras of p1 or p2 are not
equivalent in g, even though they are abstractly isomorphic.

We will now consider proper subalgebras of dimension > 4 of the parabolics.
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Let Π = h ∩ g0. Similarly to above this is a subalgebra of g0 of dimension
at least 2. Abstractly, the list of such is

Π ∈ {g0(∗), sl2(R), B2 ⊕ Rsi(∗), S2,Rk ⊕ Rsi(∗)}.

Here k ∈ sl2(R), S2 is a 2D solvable Lie subalgebra of gl2, and we have
marked with (∗) those subalgebras that include the grading element si. If
Π = g0, then h is non-proper except in one case, which is h = g0 ⊕ g2 ⊂ p1,
the only 5D subalgebra to have a non-trivial Levi-factor.

For the other possibilities marked with (∗), h must be a (possibly non-
proper) subalgebra of the non-maximal parabolic p12 = p1 ∩ p2, as we can
take commutators with si to produce a graded basis. If Π = S2, then either
h has a non-trivial Levi-factor, in which case h is equivalent in g to another
subalgebra with Π = sl2(R), or h is solvable, in which case it is equivalent to
a subalgebra of p12. In particular, all 5D solvable subalgebras with Π = S2
are equivalent to subalgebras of p12.

The list of 6D subalgebras of p2 or p1 is thus sl2(R)nad(sl2(R)) ⊂ p2, where
ad(sl2(R)) is Abelian and sl2(R) acts on this as if it were its adjoint repre-
sentation, sl2(R)n heis3 ⊂ p1, where heis3 is the 3D Heisenberg algebra and
sl2(R) acts as derivations of heis3, and the non-maximal parabolic p12.

In the case Π = Rk⊕Rsi, the algebra h is always 5D, and it depends on the
conjugacy class of 〈k〉 in sl2(R). If k has non-negative Killing norm, then
k is contained in a Borel subalgebra, hence also in (some conjugate of) p12,
and so is h. On the other hand, if k has negative Killing norm, then it is
a compact element and thus not contained in any conjugate of B2 or p12.
Thus there are two conjugacy classes of solvable 5D subalgebras which are
not contained in p12. These have the forms h = (Rt⊕Rs2)n ad(sl2(R)) and
h = (Rt⊕ Rs1)n heis3 for compact elements t ∈ sl2(R).

Suppose dim h = 5, and h ⊂ p12 ⊂ sp(4,R). To describe the possible
subalgebras h, we will use some facts about parabolic subalgebras. There
are (at least) 3 possible gradings of p12. These are those inherited from
p2 and p1, and the natural parabolic grading coming from p12 itself, which
is different from both of the previous ones. These are respectively |1|−,
|2|− and |3|− gradings. It will be most convenient for us to make use of the
|1|−grading. This gives the description p12 = (B2⊕Rs2)nad(sl2(R)), where
s2 is the grading element of p2, B2 is a Borel subalgebra of sl2(R), and this
acts on the Abelian component ad(sl2(R)) as if it were the restriction of the
adjoint representation of sl2(R).

The subalgebras h are split into two cases, either s2 ∈ h or s2 6∈ h. The
former case is simpler, because if s2 ∈ h then we can find a basis of h
where each element has pure grading. The possibilities are then (B2 ⊕
Rs2) n ad(B2), since B2 has a unique invariant subspace in ad(sl2(R)), or
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(Rk⊕Rs2)nad(sl2(R)) where k is some element of B2 (and up to equivalence
there are only two examples of the latter type, with k of positive and zero
Killing norm).

In the case s2 6∈ h, we have that h is a graph in p12 of some linear map
i : B2nad(sl2(R))→ Rs2. Any such graph defines a subspace in p12, but only
those that are closed under the Lie bracket define subalgebras. Choosing a
basis {e, h, f} ⊂ sl2(R) with structure relations [e, f ] = h, [h, e] = e, [h, f ] =
−f , we get the 1-graded basis {e0, h0, e1, h1, f1} ⊂ B2 n ad(sl2(R)). The
condition that h is a subalgebra implies that h = 〈e0, h0+λs2, e1, h1, f1+µs2〉
where λ, µ ∈ R are matrix entries of i, and the subalgebra condition is
(λ − 1)µ = 0. The case µ = 0 is ad(sl2(R)) ⊕ [B2, B2] ⊂ ker(i), with Lie
algebra structure h = S2nad(sl2(R)). Note that this is still |1|−graded. The
case λ = 1 corresponds to |2|-graded, |1|-ungraded algebras, as s1 = h0 + s2
is the |2|-grading element of g. The parameter µ corresponds to choosing
an element k ∈ sl2(R) ⊂ g0, where g0 ⊂ p1, hence up to conjugation this
parameter only determines whether the Killing norm of k is positive or zero,
and the |2|-graded algebra structure is h = (Rk ⊕ Rs1)n heis3.

In summary, we have the following:
Proposition 9. Up to conjugation in g, the subalgebras h of a parabolic
subalgebra p ⊂ g for g = sp(1, 1) or g = sp(4,R) with dim h ≥ 5 are graded
(in the inclusion given below) and are the following:

dim h g = sp(4,R) g = sp(1, 1) Grading Notes
7 p2 p2 1
7 p1 2
6 sl2 n ad(sl2(R)) h = su(2)nR3 1
6 sl2 n heis3 2
6 p12 1,2,3
5 (Rt⊕ Rs2)n ad(sl2(R)) (Rt⊕ Rs)nR3 1 ||t|| < 0
5 (Rk ⊕ Rs2)n ad(sl2(R)) 1 ||k|| > 0
5 (Rk ⊕ Rs2)n ad(sl2(R)) 1 ||k|| = 0
5 (B2 ⊕ Rs2)n ad(B2) 1
5 S2 n ad(sl2(R)) 1 λ ∈ R (†)
5 gl2(R)nR 2 h = g0 ⊕ g2
5 (Rt⊕ Rs1)n heis3 2 ||t|| < 0
5 (Rk ⊕ Rs1)n heis3 2 ||k|| > 0
5 (Rk ⊕ Rs1)n heis3 2 ||k|| = 0

The entry marked with (†) is a family of subalgebras which depend on a real
parameter.
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5.3.2 Distributions for subalgebras of parabolics

The orbits of each dimension inherits slightly different geometry from the
complex structure and Nijenhuis tensor.

Firstly, let dimO = 3, so dim h = 7.
Lemma 5. The complex distribution on a singular orbit O of dimension
3, which is not totally real, has (real) dimension 2. Thus the isotropy rep-
resentation of such an orbit admits a 2D invariant subspace with complex
structure.

Proof. It follows from the assumption that the orbit is not totally real that
the distribution L is non-trivial.

The only 7D subalgebras are the maximal parabolics themselves. In the case
of h = p2 ⊂ sp(1, 1), g/p2 ' R3 with the standard action of su(2) ' so(3) ⊂
p2, which is irreducible. For h = p2 ⊂ sp(4,R), we have sl2(R) ⊂ p2, and
g/p2 ' ad(sl2(R)), which is irreducible. For h = p1 ⊂ sp(4,R), sl2(R) ⊂ p1
and with respect to this g/p1 ' heis3 ' R2 ⊕ R where R2 has the standard
sl2(R)-action. This last submodule has the correct dimension, but even
restricted to sl2(R) it fails to admit an invariant complex structure. Thus
all of these are discarded.

Secondly, let dimO = 4, so dim h = 6.
Lemma 6. A singular orbit of dimension 4 always admits a complex dis-
tribution of real dimension 2.

Proof. Let L = o ∩ Jo. Since dimO is even there are two cases: Either the
orbit O is almost complex and dimL = 4, or dimL=2 in which case we are
done. In the former case, non-degeneracy of the Nijenhuis tensor NJ implies
that NJ(Λ2L) ⊂ L is a proper and non-trivial complex submodule.

There are 4 different 6D subalgebras; 3 of these have a semi-simple subalge-
bra, and the last is the Borel subalgebra p12 of sp(4,R). Out of those with
semi-simple subalgebras, two have 3D irreducible submodules in the isotropy
module with respect to their Levi factor (similarly to the previous case), and
only h = sl2(R)n heis3 ⊂ p1 has any chance of admitting a 2D submodule,
as the isotropy representation decomposes as g/h = R2⊕R⊕R with respect
to sl2(R). However, the action of heis3 makes the module indecomposable,
and there are no submodules with respect to h.

The isotropy representation of p12 is |3|−graded, o = g/p12 = R2 ⊕ R ⊕ R,
and has a basis where each element spans a negative root space with respect
to the Cartan subalgebra. The action of p12 is indecomposable (not all
terms are submodules), but R2 is a 2D submodule. However, the Cartan
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subalgebra acts on R2 with distinct eigenvalues (roots of g), and so does not
preserve any complex structure.

Finally, let dimO = 5, so dim h = 5.
Lemma 7. The complex distribution on a singular orbit O of dimension 5
has (real) dimension 4. Thus the isotropy representation of such an orbit
admits a 4D invariant subspace L with complex structure. Moreover, there
either exists an equivariant decomposition o = L⊕ R where R is invariant,
or there is a non-zero h−invariant L valued 2-form θ ∈ Λ2L∗ ⊗ L.

Proof. The claim that L has dimension at least 4 follows from the fact that
this is the minimal intersection of two 5D hyperplanes (o and Jo) in a 6D
vector space (TxM). Since the distribution is complex, its dimension must
be even, so it is equal to 4. By non-degeneracy of NJ , NJ(Λ2L) = Π is an
invariant complex line in TxM . There are two cases, either Π ⊂ L, in which
case the map NJ restricts to L and gives the desired two-form (so in fact,
θ ∈ Λ2L∗ ⊗ Π) , or Π is transversal to L, since Π is complex. In the latter
case we may take the intersection o∩Π, which is an invariant line R ⊂ o by
dimensional count. Since L and R are independent and invariant, o = L⊕R
is the desired decomposition.

Notice first that if h contains the Cartan subalgebra, then similarly to the
previous case there exists a basis of root vectors in the complement to h with
distinct eigenvalues (by root space decomposition), so no complex structure
is possible. This rules out all the |1|-graded subalgebras of p12 except for
h = (Rk ⊕ Rs2) n ad(sl2(R)), where k has Killing norm 0 in g. In this
case, we can find a unique 4D submodule L for which the grading element
s2 preserves the decomposition L = C ⊕ C. The grading element s2 has
two distinct eigenvalues, so any almost complex structure must leave these
subspaces invariant, but the operator k is nilpotent and commutes with s2,
and so acts nilpotently on the same 2D subspaces. Thus by the following
lemma, the complex structures are not h−invariant.
Lemma 8. If some element ξ ∈ h acts as a nonzero nilpotent operator on
Π2, then Π2 does not admit an invariant almost complex structure.

Proof. We have EndC(Π2) = C, which is a field and hence does not admit
nonzero nilpotent elements.

Consider the parameter dependent family of subalgebras h = S2nad(sl2(R))
of p12, which was marked with (†) in the table of subalgebras. Each member
of this family admits a unique 4D submodule L ⊂ o. The unique (up to
scale) non-zero element of the Cartan subalgebra has simple spectrum when
restricted to L. An operator which leaves a complex structure invariant
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must have spectrum consisting of two double (or one quadruple) values, so
this does not admit any h−invariant complex structure.

For the |2|−graded h = (Rs1⊕Rk)n heis3, there is a unique 4D submodule
L, and the spectrum of the |2|−grading element s1 consists of two double
values when restricted to L. However k commutes with s1, and either acts
as a non-zero nilpotent operator or with simple spectrum on L, depending
on its Killing norm. In either case, L does not admit an invariant complex
structure.

The last parabolic cases are those that contain an element t with negative
Killing norm. There are three such 5D subalgebras These have the forms
h = (Rt ⊕ Rs2) n ad(sl2(R)) and h = (Rt ⊕ Rs1) n heis3. The former
case is contained in p2 of both sp(4,R) and sp(1, 1) with identical isotropy
representations, while the latter is contained in p1 of sp(4, R). In all cases,
the isotropy representation decomposes as C⊕C⊕R with respect to Rt, and
L = C⊕C is invariant with respect to h. Note that the R term is transversal
to L, but it is not invariant under h, and neither is any other transversal.
Therefore, by Lemma 6, there must be an invariant non-zero vector valued
two-form on L if h is the isotropy of a singular orbit. However we compute
(Λ2(L∗)⊗L)h = 0. Thus this case cannot appear as a singular orbit, in spite
of being the only case to admit the required complex structure on the 4D
distribution.

To conclude: No subalgebra h of a parabolic pi with dim h > 4 can occur as
the isotropy of a singular orbit.

5.3.3 Subalgebras of maximal semi-simple

The (complex) rank of the complexification of g is 2, hence the complexifica-
tion of a maximal semi-simple subalgebra h can have rank at most 2 as well.
We must also have dim h > 4, so if h is proper and maximal, then it has
dim h = 6 and h is a real form of A1⊕A1. These are so(2, 2) ' sl(2)⊕ sl(2),
so(4) ' su(2)⊕ su(2), so(1, 3) ' sl2(C)R and sl(2)⊕ su(2). A 5D subalgebra
of one of these is also possible.

Out of these, sl(2) ⊕ su(2) does not admit any 5D real faithful representa-
tion with an invariant metric of any signature, so this does not embed into
any real form of B2. The other forms embed into so(5), so(1, 4) or so(2, 3)
according to the signature of their invariant metrics on the defining repre-
sentation R5 = R4⊕R, where the last R term is trivial and R4 is tautological.
(There are also other embeddings, but this will cover all the correct pairs of
algebra/subalgebra.)

In all these cases, the isotropy representation is a faithful 4D real represen-
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tation. While this is enough to conclude that there is no invariant complex
structure for so(4) and so(2, 2), so(1, 3) does in fact have a 4D rep with com-
plex structure: the standard action of sl2(C) on C2, but since this is real
irreducible it cannot admit a nonzero Nijenhuis tensor. Thus all maximal
semi-simple subalgebras are excluded.

Out of these real forms, the only one which admits a 5D subalgebra is
so(2, 2), which has the subalgebra p1 = B2 ⊕ sl2(R), where B2 is the Borel
subalgebra of the other copy of sl2(R). This algebra yields an invariant
splitting o = R⊕ R4. The action on R4 by p1 is the one which comes from
the embedding to so(2, 2), and this does not admit any invariant complex
structure.

The proof of Theorem 2 is now complete.
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