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SOME NEW HARDY–TYPE INEQUALITIES IN q–ANALYSIS

A. O. BAIARYSTANOV, L. E. PERSSON, S. SHAIMARDAN AND A. TEMIRKHANOVA

(Communicated by J. Pečarić)

Abstract. We derive necessary and sufficient conditions (of Muckenhoupt-Bradley type) for the
validity of q -analogs of (r, p) -weighted Hardy-type inequalities for all possible positive values
of the parameters r and p . We also point out some possibilities to further develop the theory of
Hardy-type inequalities in this new direction.

1. Introduction

G. H. Hardy announced in 1920 [17] and finally proved in 1925 [18] (also see [19,
p. 240]) his famous inequality

∞∫
0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

dx �
(

p
p−1

)p ∞∫
0

f p(x)dx, p > 1, (1.1)

for all non-negative functions f (in the sequel we assume that all functions are non-

negative). The constant
(

p
p−1

)p
in (1.1) is sharp. Since then it has been an enormous

activity to develop and apply what is today known as Hardy-type inequalities, see e.g
the books [21], [23] and [24] and the references there.

One central problem in this development was to characterize the weights u(x) and
υ(x) so that the more general Hardy-type inequality

⎛⎝ ∞∫
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⎛⎝ x∫
0

f (t)dt

⎞⎠r

u(x)dx
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1
r

� C

⎛⎝ ∞∫
0

f p(x)υ(x)dx

⎞⎠
1
p

(1.2)

holds for some constant C and various parameters p and r .
To make our introduction clear we just concentrate on the case 1 � p � r < ∞ . In

this case e.g the following result is well-known:
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PROPOSITION A. Let 1 < p � r < ∞ . Then the inequality (1.2) holds if and only
if

A1 := sup
0<x<∞

(U(x))
1
r (V (x))

1
p′ < ∞

or

A2 := sup
0<x<∞

⎛⎝ x∫
0

u(t)Vr(t)dt

⎞⎠
1
r

V− 1
p (x) < ∞

or

A3 := sup
0<x<∞

⎛⎝ ∞∫
x

υ1−p′(t)U p′(t)dt

⎞⎠
1
p′

U− 1
r′ (x) < ∞,

where U(x) =
∞∫
x

u(t)dt , V (x) =
x∫
0

υ1−p′(t)dt , p′ = p
p−1 and r′ = r

r−1 . Moreover, for

the sharp constant in (1.2) we have that C ≈ A1 ≈ A2 ≈ A3 .

REMARK 1.1. A nice proof of the condition A1 < ∞ was given in 1978 by J. S.
Bradley [9]. The case p = r was proved by B. Muckenhoupt [28] already in 1972 . The
condition A2 < ∞ was proved in 2002 by L. E. Persson and V. D. Stepanov [30], but
was for the case p = r proved by G. A. Tomaselli [34] already in 1969. The condition
A3 < ∞ is just the dual condition of the condition A2 < ∞ .

In the beginning G. H. Hardy was most occupied with the discrete version of (1.1).
The discrete version of (1.2) reads:(

∞

∑
n=1

(
n

∑
k=1

fk

)r

un

) 1
r

� C

(
∞

∑
n=1

f p
n υn

) 1
p

, (1.3)

where u = {un} and υ = {υn} are non-negative weight sequences and the question
is to characterize all such weight sequence so that (1.3) holds for an arbitrary non-
negative sequence f = { fn} (in the sequel we assume that the considered sequences are
non-negative).

It is interesting that the similar results as that in Proposition A for the discrete case
was independently proved by G. Bennett [6] in 1987 (see also [2], [8] and [22, Theorem
7]). It reads:

PROPOSITION B. Let 1 < p � r < ∞ . Then the inequality (1.3) holds if and only
if

B1 := sup
n∈N

U
1
r

n V
1
p′

n < ∞

or

B2 := sup
n∈N

(
n

∑
k=1

ukV
r
k

) 1
r

V
− 1

p
n < ∞
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or

B3 := sup
n∈N

(
∞

∑
k=n

υ1−p′
k U p′

k

) 1
p′

U
− 1

r′
n < ∞,

where Un =
∞
∑

k=n
uk and Vn =

n
∑

k=1
υ1−p′

k .

Moreover, for the sharp constant C in (1.3) it yields that C ≈ B1 ≈ B2 ≈ B3 .

For our purposes we will consider the inequality (1.3) on the following different
but equivalent form:

(
∞

∑
n=1

(
un

n

∑
k=1

υk fk

)r) 1
r

� C

(
∞

∑
n=1

f p
n

) 1
p

, (1.4)

with the obvious changes of the conditions Bi < ∞, i = 1,2,3.
In 1910, F. H. Jackson defined q -derivative and definite q -integral [20] (see also

[11]). It was the starting point of q -analysis. Today the interest in the subject has
exploded. The q -analysis has numerous applications in various fields of mathematics
e.g dynamical systems, number theory, combinatorics, special functions, fractals and
also for scientific problems in some applied areas such as computer science, quantum
mechanics and quantum physics (see e.g. [3], [5], [12], [13] and [14]). For the fur-
ther development and recent results in q -analysis we refer to the books [3], [11] and
[12] and the references given therein. The first results concerning integral inequalities
in q -analysis were proved in 2004 by H. Gauchman [15]. Later on some further q -
analogs of the classical inequalities have been proved (see [22], [27], [32] and [33]).
We also pronounce the recent book [1] by G.A. Anastassiou, where many important
q-inequalities are proved and discussed. Moreover, in 2014 L. Maligranda, R. Oinarov
and L.-E. Persson [26] derived a q -analog of the classical Hardy inequality (1.1) and
some related inequalities. It seems to be a huge new research area to investigate which
of these so called Hardy-type inequalities have their q -analogs.

One main aim in this paper is to prove the q -analog of the results in Propositions
A and B (see our Theorem 3.1). We will also prove the corresponding characterization
for other possible values of the parameters p and r (see our Theorem 3.3). We also
prove the corresponding dual results (see Theorem 3.2 and Theorem 3.4).

Our paper is organized as follows: The main results are stated Section 3 and proved
in Section 4. In order not to disturb our discussions there some preliminaries are given
in Section 2. In particular, we present some basic facts from q -analysis and also state

Proposition B on a formally more general form namely where
∞
∑
1

is replaced by
∞
∑
−∞

(see

Proposition 2.2). We also state this result for other parameters which is important for
our proof of the Theorem 3.3 (see Proposition 2.3). Finally, in Section 5 we present
some remarks and in particular point out the possibility to generalize our results even
to modern forms of Propositions A and B, where these three conditions even can be
replaced by four scales of conditions (For the continuous case, see the review article
[25] and for the discrete case see [29]).
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2. Preliminaries

2.1. Some basic facts in q -analysis

This subsection gives the definitions and notions of q -analysis [11] (see also [12]).
Let the function f defined on (0,b) , 0 < b � ∞ and 0 < q < 1. Then

Dq f (x) :=
f (x)− f (qx)

(1−q)x
, x ∈ (0,b) (2.1)

is called the q -derivative of the function f . This definition was introduced by F. H.
Jackson in 1910.

Let x ∈ (0,b) . Then

x∫
0

f (t)dqt := (1−q)x
∞

∑
k=0

qk f (xqk), (2.2)

is called q -integral or Jackson integral.
If b = ∞ the improper q -integral is defined by

∞∫
0

f (t)dqt := (1−q)
∞

∑
k=−∞

qk f (qk). (2.3)

The integrals (2.2) and (2.3) are meaningful, if the series on the right hand sides
converge.

Let 0 < a < b � ∞ . Then we have that

b∫
a

f (t)dqt :=
b∫

0

f (t)dqt−
a∫

0

f (t)dqt. (2.4)

We also need the following fact:

PROPOSITION 2.1. Let k ∈ Z . Then

∞∫
qk+1

f (t)dqt = (1−q)
k

∑
j=−∞

q j f (q j). (2.5)

Proof of Proposition 2.1. By using (2.2), (2.3) and (2.4) with b = ∞ , a = qk+1 we
have that

∞∫
qk+1

f (t)dqt =
∞∫

0

f (t)dqt−
qk+1∫
0

f (t)dqt

= (1−q)
∞

∑
j=−∞

q j f (q j)− (1−q)
∞

∑
i=0

qi+k+1 f (qi+k+1)
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= (1−q)
∞

∑
j=−∞

q j f (q j)− (1−q)
∞

∑
i=k+1

qi f (qi)

= (1−q)
k

∑
j=−∞

q j f (q j),

i.e. (2.5) holds. The proof is complete. �

Let Ω be a subset of (0,∞) and XΩ(t) denote the characteristic function of the
set Ω . Let z > 0. Then from (2.3) we can deduce that

∞∫
0

X(0,z](t) f (t)dqt = (1−q)
∞

∑
i=−∞

qiX(0,z](q
i) f (qi) = (1−q) ∑

qi�z

qi f (qi), (2.6)

and
∞∫

0

X[z,∞)(t) f (t)dqt = (1−q) ∑
qi�z

qi f (qi). (2.7)

Moreover,
∞∫

0

X(qz,z](t) f (t)dqt = (1−q)qk f (qk), (2.8)

for qk � z < qk−1 , k ∈ Z ,

∞∫
0

X[z,q−1z)(t) f (t)dqt = (1−q)qm f (qm), (2.9)

for qm+1 < z � qm , m ∈ Z .

2.2. An important variant of Proposition B

We consider the inequality:(
∞

∑
n=−∞

(
un

n

∑
k=−∞

υk fk

)r) 1
r

� C

(
∞

∑
n=−∞

f p
n

) 1
p

, fn � 0. (2.10)

We need the following formal extension of Proposition B, of independent interest:

PROPOSITION 2.2. Let 1 < p � r < ∞ . Then the inequality (2.10) holds if and
only if

C1 = sup
n∈Z

(
∞

∑
k=n

ur
k

) 1
r
(

n

∑
i=−∞

υ p′
i

) 1
p′

< ∞ (2.11)
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or

C2 = sup
n∈Z

(
n

∑
i=−∞

υ p′
i

)− 1
p
(

n

∑
k=−∞

ur
k

(
k

∑
i=−∞

υ p′
i

)r) 1
r

< ∞ (2.12)

or

C3 = sup
n∈Z

(
∞

∑
k=n

ur
k

)− 1
r′
⎛⎝ ∞

∑
i=n

υ p′
i

(
∞

∑
k=i

ur
k

)p′
⎞⎠

1
p′

< ∞. (2.13)

Moreover, for the sharp constant C in (2.10) it yields that C ≈C1 ≈C2 ≈C3 .

This proposition is even equivalent to Proposition B, which can be seen from the
proof below we give for the reader’s convenience.

Proof of Proposition 2.2. Let Z = Z∪{+∞}∪{−∞}, N = N∪{+∞} . The func-
tion ϕ : Z → N , given by

∀n ∈ Z : ϕ(n) =

⎧⎪⎪⎨⎪⎪⎩
+∞ n = +∞,
2n n > 0,
−2n+3 n � 0,
1 n = −∞,

is a bijection.
Therefore, ϕ(n) = m , m = 1,2, · · · and ϕ(k) = j , j = 1,2, · · ·m , so that

(
∞

∑
n=−∞

(
un

n

∑
k=−∞

υk fk

)r) 1
r

=

(
ϕ(∞)

∑
ϕ(n)=ϕ(−∞)

(
uϕ(n)

ϕ(n)

∑
ϕ(k)=ϕ(−∞)

υϕ(k) fϕ(k)

)r) 1
r

=

(
∞

∑
m=1

(
ũm

m

∑
j=1

υ̃ j f̃ j

)r) 1
r

, (2.14)

and (
∞

∑
n=−∞

f p
n

) 1
p

=

(
ϕ(∞)

∑
ϕ(n)=ϕ(−∞)

f p
ϕ(n)

) 1
p

=

(
∞

∑
m=1

f̃ p
m

) 1
p

, (2.15)

where f̃m = fϕ(n) , ũm = uϕ(n) , υ̃ j = υϕ(k) .
By (2.14) and (2.15), we obtain that (2.10) holds if and only if the inequality

(
∞

∑
m=1

(
ũm

m

∑
j=1

υ̃ j f̃ j

)r) 1
r

� C

(
∞

∑
m=1

f̃ p
m

) 1
p

(2.16)

holds.
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Let 1 < p � r < ∞ . By Proposition B we get that the inequality (2.16) holds if and
only if

B1 = sup
m∈N

(
∞

∑
j=m

ũr
j

) 1
r
(

m

∑
i=1

υ̃ p′
i

) 1
p′

< ∞

holds. Moreover, since the function ϕ−1 : N → Z is a bijection, we find that

B1 = sup
n∈Z

(
∞

∑
k=n

ur
k

) 1
r
(

n

∑
i=−∞

υ p′
i

) 1
p′

= C1. (2.17)

Hence, according to (2.14), (2.15) and (2.17), we obtain that the inequality (2.10)
holds if and only if C1 < ∞ . Moreover, by Proposition B we find that C ≈C1 , where C
is the sharp constant in (2.10).

The proofs of the facts that also C2 < ∞ and C3 < ∞ are necessary and sufficient
conditions for the characterization of (2.10), and also that C ≈C2 ≈C3 , are similar so
we leave out the details. The proof is complete. �

We also need the corresponding result for other cases of possible parameters p
and r .

PROPOSITION 2.3. (i). Let 0 < p � 1, p � r < ∞ . Then the inequality (2.10)
holds if and only if

C4 = sup
n∈Z

(
∞

∑
k=n

ur
k

) 1
r

υn < ∞. (2.18)

(ii). Let 1 < p < ∞, 0 < r < p. Then the inequality (2.10) holds if and only if

C5 =

⎛⎜⎝ ∞

∑
n=−∞

(
n

∑
i=−∞

υ p′
i

) r(p−1)
p−r

(
∞

∑
k=n

ur
k

) r
p−r

ur
n

⎞⎟⎠
p−r
pr

< ∞. (2.19)

(iii). Let 0 < r < p = 1 . Then the inequality (2.10) is satisfied if and only if

C6 =

⎛⎝ ∞

∑
n=−∞

max
i�n

υ
r

1−r
i

(
∞

∑
k=n

ur
k

) r
1−r

ur
n

⎞⎠
1−r
r

< ∞. (2.20)

In all cases (i)–(iii) for the best constant in (2.10) it yields that C ≈ Bi, i = 4,5,6 ,
respectively.

Proof of Proposition 2.3. By using well-known characterizations (see [6], [7], [8],

[10], [16] and [21, p. 58]) for the cases (i)–(iii) where
∞
∑
−∞

is replaced by
∞
∑
1
, the proof

can be performed exactly as the proof of Proposition 2.2. We leave out the details.
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2.3. Some q -analogs of weighted Hardy-type inequalities

Let 0 < r, p � ∞ . Then the q -analog of the discrete Hardy-type inequality of the
form (1.4) can be rewritten in the following way:

⎛⎝ ∞∫
0

⎛⎝u(x)
x∫

0

v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

� C

⎛⎝ ∞∫
0

f p(x)dqx

⎞⎠
1
p

. (2.21)

By Proposition 2.1 we find that the inequality (2.21) can be rewritten on the fol-
lowing dual form:

⎛⎜⎝ ∞∫
0

⎛⎝v(x)
∞∫

qx

u(t)g(t)dqt

⎞⎠p′

dqx

⎞⎟⎠
1
p′

� C

⎛⎝ ∞∫
0

gr′(x)dqx

⎞⎠
1
r′

. (2.22)

We see that the (2.22) lacks some symmetry as in classical analysis.

We consider the operator (Hq f ) (x) =
∞∫
0

X(0,x](t)v(t) f (t)dqt , which is defined for

all x > 0. Although it does not coincide with the operator
x∫
0

v(t) f (t)dqt (they coincide

at the points x = qk , k ∈ Z) we have the equality

∞∫
0

⎛⎝u(x)
x∫

0

v(t) f (t)dqt

⎞⎠r

dqx =
∞∫

0

⎛⎝u(x)
∞∫

0

X(0,x](t)v(t) f (t)dqt

⎞⎠r

dqx.

Therefore, the inequality (2.21) can be rewritten as

⎛⎝ ∞∫
0

⎛⎝u(x)
∞∫

0

X(0,x](t)v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

� C

⎛⎝ ∞∫
0

f p(x)dqx

⎞⎠
1
p

, (2.23)

which will be called the q -integral analog of the weighted Hardy-type inequality. The
dual inequality of the inequality (2.23) (equivalent of (2.22)) reads:

⎛⎜⎝ ∞∫
0

⎛⎝v(t)
∞∫

0

X[x,∞)(x)u(x)g(x)dqx

⎞⎠p′

dqt

⎞⎟⎠
1
p′

� C

⎛⎝ ∞∫
0

gr′(t)dqt

⎞⎠
1
r′

.
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3. The main results

Our main result reads:

THEOREM 3.1. Let 1 < p � r < ∞ . Then the inequality (2.23) holds if and only
if

D1 = sup
z>0

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X(0,z](t)v
p′(t)dqt

⎞⎠
1
p′

< ∞

or

D2 = sup
z>0

⎛⎝ ∞∫
0

X(0,z](t)v
p′(t)dqt

⎞⎠− 1
p

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)

⎛⎝ ∞∫
0

X(0,z](t)v
p′(t)dqt

⎞⎠r

dqx

⎞⎠
1
r

< ∞

or

D3 = sup
z>0

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)dqx

⎞⎠− 1
r′

⎛⎜⎝ ∞∫
0

X[z,∞)(t)v
p′(t)

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)dqx

⎞⎠p′

dqt

⎞⎟⎠
1
p′

< ∞.

Moreover, for the sharp constant in (2.23) we have that C ≈ D1 ≈ D2 ≈ D3 .

Next, we will consider the corresponding inequality⎛⎝ ∞∫
0

⎛⎝u(x)
∞∫

0

X[x,∞)(t)v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

� C

⎛⎝ ∞∫
0

f p(x)dqx

⎞⎠
1
p

, (3.1)

for the dual operator of Hq .

THEOREM 3.2. Let 1 < p � r < ∞ . Then the inequality (3.1) holds if and only if

D∗
1 = sup

z>0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X[z,∞)(t)v
p′(t)dqt

⎞⎠
1
p′

< ∞

or
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D∗
2 = sup

z>0

⎛⎝ ∞∫
0

X[z,∞)(t)v
p′(t)dqt

⎞⎠− 1
p

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)

⎛⎝ ∞∫
0

X[z,∞)(t)v
p′(t)dqt

⎞⎠r

dqx

⎞⎠
1
r

< ∞

or

D∗
3 = sup

z>0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠− 1
r′

⎛⎜⎝ ∞∫
0

X(0,z](t)v
p′(t)

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠p′

dqt

⎞⎟⎠
1
p′

< ∞.

Moreover, for the sharp constant in (3.1) we have that C ≈ D∗
1 ≈ D∗

2 ≈ D∗
3 .

Concerning other possible parameters of p and r we have the following comple-
ment of Theorem 3.1:

THEOREM 3.3. (i). Let 0 < p � 1, p � r < ∞ . Then the inequality (2.23) holds
if and only if

D4 = sup
z>0

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X(qz,z](t)v
p′(t)dqt

⎞⎠
1
p′

< ∞.

(ii). Let 1 < p < ∞ , 0 < r < p. Then the inequality (2.23) holds if and only if

D5 =

⎛⎜⎜⎝ ∞∫
0

⎛⎝ ∞∫
0

X(0,z](t)v
p′(t)dqt

⎞⎠
r(p−1)

p−r

⎛⎝ ∞∫
0

X[z,∞)(x)u
r(x)dqx

⎞⎠
r

p−r

ur(z)dqz

⎞⎟⎠
p−r
pr

< ∞.
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(iii). Let 0 < r < p = 1 . Then the inequality (2.23) is satisfied if and only if

D6 =

⎛⎜⎝ ∞∫
0

sup
y<z

⎛⎝ ∞∫
0

X(qy,y](t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r

⎛⎜⎝
⎛⎝ ∞∫

0

X[z,∞)(x)u
r(x)dqx

⎞⎠
r

1−r

ur(z)dqz

⎞⎟⎠
1−r
r

< ∞.

In all cases (i)–(iii), for the best constant in (2.23) it yields that C ≈Di , i = 4,5,6 ,
respectively.

Finally, the corresponding complement of Theorem 3.2 reads:

THEOREM 3.4. (i). Let 0 < p � 1, p � r < ∞ . Then the inequality (3.1) holds if
and only if

D∗
4 = sup

z>0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X[z,q−1z)(t)v
p′(t)dqt

⎞⎠
1
p′

< ∞.

(ii). Let 1 < p < ∞ , 0 < r < p. Then the inequality (3.1) holds if and only if

D∗
5 =

⎛⎜⎝ ∞∫
0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
r

p−r

⎛⎝ ∞∫
0

X[z,∞)(t)v
p′(t)dqt

⎞⎠
r(p−1)

p−r

ur(z)dqz

⎞⎟⎟⎠
p−r
pr

< ∞.

(iii). Let 0 < r < p = 1 . Then the inequality (3.1) holds if and only if

D∗
6 =

⎛⎜⎝ ∞∫
0

sup
y�z

⎛⎝ ∞∫
0

X[y,q−1y)(t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
r

1−r

ur(z)dqz

⎞⎟⎠
1−r
r

< ∞.

In all cases (i)–(iii), for the best constant in (3.1) it yields that C ≈D∗
i , i = 4,5,6 ,

respectively.
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To prove these theorems, we need some Lemmas of independent interest:

LEMMA 3.5. Let f and g be nonnegative functions and

I(z) :=

⎛⎝ ∞∫
0

X(0,z](t) f (t)dqt

⎞⎠α⎛⎝ ∞∫
0

X[z,∞)(x)g(x)dqx

⎞⎠β

,

for α, β ∈ R, and where at least one of the numbers α, β is positive. Then

sup
z>0

I(z) = (1−q)α+β sup
k∈Z

(
∞

∑
j=k

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β

. (3.2)

LEMMA 3.6. Let α, β ∈ R
+ ,

I+(z) :=

⎛⎝ ∞∫
0

X(0,z](x) f (x)dqx

⎞⎠α⎛⎝ ∞∫
0

X[z,q−1z)(t)g(t)dqt

⎞⎠β

,

and

I−(z) :=

⎛⎝ ∞∫
0

X[z,∞)(x) f (x)dqx

⎞⎠α⎛⎝ ∞∫
0

X(qz,z](t)g(t)dqt

⎞⎠β

.

Then

sup
z>0

I+(z) = (1−q)α+β sup
k∈Z

(
∞

∑
i=k

qi f (qi)

)α (
qkg(qk)

)β
, (3.3)

and

sup
z>0

I−(z) = (1−q)α+β sup
k∈Z

(
k

∑
i=−∞

qi f (qi)

)α (
qkg(qk)

)β
. (3.4)

LEMMA 3.7. Let f , ϕ and g be nonnegative functions. Then

D ≡
∞∫

0

⎛⎝ ∞∫
0

X[z,∞)(t) f (t)dqt

⎞⎠α⎛⎝ ∞∫
0

X(0,z](x)g(x)dqx

⎞⎠β

ϕ(z)dqz

= (1−q)α+β
∞

∑
k=−∞

⎡⎣( k

∑
i=−∞

qi f (qi)

)α( ∞

∑
j=k

q jg(q j)

)β

qkϕ(qk)

⎤⎦ ,

for α, β ∈ R .
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LEMMA 3.8. Let k ∈ Z , α ∈ R and

F(y) :=

⎛⎝ ∞∫
0

X[y,q−1y)(t) f (t)dqt

⎞⎠α

.

Then
sup
y�qk

F(y) = (1−q)α sup
i�k

(
qi f (qi)

)α
. (3.5)

4. Proofs

Proof of Lemma 3.5. From (2.6) and (2.7) it follows that

I(z) = (1−q)α+β

(
∑

q j�z

q j f (q j)

)α(
∑
qi�z

qig(qi)

)β

.

If z = qk , then, for k ∈ Z ,

I(z) = I(qk) = (1−q)α+β

(
∞

∑
j=k

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β

.

If qk < z < qk−1, then, for k ∈ Z ,

I(z) = (1−q)α+β

(
∞

∑
j=k

q j f (q j)

)α( k−1

∑
i=−∞

qig(qi)

)β

.

Hence, for k ∈ Z and β > 0 we find that

sup
qk�z<qk−1

I(z) = I(qk) = (1−q)α+β

(
∞

∑
j=k

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β

.

Therefore

sup
z>0

I(z) = sup
k∈Z

sup
qk�z<qk−1

I(z)

= (1−q)α+β sup
k∈Z

(
∞

∑
j=k

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β

.

We have proved that (3.1) holds wherever β > 0.
Next we assume that α > 0. Let qk+1 < z < qk , k ∈ Z . Then we get that

I(z) = (1−q)α+β sup
k∈Z

(
∞

∑
j=k+1

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β
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and analogously as above we find that

sup
qk+1<z�qk

I(z) = I(qk) = (1−q)α+β

(
∞

∑
j=k

q j f (q j)

)α( k

∑
i=−∞

qig(qi)

)β

and (3.1) holds also for the case α > 0. The proof is complete. �

Proof of Lemma 3.6. According to (2.6) and (2.9) we have that

I+(qk) = (1−q)α+β

(
∞

∑
i=k

qi f (qi)

)α (
qkg(qk)

)β
,

for z = qk, k ∈ Z , and

I+(z) = (1−q)α+β

(
∞

∑
i=k+1

qi f (qi)

)α (
qkg(qk)

)β
,

for qk+1 < z < qk, k ∈ Z .
Therefore,

sup
qk+1<z�qk

I+(z) = (1−q)α+β

(
∞

∑
i=k

qi f (qi)

)α (
qkg(qk)

)β
.

Since supz>0 I+(z) = sup
k∈Z

sup
qk+1<z�qk

I+(z) , we conclude that (3.3) holds.

Next, by using (2.7) and (2.8) we find that

I−(qk) = (1−q)α+β

(
k

∑
i=−∞

qi f (qi)

)α (
qkg(qk)

)β
, (4.1)

for z = qk, k ∈ Z , and

I−(z) = (1−q)α+β

(
k−1

∑
i=−∞

qi f (qi)

)α (
qkg(qk)

)β
,

for qk < z < qk−1, k ∈ Z .
Thus,

sup
qk�z<qk−1

I−(z) = (1−q)α+β

(
k

∑
i=−∞

qi f (qi)

)α (
qkg(qk)

)β
.

Since sup
z>0

I−(z) = sup
k∈Z

sup
qk�z<qk−1

I−(z) , we have that (3.4) holds. The proof is com-

plete. �
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Proof of Lemma 3.7. By using (2.3), (2.6) and (2.7), we have that

D = (1−q)
∞

∑
k=−∞

qk

⎛⎝ ∞∫
0

X[qk,∞)(t) f (t)dqt

⎞⎠α⎛⎝ ∞∫
0

X(0,qk](x)g(x)dqx

⎞⎠β

ϕ(qk)

= (1−q)α+β
∞

∑
k=−∞

qk

(
k

∑
i=−∞

qi f (qi)

)α( ∞

∑
j=k

q jg(q j)

)β

ϕ(qk).

The proof is complete. �

Proof of Lemma 3.8. By using (2.9), we get that

F(qk) =

⎛⎝ ∞∫
0

X[qk,qk−1)(t) f (t)dqt

⎞⎠α

= (1−q)α
(
qk f (qk)

)α
, (4.2)

for y = qk , k ∈ Z , and

sup
y>qk

F(y) = sup
i�k

sup
qi<y�qi−1

F(y)

= (1−q)α sup
i�k

(
qi−1 f (qi−1)

)α

= (1−q)α sup
i�k−1

(
qi f (qi)

)α
, (4.3)

for i � k and qi < y � qi−1 .
From (4.2) and (4.3) it follows that

sup
y�qk

F(y) = max{sup
y>qk

F(y),F(qk)} = (1−q)α sup
i�k

(
qi f (qi)

)α
.

Thus, (3.5) holds so the proof is complete. �

Proof of Theorem 3.2. By using (2.3) and (2.7), we have that⎛⎝ ∞∫
0

f p(x)dqx

⎞⎠
1
p

= (1−q)
1
p

(
∞

∑
j=−∞

q j f p(q j)

) 1
p

, (4.4)

and ⎛⎝ ∞∫
0

⎛⎝u(x)
∞∫

0

X[x,∞)(t)v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

= (1−q)
1
r

⎛⎝ ∞

∑
j=−∞

q jur(q j)

⎛⎝ ∞∫
0

X[q j ,∞)(t)v(t) f (t)dqt

⎞⎠r⎞⎠
1
r
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= (1−q)1+ 1
r

(
∞

∑
j=−∞

q jur(q j)

(
∑

qi�q j

qiv(qi) f (qi)

)r) 1
r

= (1−q)1+ 1
r

(
∞

∑
j=−∞

q jur(q j)

(
j

∑
i=−∞

qiv(qi) f (qi)

)r) 1
r

. (4.5)

By now using (3.1), (4.4) and (4.5) we find that

(1−q)
1
p′ +

1
r

(
∞

∑
j=−∞

q j

(
u(q j)

j

∑
i=−∞

qiv(qi) f (qi)

)r) 1
r

� C

(
∞

∑
j=−∞

q j f p(q j)

) 1
p

.

Let

q j f p(q j) = f p
j , v j = q

j
p′ v(q j)(1−q)

1
p′ , u j = (1−q)

1
r q

j
r u(q j), j ∈ Z. (4.6)

Then we see that the inequality (3.1) is equivalent to the inequality (2.10). The
best constants in inequalities (3.1) and (2.10) are the same.

Since the inequality (3.1) is equivalent to the inequality (2.10) we can use Propo-
sition 2.2 to conclude that the inequality (3.1) holds if and only if at least one of the
conditions C1 < ∞ , C2 < ∞ and C3 < ∞ holds. Moreover, for the best constant C in
(3.1) it yields that C ≈C1 ≈C2 ≈C3 .

Hence, according to Lemma 3.5 we have that

C1 = sup
n∈Z

(
∞

∑
k=n

ur
k

) 1
r
(

n

∑
i=−∞

vp′
i

) 1
p′

= (1−q)
1
r + 1

p′ sup
n∈Z

(
∞

∑
k=n

qkur(qk)

) 1
r
(

n

∑
i=−∞

qivp(qi)

) 1
p′

= sup
z>0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X[z,∞](t)v
p′(t)dqt

⎞⎠
1
p′

= D∗
1.

In particular, C ≈ D∗
1 . Moreover, by arguing as above and using Lemma 3.6 we

obtain that C2 ≈ D∗
2 and C3 ≈ D∗

3 . Hence, for the best constant C in (3.1) it yields that
C ≈ D∗

1 ≈ D∗
2 ≈ D∗

3 . The proof is complete. �

Proof of Theorem 3.4. In a similarly way as in the proof of Theorem 3.2, by using
(2.3), (2.7) and (4.6), we find that the inequality (2.10) is equivalent to the inequality
(3.1).

Since the inequality (3.1) is equivalent to the inequality (2.10) we can use Propo-
sition 2.3 to conclude that the inequality (3.1) holds if and only if the conditions (2.18),
(2.19) and (2.20) hold, for considered cases 0 < p < 1, p � r; 1 < p < ∞ , 0 < r < p
and 0 < r < p = 1 , respectively.
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Next, we prove that the conditions (2.18), (2.19) and (2.20) are equivalent to the
conditions D∗

4 < ∞ , D∗
5 < ∞ and D∗

6 < ∞ , respectively.
By using Lemma 3.6 from (2.18) and (4.6) we obtain that

C4 = sup
n∈Z

(
∞

∑
k=n

ur
k

) 1
r

vn = (1−q)
1
r + 1

p′ sup
n∈Z

(
∞

∑
k=n

qkur(qk)

) 1
r (

qnvp′(qn)
) 1

p′

= sup
z>0

⎛⎝ ∞∫
0

X(0,z](x)u
r(x)dqx

⎞⎠
1
r
⎛⎝ ∞∫

0

X[z,−q−1z)(t)v
p′(t)dqt

⎞⎠
1
p′

= D∗
4.

Moreover, by Lemma 3.7 we have that

C5 =
∞

∑
n=−∞

(
n

∑
i=−∞

vp′
i

) r(p−1)
p−r

(
∞

∑
k=n

ur
k

) r
p−r

ur
n

= (1−q)
rp
p−r +1

∞∫
n=−∞

(
n

∑
i=−∞

qivp′(qi)

) r(p−1)
p−r

(
∞

∑
k=n

qkur(qk)

) r
p−r

qnur(qn)

=
∞∫

0

⎛⎝ ∞∫
0

X[z,∞)(t)v
p′(t)dqt

⎞⎠
r(p−1)

p−r
⎛⎝ ∞∫

0

X(0,z](x)u
r(x)dqx

⎞⎠
r

p−r

ur(z)dqz = D∗
5

Now let p = 1 so that p′ = ∞ . Then vi = v(qi) in (4.6). By Lemma 3.8 we find
that

max
i�n

v
r

1−r
i = (max

i�n
v(qi))

r
1−r =

(
(1−q)max

i�n

qiv(qi)
(1−q)qi

) r
1−r

=

⎛⎝ sup
y�qn

∞∫
0

X[y,q−1y)(t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r

= sup
y�qn

⎛⎝ ∞∫
0

X[y,q−1y)(t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r

.

Therefore,

C6 =
∞

∑
n=−∞

max
i�n

v
r

1−r
i

(
∞

∑
k=n

ur
k

) r
1−r

ur
n

=
∞

∑
n=−∞

qn max
i�n

v
r

1−r
i

(
(1−q)

∞

∑
k=n

qkur
k(q

k)

) r
1−r

ur(qn)

= (1−q)
∞

∑
n=−∞

qn sup
y�qn

⎛⎝ ∞∫
0

X[y,q−1y)(t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r

×
⎛⎝ ∞∫

0

X(0,qn](x)u
r(x)dqx

⎞⎠
r

1−r

ur(qn)



778 A. O. BAIARYSTANOV, L. E. PERSSON, S. SHAIMARDAN AND A. TEMIRKHANOVA

=
∞∫

0

sup
y�z

⎛⎝ ∞∫
0

X[y,q−1y)(t)
v(t)

(1−q)t
dqt

⎞⎠
r

1−r
⎛⎝ ∞∫

0

X(0,z](x)u
r(x)dqx

⎞⎠
r

1−r

ur(z)dqz

= D∗
6.

Thus, in all cases (i)–(iii), for the best constant in (3.1) it yields that C ≈ D∗
i ,

i = 4,5,6, respectively. The proof is complete. �

Proof of Theorem 3.1. As in the proof of Theorem 3.2 we get that the inequality
(2.23) is equivalent to the inequality

(
∞

∑
j=−∞

(
u j

∞

∑
i= j

vi fi

)r) 1
r

� C

(
∞

∑
j=−∞

f p
j

) 1
p

. (4.7)

By using standard dual arguments the characterizations similar to those in Propo-
sition 2.2 hold also in this situation (see e.g. [16, p. 59]). Here it is even simpler to just
put ũi = u−i , ṽi = v−i , f̃i = f−i , i ∈ Z , and note that then (4.7) reads

(
∞

∑
j=−∞

(
ũ j

j

∑
i=−∞

ṽi f̃i

)r) 1
r

� C

(
∞

∑
j=−∞

f̃ p
j

) 1
p

. (4.8)

Now use Proposition 2.2, and find that the inequality (4.8) holds if and only if one
of the conditions C̃i < ∞ , 1 � i � 3 holds. Note that here C̃i , 1 � i � 3, are defined by
just in the expressions for Ci inserting ũ j , ṽ j , j ∈ Z . Moreover, for the best constant
C in (4.8) it yields that C ≈ C̃1 ≈ C̃2 ≈ C̃3 .

Next, by replacing ũ j and ṽ j by u j and v j , j ∈ Z , in the expressions C̃i , 1 �
i � 3, respectively, we obtain the corresponding characterizations for the validity of the
inequality (4.7). In a similar way as in the proof of Theorem 3.2, from the equivalence
of inequalities (2.23) and (4.7) and using Lemma 3.6 we find that the inequality (2.23)
holds if and only if D1 < ∞ or D2 < ∞ or D3 < ∞ holds. Moreover, for the best
constant C in (2.23) it yields that C ≈ D1 ≈ D2 ≈ D3 . The proof is complete. �

Proof of Theorem 3.3. The equivalence between (4.7) and (4.8) holds in the case
too. Hence, by arguing exactly as in proof of Theorem 3.1 but using Proposition 2.3
instead of Proposition 2.2 the proof can be done analogously, so we leave out the details.

5. Final remarks

REMARK 5.1. Assume that v(t) = 0, u(t) = 0, f (t) = 0, t > 1 and the integrals
in the expressions Di , D∗

i , 1 � i � 6 are replaced by the integrals from zero to one and
the sets [z,∞) , [z,q−1z) are replaced by the sets [z,1] , [z,min{q−1z,1}] , respectively.
Then, by using Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, we obtain
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that the corresponding characterizations for the validity of the inequalities⎛⎝ 1∫
0

⎛⎝u(x)
1∫

0

X(0,x](t)v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

� C

⎛⎝ 1∫
0

f p(t)dqt

⎞⎠
1
p

,

and ⎛⎝ 1∫
0

⎛⎝u(x)
1∫

0

X[x,1](t)v(t) f (t)dqt

⎞⎠r

dqx

⎞⎠
1
r

� C

⎛⎝ 1∫
0

f p(t)dqt

⎞⎠
1
p

,

for all parameters r and p in these theorems.

REMARK 5.2. Note that nowadays it is known that the conditions Bi < ∞ , i =
1,2,3, in Proposition B are special cases of more general conditions. More exactly
these conditions can be replaced by infinite many conditions, namely the following
four scales of conditions (see [29] and also [17, p. 60]):

B1(s) := sup
n∈N

(
n

∑
k=1

v1−p′
k

) (s−1)
p

⎛⎜⎝ ∞

∑
k=n

uk

(
k

∑
m=1

v1−p′
m

) r(p−s)
p

⎞⎟⎠
1
r

< ∞,

for s satisfying 1 < s � p ;

B∗
1(s) := sup

n∈N

(
∞

∑
k=n

uk

) (s−1)
r′
⎛⎜⎝ n

∑
k=1

v1−p′
k

(
∞

∑
m=k

um

) p′(r′−s)
r′
⎞⎟⎠

1
r′

< ∞,

for s satisfying 1 < s � r′ ;

B2(s) := sup
n∈N

(
n

∑
k=1

v1−p′
k

)−s
⎛⎝ n

∑
k=1

uk

(
k

∑
m=1

v1−p′
m

)r( 1
p′ +s)

⎞⎠
1
r

< ∞,

for s satisfying 0 < s � 1
p ;

B∗
2(s) := sup

n∈N

(
∞

∑
k=n

uk

)−s
⎛⎝ ∞

∑
k=n

v1−p′
k

(
∞

∑
m=k

um

)p′( 1
r +s)

⎞⎠
1
p′

< ∞,

for s satisfying 0 < s � 1
r′ . Note that B1(p) = B∗

1(r
′) = B1 , B2( 1

p ) = B2 and B∗
2(

1
r′ ) =

B3 .
Our results in Theorems 3.1 and 3.2 can be generalized in a corresponding way

namely that the three alternative conditions in these theorems can be replaced by infinite
many equivalent conditions.
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REMARK 5.3. The corresponding alternative conditions for the parameters in Pro-
position 2.3 are not known except for the continuous case r < p , p > 1 where even four
scales of such alternative equivalent conditions are known (see [31]). Hence, at the mo-
ment only in this case it seems to be possible to generalize Theorems 3.3 and 3.4 in this
direction.

REMARK 5.4. Some similar results as those in this paper can found in [4] (in
Russian). However, the results in this paper are more complete and putted to a more
general frame. The proofs are also different and more precise and clear.
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Riemann-Liouville and Caputo type, arXiv:0909.0387.

[33] W. T. SULAIMAN, New types of q -integral inequalities, Adv. Pure Math. 1 (2011), 77–80.
[34] G. TOMASELLI, A class of inequalities, Boll. Un. Mat. Ital. 2 (1969), 622–631.

(Received February 17, 2015) A. O. Baiarystanov
Eurasian National University

Munaytpasov st., 5, 010008 Astana, Kazakhstan
e-mail: oskar 62@mail.ru

L. E. Persson
Department of Engineering Sciences and Mathematics
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