UiT Department of Computer Science, Faculty of Science and Technology

e A Data Management Model For Large-Scale Bioinformatics
OF NORWAY Analysis

Edvard Pedersen
A dissertation for the degree of Philosophiae Doctor

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
F11000TETrnenrrieieririileliiiilrieiel lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIGIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
IIIC!ca!IIIIIIIIIIIIIIIIIIIIII LI0T070 000000000 0000007000000 702qiqiqiqairenarqaerenenenireninenen

IIIIIIIIIIIIIIIIIIIII IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:
§~§
B
~
B
~
v
~
-
~
~
~
~
~
~y
~
-
~
~
~
-
~
-~
~
-
~
~
~
-~
~
-~
~
~
~
-
~
-~
~
g
~
-~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
“~

J
i 111 101 I l
odbaaraedbbbiaroiny I IMIMIINININIANINS Illllllllllllllllllllllll ll Illlllllll e

1

N
N
~
~
~
-
~
~
~
~
~
~
N
~
~
-y
S
~
~
~
~
N
S~
~
~
~
-~
L
~
~
~
~

AN RRR RN ANV llllllllllll 40
verbaarrrdiaiinoy I IIIMIMINMNMMIMINMIMIMNMIMMININnn llllll ” ll

RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllll aunnng

veaaaaaareair MMM IR llllllllllllllllllllllll winn
IRy I lllllllllllllllllllllll"
i Ill' l' {4 'llllllllllllllllllllllllll

qrraaaaaannnnnnnnnnnd
iy il

-

quraaananinininininen
AR RRaRaRaar 2NN 'lllll l'll'lllll ll'll'llllll'l 'lllll (4 lllll (A lllll llllllll'll lllllll'll"

[/

PO00000 J00 0000000000000 00000000000000000000000 0000000000000
AA0QRY 2000 00001
LY l""'""""""""""""""""'"'""'""'"'""'"""""""""""' LLLLLLILA
IAA00r 20000000000000000004. LLLLL] ANQR000000000 LLLLL] LILLL] 'l'l"""'l"
AL l'""""""""""""""""""""""""""""" """"" """' "

1AqNt 000000000000 0000000000000000000000000R0R0R0R0RARRRARARARARNRNRARARAGNRRRNRNNANAAS
LU """"""'"""""""""""""""""""""""""""""""""""

w l'""' " Serenany
17 J00000000000000000000000000R 000000000 RARARARARARARARRNNNARARARANNNARARARRINRARAGAIRNGNNNGAGNGNI
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

Abstract

Bioinformatics has seen an extreme data growth in later years due to the reduc-
tion in cost per megabase of sequencing, which today is around 1/400,000th
of the cost in 2001. This reduction in cost enables new types of studies, such
as searching for novel enzymes in marine environments using metagenomic
approaches. However, it also leads to an increase in volume of data, which shifts
overall cost from sequencing to analysis and data management. In addition,
the data growth means that the analysis must move from personal computers
to cluster, cloud and supercomputer infrastructure, which further complicates
data management and processing.

This increase in data volume applies to both raw data produced as well
as the size of reference databases. These reference databases are used in
analysis to e.g. compare sequences to all the known sequences, so larger
reference databases provide more accurate results. However, this increase in
analysis accuracy also increases the volume of both input data and reference
databases, which further increases analysis cost as well as the complexity of
data management and processing.

In this dissertation, we examine the challenge of data management, partic-
ularly how existing bioinformatics analysis pipelines can reduce the runtime
and hence the cost of analysis through a better data management approach.
We provide the file-based distributed data materialization (FDDM) approach
and realize it as the GeStore system to provide data management for real-world
bioinformatics pipelines. The commonly used bioinformatics analysis frame-
works do not provide efficient large-scale data management, in particular,
updating analysis results with updated reference databases and reproducing
previously computed results are costly and time-consuming. Technologies such
as distributed databases and processing systems can efficiently process large
amounts of data, but such systems are not straightforward to integrate with
existing bioinformatics workflows since these workflows typically comprise
legacy tools that are costly and time-consuming to port to new frameworks.
Our approach bridges the gap between these by providing a simple file-based
interface that makes it simple to integrate workflows using legacy tools with
modern distributed databases and data processing frameworks.

We show the need for such a system through an evaluation of the tools of a
bioinformatics pipeline that is provided as a data analysis service. Our results

ii ABSTRACT

show that the runtime of many of the most computationally intensive tools in
the pipeline scale approximately linearly with input data size, so that runtime
can be reduced by limiting the volume of data. We evaluate our implementation
of the FDDM model using synthetic- and application benchmarks. Our results
show that our implementation stores data efficiently with regards to storage
space, and retrieves data quickly. We can therefore increase the speed of
updates by up to 14 times. We integrate GeStore with three different workflow
managers to demonstrate how popular workflow managers can easily use the
FDDM approach.

To Helene

Acknowledgements

I am deeply thankful to my advisors, Lars Ailo Bongo and Nils Peder Willassen,
who have gone above and beyond in supporting my work.

In addition to my advisors, the work in this thesis is the product of the
efforts of several people. Chapter 2 is a collaboration with the members of the
Center for Bioinformatics: Espen Mikal Robertsen, Tim Kahlke, Inge Alexander
Raknes, Aleksandr Agofonov, Giacomo Tartari and Erik Hjerde.

Further support has been given by the technical staff, department and my
fellow students. In particular I would like to mention the members of the
Biological Data Processing Systems lab: Bjgrn Fjukstad, Einar Holsbg, Morten
Grgnnesby and Jarl Fagerli. Jon Ivar Kristiansen has been tireless in both
providing technical support, as well as being a central administrator of our
hardware resources.

Special thanks to Otto Anshus, Bjgrn Fjukstad, Espen Mikal Robertsen and
Inge Alexander Raknes for their invaluable comments and feedback on this
thesis.

I would like to extend my thanks to my family, which has been an incredible
support.

Thanks to the ELIXIR project for providing me with a large network of
people to exchange ideas and opinions with, this has given me a much better
understanding of the ramifications of this work.

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

I Thesis

1 Introduction
Problems With Data Management in Bioinformatics

1.1
1.2
1.3
1.4
1.5

The File-based Distributed Data Materialization Model (FDDM)

Useof FDDM o ittt i e
Summary of Results
Included Papers,

1.5.1
1.5.2
1.5.3
1.5.4
1.5.5

Paper5

1.6 DissertationPlan

2 Biological Data Analysis Pipelines
2.1 Background

2.2

2.1.1
2.1.2

Workflow managers
Data Management

Overview of Analysis Workflow

2.2.1
2.2.2
2.2.3
224
2.2.5

Sampling,
Sequencingo oL
DataAnalysis
Data Exploration
Data Archiving L.

Vil

xi

xiii

viii

CONTENTS

2.3 METAPIPE . . v v v et e e e e e 17
2.3.1 AnalysisTools 18
2.3.2 Workflow Manager 19

2.4 Hardware Infrastructures 20
241 FatServer 21
242 LabCluster 21
2.4.3 Supercomputers 22
2.4.4 Cloud Computing 22
2.4.5 Infrastructure Used by META-Pipe 23

2.5 META-pipe Performance 23
2.5.1 Methodology 23
2.5.2 Resultsand Discussion 26
2.5.3 Experiment Summary 27

2.6 RelatedWork. 27

27 Summary o. ..o e e e e e e e e e 28

GeStore 29

3.1 Motivation and Requirement Analysis. 29

3.2 Designo e e e e e e 30
3.2.1 File-based Data Management Model 31
3.2.2 Storage e 33
3.2.3 Operationso v e e e 34
3.2.4 Reference Database Caching and Internal Data Struc-

TUTES 34

3.3 Interfaces. 35
3.3.1 Plugin Framework 37

3.4 Evaluation 39
3.4.1 Methodology 39
3.4.2 Add and Update Reference Databases 40
3.4.3 Retrieve Reference Databases 42
3.4.4 Retrieve and Split Reference Database 43
3.45 SpaceUsage 44
3.4.6 Comparison to Ad Hoc Approaches 44
3.4.7 Application Benchmarks 46
3.4.8 Discussion 47

3.5 RelatedWork 48
3.5.1 Comparison of Structured Data Storage Systems . . . 48
3.5.2 Experiences using Hadoop 49

3.6 Summaryo e e e e e e 49

Integration 51

4.1 Workflow Manager Integration 51
4.1.1 The three approaches 52

4.1.2 Discussion v v e e e 55

CONTENTS

4.2 Use of Data-intensive Computing Systems in Bioinformatics .
4.2.1 Discussiono
4.3 Conclusion Lo

5 Conclusions

5.1 LessonsLearned
5.2 Availability L

6 Future Work

6.1 GeStore Improvements
6.2 Deployment Challenges and Opportunities
6.3 Quality Control and Error Detection

Bibliography

IT Collection of publications

7 Papers

7.1 Paperl
7.2 Paper2 ... e
7.3 Paper3
7.4 Paperd
7.5 Paper5

55
58
58

59
60
60

61
61
62
62

63

List of Figures

1.1

1.2

2.1
2.2
2.3

2.4

3.1
3.2
3.3

3.4
3.5
3.6

Growth of data in the UniProtKB reference database, the dip

in early 2015 is due to the removal of redundant proteomes. 4
META-Pipe runtime for a full update, as well as a one-month

and five-month incremental update. The focus here is on BLAST,
which is the most computationally expensive part of META-

Pipe in this configuration. 8
META-pipe tool architecture 20
Contribution to walltime of META-pipe tools.. 25
BLAST scaling, showing the characteristics of a linear scaling

tool. ... e 25
Annotator scaling, showing the characteristics of a sublinear

scalingtool. 26
GeStore architecture. L oL 31
How dataisstoredinHBase 33
Bandwidth usage while adding a new reference database to

GeStOore e e e e e e e e e e e e e e 41

CPU use for generating a full reference database from scratch 42
Walltime for different operations on FASTA reference databases. 44
Integration performanceresults 46

Xi

List of Tables

2.1
2.2

2.3

2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

META-Pipetools.
Comparison of hardware infrastructures. Elasticity refers to
the speed of scalingout.
Tool-by-tool overview of scalability and impact on total run-
time of pipeline on 128 and 32 cores on the medium dataset.
Total runtime is 38 hours for 128 cores, and 63 hours for 32

MetaRay performance on cloud, lab cluster and supercom-
puter infrastructure (Number for EC2 are based on 1 run).
CPU time is the aggregate time spent per CPU, while wall-
time is the time from start to finish.

File formats used as input to META-pipe tools
Parameters for GeStore get operation.
Parameters for GeStore put interface.
GeStore Java interface.,
Methods that must be implemented in file parser plugins. . .
Methods that must be implemented in file generator plugins.
GeStore add, update, and retrieve operation execution times.
Execution time for retrieve and split for the FASTA reference
database. o
Aggregate size of UniProtKB on disk and in HBase using snappy
and delta compression with a replication factor of three.

3.10 Ad hoc scripts vs. corresponding GeStore operations.
3.11 Application benchmarks for Meta-Pipe

4.1
4.2

Summary of integration approaches.
Number of articles per year for keywords MapReduce and
Hadoop (many articles are in both results). The year 2014

20

21

24

25

32
36
36
37
38
38
41

43

does not include articles published in November and December. 56

Xiii

Part |

Thesis

Introduction

The past few years have transformed biology into a data science [1], as new
instruments are producing data that require more complex data analysis. In
both commercial and life science fields, new data sources and instruments
such as sequencing machines are producing rapidly increasing amounts of
data, as seen in figure 1.1. This development has led to growth in the size
of reference databases, which are collections of the current knowledge in
bioinformatics, as well as input data. Data management and processing has
become a major limitation of existing biological data analysis frameworks. As
a result, more and more analysis projects have to expand or redesign their
analysis pipelines to support efficient distributed large-scale data management
and processing.

This development has led to the emergence of three core challenges in
bioinformatics: (i) Data management that enables efficient processing of large
amounts of data in a way that ensures reproducibility of experiments, while
enabling researchers to update experiments when reference databases are
updated without the cost of a full update. (ii) The need to use unmodified
tools for analysis, since it would require a large effort in keeping modified
tools updated. (iii) Efficiently utilizing infrastructures such as clusters, cloud
and supercomputers to provide the required I/0 throughput, elasticity and
scalability to analyze data quickly and cost-efficiently.

Existing systems solve some of these challenges, the following systems
represent data management approaches currently in use in bioinformatics.
The Galaxy workflow manager [2] manages data sets, but does not support
distribution of the data beyond network file systems (NFS), and does not

4 CHAPTER 1 / INTRODUCTION

UniProtKB size over the last 5 years
le+08

9e+07

8e+07 |-

7e+07

6e+07

5e+07 -

Number of entries

Q. G Y Y Y
%, % % % %
%, %{ &N %, @

G G, Q. O Y, Y,
<, <, g4 g4 54 54 <
%, o, o, o %, % %

K4 K4

Year/month

Figure 1.1: Growth of data in the UniProtKB reference database, the dip in early 2015
is due to the removal of redundant proteomes.

enable efficient distributed data management. The ADAM genomics pipeline
[3] and the genomics pipeline described in [4], integrate the entirety of the
pipeline with respectively the Spark [5] and MapReduce [6] frameworks. They
also use distributed storage, but require re-implementation of the pipeline in
their respective framework, which conflicts with the need to not modify legacy
tools.

We propose the file-based distributed data materialization (FDDM) model
for large-scale data management for biological data analysis frameworks. This
model is centered around the idea of file-based on-demand generation of
reference databases, input- and intermediate data. This model is based on five
core ideas: (i) a file-based interface ensures that no modifications to tools are
required; (ii) transparent incremental updates keep results up to date at low
cost; (iii) the ability to generate any previous version of reference databases
ensures reproducibility of analysis; (iv) simple query facilities enable filtering
of reference databases to reduce data volume; (v) building on existing large-
scale data processing systems allows this approach to utilize a wide range of
hardware.

We have implemented this model in the GeStore system. We have integrated
this system with three state of the art bioinformatics workflow managers. We
have evaluated the performance of one of these workflow managers with and
without GeStore. Our implementation provides up to a 14-time speedup in
analysis time for updating results with unmodified tools using incremental
updates. Query facilities allows researchers to tune reference databases to fit
the analysis, reducing execution time. Versioning ensures that experiments can
be performed with specific versions of reference databases.

Taking the long view, we also discuss the use of large-scale data manage-
ment and processing systems in bioinformatics. As biological analysis grows
in complexity and data volume, we believe that the file-based distributed data

1.1 / PROBLEMS WITH DATA MANAGEMENT IN BIOINFORMATICS 5

materialization model used in GeStore will be increasingly important for ef-
ficient execution of production pipelines that provide up-to-date repeatable
results. In the remainder of this thesis, we investigate this, framed by the thesis
statement.

Thesis Statement: A data management approach based on the file-based
distributed data materialization model can be leveraged by existing bioinformatics
pipelines to reduce runtime, keep results up to date and maintain reproducibil-

ity.

1.1 Problems With Data Management in
Bioinformatics

The current state of the art does not adequately solve the challenges of data
management in bioinformatics.

Current popular biological data analysis frameworks such as Galaxy [2],
Taverna [7, 8], and scripts using the packages in Bioconductor [9] require the
user to manually maintaining and specifying reference database versions. In
addition, reference database updates typically require re-executing the analysis
for each metadata update. Such full updates increase the computational cost,
often to the point where reanalysis is not done.

Incremental update systems [10] for large-scale data [11, 12, 13, 14, 15, 16]
maintain several versions of the experiment data compendia and reference
databases, and greatly reduce the cost of reanalysis by using incremental
updates that limits the computation to new and updated data. However, they
do not provide a transparent approach for adding incremental updates to
existing biological analysis workflows. Instead, they require either porting
applications to a specific framework (such as Dryad [17], MapReduce [6], or
Spark [5]) or implementing ad hoc scripts for input generation and output
merging.

Data warehouse approaches for biological data, such as Turcu et al [18], may
provide incremental updates for specific tools, but do not easily allow adding
new tools, nor integrating with biological data analysis frameworks

Data management in ad-hoc or script-based pipelines [19] often require
manual work to update data such as reference database versions. This process
is error-prone and requires a large effort from the pipeline maintainer.

A common issue is that the analysis of experimental data is inefficient due
to lacking query facilities. For example restricting the query space to a specific
biological kingdom or domain (e.g. human or marine) is not commonly sup-
ported in popular biological analysis pipelines [20, 21]. This leads to unneeded
data being included in the analysis, which again leads to increased analysis
time.

6 CHAPTER 1 / INTRODUCTION

Summarized, the above systems all have one or more of the following
issues:

1. Manual maintenance: Maintaining up-to-date compendia of reference
databases, input files and intermediate data is time-consuming for the
maintainer, in particular when the reference databases are frequently
updated.

2. Complicated integration: Integration between a pipeline manager and the
underlying data management system is work-intensive for the developer
if large changes are required in the workflow management system.

3. Inefficient filtering: Filtering data to reduce the scope of analysis is fre-
quently done through stand-alone filtering tools, which increases pro-
cessing time due to increased data shuffling on disk.

4. Requires changes to tools: Tools must be modified to accommodate a new
processing or storage framework, this leads to a sharp increase in the
amount of work required, since each pipeline may use tens of different
tools that are also updated periodically.

1.2 The File-based Distributed Data
Materialization Model (FDDM)

To solve the above issues, we propose the file-based distributed data material-
ization (FDDM) model. It bridges the gap between legacy biological analysis
tools and modern large-scale data management systems by leveraging these
systems on the back end, while presenting a simple file generation interface
to the workflow manager.

Previous systems are unsuited since commonly used workflow systems such
as Galaxy use files as the primary abstraction for data, while large-scale data
management systems such as Cassandra use tables as the primary abstraction
for data. The FDDM bridges this gap by providing a simple interface to generate
files from data in tables.

The features we have identified as particularly useful are

1. Incremental updates of results: Updating results through only updating
the relevant subsets of data reduces computational costs, we do this
through incremental updates.

2. Filtering of data: Removing unneeded data by only using specific data
groups reduces computational cost. We do this through the filtering
system.

3. On-demand generation of versioned reference databases: Reproducing ex-
periments requires using the same version of reference databases. By

1.3 / USE OF FDDM 7

producing these on demand, experiments can be reproduced on demand.

4. Provenance recording: Conserving provenance is needed to ensure repro-
ducibility, we do this through automatically and uniquely identifying and
storing the data sets used in an experiment.

5. Post-processing of data with legacy tools: Incremental updates can intro-
duce inaccuracies in the results due to a mismatch between the real
reference data size and the incremental data size. We facilitate this
through the plugin system.

1.3 Use of FDDM

We have integrated our implementation of FDDM, GeStore, with three workflow
managers, using three distinct approaches.

Direct Integration. Where we use a command-line interface for GeStore
to produce files for tools in the workflow manager. We used this approach for
a script-based META-pipe workflow manager [20]. Direct integration provides
transparency for the user while the workflow manager can utilize the features
of GeStore fully, but requires larger changes to the workflow manager than the
other two approaches.

File System Integration. Where we use an HDFS-like interface, so that
GeStore can serve as a distributed file system. This approach was used for the
Hadoop-based IMP pipeline [22]. This also enables the workflow manager to
control GeStore through path- and file names, and is well suited to workflow
manager that already use a distributed file system. The drawbacks of this
approach is that it is difficult to fully utilize the features of GeStore without
introducing further changes into the structure of the file storage, such as
changing directory structures and naming schemes.

Tool-based Integration. Where we integrate GeStore into a workflow as
a standalone tool executed before and after the other tools in the pipeline.
This approach was used for the Galaxy workflow manager [2]. This allows the
end-user full control over the use of GeStore, so that the use of the GeStore
features can be tailored to each pipeline. The drawbacks of this approach is
that the user is responsible for how GeStore is used, which requires the user
to have knowledge of how to use GeStore for a pipeline.

1.4 Summary of Results

Our performance evaluation of a real-world pipeline with and without GeStore,
shows the potential for large savings in analysis time, on the order of 14 times
speedup for monthly updates, when compared to updating results by re-running

8 CHAPTER 1 / INTRODUCTION

5 months .

Other tools
1 month mBLAST

GeStore overhead

0 5000 10000 15000 20000 25000

Figure 1.2: META-Pipe runtime for a full update, as well as a one-month and five-
month incremental update. The focus here is on BLAST, which is the most
computationally expensive part of META-Pipe in this configuration.

experiments fully when reference databases are updated (figure 1.2).

Our evaluation of GeStore, where we investigate the performance charac-
teristics of individual operations in GeStore, shows that the system has low
overhead, and fully utilizes the aggregate bandwidth in our cluster. It is held
back primarily by the post-processing required for some legacy tools, such as
converting reference databases to a binary format. In addition, we also demon-
strate that the built-in caching functionality in GeStore can further reduce
overhead.

Our evaluation of a real-world pipeline, where we evaluate the scalability
on input data size of individual tools in the pipeline, shows that the largest
contributors to the runtime of the pipeline are tools that scale well with regards
to data size, and as such can benefit from using GeStore to reduce the volume
of data.

Our integration of GeStore and three real-world workflow managers, where
we have used three distinct approaches to enhance workflow managers with
support for GeStore, shows that integration can involve few lines of code (60-
300), and as such demonstrates that GeStore can be used easily in different
workflow managers.

Together, these results show that the GeStore system for data management
can be leveraged by existing bioinformatics pipelines to reduce runtime and
keep results up to date.

1.5 / INCLUDED PAPERS 9

1.5 Included Papers

In this section, I will give a short overview, and list my own contributions, to
each paper included in this thesis in the order they are discussed. For each
paper, I have contributed with writing.

1.5.1 Paper1
Title META-pipe - Pipeline annotation, analysis and visualization
of marine metagenomic sequence data.
Authors Espen Mikal Robertsen, Tim Kahlke, Inge Alexander Raknes,
Edvard Pedersen, Erik Kjeerner Semb, Martin Ernstsen, Lars
Ailo Bongo, Nils Peder Willassen.
Description This paper describes the biological context, design and

implementation of META-Pipe 1.0, and an experimental
evaluation of the pipeline tools?.

My contribution

The experimental design, execution and result analysis, and
presentation of META-Pipe performance.

Publication date

14.04.2016

Publication venue

Archived in arXiv.

Citation

[20] Robertsen, E.M., Kahlke, T., Raknes, I.A., Pedersen, E.,
Semb, E.K., Ernstsen, M., Bongo, L.A., Willassen, N.P.: Meta-
pipe - pipeline annotation, analysis and visualization of ma-
rine metagenomic sequence data (2016) arXiv:1604.04103

1.5.2 Paper2

Title Large-scale biological reference database management.
Authors Edvard Pedersen, Lars Ailo Bongo.
Description This paper describes the GeStore approach to data man-

agement and the design of the GeStore system, as well as
providing an experimental evaluation 2,

My contribution

I developed GeStore and did the experimental design, exe-
cution and evaluation of GeStore.

Publication date

In press.

Publication venue

Future Generation Computer Systems.

Citation

[25] E. Pedersen and L. A. Bongo, "Large-scale Biologi-
cal reference database Management," in Future Generation
Computer Systems, in Press.

10

1.5.3 Paper3

CHAPTER 1 / INTRODUCTION

Title Integrating data-intensive computing systems with biologi-
cal data analysis frameworks.

Authors Edvard Pedersen, Inge Alexander Raknes, Martin Ernstsen,
Lars Ailo Bongo.

Description This paper describes three approaches for integrating Ge-

Store with workflow managers.

My contribution

The integration between GeStore and several workflow
managers.

Publication date

06.03.2015

Publication venue

23rd Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing.

Citation

[26] E. Pedersen , I. A. Raknes, M. Ernstsen , and L. A.
Bongo, “Integrating Data Intensive Computing Systems
with Biological Data Analysis Frameworks,” in Proc. of 23rd
Euromicro International Conference on Parallel, Distributed
and Network-based Processing. IEEE, 2015, pp. 733-740.

1.5.4 Paper4

Title Data-intensive computing infrastructure systems for un-
modified biological data analysis pipelines.

Authors Lars Ailo Bongo, Edvard Pedersen, Martin Ernstsen.

Description This paper summarizes our experiences using the Hadoop

software stack in several projects, as well as a literature
review which gives an indication of the use of large-scale
data management systems in bioinformatics.

Mye contribution

I have contributed the experiences related to GeStore, as
well as contributing to the literature review.

Publication date

26.06.2014

Publication venue

Computational Intelligence Methods for Bioinformatics and
Biostatistics.

Citation

[27] L. A. Bongo, E. Pedersen, and M. Ernstsen, “Data-
Intensive Computing Infrastructure Systems for Unmodi-
fied Biological Data Analysis Pipelines,” in Computational
Intelligence Methods for Bioinformatics and Biostatistics, ser.
LNBI, vol. 8623, 2014.

1.6 / DISSERTATION PLAN "

1.5.5 Papers

Title Big biological data management.
Authors Edvard Pedersen, Lars Ailo Bongo.
Description This non-peer reviewed book chapter gives an overview of

large-scale data management for bioinformatics, challenges
and approaches.

My contribution I wrote this book chapter.

Publication date In press.

Publication venue Computational Intelligence Methods for Bioinformatics and
Biostatistics.

Citation [28] E. Pedersen and L. A. Bongo, Resource Management

for Big Data Applications. Springer, 2016, ch. Big Biological
Data Management. In Press.

1.6 Dissertation Plan

This thesis is organized as follows. Chapter 2 gives an overview of the current
state of the art and challenges of data management in bioinformatics. Chapter 3
describes our approach to data management for bioinformatics and the GeStore
system. Chapter 4 details the different strategies used to integrate GeStore with
different legacy workflow managers and execution environments. We conclude
in chapter 5 and we finally outline future work in chapter 6.

Biological Data Analysis
Pipelines

In biology, data is typically analyzed by processing through a pipeline consisting
of tools, where the output of each tool serves as the input for the next tool. These
pipelines are created and managed in workflow managers, which also execute
the pipelines on diverse execution environments, such as supercomputers or
cloud infrastructure. Different types of data are used throughout the pipeline,
such as input-, reference-, intermediate-, and output data. Visualizations of
results, created from pipelines, are usually interpreted by domain-specific sci-
entists [2]. We describe this approach briefly, with some details about the tools
used in this process in relation to data management and processing.

We have implemented one such pipeline in the form of META-pipe [20]7,
which we use as a case study. We describe our experiences in the development
of this pipeline, and put it into a broader context within bioinformatics in
relation to data management. The META-pipe pipeline is motivated by (i) pro-
viding a specialized analysis pipeline for marine metagenomics? for national
and international users through the NeLS [29] and ELIXIR [30] projects, re-
spectively; (ii) providing a pipeline that is used to create a marine reference

1. META-pipe was initially developed by Tim Kahlke, then improved by Espen Mikal Robertsen,
Inge Alexander Raknes, Giacomo Tartari and Aleksandr Agafonov.

2. Note that META-pipe is not exclusively used for marine metagenomics, but in the interest
of simplicity, we focus on marine metagenomics in this thesis.

13

14 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

database. These use cases require a scalable and optimized pipeline, therefore
we have closely investigated the scalability and performance of tools, infras-
tructures and frameworks. The results of this evaluation are summarized in
this chapter.

2.1 Background

A computer system for analyzing biological data typically consists of four main
components: input data, reference databases (i.e. the databases used in the
analysis), a set of tools in a workflow, and finally output data for interactive
analysis. Biotechnology instruments such as short-read sequencing machines
produce the input data. The input data can also be downloaded from public
repositories such as GEO [31] and ENA [32]. There are hundreds of refer-
ence databases with human or machine curated meta-data extracted from the
published literature and analysis of experimental data [33]. The datasets and
databases range in size from megabytes to many terabytes.

A series of tools process the data in a pipeline where the output of one tool
is the input for the next tool. The data transformations includes file conversion,
data cleaning, normalization, and data integration. A specific biological data
analysis project often requires a deep workflow that combines many tools [4].
There are many libraries [2, 9, 34] with hundreds of tools, ranging from small,
user-created scripts to large, complex applications.

To summarize, the typical analysis of biological data involves the following
steps:

1. Retrieve the sample (e.g. collecting sediment from the sea floor).

2. Analyze the sample using specialized hardware (e.g. a sequencing ma-
chine).

3. Perform quality control on the data produced in analysis.

4. Run the data through a pipeline to produce the output data the researcher
wants.

5. Interpret the output data.

2.1.1 Workflow managers

The analyst specifies, configures, and executes the analysis pipeline using a
workflow manager [19]. The workflow manager provides a way of specifying
the tools and their parameters, management of data and meta-data, and exe-
cution of the tools. In addition, a workflow manager may enable data analysis
reproducibility by maintaining provenance data such as the version and pa-
rameters of the executed tools. It may also maintain the content of input data

2.1/ BACKGROUND 15

files, reference databases, output files, and possibly intermediate data.

A workflow manager may comprise a set of scripts run on a specific platform,
or a system that maps high-level workflow configuration to executable jobs
for many platforms. There are also managers [2, 7] that provide a graphical
user interface for workflow configuration, and a backend that handles data
management and tool execution.

The two most popular of these are Galaxy [35, 2] and Taverna [7, 8]. Both
provide intuitive interfaces, in which users can create their own pipelines as well
as tune parameters in a graphical interface. The server for Galaxy and Taverna
run on a single machine. If the lab does not use the fat server infrastructure
exclusively, jobs that are executed through the workflow manager are executed
on the infrastructure remotely.

In addition, many labs run pipelines through their own specialized workflow
managers [19]. The complexity and feature sets of these workflow managers
vary greatly. However, it allows the developers to provide a more streamlined
interface that is tailored to their pipeline.

2.1.2 Data Management

In this chapter, the following definitions for different types of data are used:
(i) Contextual data, which is information about the samples, such as where
and when they were collected; (ii) Meta-data, which includes provenance
information, and descriptions of machines and tools used, and (iii) Data, which
includes the input data, intermediate analysis data, and output data.

Typically in bioinformatics, data is managed by workflow managers by
packaging reference databases with tools, and versioning them together (such
as in [36]). This allows provenance to be preserved, as the tool version and
the reference database are uniquely identifiable, allowing the analysis to be
repeated at a later date. Contextual information is generally managed by the
user, with some exceptions (including the European Nucleotide Archive (ENA)
[32] that collects contextual data when the researcher submits data).

The intermediate data is sometimes presented to the user as part of the
optional output. Other times, the intermediate data is deleted as soon as it is
used by the next step in the pipeline as a means to save storage space. This is a
common tradeoff between how much storage space some results need, versus
how long it takes to compute those results.

Output data as well as metadata such as tool and database versions are
conserved for the user. It can be archived by the analysis service (such as ENA)
to enable future replication and comparisons to new experiments. The policy
for how long to keep this data, and if it is archived, is enforced by the workflow
manager or administrator of the service.

16 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

2.2 Overview of Analysis Workflow

In this section, we give an overview of how data is typically collected, processed
and analyzed in biology in the context of metagenomics, from sampling to
visualization. We focus on the data management and analysis, and as such only
give a brief overview of the other steps involved.

2.2.1 Sampling

For many metagenomics studies, data analysis starts by collecting samples
that consist of soil, water or other media that contains living microorganisms
directly from the environment.

There are several standards for meta-data that should be recorded to
document metagenomic samples. M2B3 [37] gives an overview of the required
metadata annotations for metagenomic samples, such as how to record position,
collection equipment and environment.

2.2.2 Sequencing

Once the samples are collected, they are processed in the lab for isolation of
DNA and construction of sequencing libraries. The DNA libraries are sequenced
using sequencing machines, which range from small-scale sequencing machines
such as the 454 Sequencing GS Junior which produces up to 35 megabases per
run, to high-throughput machines such as the Illumina HiSeq X Ten, which
produces up to 1.8 terabases per run.

The sequencing machines usually include a pipeline, which is executed to
produce machine-readable FASTQ files, which contains the raw DNA sequence
as well as quality information, from the huge number of image files used
internally in the machine. These pipelines are vendor-specific, so the output
from the machines is relatively uniform and easy to manage.

The sequences that are the output from modern sequencing machines tends
to be quite short (such as the Illumina HiSeq X, which produces 2x150 base pair
reads). The short read length may be a challenge when attempting to classify
which gene or genome a sequence belongs to.

In addition to the output size and read length being different, each technol-
ogy has its own peculiarities, such as "primer sequences", which may have to be
removed from the resulting sequences before they can be analyzed. The quality
of different parts of the reads may also vary, with some machines having a lower
confidence for each base pair at the start or the end of the sequence.

2.3 / META-PIPE 17

2.2.3 Data Analysis

After the sequencing machines have generated the machine-readable reads,
these files are used as input to an analysis pipeline, which consists of a sequence
of tools, where the output of one tool acts as the input of the next. The META-
pipe pipeline is described in detail in section 2.3.1.

The stages of the pipelines vary by the analysis used, and even within
types of analysis. For example the EBI Metagenomics [38] pipeline differs from
META-pipe in that it does not do assembly of reads into longer contigs before
analysis.

2.2.4 Data Exploration

The results of the data analysis are interpreted by an analyst. The data is
visualized in a way that a human can interpret through software such as
METARep [39], Krona [40] and many others.

The visualization software is often integrated into the pipeline, so that the
output of the pipeline is visualized directly in addition to the machine-readable
analysis results.

Data interpretation and visualization is not a focus in this thesis, and
as such will not be discussed as part of the performance metrics or other
evaluations.

2.2.5 Data Archiving

When publishing results in biology, it is often a requirement that the data
is accessible, as well as the metadata and the output data from the analysis
pipeline [41].

The data used in the analysis is usually archived in repositories such as
ENA [32] after analysis is complete. This includes both the raw data, as well
as metadata and contextual data such as is described in section 2.1.2.

In this thesis, we have not focused on data archiving, since our focus is on
data management during analysis.

2.3 META-pipe

META-pipe is a pipeline for analyzing and annotating metagenomics data. It is
developed at the Center for Bioinformatics (SfB) at UiT - The Arctic University
of Norway, as a part of the ELIXIR [30] project.

The goal of the META-pipe pipeline is to be the world-leading pipeline

18 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

for marine metagenomics analysis, both functional and taxonomic. META-
pipe is currently deployed as a national service, and is being deployed as an
international service.

Previous analysis resources have demonstrated their usability for metage-
nomics data analysis, including EBI-Metagenomics [42, 43], Metagenomics-
Rapid Annotations using Subsystems technology (MG-RAST) [44] and Inte-
grated Microbial Genomes and Metagenomes (IMG/M) [45]. However, these
are not developed for the marine metagenomics domain and do not offer the
extensive annotation options, flexibility and visualization needed to select inter-
esting biological targets for further investigation. In particular, there is a need
to produce full-length annotated genes from metagenomic assemblies. In addi-
tion, these are typically run on a server administered by a single organization,
often resulting in scalability problems for free to use resources, or costly fees
for pay to use services. There is therefore a need to develop a scalable pipeline
for the marine metagenomics field. To ensure fast development, scalability to
flagship projects, and easy deployment of the pipeline, it should utilize existing
frameworks and infrastructure resources and services when possible.

To support many users and large-scale data, META-pipe utilizes super-
computing resources at the UiT - The Arctic University of Norway, as well as
integrating with existing workflow managers to adapt the national infrastruc-
ture. In addition cloud systems are required to provide elasticity when faced
with a large number of concurrent users and large datasets. Initial efforts were
focused into integrating META-pipe with Norwegian infrastructure resources.
We are integrating META-pipe with compute platforms (such as EGI Federated
Cloud [46], EMBL Embassy Cloud [47], CSC cPouta [48]) and storage resources
(such as EUDAT [49]) provided in the ELIXIR infrastructure. We use ELIXIR
services such as AAI for authentication, data transfers to collaborate with other
ELIXIR nodes on data storage, and tool registries to coordinate our service
with others.

A prototype of the next version of META-pipe has already been created, but
not published. This involves a major redesign to take advantage of more possible
computing infrastructures at the same time. This has been done to increase
the flexibility of the pipeline, as well as reducing the amount of work required
to maintain compatibility with different computing infrastructures.

The prototype has been written in Scala and Java, utilizing the Spark
framework for job execution and parallelism. It has not been used for evaluation
in this thesis since it was not ready for use at the time the experiments were
done.

2.3.1 Analysis Tools

In our work, we differentiate between four classes of tools: (i) data transforma-
tion tools that convert data from one file format to another, generate sequence

2.3 / META-PIPE 19

files from offset files, and other tasks which primarily involve reading and writ-
ing data. (ii) quality management tools, such as FastQC [50] and Prinseq [51],
which help to evaluate the quality of data. (iii) data comparison tools, such as
BLAST [52], HMMer [43, 36] and Priam [53], which compare the input data
with reference databases to produce some output, such as finding the most
similar annotated sequence to a given input sequence. (iv) data processing
tools, which use a rule set to process the input data to produce a new data set,
examples include assembling reads into longer contigs with e.g. Mira [54, 55]
or MetaRay [56, 57] and predicting genes in a contig with tools including
MetaGeneAnnotator [58, 59] or Glimmer [60, 61].

The tools used in META-pipe are summarized in table 2.1. The data pro-
cessing tools that assemble reads into longer contigs used in META-Pipe are
MetaRay and MIRA. The alternatives to these are somewhat limited, but include
ABySS [62], and Spaler [63]. A limitation with these tools is that they require
large amounts of memory (hundreds of GB), and are notoriously difficult to
parallelize 3.

For quality assessment, FastQC is currently used as a manual step in META-
Pipe. We would like to automate this step, as well as add quality management
to additional stages of the pipeline. This is a challenge since we are not
able to detect all errors with FastQC or similar software, due to the highly
heterogeneous data quality requirements for different analysis types. We are
currently investigating alternatives and research in this area.

The tools contributing most to the execution time of the pipeline are the
comparison of input data to reference data. This is done with the Basic Local
Alignment Search Tool (BLAST) [52], PRIAM [53] and InterProScan [36]. These
tools generally scale very well, and therefore we are not actively searching for
replacements of these.

Finally, the locally developed data transformation tools, which have already
been described, are simple enough to be replaced by simple Scala code in
the next version of META-Pipe, not much effort has been put into finding
alternatives for these.

It should be noted that the parallelizability of the tools vary greatly, and
for us this has dictated the choice of tools.

2.3.2 Workflow Manager

The design of META-pipe 1.0 builds on the design of the GePan pipeline [64].
This design has been extended to incorporate more tools, as well as run on
HPC infrastructure.

The pipeline is started through the Galaxy workflow manager interface by

3. The new version of META-pipe does not use a parallel assembler, since we have not found
one which performs well enough.

20 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

Tool name Type CPU | RAM | Network | Disk
Mira Processing High | High | None Low
Ray Processing High | High | High Low
MetaGeneAnnotator | Processing Low | Low | None Low
Glimmer Processing Low | Low | None Low
BLAST Data comparison High | Low | None Low
Priam Data comparison Low | Low | Low Low
HMMer Data comparison High | Low | None Low
Data transformation | Data transformation | High | Low | High High

Table 2.1: META-Pipe tools.

Galaxy web interface

Feide Available pipelines

(authenﬁcation) and other workflows Norstore
META-pipe NeLS Norwegian
User access storage < sequencing
(internet) Galaxy NeLS \ centers
files __files European
Stallo Nucleotide
Exccute | supercomputer —tive]

Figure 2.1: META-pipe tool architecture

the user. META-pipe runs the pipeline by generating scripts for each tool in the
pipeline. These scripts manage the data, as well as executing the tools. These
scripts are sent to the computing infrastructure (in this case Stallo). The data
is then copied back to the Galaxy instance, and visualized to the user by way
of Metarep and Krona.

Galaxy was chosen as the common user interface in the Norwegian e-
Infrastructure for Life Sciences (NeLS) project, since we believe it is the most
popular, and hence most familiar, workflow manager for bioinformatics. In addi-
tion, some of the partners in the NeLS project already had previous experience
using Galaxy for the Lifeportal [65].

2.4 Hardware Infrastructures

As the tools described in section 2.3.1 have heterogeneous requirements for
efficient operation, the choice of hardware infrastructure can have an impact
on the performance and cost of an analysis pipeline, which is vital due to the
data growth in bioinformatics. In this section we present a short overview the

2.4 / HARDWARE INFRASTRUCTURES 21

Infrastructure Elasticity Cost

Fat server None Up-front

Lab Cluster Long-term | Up-front
Supercomputer | Immediate | Varies

Cloud Immediate | Pay-as-you-go

Table 2.2: Comparison of hardware infrastructures. Elasticity refers to the speed of
scaling out.

most popular hardware infrastructures used for biological data analysis, this is
summarized in table 2.2.

2.4.1 Fat Server

A fat server is a term used to describe a high-performance single machine, which
may have more RAM, disk space and CPUs than a desktop computer.

Many tools in bioinformatics were originally designed to run on a single
machine, and as such are optimized around a single high-performance machine.
A typical task for this type of machine is assembly of reads, which is difficult
to parallelize efficiently across multiple computers and has very large memory
requirements (hundreds of gigabytes).

The advantages of the fat server are that the up-front cost can be relatively
low, and jobs can run for longer than on a personal computer.

The disadvantages of this approach is that it is not possible to scale out
to more machines to respond to increasing demands on the infrastructure. In
addition, the machine must be maintained, so the aggregate costs can grow to
be relatively large over time.

2.4.2 Lab Cluster

A lab cluster consists of multiple machines in a local area network (LAN),
typically commodity machines, which allows more aggregate performance
than a single machine.

The cluster usually uses consumer-grade components, such as relatively low-
speed (gigabit) Ethernet, consumer CPUs and a modest amount of RAM.

The advantages of this approach are that the aggregate performance can
be an order of magnitude higher than a fat server, or allow multiple jobs to
run at the same time.

The disadvantages are the high up-front costs, as well as maintenance costs.
In addition, the hardware may not be ideally suited to each tool, as some tools
may require large amounts of RAM or a high-speed interconnect.

22 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

2.4.3 Supercomputers

Supercomputers have been used by the scientific community for a long time,
including bioinformatics, chemistry, physics, astronomy and meteorology.

Supercomputers are generally built up by a huge number of relatively low-
powered nodes, with a high-bandwidth and low-latency interconnect. Storage is
usually centralized, and accessed over a high-speed network connection.

The advantages of this approach are the availability of a large number
of nodes without a large up-front cost for the lab using it. In addition the
interconnect enables communication-intensive jobs.

The disadvantages are that not everyone, particularly outside of academia,
has access to a supercomputing cluster. In addition, the queue times for jobs
may make smaller jobs impractical. Data-intensive jobs may also be a poor
fit since the storage or networking infrastructure may not scale. In addition,
changes to the hardware and software stack may be impractical to do for a
researcher.

2.4.4 Cloud Computing

Cloud computing is an alternative to the lab cluster and even supercomputers
in later years. Software-as-a-Service platforms are common, and the use of
Infrastructure-as-a-Service is on the rise.

There are several types of cloud computing services, with the most attractive
approaches for scientists being commercial, such as Amazon EC2 [66], Microsoft
Azure [67] and Google Cloud Platform [68], and academic efforts such as CSC
cPouta [48]. The infrastructure on offer is highly diverse, with Amazon offering
instances such as the X1, which is similar to a fat server, to the relatively small
T2 instances, which are low-performance virtual machines.

Commercial clouds store large-scale biological datasets (as in Amazon
AWS [69]), and provide the compute resources for analyzing the datasets (e.g.
Amazon EC2 [66]). Cloud services such as EC2 run virtual machines provided
by the user in very large data-centers. The user only pays for the resources
used.

The advantages of elasticity and minimal wait time for running jobs, as well
as no up-front costs make the cloud an attractive alternative. In addition, the
ability to tailor the cluster to an application through different virtual machine
images and instance types means that a wide range of tools can be used.

These attractive properties are tempered by high long-term cost for production-
type jobs, and being locked into a particular underlying software infrastructure
based on what the cloud provider provides.

2.5 / META-PIPE PERFORMANCE 23

2.4.5 Infrastructure Used by META-Pipe

META-pipe was originally designed to run on a lab cluster. Currently, it has
been expanded to run on supercomputer infrastructure, and integration with
cloud platforms has begun.

As the use of META-pipe has increased, our 12-node commodity lab cluster
proved too small to provide sufficient performance for multiple concurrent users.
A quota on the local supercomputer (Stallo) was available for us, we decided
to integrate META-pipe with Stallo, which provides higher performance.

To increase the elasticity of the service to the levels required to support large
metagenomic projects, multiple infrastructures are currently being explored,
such as three different cloud providers (Amazon Web Sevices, CSC cPouta and
EMBL Embassy Cloud). The plan is to extend the supercomputer support with
the ability to commission cloud resources on demand.

2.5 META-pipe Performance

To motivate the need for the FDDM model, we conduct a performance analysis
of META-pipe. The two main questions we want to answer are: (i) which tools
in the pipeline scale well with regards to data size; (ii) to what extent do these
tools contribute to the overall runtime of META-pipe.

META-pipe scales to multiple nodes by splitting the input data into the same
number of chunks as there are nodes. An evaluation of the tools in META-pipe
running on more nodes is therefore an evaluation of the scalability of the tool
with regards to data size. We also run experiments with different cutoffs from
the assembly, which produces different input sizes for the rest of the pipeline,
to verify this assumption.

2.5.1 Methodology

For the evaluation, we run META-pipe on the Stallo Supercomputer. We used
32, 64 or 128 of the 18.144 cores. Our jobs allocated one core per process (32,
64, or 128). We cannot choose the nodes allocated for a job or the number of
cores allocated per node, but we assumed that the process to node mapping
does not influence the execution time of our jobs. This assumption does not
always hold as discussed below. When a job is submitted to the queue, it is
blocked until the queue system allocates the requested resources. This is done
in a semi-round-robin system, with additional priority given to smaller jobs,
and for users that have few jobs running.

For the evaluation we use the “Muddy” (European Nucleotide Archive
sample accession: SAMEA3168559) marine metagenomic sediment sample

24 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

Tool 128 cores | 32 cores | Scalability
Ray 45% 21% Sublinear
MGA 0% 0% No

MGA Exporter | 5% 3% No
FileScheduler | 0% 0% No
InterProScan 15% 33% Linear
Priam 0% 0% Linear
BLASTp 13% 31% Linear
Annotator 13% 6% Sublinear
Exporter 9% 5% No

Table 2.3: Tool-by-tool overview of scalability and impact on total runtime of pipeline
on 128 and 32 cores on the medium dataset. Total runtime is 38 hours for
128 cores, and 63 hours for 32 cores.

from the Barents Sea. This dataset is representative for medium sized (9 GB)
and high complexity marine metagenomics dataset that we expect most of
META-pipe users will analyze. Note that the performance and hence scalability
of the tools may depend on the input data complexity, size, quality, and the
sequencing technology used to generate sequence data. Complex datasets
which are rich in terms of unique organisms present and abundance, and
that have large size and low quality base calling, will increase memory usage
and affect performance in de Bruijn graph assemblers such as MetaRay [56].
Different sequencing technologies will also contribute with their respective
sequencing traits, such as average read length and unique sequence quality
flaws.

We evaluated the scalability of functional analysis tools with respect to
dataset size by choosing a different cutoff length for the results from MetaRay.
The "Medium" dataset, which we have used for the scalability experiments, has
a cutoff of 300 nucleotides, and a size of 21 MB. "Small" has a cutoff of 400
nucleotides, resulting in an input size of 12 MB. "Large" has a cutoff size of 250
nucleotides, resulting in a 34 MB input file.

For the MetaRay experiments, the input data was stored on the shared file
system on Stallo. For the META-pipe experiments, the input data was loaded
from Galaxy.

Note that we only vary the input data size from the assembly. However, as
the analysis tools using references databases compare the sequences in the
input data to the entries in the reference database, a reduction in reference
database size has the same effect as a reduction in input data size.

2.5 / META-PIPE PERFORMANCE 25

Infrastructure Nodes CPU time | Walltime
Cloud (EC2) 20 (m4.2xlarge, 8o cores, 8 GB | 615H 7H41M
RAM per core, high-bandwidth
interconnect)
Cluster (ICE2) 9 (36 cores, 8 GB RAM per core, | 277H 7H42M
gigabit interconnect)
Supercomputer | 10 (80 cores, 16 GB RAM per | 918H 11H28M
(Stallo) core, infiniband interconnect)

Table 2.4: MetaRay performance on cloud, lab cluster and supercomputer infrastruc-
ture (Number for EC2 are based on 1 run). CPU time is the aggregate time
spent per CPU, while walltime is the time from start to finish.

© 50%

40%

30%

20%

10%

» ml .|

=
RS

Percent of total runtim

S
S
2>

&
J N & R
v@& %é‘e’ < v«\‘\o
*© <®
Summary of tool contribution to runtime
Figure 2.2: Contribution to walltime of META-pipe tools.
1200001 1200001
100000 ! 100000+
800001 . __ 80000
— (2]
e e o
-~ © 60000
GEJ 60000 . £)
= : . " 40000} i :
40000 { — i : : |
: 20000 . =
20000 — —=
0
> & &
0 S N &
oV > R, &
(a) Number of CPUs (b) Data set size

Figure 2.3: BLAST scaling, showing the characteristics of a linear scaling tool.

26 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

120000 1200007
100000 100000 |
80000
___ 80000 ”
< © 60000
© 60000 g
£ =
= 40000
40000
20000 j
20000
?) &
0 y rg{(\ b\\) \'Z§
rbq/ Q)b‘ \rf/b ((\Q)
(a) Number of CPUs (b) Data set size

Figure 2.4: Annotator scaling, showing the characteristics of a sublinear scaling tool.

2.5.2 Results and Discussion

The tools we use in META-pipe are listed in table 2.3, and an illustration of
their contribution to runtime can be seen in figure 2.2. An example of a tool
that scales well (BLAST) can be seen in figure 2.3, and one that scales poorly
(the annotator) can be seen in figure 2.4.

Our results show that the two largest bottlenecks in the pipeline are the
assembly of raw reads into longer contigs (45% of runtime for 128 cores) and the
locally developed data processing tools (27% of runtime for 128 cores).

These data processing tools (the two exporters and the annotator) con-
tribute to 50% of the functional analysis execution time using 128 cores (when
not including the assembly step). In addition, with increasing dataset sizes the
computation time exponentially increases. However, this is due to an ineffi-
cient implementation. We re-implemented these tools (but did not integrate
these with the other tools in the pipeline), and reduced the execution times
on the medium dataset with 128 cores to respectively 1 second for the MGA
exporter, and 5 seconds for the Annotator and Exporter that we combined into
a single tool running on a single node (the re-implemented tools are available
at https://github.com/emrobe/META-pipe). The performance of these proto-
types leads to these tools being less than 1% of the total runtime combined.
META-Pipe 2.0 includes an implementation with performance similar to the
prototypes for these stages.

The assembly step is more complex to optimize. The main issues here are
that single-machine assembly requires large amounts of memory, and the multi-
machine implementations do not scale linearly. We have run some preliminary
experiments with MetaRay on Amazon EC2, Stallo and our lab cluster, the
results can be seen in table 2.4. Note that the numbers for EC2 are from a single
run (but we have not observed significant variance), while the others are the

https://github.com/emrobe/META-pipe

2.6 / RELATED WORK 27

average of three runs.

Several promising alternative assemblers are emerging, such as Spaler [63],
as well as a project under development at UiT - The Arctic University of Norway
(unpublished), which aim to provide scalable assembly. These projects are not
available for use yet, and have therefore not been evaluated.

Our results show that a large portion of non-assembly compute time scales
well with regards to data set size, which indicates that reducing the amount of
data reduces compute time.

2.5.3 Experiment Summary

Summarized, we find that for our experiment, three large classes of tools
emerge (i) assembly, which is responsible for 45% of the runtime (ii) BLAST
and InterProScan, which are responsible for 28% of the runtime, and (iii) the
data processing tools, which are responsible for 27% of the runtime.

Out of these, the BLAST and InterProScan stages scale with regards to data
size. Assembly does not scale well, and the assembler has been replaced with a
faster, non-distributed assembler in the current implementation of META-pipe.
The data processing tools do not scale, but have been replaced with tools that
reduce their runtime to seconds.

These results indicate that reducing the input data can reduce the compu-
tational cost of META-pipe runs.

2.6 Related Work

Several pipelines exist which explore similar ideas in terms of parallelism
and performance as META-pipe, such as ADAM [3] and the deep analysis
pipeline described in [4]. These systems leverage distributed processing and
data storage frameworks to improve scalability of bioinformatics pipelines.
However, these systems require changes to the pipeline tools.

Galaxy provides the CloudMan [70] extensions to execute jobs on cloud
infrastructure, such as Amazon EC2. There are also many systems that can be
used to run biological data processing pipelines such as SLURM [71], Open
Lava [72] and Condor [73]. MapReduce [6] and similar application frameworks
such as Spark [5], are an alternative both for distributing tools for execution, as
well as distributed processing. These systems provide a different programming
model, scale well to very large datasets, and they handle load balancing and
fault tolerance. However, these are typically not integrated with workflow
managers, and hence require an integration approach as described in this
thesis. This integration can be simplified through the use of an adapter such
as Hadoop-Galaxy [74].

28 CHAPTER 2 / BIOLOGICAL DATA ANALYSIS PIPELINES

[lumnia offers the infrastructure BaseSpace [75], which is a cloud-based
platform for next-generation sequencing data management and analysis. Users
can store and share sequencing data, and simplify and accelerate data analysis
via the integrated web-based interface. Independent labs can also set-up and
monitor their sequencing runs in real time on their Illumina instruments.
However, it does not offer extensive analyses and annotation of full-length
genes.

Another cloud infrastructure is Oxford Nanopore’s Metrichor solution [76],
which appears to be similar in functionality to BaseSpace.

We have also built infrastructure systems to reduce the resource usage
of META-pipe in computer science research projects, but these are currently
not used by the production version of META-pipe. Mario [77] is a system
designed to interactively tuning pipeline tool parameters using fine grained
iterative processing of the META-pipe data. COMBUSTI/O [78] is a framework
for workflow creation, and it used a simplified version of META-pipe in the
evaluation.

2.7 Summary

In this chapter, we have given an overview of biological data analysis. We
have also presented META-pipe, and performed a performance evaluation
of individual tools in META-pipe. The results show that there is a need for
reducing analysis time by reducing input data size, but this requires a new
data management solution, which we investigate in the next chapter.

GeStore

In this chapter, we will describe the File-based Distributed Data Materialization
(FDDM) model and the implementation of the FDDM model in the GeStore
system [24, 25]. We also evaluate the performance of GeStore. In section 3.1
we describe the motivation for the design choices made in GeStore, and the
requirements for such a system. In section 3.2 we describe the design of the
GeStore system. In section 3.3 we describe the interfaces that GeStore exports.
In section 3.4 we provide an experimental evaluation of the performance of
GeStore. In section 3.5 we describe related work, and in section 3.6 we draw
conclusions from the results.

3.1 Motivation and Requirement Analysis

Through our work on, and discussions around, pipelines and workflow man-
agers such as META-pipe [20], EBI Metagenomics [42], IMP [22] and Galaxy
[2], we observed that the data management in many pipelines consisted of
passing files between tools. However, the version of reference databases and
other files were hidden from the user or had to be manually maintained out-
side the pipeline execution. Reference databases were also not updated very
often, as this would create issues with provenance (for example in multi-part
analysis jobs, the already-finished analysis would have to be re-analyzed). In
addition to infrequent updates and the need for manual maintenance of ref-
erence databases and files, the filtering of data was often handled through

29

30 CHAPTER 3 / GESTORE

ad-hoc processes, such as maintaining a large number of reference databases
for different biological groups. Combined these issues lead to more work for
the user due to manual maintenance, less frequent updates due to provenance
concerns, and longer analysis runtime due to lacking filtering systems.

To solve these problems, we believe a system should fulfill the following
requirements:

1. Transparently update results when reference databases are updated, so
that results can be kept up to date for less computational cost than a full
re-analysis.

2. Produce different versions of a reference database on demand, so that
multi-part analysis jobs can be done with a consistent set of reference
databases.

3. Generate smaller reference databases from larger ones on demand, so
that computational demands can be reduced when only a subset of the
reference databases are required.

4. Do not require changes to tools, so that the cost of keeping tools up to
date does not increase.

5. Do not require large changes to workflow managers or pipelines, so
that integrating the system with existing workflow managers is not
prohibitively costly in terms of development time.

6. Conserve provenance, so that the version of a reference database used
can be retrieved later.

7. Store data efficiently, so that the storage costs of the reference databases
does not grow uncontrollably.

8. Scale with number of computers, so that it is possible to scale out when
needed.

To our knowledge, and as discussed in section 2.6, no existing system fulfils
these requirements.

3.2 Design

In this section, we give an overview of the architecture and design of GeStore.
GeStore comprises processing, storage and plugin frameworks. The plugins
in the plugin framework use the data processing and storage frameworks to
produce data for the pipeline manager on demand, and similarly to add data
to the storage framework when data is fed into the system. This is shown in
figure 3.1.

Summarized, the solutions to the above requirements are:

1. Transparently update results: is solved by automatically determining the

3.2 / DESIGN 31

previous run by inspecting provenance data, to determine a version of
the reference database to produce. (described in detail in section 3.2.4)

2. Produce different versions on demand: is solved by generating reference
databases from the collection of data on demand using distributed pro-
cessing and a distributed database. (described in detail in section 3.2.3)

3. Smaller reference databases: is solved by enabling the use of filters on the
reference database results. (described in detail in section 3.2.3)

4. No changes to tools: is solved by using the file-based approach. (described
in detail in section 3.2.1)

5. Small changes to workflow managers: is solved by the interface design of
GeStore. (described in detail in section 3.3)

6. Conserve provenance: is solved by recording requests made by pipelines
in a database. (described in detail in section 3.2.4)

7. Store data efficiently: is solved by the distributed database storage design.
(described in detail in section 3.2.2)

8. Scale with number of computers: is solved by using scalable processing
and storage systems. (described in detail in section 3.2.2)

\ Data feeders
1
I

Plugin framework

(Fileparser >
Input generator
Output merger

|

Pipeline manager

|

| Buissadoud ejeq |

L abeiols eyeq

Job scheduler

Figure 3.1: GeStore architecture.

3.2.1 File-based Data Management Model

GeStore uses the FDDM to implement reference database versioning and
incremental updates by generating input and meta-data files used by analysis
tools that only contain data for a specific period. For example, a reference
database for an incremental update may only contain the entries changed in
the period. The tool will then be run, as normal, but it will typically produce a

32 CHAPTER 3 / GESTORE

File format Tools

FASTA BLAST, InterProScan, Priam, Annotator, MetaGeneAnnotator,
Glimmer.

FASTQ MetaRay, FastQC, Mira.

HMM InterProScan, Priam.

Table 3.1: File formats used as input to META-pipe tools

partial result in case of incremental updates. The result from this tool are then
merged with previously produced results.

We have chosen a file-based approach since many genomics applications
use relatively few file formats (as seen in table 3.1). It is therefore feasible to
implement parsers that support most file formats and therefore most tools. In
addition, most file formats are simple and structured, which makes it easy to
write parsers for each format. We also believe that many bioinformatics tools
can use the file-based approach since bioinformatics applications are often
parallelized using a data-parallel approach. Hence, a subset of the data can be
computed separately, as in an incremental update.

One example of an analysis tool that is well suited for incremental updates
is the widely used BLAST tool [52]. It calculates a similarity score for all gene
sequences in an input file by comparing each sequence to all sequences in the
UniProtKB [79] reference database. We can implement an incremental update
of the results each time UniProtKB is updated by generating an incremental
version of the database that only contains the entries that have changed since
the last update.

The simplest approach to file generation is to compare all records in two
versions of a file to find the new, deleted, and updated records. However, since
most tools do not use all record fields, a naive diff will find too many changes.
For example, BLAST results are not affected by the annotation record fields
that are most frequently changed in the UniProtKB database. It is therefore
necessary to write tool specific change detection that only detects changes in
the significant fields. In addition, it may be necessary to handle new, updated
and deleted records differently. For example, record deletions may require
finding and discarding associated records in the output data.

The simplest approach to merge result files is to append the incremental
updates to existing result files. However, some output record fields may contain
values aggregated over the full dataset. For example, the BLAST output data
contains a field, e-value, which is incorrect for incremental updates [18]. In
such cases, a tool-specific merger must correct these values in the updated
output files.

3.2 / DESIGN 33

YA 4 y4 Z
— 7] 4
Dajc L
ID | Data Data :
— — EXISTS Time

Figure 3.2: How data is stored in HBase

3.2.2 Storage

GeStore maintains versioned reference database files, input files, and output
files. GeStore uses the version information to generate incremental files, or a
specific version of a reference database. In addition, the version information is
required to merge incremental update results with previously computed results.
We use the Hadoop software stack, consisting of HDFS [80], HBase [81], and
MapReduce [6], for scalable storage and data processing.

There are two types of files maintained by GeStore: parsed and unparsed.
Parsed files are stored as database tables, while unparsed files are stored
unmodified on the distributed file system. The unparsed files are files that are
difficult to parse and/or do not need incremental updates, such as files that
are always completely updated, or not at all.

For file types that have a parser implemented, GeStore splits the data into
entries and entry fields. The entries are stored as rows in HBase, and the fields
as columns. All entries are stored in the same HBase column family. The only
required column in the schema is a unique ID for each row, which the plugin
uses to generate a row key. In addition, GeStore generates an EXISTS column,
which describes if a given entry exists in the current version of the reference
database, so that removing entries is supported. The remaining columns are
file-format specific. HBase is designed such that new columns can easily be
added to a table. GeStore uses this flexibility to enable reuse of an old HBase
table even if the file format or the parser code is changed, so that e.g. if a
reference database adds a new field to their schema, this can be reflected in
GeStore without influencing previous versions.

We use the HBase timestamp mechanism to manage reference database
versions. The timestamp either represent the file generation date, release date
or version of the reference database. By storing updated data in timestamped
HBase cells, we can efficiently compress a set of database versions using
delta compression as seen in figure 3.2. In addition, HBase uses the Snappy
compression algorithm to compress the tables.

34 CHAPTER 3 / GESTORE

3.2.3 Operations

GeStore provides four operations on the database tables used for reference
databases and input, intermediate and output data: create, update, get version,
and get increment.

To create a table for a new database, GeStore first checks if the table
exists. If not, it will create an empty table, with one empty column family. The
database plugin will later add columns for each of the parsed database fields
as described above.

To update an existing table with new meta-data, GeStore first finds the
correct table to use, then updates or adds new rows using a parallel job that
executes the parser for the specific database. Each entry in the new database is
compared to the entry in the previous version by comparing the corresponding
HBase row. If there are no changes no updates are made, except to the EXISTS
field. If one or more fields have changed, the column in the row are updated
with the new data for the field and with the current timestamp. If new fields are
added, a new column is added to the table with the new data and timestamp.
If the row is deleted the EXISTS column is not updated.

To generate an incremental update a parallel job is executed that scans
the table for the timeframe Tj,strun — Teurrenttime. FOTr each record in the
scan, the fields that are relevant for the specified output are selected. If there
are updates to one or more of these fields, the record has a current EXISTS
field, and the entry matches the regular expression used for filtering if one is
supplies, the relevant record fields are written to a file on HDFS.

To generate a specific version of the database we use the above approach
with the timeframe T¢;rs; — Tspecified-

3.2.4 Reference Database Caching and Internal Data
Structures

GeStore implements a cache of previously generated reference database files,
since many workflows can share these. The files are stored in HDFS, and the file-
name is used to store information about how the files were generated. We store
both big (multi-gigabyte) and small (megabyte) files, since the overhead from
starting a job and doing the processing when generating both is large.

The filename consists of a file ID, the time range for the file content, and the
regular expression used to select entries in the file. In addition, the filename
may contain plugin-specific parameters, a workflow run ID, and a task ID. This
information is stored in the file name so that a single file is uniquely identified
by the file name without looking it up in a meta-data table. This filename is
stored in a GeStore data structure, along with information about the plugin
used to generate the file, and if the data is stored in HBase.

When a workflow manager requests a reference database, GeStore first

3.3 / INTERFACES 35

generates a filename as described above. It uses the filename to lookup in the
files table. If a matching filename is found, that file is returned from the HDFS
cache. Otherwise, a new file is generated and the files table is updated with
a reference to the new file. GeStore does not limit the cache size. The oldest
files in the cache can automatically be deleted by e.g. a cron job.

In addition to the data structure used to implement the cache, GeStore
has two additional internal data structures. The first has information about
each update for each file maintained by GeStore. This includes the number
of entries in the file and the version of the update, and is used to determine
which version of data is the newest and providing the post-processing step
with information about the real size of the reference database in the case of an
incremental update. The second contains the files accessed by each workflow
tool execution. This table is used to identify which files a workflow used, when
they were used, and how they were generated. This is useful for automatically
determining which update a particular pipeline run needs when generating
incremental updates, as well as conserving provenance information.

3.3 Interfaces

GeStore exports two interfaces; the command-line interface and the Java
interface. The interfaces of GeStore allow integration with different workflow
managers.

The command-line interface is designed to supports workflow managers
which request files using a shell. It is generally used by script-based workflow
managers. This interface comprises two basic operations, get and put. The
parameters for these operations are detailed in table 3.2 and 3.3.

The Java interface is modeled after the HDFS Java interface, and as such
is even simpler in terms of possible arguments, but is more limited in terms
of functionality. The required information is inferred from a filename. This
interface is described in table 3.4.

Other interfaces such as REST were considered. However, we found that
the file-based approach using the command-line and Java interface were the
closest match to how the workflow managers accessed data.

36

CHAPTER 3 / GESTORE

Parameter | Required Description Default
File Yes The name of the file None
Run ID No The ID of the run None
Task ID Yes The ID of the task None
Time stop No The maximum timestamp for the data | MAX INT
Time start | No The minimum timestamp for the data | o
Regex No A regular expression which must match | None

a given field for the data
Full run No If set, will generate a full data set, even | False

if a previous execution of the run has

generated a file
Format No The format of the output, if not the de- | None

fault
Split No Split the output into NUM files None
Copy No If false, will not copy files to local disk, | True

and instead return a list of HDFS paths

for files

Table 3.2: Parameters for GeStore get operation.
Parameter | Required Description Default
File Yes The name of the file None
Path Yes The path to the file on the local disk None
Run ID No The ID of the run None
Task ID No The ID of the task None
Timestamp | No The timestamp for the data Current system
time

Format No The format of the input None
Quick add | No If true, will return as soon as the job | False

has started

Table 3.3: Parameters for GeStore put interface.

3.3 / INTERFACES 37
Action Parameters Description
rm filename Remove file/directory
rmr filename Recursive rm
mkdir directory Create directory
getFileSize | file Get the number of bytes for a file
Is directory Get a listing of directories
Isr directory Get a listing of directories and files
getFile file Returns a HDFS path for the file
getFiles files Returns HDFS paths for multiple files
putFile local file, remote path | Copy local file to GeStore
putFiles local files, remote path | Copy local files to GeStore

Table 3.4: GeStore Java interface.

3.3.1 Plugin Framework

To use GeStore to maintain data used by a pipeline tool, the workflow main-
tainer must implement: (i) a parser for each file type used by the tool; (ii)
tool-specific file generator; and (iii) tool-specific incremental output file merger
(if incremental updates will be used). In GeStore, these are implemented as a
plugin, and managed by the GeStore plugin framework. The plugin framework
uses MapReduce jobs to do the processing required to add data to the system
and retrieve it, as well as doing change detection, data verification and merging.
MapReduce is used since the files can be very large, and hence efficient parallel
processing is required.

The plugins parse and store data. The (unmodified) tool does the data
analysis. Typically, only a few tens of lines of code must be written, since many
plugins can reuse parsers and file mergers written for other plugins. In addition,
the framework provides a library of parsers for known file formats, and libraries
for parsing, change detection, and merging of files. The framework also takes
care of efficient data storage, low overhead file parsing, file generation, and
merging. It is therefore easy to implement a plugin.

File Parser

The file parser must determine the structure of input files and reference
database files used by a tool. Only one parser must be implemented for each
file format, so it is likely that parsers already exists for the file formats used by
a tool. The parser must also convert the file data into the HBase table format
used by GeStore. Most biological data is in a table format so it is usually easy
to implement a parser.

The file parser interface consists of six methods that must be implemented,

38

CHAPTER 3 / GESTORE

timestamp)

Method Description

boolean addEntry(String entry | Creates an entry based on a string

)

Put getPartialPut(Vec- | Returns a Put containing the specified fields
tor<String > fields, Long | with the given timestamp

boolean sanityCheck(String
type)

Returns True if the entry contains enough infor-
mation for the given type

String[] get(String type, String
options)

Returns an array of strings in the specified for-
mat.

Vector<String> compare(*En-
try)

Compares this entry with another, returns list
of updated fields.

String[] getRegexes()

Returns two regular expressions which deter-
mine the start and end of an entry in the input

file format

Table 3.5: Methods that must be implemented in file parser plugins.

Method Description

FileStatus|[] process(| Returns a list of the files that are produced
HashTable <String, String >

params, FileSystem fs)

Table 3.6: Methods that must be implemented in file generator plugins.

listed in table 3.5. These: (i) provide regular expressions that define the start
and end of an entry in the file; (ii) split an entry into columns; (iii) compare
two versions of an entry; (iv) check if an entry contains all elements required
by the tool; (v) generate a HBase Put object; and (vi) generate output in other
formats. Every field of the input file is parsed and added to HBase by the plugin,
even if only a few fields are used in the analysis.

File Generator

The file generator class is responsible for generating the input and meta-data
files used by a tool. It must detect changes in input data and meta-data. The
change detection can be course grained, where the contents of an entire file
is compared, or fine grained where individual records are compared. For the
latter, the change detection may take into account the structure of the file. In
particular, the change detection is efficient and easy to implement if the data
is stored in HBase tables as described above.

The file generator requires implementing one method (shown in table 3.6)
that specifies the parsers to use for each file format, and the fields to write to

3.4 / EVALUATION 39

the input file using the associated file parser.

Output Merger

The output merger is responsible for merging the results of an incremental
computation with previously generated output stored in GeStore. GeStore
executes output merging similarly to reference database updates. However,
the merge is application-dependent, and hence requires application specific
knowledge to understand how an incremental computation may influence the
results and how to fix any resulting errors. To fix errors a tool-specific method
must be implemented in the plugin.

3.4 Evaluation

In this thesis, we focus on questions related to deployment of GeStore in
a production system. In particular, we want to answer the following three
questions: (i) What are the performance and resource usage characteristics
of GeStore? (ii) How does the overhead of GeStore compare to alternative
approaches for biological meta-data management? (iii) How does a real-world
pipeline perform when using GeStore for incremental updates?

We evaluate the first question to understand how to deploy GeStore in a
production system, including identifying areas for optimization, understand-
ing the scalability of the GeStore operations, and how GeStore perturbs other
applications running concurrently on the same system. The answer to the sec-
ond question demonstrates the usefulness of GeStore meta-data management
for biological data analysis. The answer to the third question illustrates the
real-world use of the GeStore system.

3.4.1 Methodology

We characterize GeStore performance and resource usage using benchmarks
for each of the GeStore operations We use the META-pipe workflow (section
2.3) as an application benchmark. In addition, we have implemented ad hoc
tools for Meta-pipe meta-data management.

We report the average execution time of the benchmarks. Each experiment
is repeated 3 times. The standard deviation is only reported when it exceeds
5%.

We use the Ganglia Monitoring System [82] to measure CPU load, mem-
ory usage, network traffic, and disk I/O during benchmark execution. The
experiments were run on a 10-node cluster. It has one front-end node with

40 CHAPTER 3 / GESTORE

and NFS server, one node with HDFS namenode and HBase master server, and
eight HDFS/HBase/MapReduce data/compute nodes. Each node has 32 GB of
DRAM, a 4-core Intel Xeon E5-1620 CPU with two-way hyper-threading, 4 TB
local disk, and a 2 TB disk used for NFS. The cluster has a 1-gigabit Ethernet
interconnect. We assume the cluster size and configuration is realistic for a
small cluster in a production environment.

The software used is Oracle Java 1.7.0, Cloudera 4.6.0 (HBase 0.94.6, HDFS
2.0.0, MapReduce 2.0.0, ZooKeeper 3.4.5). In addition, the UniProtKB plugin
uses formatdb 2.2.25, which is part of the legacy BLAST package.

HBase is configured to use a heap size of 4 GB for the master server and 12
GB for the region servers. HDFS is configured with a replication factor of three,
block size of 128 MB, and heap size of 1 GB for the NameNode and DataNodes.
HBase is configured to use Snappy compression, and has a maximum of 32
write-ahead log files. Client scan caching is set to 100.

The data used are the UniProt reference databases! from late 2014, and
a metagenomic sample from the Yellowstone National Park [83]2. GeStore
version 0.2 is used?, as well as a modified version of GePan4.

3.4.2 Add and Update Reference Databases

We first measure the time and resource usage of adding a new reference
database to GeStore, and for updating an existing database. We assume new
reference databases are rarely added, and that reference databases are updated
at most weekly. Both operations are therefore background operations, and we
are therefore primarily interested in their resource usage, as long execution
time for these operations does not directly impact pipeline runtime. Also note,
that a GeStore merge is executed similarly to an update, so the results for an
update are similar to those of a merge operation.

We download the September 2014 release of UniProtKB (41 GB, gzip com-
pressed), and decompress it on the frontend (231 GB). We measure the time of
copying the files to HDFS, and then running a MapReduce job that reads and
parses the HDFS files, and puts the 84.5 million parsed entries to an empty
HBase table. To update the reference database, we updated it with entries that
were updated in the October release (37 out of 87 million entries). The MapRe-
duce job for the update reads and parses the HDFS file, reads old entries by
scanning the HBase table, compares each old and new entry, and puts updated
entries to HBase.

The time to add the UniProtKB reference database to GeStore is 182 minutes

1. Available at http://www.uniprot.org

2. Data available at http://metagenomics.anl.gov/linkin.cgi?metagenome=
4443749.3

3. Available at http://github. com/EdvardPedersen/GeStore

4. Available at http://github. com/EdvardPedersen/GeStoreGePan

http://www.uniprot.org
http://metagenomics.anl.gov/linkin.cgi?metagenome=4443749.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4443749.3
http://github.com/EdvardPedersen/GeStore
http://github.com/EdvardPedersen/GeStoreGePan

3.4 / EVALUATION 41

Operation Time

Add 2014_09 UniProtKB 182 minutes
Update to 2014 _10 UniProtKB 144 minutes
Retrieve UniProtKB 36 minutes
Retrieve cached UniProtKB 12 minutes
Retrieve incremental UniProtKB 5 minutes
Retrieve cached incremental UniProtKB | 26 seconds

Table 3.7: GeStore add, update, and retrieve operation execution times.

T T T T T
MapReduce

400 Copy to HDFS

w
s
S

100,

Megabyes/second (one color per node)

920 120

Time (minutes)

Figure 3.3: Bandwidth usage while adding a new reference database to GeStore

(Table 3.7). Updating the reference database is 21% faster (144 minutes). In
addition, the time to download and decompress the database are respectively
52 and 33 minutes. We believe the update operation is faster, even if it requires
scanning 84.5 rows from HBase for two reasons: First, there are fewer entries
put to the HBase table. Second, the reference database is (mostly) cached
in memory on the HBase region servers and the updates are more evenly
distributed among the cluster nodes.

The resource usage of the add and update operations are similar. For both,
the performance is limited by the network (80% of the maximum aggregated
bandwidth of the interconnect), while CPU utilization is about 50% over all
eight cores. We therefore believe the performance is limited by the HBase (and
HDFS) operations. Performance may be improved by better tuning of these
operations, for example by optimizing client-side buffering of put operations.
Performance will also improve by disabling or relaxing the write-ahead-log
(WAL) for HBase. However, this increases the chance of table corruption, which
may lead to data loss. The scalability of the add and update operations is similar
to the scalability of HBase read and write intensive jobs. The results also show
that there are CPU cycles available on the cluster for a computation-intensive

42 CHAPTER 3 / GESTORE

w B w [} ~ o} O
o o o o o o o

CPU use (percent)

N
o
T

10 P .
0 — 7
Map and Reduce formatdb Copy to HDFS I
Time Copy from HDFS

Figure 3.4: CPU use for generating a full reference database from scratch

job run concurrently with these operations (many biological data analysis tools
are computation-intensive).

3.4.3 Retrieve Reference Databases

We evaluate the overhead and resource usage of retrieving an existing reference
database from GeStore, and saving it on a local file system to be used by a
non-distributed analysis tool. This is a common operation for analysis pipelines
with legacy analysis tools. Since the retrieve contributes to pipeline execution
time, it should have a low overhead.

We first measured the time to retrieve the November 2014 version of the
UniProtKB reference database (240 GB uncompressed, 89 million entries) from
GeStore (table 3.7). GeStore will first run a MapReduce job with a large number
of map tasks that retrieve the relevant fields for each entry (HBase row), and
a single reduce task that writes the output to a single file. The total time to
retrieve the reference database is 36 minutes, in which the mappers are done
after 14 minutes, and the reducer runs an additional 17 minutes. The overhead is
acceptable for two reasons: (i) legacy analysis tools often have a step that must
be run sequentially. For example, to convert the retrieved UniProtKB reference
database to a BLAST-compatible format using the formatdb tool (resulting file
is 32 GB), requires an additional 36 minutes, with an additional 8 minutes to
copy the file to HDFS. (ii) the total pipeline execution is often several hours or
more.

Second, we retrieved an incremental version of UniProtKB that contains
the entries updated between the September 2014 and October 2014 releases

3.4 / EVALUATION 43

(in total 2.7 million entries, resulting in a file size of 1 GB). The incremental
database is generated in 9 minutes. The speedup is due to the much smaller
resulting file size and hence reducer execution time.

The cached version of the full UniProtKB takes 12 minutes to retrieve, and
the incremental version takes 26 seconds. We believe many pipeline executions
can use the cached reference databases in a production system.

The maximum network utilization is about 20%. The CPU utilization differs
between the full and incremental update (Figure 3.4) since there is more
processing per byte of data in the incremental case. Figure 3.4 also shows how
the legacy tools (formatdb, copy to HDFS and copy to local disk), as well as the
single reducer stage, dominate the execution time. These execute sequentially
and hence limit scalability. In the next section, we evaluate retrieve for tools that
do not have this limitation. The incremental update utilizes most of the cluster
resources and is therefore not suited to execute concurrently with another
job. However, the execution time is short. The longer executing retrieve for a
specific version is well suited to overlap with another job, especially during the
reducer execution.

3.4.4 Retrieve and Split Reference Database

In the experiments in the previous sections, the performance of the retrieve
operation was limited by the need to format and write the reference database
to a NFS or local file system. In this section, we measure reference database
retrieve time for biological data analysis tools that can utilize the high aggregate
disk bandwidth on a data-intensive computing platform by reading splits
directly from a distributed file system and computing on these in parallel.

We initialized an HBase table with a so GB FASTA file with 150 million
entries (sequences). The file is generated as in section 3.4.3, but we do not run
the formatdb tool, and the output is split among 20 reducers that each write
their split directly to the HDFS cache.

Operation Time
Retrieve FASTA 55 minutes
Retrieve cached FASTA 10 minutes
Retrieve and split FASTA 9 minutes
Get HDFS path of cached FASTA file | 2 seconds

Table 3.8: Execution time for retrieve and split for the FASTA reference database.

The execution time is reduced from 55 to 9 minutes (Table 3.8). The cached
version can be read directly from HDFS, and therefore incurs no overhead. Since
there is no bottleneck due to a single reducer, the retrieve scales well.

44 CHAPTER 3 / GESTORE

7000

6000

5000

4000

Seconds

3000

2000

e

1000
Put Get Get Get Get
FASTA FASTA FASTA FASTA FASTA
(cached) (split) (split,
cached)

[]

Get
without

copy,
split

Get
without
copy,
split and
cached

Get
cached
without

copy

Get
without
copy

Figure 3.5: Walltime for different operations on FASTA reference databases.

3.4.5 Space Usage

In this section, we quantify the storage overhead of GeStore. We measure the
storage space used by the UniProtKB reference database when compressed
using gzip, uncompressed, and in when stored in HBase with delta and Snappy
compression and 3x replication.

The disk space used by GeStore is comparable to storage of the compressed
reference databases (Table 3.9). The overhead for a single version in HBase is
high. With additional versions, the space usage first decreases, then it increases
roughly with the size of the compressed version of each new version of UniPro-
tKB. We believe the storage overhead is acceptable, since low-cost distributed
storage is used.

Versions Compressed on disk | Uncompressed on disk | In HBase
2014-03 23 GB 133 GB 306 GB
2014-03 t0 2014-04 | 47 GB 268 GB 240 GB
2014-03 to 2014-05 | 71 GB 405 GB 210 GB
2014-03 t0 2014-06 | 99 GB 568 GB 234 GB
2014-03 to 2014-07 | 133 GB 757 GB 273 GB

Table 3.9: Aggregate size of UniProtKB on disk and in HBase using snappy and delta
compression with a replication factor of three.

3.4.6 Comparison to Ad Hoc Approaches

In this section, we compare GeStore performance to ad hoc approaches for
biological meta-data management. We do not compare GeStore performance

3.4 / EVALUATION 45

against other distributed meta-data management systems, since the previous
sections have shown that performance of the GeStore operations is largely
dependent on the underlying distributed storage system. Instead, we compare
against the non-distributed meta-data storage approach used by most biological
data analysis pipelines. These however, require ad hoc implementations of many
reference database management problems.

We will focus on the BLAST and annotation stage of Meta-pipe. These
stages requires a BLAST database and annotation database on each of the
compute nodes for parallel execution. It is therefore necessary to generate
these reference databases and then replicating them to all nodes. We cannot
store the databases on NFS, since the many small file reads by the pipeline
significantly increases pipeline execution time. We have implemented a Python
script® that extracts the FASTA version of UniProtKB (release 2014 11), uses
formatdb to generate the BLAST database, and puts the database into a SQLite
database used by the annotation tool. Finally, we distribute the resulting files
to the computation nodes using rsync with deflate compression enabled.

The creation of the SQLite database is comparable to a GeStore add, since
they both make the database accessible from all nodes. The GeStore add is
191 minutes, and the ad hoc script execution time is 315 minutes. Write FASTA,
formatdb and copying the BLAST database to the nodes is comparable to a
GeStore retrieve, which takes 8o minutes for GeStore, and 206 minutes for the
ad hoc script. We have not optimized the ad hoc script. However, we believe
such unoptimized scripts are common in biological data analysis. In addition,
optimizations to the GeStore operations will benefit all analysis tools using
GeStore, while optimization of an ad hoc script typically only benefits a single
pipeline.

We have not found a realistic use case for an ad hoc implementation of a ref-
erence database update and generation of an incremental reference database.
For these, existing biological data analysis frameworks typically require gener-
ating a new database and then re-executing the full pipeline.

In summary, we believe that GeStore offers better performance and more
features than are realistic to implement in ad hoc tools.

Ad hoc Script | GeStore

Write FASTA 63 minutes

Formatdb 34 minutes

Copy BLAST DB to nodes | 109 minutes

Total 206 minutes 80 minutes
Create SQLite DB 142 minutes

Copy SQLite DB to nodes | 173 minutes

Total 315 minutes 191 minutes

Table 3.10: Ad hoc scripts vs. corresponding GeStore operations.

5. Available at http://github.com/EdvardPedersen/SimpleMetaManager

http://github.com/EdvardPedersen/SimpleMetaManager

46 CHAPTER 3 / GESTORE

5 monis .
Hipout Gestore _

1 month I
Gestore, gonerate colection _
e _ !

Gestore, existing collection

0 5000 10000 15000 20000 25000
Other tools 0 5000 10000 15000 20000 25000 30000
HBLAST M Pipeline runtime
GeStore overhead GeStore overhead

(a) Improvements in runtime of META- (b) Overhead compared to runtime of
pipe with GeStore META-pipe with GeStore

Figure 3.6: Integration performance results

3.4.7 Application Benchmarks

We measure the execution time of Meta-pipe using a small (15 MB) input file.
Only the MGA, MGA exporter, fileScheduler and BLAST were run. We use the
2014_09, 2014_10 and 2015_o1 versions of UniProtKB. With a larger input file,
the overhead of GeStore compared to workflow execution time will be even
lower. In addition, the query feature of GeStore allows the analysis to be done
on smaller sections of UniProtKB where appropriate (e.g. fungi are around
10% of UniProtKB, so a query for fungi will produce a reference database of
around 1/10th the size of not using a query).

Operation Time

Full update without GeStore 833 minutes
Full update with GeStore 965 minutes
Full update with GeStore, existing DB | 859 minutes
1-month incremental update 61 minutes
4-month incremental update 99 minutes

Table 3.11: Application benchmarks for Meta-Pipe

GeStore adds an overhead of 132 minutes when generating a reference
database, and 26 minutes when the reference database is cached from an
earlier run (Table 3.11). Incremental updates are done in 61 minutes for the 1-
month update, and 99 minutes for the 4-month update. A 1-month incremental
update has a 14-fold speedup compared to a full re-analysis. These results
show that incremental updates through GeStore can provide large benefits to
production biological analysis workflows.

3.4 / EVALUATION 47

3.4.8 Discussion

The results show that communication between nodes is a large part of the
execution time for our benchmarks, in addition to the processing which is not
integrated into the tool plugin.

We also see that adding reference databases to GeStore suffers from the
overhead imposed by HBase and HDFS, as the data duplication saturates the
network infrastructure we use. Further optimization is possible (e.g. disabling
the WAL), but we have decided not to perform these due to the possibility of
increasing the incidence of undetected data corruption.

In addition, our application benchmarks show that production pipelines can
benefit from GeStore, resulting in lower runtimes for updating results.

Case Study: Marine Metagenomics Reference Database

As a case study of the benefits of this type of solution, we use an ongoing
project at the Center for Bioinformatics in Tromsg as an example. We are cre-
ating a marine metagenomics reference database, which contains a database
of manually annotated genomes and genes, as well as an automatically anno-
tated database which contains sequences which have been compared with the
manually annotated database (similar to how it is done in UniProt).

Our estimates place the cost of the initial creation of the automatically
annotated database at around 1 million NOK (based on prices from Amazon
EC2 Ireland for m4.2xlarge instances at 0.53 USD per hour, and extrapolated
from the experiments done with META-pipe, where assembly accounts for
approximately half of the processing time on a 9 GB sample, and requires 154
node-hours, extrapolated to around 10 TB of marine metagenomic data in ENA
[84]). Keeping this reference database updated and correct will cost around 1
million NOK per month, since the entire analysis has to be re-done every month
to account for new data.

An alternative approach is to only update the reference database with new
data when new data becomes available. This will cost around 5o thousand
NOK per month (assuming a data growth of around 5% for both reference data
and experimental data). However, after one year, over half of the reference
database will no longer be fully annotated with the best-matching data using
this approach.

The third option is to use the incremental update approach, which will
cost around 100 thousand NOK per month since new sequences have to be
compared against the full reference database, and all experimental data has to
be compared to new sequences in the reference database. Using this approach,
the results will maintain their correctness.

Summarized, incremental updates allow a large reduction in cost for main-
taining reference databases in metagenomics.

48 CHAPTER 3 / GESTORE

3.5 Related Work

Management of large-scale data relies on a robust storage system, we have
chosen to use HDFS [80] and HBase [81] due to the close relationship with the
Hadoop framework, but other alternatives include Cassandra [85], MongoDB
[86] and BlobSeer [87]. We have compared HBase and Cassandra for our use
case in section 3.5.1 and found minimal differences in performance. We have
also considered alternatives to HDFS such as GPFS [88], but have chosen HBase
due to the close integration with the Hadoop ecosystem. In addition, we need to
perform some processing on the reference databases to implement the features
of GeStore, we have chosen MapReduce [6], but similar systems such as Spark
[5], Nectar [11] and Dryad [17], provide many of the same benefits. A more
traditional system with e.g. pNFS [89] and MySQL [90] are also an option,
but these also require a distributed processing framework to fully utilize the
cluster, and require further efforts to integrate with the distributed processing
framework.

The simple query facilities in GeStore are limited to simple filtering on en-
tries, more complete query languages such as those used in Google Dremel [91]
or Apache Drill [92] would enable more queries that are more complex.

These processing systems have also been extended to support incremental
processing, through systems like Incoop [12], Percolator [13], Marimba [¢93] and
DryadInc [14]. In addition, data aggregation systems such as in [94] extend
the processing systems to support processing and management of general
data types. We have used many ideas from these systems when designing
GeStore.

Simple change detection is supported by tools such as UNIX diff, delta
encoding compression systems [95], and version management systems such
as CVS. However, the change detection in these do not take into account the
complex inter-file relationships found in genomic datasets.

GeStore extends the work in [18] by providing a framework and libraries
to implement the necessary pre and post processing of data moved between a
data warehouse and genomic analysis tools. This makes it easier to add addi-
tional support for additional genomic analysis tools as we have demonstrated
by implementing incremental updates for a complete metagenomics analysis
workflow.

Recent systems similar to GeStore such as [96], which provides versioning
and on-demand retrieval of specific reference database versions for Galaxy
users, demonstrate the growing need for GeStore functionality.

3.5.1 Comparison of Structured Data Storage Systems

In addition to the experiments done with SQLite in section 3.4.6, we have
also compared HBase and Cassandra for a typical use case in bioinformatics

3.6 / SUMMARY 49

to evaluate which is the higher-performing structured data storage system for
our use case.

The microbenchmark uses the SPROT part of UniProtKB. We measure the
time it takes to add this data to respectively HBase and Cassandra, and then
retrieve it. We use a parallel implementation where 8 compute nodes each
insert 18th of the data. The rows are prefixed with the node hostname, such
that these later can be retrieved by a process running on the node. We use
a replication factor of three, so most requests can be served locally. However,
there are still some remote data accesses.

Our results shows that for retrieves HBase and Cassandra have similar
performance (respectively 9.6 sec and 9 sec for 547085 entries). Cassandra
is however much faster than HBase for inserts (58 vs. 161 seconds). However,
although we could implement the GeStore operations in Cassandra, we prefer
HBase due to our experience with the Hadoop system, and the close integra-
tion with MapReduce. In addition, for GeStore retrieve performance is more
important than insert performance as discussed above.

3.5.2 Experiences using Hadoop

The Hadoop stack is vital for GeStore, here we describe our experiences in
using the Hadoop stack for GeStore, and other related projects in our lab.

HDFS is used for caching generated files, as well as files that do not have an
appropriate plugin. HBase is used for data, for file formats that have a plugin
and ZooKeeper is used to prevent multiple nodes from starting MapReduce
jobs at the same time.

Our experiences with the Hadoop stack is that the configuration is very
important for performance [77]. In addition, start-up times for MapReduce
jobs are significant for small tasks, so for smaller jobs it may be beneficial to
not start a MapReduce job. We have also observed that the Hadoop stack has
been able to withstand failure of nodes.

3.6 Summary

In this chapter we have described the GeStore approach to data management
for bioinformatics workflows.

We proposed an approach for efficient management of large-scale biological
reference databases. The approach is designed for production systems where
biological analysis workflows are periodically executed to analyze large-scale
datasets, often by updating existing analysis results with new meta-data. We
presented the design and implementation of the GeStore system, including
a framework for implementing plugins that enable transparent incremental

50 CHAPTER 3 / GESTORE

updates. We demonstrated the feasibility of our approach and provided an
experimental evaluation of our system for reference database management
using a real metagenomics analysis workflow and real data. Our findings show
that large-scale biological reference databases can be efficiently maintained
using data-intensive computing systems, and that our approach can easily be
integrated with biological data analysis frameworks, replacing ad hoc solutions.
We have also characterized the performance and resource usage of reference
database management operations and provided insight into how GeStore can
be deployed on a production system. We have demonstrated how GeStore can
reduce execution time for updates in a real production pipeline. Finally, we
have discussed how GeStore can be used to reduce costs in one of our current
projects.

Integration

In this chapter, we describe three approaches that we have used to integrate
GeStore with three workflow managers in section 4.1, in order to demonstrate
that it is possible to utilize modern data management systems with legacy
workflow managers. In addition, we survey the literature in bioinformatics
to determine how widely used large-scale data management infrastructure
systems are in bioinformatics in section 4.2.

4.1 Workflow Manager Integration

For a data management system such as GeStore, the integration with workflow
managers is necessary to support legacy pipelines and tools. This integration
must be done without much overhead, and easily enough that it is feasible to
integrate the systems without a complete redesign of the either GeStore or the
workflow manager.

The FDDM model makes this integration simple. However, some parameters
and information are required from the pipeline to decide which type of file
to generate, the version of the file, if it should be incremental, and query
parameters.

51

52 CHAPTER 4 / INTEGRATION

4.1.1 The three approaches

For integrating GeStore with workflow managers, we have utilized three distinct
approaches based around three workflow managers. We have used tool-based,
direct and file system integration. We believe that the three integration ap-
proaches are applicable to most legacy workflow systems in bioinformatics.
The file system integration uses the file system interface to GeStore, while the
tool-based and direct integration use the command-line interface.

Tool-based Integration

Galaxy [2] is probably the most popular pipeline manager for biological data
processing. Galaxy represents a big and complex pipeline manager with 165.000
lines of code. We have integrated GeStore with Galaxy by implementing a
Galaxy tool wrapper for GeStore. The tool wrapper executes a script that calls
GeStore to read files and write result files.

The user must add the GeStore tool to her pipeline, and specify parameters
including a unique pipeline-ID, the file ID, incremental file retrieval, and the
file type. In order to specify these parameters the user must know the GeStore
API, and understand the features and limitation of GeStore. We believe this
is too complicated for ordinary Galaxy users, but still useful for power users
that use Galaxy to specify and tune pipelines for large datasets or production
pipelines.

The approach is easy to implement, and does not require any changes to the
large Galaxy codebase. We implemented the GeStore tool using the tool API
provided by Galaxy. It is up to the user to specify the GeStore parameters. She
can therefore configure GeStore to introduce minimal overhead. We created
a new tool wrapper of 51 lines of XML, where GeStore was the tool being
wrapped. This tool could then be used in pipelines designed in Galaxy.

The main benefit of this approach is the clear separation between GeStore
and the pipeline manager, and hence no changes are required to the pipeline
manager. The main disadvantage is manual configuration of GeStore operations.
This approach is suited for complex pipeline managers where it is not possible,
or practical, to modify the code.

Direct Integration

We developed GeStore to provide incremental updates to script-based pipelines
such as META-pipe. META-pipe implements a custom pipeline manager called
GePan that executes the analysis tools in parallel on a compute cluster using
the Open Grid Engine (OGE) or Torque. GePan represents pipeline managers
written for a specific pipeline and a traditional HPC cluster. GePan generates

4.1/ WORKFLOW MANAGER INTEGRATION 53

shell scripts that choose reference databases and file format conversions based
on tools and biological domains specified by the user.

GePan describes an analysis pipeline as a set of shell scripts generated
from a set of parameters that specify the tools to run and their parameters. It
will generate two kinds of shell scripts: (i) a set of job scripts; and (ii) a job
submission script.

For each step in the pipeline, GePan will generate a script to run the specified
tool with the correct parameters. The job script will read a task-ID and job-ID
from the environment and pass it to the specified tool as appropriate. The job
script will also create directories and delete intermediate files.

The job submission script is a shell script that submits jobs to the job man-
ager. The script consists of a series of commands to OGE that submits each tool
in the pipeline to the job manager with the appropriate dependencies.

GePan uses the command-line interface exported by GeStore. We have
modified the GePan script generation to replace file copy operations in the job
scripts with GeStore calls. GeStore method arguments are set at runtime. This
includes the pipeline ID, tool to execute, tool input data, and the reference
databases to use. GePan can also determine if the file retrieved is a reference
database, input data or intermediate data. In addition, GePan has information
about filters to use and other user-supplied parameters. GePan can specify
for which files GeStore should generate incremental versions, which files need
additional parameters for increment generation, and which files are regular
non-incremental files.

The integration requires very small modifications to the pipeline specifi-
cation. The user must set a “-g” parameter in GePan to specify that GeStore
calls should replace file systems operations. In addition, the user may provide
a filter to generate a subset of reference database (for example for only one
biological taxon).

However, the development effort for the integration is high, since the de-
veloper needs to have extensive knowledge of how GeStore will be used in
different parts of the pipeline. All file accesses are from scripts generated by
GePan, hence GePan must be modified to replace these file accesses with Ge-
Store calls. In total, we added about 300 lines of code to the 14.000 line GePan
codebase, but we did not modify any META-pipe tools.

GeStore incurs an overhead for small files (a few megabytes), for which the
time to generate incremental updates is larger than the reduction in execution
time. To avoid this overhead the pipeline manager can set a file size threshold
for files managed by GeStore.

The main advantage of this approach is that the incremental updates are
hidden from the user, and that GePan can directly use the full feature set
of GeStore. However, the integration requires more development time and a
detailed knowledge of the GePan pipeline manager. This integration approach is
therefore best suited for small, specialized pipeline mangers that the developer
knows in detail.

54 CHAPTER 4 / INTEGRATION

Approach User effort | Developer effort | Missing features | Performance
Key-value Low High Low High
External tool | High Low Low High

File system Low Moderate High Medium

Table 4.1: Summary of integration approaches.

File System Integration

The Troilkatt system [22] is a system for batch processing pipeline tools that
analyze a large-scale compendium. Troilkatt represents specialized pipeline
managers designed for data-intensive computing. It manages the setup of tool
execution including the specification of input and meta-files for a tool and the
management of tool output files. A tool may read and write the files directly
from HDFS. Alternatively, if the file requires a POSIX file system interface,
Troilkatt automatically copies the files to and from a local file system before
and after tool execution. We designed Troilkatt to manage files in several file
systems. It therefore provides a common file system interface. The interface was
implemented for POSIX file systems and for HDFS. To integrate GeStore with
Troilkatt we chose to implement the file system interface for GeStore.

To use GeStore, the user sets a field in the pipeline configuration XML
file. The user does not need to have a detailed knowledge of GeStore nor
Troilkatt.

The required development effort is moderate. A detailed knowledge of
the internals of Troilkatt is not required to implement the interface. However,
the interface is complex and the documentation may be lacking. The imple-
mentation was 318 lines of code, alongside the existing HDFS and local file
system interfaces. These changes were restricted to a single new component,
where the HDFS calls were instead handled by the file system interface of
GeStore.

The main benefit of this approach is that it does not require changes to core
Troilkatt code. However, there are two disadvantages: (i) GeStore must infer
the required information for its parameters from file-, and pathnames. These
may not always have all required information, such as pipeline IDs, the type of
file, or the analysis tool to execute; and (ii) we must parse file pathnames to
automatically infer the file type and pipeline ID. If the information is ambiguous,
GeStore must use the non-incremental full-file format and can therefore not
provide the execution time reduction of incremental updates.

4.2 / USE OF DATA-INTENSIVE COMPUTING SYSTEMS IN BIOINFORMATICS 55

4.1.2 Discussion

We have described the three main approaches to integration we have used.
These are summarized in table 4.1.

In tool-based integration, GeStore is added as a separate tool in a workflow
manager. This approach has several advantages: (i) it is very easy to implement;
(ii) it allows the end-user full control over the data management; and (iii) all
features of GeStore can be fully utilized. However, the main disadvantage is
that the user has to be familiar with GeStore, and has to insert calls to GeStore
between every tool of the pipeline that uses GeStore.

In direct integration, GeStore is used in the code for the workflow manager,
and replaces the file management of the workflow manager. This approach
allows GeStore to be used efficiently, since the workflow manager has full
knowledge of which features can be used at any time. It is also invisible
for the end user. The disadvantage of this is that it requires relatively deep
modifications to the source of the workflow manager.

The file system integration relies on the file system interface to GeStore. Itis
relatively simple to implement, and is invisible to the end user. However, it relies
on hints from the file paths to enable features from GeStore. This means that
the level of features used can be adjusted gradually, where the initial integration
is relatively simple, while utilizing advanced features requires more effort. The
disadvantage to this approach is that either there must be changes in the
naming scheme for files used by the pipeline, or it will be difficult to fully
utilize GeStore’s features.

4.2 Use of Data-intensive Computing Systems in
Bioinformatics

We believe that data-intensive computing systems such as MapReduce are not
widely used in bioinformatics. To gauge the extent of use of data-intensive
computing systems in bioinformatics, we performed a literature review in BMC
Bioinformatics?! including articles until November 2014.

To answer this question we count the number of articles mentioning MapRe-
duce and Hadoop. The MapReduce design [97] was published in 2004, the
open-source Hadoop MapReduce project [97] was started in 2005, and Hadoop
became popular around 2008. Since then, an increasing number of articles
mention MapReduce and Hadoop each year; especially in the last two years

1. We also examined Genome Biology and the Web Server and Database special issues of
Nucleic Acids Research, but these journals have few infrastructure articles compared to
BMC Bioinformatics

56 CHAPTER 4 / INTEGRATION

Year | Hadoop | MapReduce
2009 |1 1
2010 | 4 7
2011 | 4 7
2012 | 4 8
2013 | 4 15
2014 |7 14
Total | 24 52

Table 4.2: Number of articles per year for keywords MapReduce and Hadoop (many
articles are in both results). The year 2014 does not include articles published
in November and December.

(Table 4.2). The results indicate that data-intensive computing systems are
increasingly being used for biological data processing.

Use of Specific Systems in Bioinformatics

In this section, we examine papers describing specific data-intensive computing
systems. We want to find the systems that are used for biological data processing,
and what the systems are used for. We search for specific keywords and manually
filter the returned results to exclude papers that do not describe the system.
We set Include to All article types, since the number of Software papers is low
for some searches.

We first searched for “Hadoop” since it is the most widely used data-
intensive computing platform. The search returned 24 papers. Of these, the
software in 14 papers use systems in the Hadoop stack, three articles describe
virtual machine images or provisioning systems that include Hadoop, the
remaining only mention Hadoop in related work. The Hadoop systems are
used for search, integrated analysis, data integration, machine learning, and
distributed analysis of different data types

We also searched for the Hadoop alternative Azure [67]. There are six
articles discussing Azure, of which the software in two use Azure in combination
with MapReduce, two articles propose to use Azure for processing and storage,
one describes a virtual machine provisioning systems, and one is a review
article.

We then searched for names of the data-intensive computing systems
described in section 2. For MapReduce we found 54 articles. We refined the
MapReduce search by limiting the search to Title+Abstract+Text in order to
remove articles that just mention MapReduce in the citations. Of the remaining
27 articles, 12 describe software that use Hadoop MapReduce and three that
use the MapReduce programming model. Most of these articles are also in

4.2 / USE OF DATA-INTENSIVE COMPUTING SYSTEMS IN BIOINFORMATICS 57

the Hadoop search results (discussed above). We found four HBase articles; of
which two [98, 99] describe software that uses HBase as a storage backend
for sequencing data (the remaining two mention HBase in related work). We
found two Spark papers. One described how they used Spark to implement
distributed processing of next-generation sequencing data [100]. Cassandra,
Hive, and Mahout are not used by software in any articles, but are discussed in
the related work in two articles. We did not find Impala in any articles.

We also searched for the Pig [101], Cascading [102], Drill [92], and Storm
[103] systems, but these return many false positives. We therefore refined the
search to: “Pig Apache”, “Cascading SQL’, “Drill Apache”, and “Storm Apache”.
Pig and Cascading where both discussed in the related work in two articles.
We did not find any articles for Drill and Storm.

The above results show that MapReduce is the most popular system for
data-intensive biological data processing, and that most MapReduce tool imple-
mentations use the Hadoop stack. We also found a few articles where HBase
and Spark were used. MapReduce, Spark, and HBase are all core systems. We
did not find any Bioinformatics articles that described tools that use higher-level
systems. This may suggest that the services and abstractions provided by these
are not well suited for biological data. The systems that were not mentioned
in any articles (Impala [104], Drill, and Storm) are all recently developed, and
may therefore have been unstable when the tools were implemented.

Updates to the Review

Since our literature review was done in 2014, we have attempted to update the
results with more recent articles.

At the time of writing, we find 7 new papers when searching for Hadoop
in BMC Bioinformatics, 8 new papers for MapReduce, two additional papers
for Spark, two additional papers for HBase and no additional articles for the
other terms used.

Of the 13 unique articles found, 5 use MapReduce, Spark, HDFS, or HBase.
4 are compatible with Hadoop or the MapReduce paradigm. 2 mention MapRe-
duce or Hadoop as related work, and 2 mention MapReduce or Hadoop as
future work.

These results are not fully compatible with the results in the literature
review, due to changes to the search algorithm used in BMC Bioinformatics,
resulting in differences in the number of articles found when searching for the
terms used in the review.

58 CHAPTER 4 / INTEGRATION

4.2.1 Discussion

Our literature review shows that big data management systems are not yet
widely used in bioinformatics, but the trend seems to be towards increased
adaption.

It should be noted that since the review was done, new papers have appeared
such as ADAM [3] and the deep analysis pipeline described in [4], but these
were published at primarily computer science conferences.

4.3 Conclusion

In this chapter, we have demonstrated three approaches for integrating data-
intensive computing systems with legacy bioinformatics workflow managers
and pipelines. We have shown the tradeoffs involved in the different ap-
proaches.

Despite the relative ease of this integration, our literature review shows
that large-scale data management and processing systems are not widely used
in bioinformatics. We do however observe a trend towards more adaption. This
indicates that there is a need for data management and processing systems in
bioinformatics.

Conclusions

The current data growth in biology has large ramifications for data management
in bioinformatics.

This thesis demonstrates that a data management approach based on the
file-based distributed data materialization model can be leveraged by existing
bioinformatics pipelines to reduce runtime, keep results up to date and maintain
repeatability.

Through our analysis of META-pipe in chapter 2, we show that the execution
time of a large fraction of the tools used in bioinformatics pipelines can be
reduced by reducing the amount of data processed. This means that a system
that can reduce the amount of data used by these tools can also reduce the
runtime of the pipeline. Our analysis of the GeStore implementation of the
FDDM in chapter 3, shows that this model can be used to generate reference
databases quickly, and that we can reduce the amount of data generated for
the tools used in pipelines. Our integration of GeStore with three classes of
workflow managers, described in chapter 4, demonstrates that the GeStore
implementation of the FDDM can be used by several existing bioinformatics
pipelines.

Combined, these results show that the FDDM approach can be leveraged to
increase the performance and reduce the cost, of running pipelines, in particular
when updating experimental results.

59

60 CHAPTER 5 / CONCLUSIONS

5.1 Lessons Learned

Through the design of the FDDM, and the implementation of the FDDM in
the GeStore system, some key lessons have been learned which we believe are
applicable more generally.

Integration is a key factor in the performance and usability of middleware
systems such as GeStore. We have explored multiple approaches to the inte-
gration, and found several feasible approaches, which have different tradeoffs
in terms of user effort, integration effort, and richness of features that can be
used by the workflow manager. If tools are difficult to use, they will not be
used by users, and if they are too difficult to integrate against, they will not
be used by pipeline creators.

Performance is one of the key reasons to adopt a system such as GeStore.
We have found that many tools in bicinformatics pipelines have computa-
tional requirements that scale with data size, enabling us to increase perfor-
mance drastically by reducing the volume data. Performance is important since
the demands of researchers and customers include performance, there is not
much demand for an analysis service that completes analysis in months and
years.

Cost reduction is the most significant motivator of this work, although closely
related to performance. The reduction in cost is for some cases directly related
to number of CPU hours used in analysis, since the number of CPU hours used
determines how many machines are needed and for how long. Since GeStore is
able to reduce the number of CPU hours used, the cost is also similarly reduced.
Cost is a significant limitation of many projects in bioinformatics in terms of
the cost of hardware, software and VMs as well as the human cost in terms of
support, and manual maintenance of data.

5.2 Availability

GeStore is open-source, and available at https://github.com/edvardpedersen/
GeStore. Also available at the same website is a user guide, as well as a preview
VM for easy setup.

META-pipe is open-source, and available at https://github.com/emrobe/
META-pipe. In addition, the service is available at https://galaxy-uit.bioinfo.
no (note that a FEIDE user account is required to access the service).

https://github.com/edvardpedersen/GeStore
https://github.com/edvardpedersen/GeStore
https://github.com/emrobe/META-pipe
https://github.com/emrobe/META-pipe
https://galaxy-uit.bioinfo.no
https://galaxy-uit.bioinfo.no

Future Work

In this chapter, we outline future work.

6.1 GeStore Improvements

GeStore improvements include investigating more easy to use query opportuni-
ties, such as extending the regular expression queries with an integration step
to the workflow manager that rewrites simpler queries to GeStore-compatible
queries, so that it is simpler to write queries for the end-user.

Another feature which is needed to support additional tools would be
plugins for additional file formats. One specific area of improvement is to
implement an improved plugin for the file format used to store hidden markov
models (HMM) used by many analysis tools, such as InterProScan, so that
small changes are marked as insignificant. The HMM data consists of an array
of floating point numbers, and even small changes in the data used to generate
the HMM can lead to small changes in a large number of entries in the reference
database. These changes are currently marked as significant, even if the results
are not impacted by the changes.

There are several areas for optimizing the performance of GeStore. We
may better tune HBase, HDFS and MapReduce parameters. For example by
relaxing the rules for updating the write-ahead log in HBase, which is a tradeoff
between performance and fault tolerance. Since we work from assumptions
that adding large reference databases to GeStore will be a relatively infrequent

61

62 CHAPTER 6 / FUTURE WORK

background job, we have not investigated the optimization opportunities for
that stage of GeStore in great depth.

Recent pipelines such as ADAM [3] and META-pipe 2.0 use Spark for data
processing. For GeStore, Spark may provide better performance for small files
by reducing startup time, but requires changes to the code related to retrieval
and addition of data.

6.2 Deployment Challenges and Opportunities

The marine reference database described in section 3.4.8 is a project that
requires a GeStore-like approach for frequent updates. Current estimates are
that 4.32 million CPU hours are needed for the initial release. For subsequent
releases, using incremental updates will significantly reduce costs for each
update. We therefore plan to use the FDDM approach to handle this use
case.

Other workflow managers and pipelines such as ADAM [3] and Taverna
[8] are possible future integration targets for GeStore. They do not currently
solve the problem which GeStore is designed to solve; increasing performance
by reducing data volumes processed by tools. It would be of particular interest
to examine additional modern workflow managers that use large-scale data
intensive frameworks such as Spark and HDFS to store and process data for
tools without using the local file system. For these we can reduce overhead by
reducing the reliance on local files.

6.3 Quality Control and Error Detection

Error detection and quality control is vital to avoid producing erroneous results.
We have started to investigate quality and error detection within the data
management system, but we have not yet moved beyond early prototyping.
This approach is based on the idea of combining legacy tools such as FastQC
[so] with heuristics in a framework integrated with the data management
system to enable techniques such as sampling, and testing ranges of data. In
addition, we plan to combine automatic error detection with visualization
techniques to do quality control. The early results show that this type of error
detection has potential to be beneficial to users. By detecting errors as early as
possible, processing time can be saved by aborting the pipeline and informing
the user of the issues with the data set.

Bibliography

[1]

[2]

[3]

(4]

[5]

(6]

[7]

(8]

[9]

M. Baker, “Next-generation sequencing: adjusting to data overload,” Nat
Meth, vol. 7, no. 7, pp. 495-499, Jul. 2010.

J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences.” Genome biology, vol. 11, no. 8, p.
R86, Jan. 2010.

E A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian,
J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman, M. J. Franklin,
A. D. Joseph, and D. A. Patterson, “Rethinking data-intensive science
using scalable analytics systems,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD '15. New
York, NY, USA: ACM, 2015, pp. 631-646.

Y. Diao, A. Roy, and T. Bloom, “Building highly-optimized, low-latency
pipelines for genomic data analysis,” in Proc. of 7th Biennial Conference
on Innovative Data Systems Research, 2015.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark : Cluster Computing with Working Sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010, p. 10.

J. Dean and S. Ghemawat, “MapReduce,” Communications of the ACM,
vol. 51, no. 1, p. 107, Jan. 2008.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a
tool for the composition and enactment of bioinformatics workflows.”
Bioinformatics, vol. 20, no. 17, pp. 3045-54, Nov. 2004.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, 1. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhaj-
jame, E Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Vargas,
S. Sufi, and C. Goble, “The taverna workflow suite: designing and exe-
cuting workflows of web services on the desktop, web or in the cloud,”
Nucleic Acids Research, vol. 41, pp. W557-61, Jul 2013.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Du-
doit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber,
S.Tacus, R. Irizarry, E Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki,
C. Smith, G. Smyth, L. Tierney, J. Y. H. Yang, and J. Zhang, “Bioconductor:

63

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

open software development for computational biology and bioinformat-
ics.” Genome biology, vol. 5, no. 10, p. R80, Jan. 2004.

Y. A. Liu, S. D. Stoller, and T. Teitelbaum, “Static caching for incremental
computation,” ACM Trans. on Programming Languages and Systems,
vol. 20, no. 3, pp. 546—585, May 1998.

P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacen-
ters,” in Proc. of the gth Symposium on Operating Systems Design and
Implementation. USENIX, 2010, pp. 1-8.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini, “Incoop
: MapReduce for Incremental Computations,” in Proc. of the 2nd ACM
Symposium on Cloud Computing. ACM Press, 2011, p. 7.

D. Peng and E Dabek, “Large-scale incremental processing using dis-
tributed transactions and notifications,” in Proc. of the gth Symposium
on Operating Systems Design and Implementation, Google, Inc. USENIX,
2010, pp. 1-15.

L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: reusing work in large-
scale computations,” Proc. of the 2009 conference on Hot topics in cloud
computing, p. 21, Jun. 2009.

D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum, “Stateful
bulk processing for incremental analytics,” in Proc. of the 1st ACM sym-
posium on Cloud computing. New York, New York, USA: ACM Press,
Jun. 2010, p. 51.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “The Hal.oop approach
to large-scale iterative data analysis,” The VLDB Journal, vol. 21, no. 2,
Pp- 169-190, Mar. 2012.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” ACM SIGOPS
Oper. Syst. Rev., vol. 41, no. 3, p. 59, 2007.

G. Turcu, S. Nestorov, and I. Foster, “Efficient Incremental Maintenance
of Derived Relations and BLAST Computations in Bioinformatics Data
Warehouses,” in Data Warehousing and Knowledge Discovery, ser. Lecture
Notes in Computer Science. Springer, 2008, vol. 5182, pp. 135-145.

J. Leipzig, “A review of bioinformatic pipeline frameworks,” Briefings in
Bioinformatics, 2016.

E. M. Robertsen, T. Kahlke, I. A. Raknes, E. Pedersen, E. K. Semb, M. Ern-
stsen, L. A. Bongo, and N. P. Willassen, “Meta-pipe - pipeline annotation,
analysis and visualization of marine metagenomic sequence data,” 2016,
arXiv:1604.04103 [cs.DC].

S. Hunter, M. Corbett, H. Denise, M. Fraser, A. Gonzalez-Beltran,
C. Hunter, P. Jones, R. Leinonen, C. McAnulla, E. Maguire, J. Maslen,
A. Mitchell, G. Nuka, A. Oisel, S. Pesseat, R. Radhakrishnan, P. Rocca-
Serra, M. Scheremetjew, P. Sterk, D. Vaughan, G. Cochrane, D. Field,
and S.-A. Sansone, “EBI metagenomics—a new resource for the analysis

BIBLIOGRAPHY 65

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

and archiving of metagenomic data,” Nucleic Acids Research, vol. 42, pp.
D600-6, Jan 2014.

A. K. Wong, C. Y. Park, C. S. Greene, L. A. Bongo, Y. Guan, and O. G.
Troyanskaya, “Imp: a multi-species functional genomics portal for inte-
gration, visualization and prediction of protein functions and networks,”
Nucleic Acids Research, vol. 40, pp. W484—90, Jul 2012.

E. Pedersen, “Sequence assembly in the cloud, on the grid and in the
basement,” in Abstract Book from NBS 2016, 2016.

E. Pedersen, N. P. Willassen, and L. A. Bongo, “Transparent Incremental
Updates for Genomics Data Analysis Pipelines,” in Proc. of HiBB 2013 —
4th Workshop on High Performance Bioinformatics and Biomedicine, ser.
LNCS, vol. 8374. Springer, 2014, pp. 311-320.

E. Pedersen and L. A. Bongo, “Large-scale biological meta-database
management,” Future Generation Computer Systems, 2016, in Press.

E. Pedersen, I. A. Raknes, M. Ernstsen, and L. A. Bongo, “Integrating
Data-Intensive Computing Systems with Biological Data Analysis Frame-
works,” in Proc. of 23rd Euromicro International Conference on Parallel,
Distributed and Network-based Processing. 1EEE, 2015, pp. 733-740.

L. A. Bongo, E. Pedersen, and M. Ernstsen, “Data-Intensive Computing In-
frastructure Systems for Unmodified Biological Data Analysis Pipelines,”
in Computational Intelligence Methods for Bioinformatics and Biostatistics,
ser. LNBI, vol. 8623, 2014.

E. Pedersen and L. A. Bongo, Resource Management for Big Data Appli-
cations. Springer, 2016, ch. Big Biological Data Management.
Norwegian Bioinformatics Platform, “Norwegian e-infrastructure for
life sciences,” 2016, [accessed 18-April-2016]. [Online]. Available:
https://nels.bioinfo.no

Elixir, “Elixir excelerate,” 2016, [accessed 18-April-2016]. [Online].
Available: https://www.elixir-europe.org/excelerate

R. Edgar, M. Domrachev, and A. E. Lash, “Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository.” Nucleic
Acids Res., vol. 30, no. 1, pp. 207-210, 2002.

R. Leinonen, R. Akhtar, E. Birney, L. Bower, A. Cerdeno-Tarraga, Y. Cheng,
I. Cleland, N. Faruque, N. Goodgame, R. Gibson, G. Hoad, M. Jang,
N. Pakseresht, S. Plaister, R. Radhakrishnan, K. Reddy, S. Sobhany, P. T.
Hoopen, R. Vaughan, V. Zalunin, and G. Cochrane, “The European nu-
cleotide archive,” Nucleic Acids Res., vol. 39, no. SUPPL. 1, 2011.

X. M. Fernandez-Suarez, D. J. Rigden, and M. Y. Galperin, “The 2014
Nucleic Acids Research Database Issue and an updated NAR online
Molecular Biology Database Collection.” Nucleic Acids Res., vol. 42, no.
Database issue, pp. D1-6, Jan. 2014.

J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdi-
gian, G. Fuellen, J. G. R. Gilbert, I. Korf, H. Lapp, H. Lehvislaiho, C. Mat-
salla, C. J. Mungall, B. I. Osborne, M. R. Pocock, P. Schattner, M. Senger,

https://nels.bioinfo.no
https://www.elixir-europe.org/excelerate

66

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

L. D. Stein, E. Stupka, M. D. Wilkinson, and E. Birney, “The Bioperl
toolkit: Perl modules for the life sciences,” Genome Research, vol. 12,
no. 10, pp. 1611-1618, 2002.

D. Blankenberg, G. Von Kuster, N. Coraor, G. Ananda, R. Lazarus, M. Man-
gan, A. Nekrutenko, and J. Taylor, “Galaxy, a web-based genome analysis
tool for experimentalists,” Current protocols in molecular biology, vol. o
19, pp. Unit-19.1021, Jan 2010.

P. Jones, D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla,
H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. E
Quinn, A. Sangrador-Vegas, M. Scheremetjew, S.-Y. Yong, R. Lopez, and
S. Hunter, “Interproscan 5: genome-scale protein function classification,”
Bioinformatics, vol. 30, pp. 1236—40, May 2014.

P. ten Hoopen, S. Pesant, R. Kottmann, A. Kopf, M. Bicak, S. Claus,
K. Deneudt, C. Borremans, P. Thijsse, S. Dekeyzer, D. M. Schaap,
C. Bowler, E O. Glockner, and G. Cochrane, “Marine microbial biodi-
versity, bioinformatics and biotechnology (m2b3) data reporting and
service standards,” Standards in Genomic Sciences, vol. 10, no. 1, pp.
1-10, 2015.

European Bioinformatics Institute, “EBI Metagenomics,” [ac-
cessed 18-April-2016]. [Online]. Available: https://www.ebi.ac.uk/
metagenomics/

J. Goll, D. B. Rusch, D. M. Tanenbaum, M. Thiagarajan, K. Li, B. A. Methé,
and S. Yooseph, “METAREP: JCVI metagenomics reports—an open source
tool for high-performance comparative metagenomics.” Bioinformatics
(Oxford, England), vol. 26, no. 20, pp. 2631-2, Oct. 2010.

B. D. Ondov, N. H. Bergman, and A. M. Phillippy, “Interactive metage-
nomic visualization in a web browser,” BMC Bioinformatics, vol. 12, no. 1,
Pp. 1-10, 2011.

Oxford Journals, “Instructions to authors,” 2016, [accessed 10-
September-2016]. [Online]. Available: https://cloud.google.com

S. Hunter, M. Corbett, H. Denise, M. Fraser, A. Gonzalez-Beltran,
C. Hunter, P. Jones, R. Leinonen, C. McAnulla, E. Maguire, J. Maslen,
A. Mitchell, G. Nuka, A. Oisel, S. Pesseat, R. Radhakrishnan, P. Rocca-
Serra, M. Scheremetjew, P. Sterk, D. Vaughan, G. Cochrane, D. Field, and
S.-A. Sansone, “EBI metagenomics—a new resource for the analysis and
archiving of metagenomic data.” Nucleic Acids Res., vol. 42, no. Database
issue, pp. D600-6, Jan. 2014.

A. Mitchell, H.-Y. Chang, L. Daugherty, M. Fraser, S. Hunter, R. Lopez,
C. McAnulla, C. McMenamin, G. Nuka, S. Pesseat, A. Sangrador-Vegas,
M. Scheremetjew, C. Rato, S.-Y. Yong, A. Bateman, M. Punta, T. K.
Attwood, C. J. A. Sigrist, N. Redaschi, C. Rivoire, I. Xenarios, D. Kahn,
D. Guyot, P. Bork, I. Letunic, J. Gough, M. Oates, D. Haft, H. Huang,
D. A. Natale, C. H. Wu, C. Orengo, 1. Sillitoe, H. Mi, P. D. Thomas, and
R. D. Finn, “The InterPro protein families database: the classification

https://www.ebi.ac.uk/metagenomics/
https://www.ebi.ac.uk/metagenomics/
https://cloud.google.com

BIBLIOGRAPHY 67

[44]

[45]

[46]
[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

resource after 15 years,” Nucleic Acids Research, vol. 43, pp. D213-21, Jan
2015.

E Meyer, D. Paarmann, M. D’Souza, R. Olson, E. M. Glass, M. Kubal,
T. Paczian, A. Rodriguez, R. Stevens, A. Wilke, J. Wilkening, and R. A.
Edwards, “The metagenomics rast server - a public resource for the
automatic phylogenetic and functional analysis of metagenomes,” BMC
Bioinformatics, vol. 9, p. 386, 2008.

V. M. Markowitz, I.-M. A. Chen, K. Chu, E. Szeto, K. Palaniappan,
Y. Grechkin, A. Ratner, B. Jacob, A. Pati, M. Huntemann, K. Liolios,
I. Pagani, I. Anderson, K. Mavromatis, N. N. Ivanova, and N. C. Kyrpides,
“Img/m: the integrated metagenome data management and comparative
analysis system,” Nucleic Acids Research, vol. 40, pp. D123—9, Jan 2012.
EGI, “EGI Federated Cloud,” 2016, [accessed 18-April-2016]. [Online].
Available: https://www.egi.eu/infrastructure/cloud/

EMBL-EBI, “Embassy cloud,” 2016, [accessed 18-April-2016]. [Online].
Available: http://www.embassycloud.org

CSC, “cPouta,” 2016, [accessed 18-April-2016]. [Online]. Available:
https://research.csc.fi/cpouta

EUDAT, “Eudat,” 2016, [accessed 18-April-2016]. [Online]. Available:
https://www.eudat.eu

S. Andrews, “Fastqc a quality control tool for high throughput
sequence data,” feb 2016, [accessed 18-April-2016]. [Online]. Available:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

R. Schmieder and R. Edwards, “Quality control and preprocessing of
metagenomic datasets,” Bioinformatics, vol. 27, pp. 863—4, Mar 2011.

S. E Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic
local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3,
PP. 403-410, 1990.

C. Claudel-Renard, C. Chevalet, T. Faraut, and D. Kahn, “Enzyme-specific
profiles for genome annotation: Priam,” Nucleic Acids Research, vol. 31,
pPp- 6633—9, Nov 2003.

B. Chevreux, T. Wetter, and S. Suhai, “Genome sequence
assembly using trace signals and additional sequence information,”
feb 2016, [accessed 18-April-2016]. [Online]. Available: http:
//miraassembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html
B. Chevreux, T. Pfisterer, B. Drescher, A. J. Driesel, W. E. G. Miiller,
T. Wetter, and S. Suhai, “Using the miraest assembler for reliable and
automated mrna transcript assembly and snp detection in sequenced
ests,” Genome Research, vol. 14, pp. 1147-59, Jun 2004.

S. Boisvert, E Raymond, E. Godzaridis, E Laviolette, and J. Corbeil, “Ray
meta: scalable de novo metagenome assembly and profiling,” Genome
Biology, vol. 13, p. R122, 2012.

S. Boisvert, E Laviolette, and J. Corbeil, “Ray: Simultaneous assembly of
reads from a mix of high-throughput sequencing technologies,” Journal

https://www.egi.eu/infrastructure/cloud/
http://www.embassycloud.org
https://research.csc.fi/cpouta
https://www.eudat.eu
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://miraassembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html
http://miraassembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html

63

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]
[66]
[67]
[68]
[69]

[70]

[71]

[72]

[73]

BIBLIOGRAPHY

of Computational Biology, vol. 17, pp. 151933, Nov 2010.

H. Noguchi, T. Taniguchi, and T. Itoh, “MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise gene pre-
diction in anonymous prokaryotic and phage genomes.” DNA Research,
vol. 15, no. 6, pp. 387-96, Dec. 2008.

H. Noguchi, J. Park, and T. Takagi, “Metagene: prokaryotic gene finding
from environmental genome shotgun sequences,” Nucleic Acids Research,
vol. 34, no. 19, pp. 5623-5630, 2006.

A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L. Salzberg, “Im-
proved microbial gene identification with glimmer.” Nucleic Acids Re-
search, vol. 27, pp. 4636—41, Dec 1999.

S. L. Salzberg, A. L. Delcher, S. Kasif, and O. White, “Microbial gene
identification using interpolated markov models.” Nucleic Acids Research,
vol. 26, pp. 544-8, Jan 1998.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: A parallel assembler for short read sequence data,”
Genome Research, vol. 19, no. 6, pp. 1117-1123, 2009.

A. Abu-Doleh and U. V. Catalyurek, “Spaler: Spark and GraphX based de
novo genome assembler,” in 2015 IEEE International Conference on Big
Data (Big Data). IEEE, Oct 2015, pp. 1013-1018.

T. Kahlke, “Analysis of the vibrionaceae pan-genome,” Ph.D. dissertation,
UiT - The Arctic University of Norway, 2013.

UiO, “Lifeportal,” 2016, [accessed 18-April-2016]. [Online]. Available:
https://lifeportal.uio.no

Amazon, “Elastic compute cloud,” 2016, [accessed 18-April-2016].
[Online]. Available: https://aws.amazon.com/ec2/

Microsoft, “Azure,” 2016, [accessed 18-April-2016]. [Online]. Available:
https://azure.microsoft.com

Google, “Google cloud platform,” 2016, [accessed 18-April-2016].
[Online]. Available: https://cloud.google.com

Amazon, “Simple storage service,” 2016, [accessed 18-April-2016].
[Online]. Available: https://aws.amazon.com/s3/

E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J. Taylor,
“Galaxy Cloudman: delivering cloud compute clusters,” BMC Bioinfor-
matics, vol. 11, p. S4, 2010.

A. B. Yoo, M. A. Jette, and M. Grondona, Job Scheduling Strategies for
Parallel Processing: oth International Workshop, JSSPP 2003, Seattle, WA,
USA, June 24, 2003. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, ch. SLURM: Simple Linux Utility for Resource Management, pp.
44—60.

The OpenLava Project, “Openlava - open source job scheduler,” 2016,
[accessed 18-April-2016]. [Online]. Available: http://www.openlava.org
M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in Proc. of 8th International Conference on Distributed

https://lifeportal.uio.no
https://aws.amazon.com/ec2/
https://azure.microsoft.com
https://cloud.google.com
https://aws.amazon.com/s3/
http://www.openlava.org

BIBLIOGRAPHY 69

[74]

[75]
[76]

[77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

Computing Systems, Jun 1988, pp. 104-111.

L. Pireddu, S. Leo, N. Soranzo, and G. Zanetti, “A Hadoop-galaxy adapter
for user-friendly and scalable data-intensive bioinformatics in galaxy,” in
Proc. of the 5sth ACM Conference on Bioinformatics, Computational Biology,
and Health Informatics, ser. BCB '14. New York, NY, USA: ACM, 2014,
pp. 184-191.

[Mlumina, “Basespace sequence hub,” 2016, [accessed 18-April-2016].
[Online]. Available: https://basespace.illumina.com

Oxford Nanospore, “Metrichor,” 2016, [accessed 18-April-2016]. [Online].
Available: https://metrichor.com/

M. Ernstsen, E. Kjerner-Semb, N. P. Willassen, and L. A. Bongo, Euro-Par
2014: Parallel Processing Workshops: Euro-Par 2014 International Work-
shops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part I.
Cham: Springer International Publishing, 2014, ch. Mario: Interactive
Tuning of Biological Analysis Pipelines Using Iterative Processing, pp.
263—274.

J. Fagerli, “COMBUSTI/O,” Master’s thesis, UiT - The Arctic University
of Norway, 2016.

M. Magrane and U. Consortium, “UniProt Knowledgebase: a hub of
integrated protein data.” Database, vol. 2011, 2011.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-
tributed File System,” 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies, no. 5, pp. 1-10, 2010.

Apache, “Apache HBase,” [accessed 18-April-2016]. [Online]. Available:
http://hbase.apache.org

M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817-840, Jul. 2004.

D. Bhaya, A. R. Grossman, A.-S. Steunou, N. Khuri, E M. Cohan, N. Hama-
mura, M. C. Melendrez, M. M. Bateson, D. M. Ward, and J. E Heidelberg,
“Population level functional diversity in a microbial community revealed
by comparative genomic and metagenomic analyses.” The ISME journal,
vol. 1, no. 8, pp. 703-713, 2007.

A. Mitchell, E Bucchini, G. Cochrane, H. Denise, P. t. Hoopen, M. Fraser,
S. Pesseat, S. Potter, M. Scheremetjew, P. Sterk, and R. D. Finn, “Ebi
metagenomics in 2016 - an expanding and evolving resource for the
analysis and archiving of metagenomic data,” Nucleic Acids Research,
vol. 44, pp. D595-603, Jan 2016.

Apache, “Cassandra,” [accessed 18-April-2016]. [Online]. Available:
http://cassandra.apache.org

“Mongodb,” [accessed 18-April-2016]. [Online]. Available: http:
//mongodb.org

B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie, “Blob-
seer: Next-generation data management for large scale infrastructures,”

https://basespace.illumina.com
https://metrichor.com/
http://hbase.apache.org
http://cassandra.apache.org
http://mongodb.org
http://mongodb.org

70

[88]

[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

BIBLIOGRAPHY

Journal of Parallel and Distributed Computing, vol. 71, no. 2, pp. 169 —
184, 2011.

E Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference on File
and Storage Technologies, ser. FAST ’02. Berkeley, CA, USA: USENIX
Association, 2002.

Panasas, “Parallel Network File System,” [accessed 18-April-2016].
[Online]. Available: http://pnfs.com

Oracle, “MySQL,” [accessed 18-April-2016]. [Online]. Available:
http://www.mysql.com

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 330-339, 2010.
M. Hausenblas and J. Nadeau, ‘“Apache drill: Interactive ad-hoc analysis
at scale,” Big Data, vol. 1, no. 2, pp. 100-104, May 2013.

J. Schildgen, T. Jorg, M. Hoffmann, and S. Dessloch, “Marimba: A Frame-
work for Making MapReduce Jobs Incremental,” in 2014 IEEE Interna-
tional Congress on Big Data. IEEE, Jun. 2014, pp. 128-135.

V. Serbanescu, E Pop, V. Cristea, and G. Antoniu, “Architecture of dis-
tributed data aggregation service,” in Advanced Information Networking
and Applications (AINA), 2014 IEEE 28th International Conference on, May
2014, pp. 727-734.

E Douglis and A. Iyengar, “Application-specific Delta-encoding via Re-
semblance Detection,” in Proc. of the USENIX Annual Technical Conference,
2003, pp- 113-126.

D. M. Dooley, A. J. Petkau, G. Van Domselaar, and W. W. L. Hsiao, “Se-
quence database versioning for command line and galaxy bioinformatics
servers,” Bioinformatics, vol. 32, no. 8, pp. 1275-1277, Dec. 2015.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation, ser. OSDI'o4, vol. 6.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10.

S. Killcoyne and A. del Sol, “Figg: Simulating populations of whole
genome sequences for heterogeneous data analyses,” BMC Bioinformat-
ics, vol. 15, p. 149, 2014.

B. D. O’Connor, B. Merriman, and S. E Nelson, “Seqware query engine:
storing and searching sequence data in the cloud,” BMC Bioinformatics,
vol. 11, p. S2, 2010.

A. Roberts, H. Feng, and L. Pachter, “Fragment assignment in the cloud
with express-d,” BMC Bioinformatics, vol. 14, no. 1, pp. 1-9, 2013.

A. E Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Building a high-
level dataflow system on top of map-reduce: The pig experience,” Proc.
VLDB Endow., vol. 2, no. 2, pp. 1414-1425, Aug. 2009.

http://pnfs.com
http://www.mysql.com

BIBLIOGRAPHY 71

[102] Driven, “Cascading,” 2016, [accessed 18-April-2016]. [Online]. Available:
http://www.cascading.org

[103] Apache, “Storm,” 2016, [accessed 18-April-2016]. [Online]. Available:
http://storm.apache.org

[104] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder, “Impala: A Modern,
Open-Source SQL Engine for Hadoop,” in CIDR. www.cidrdb.org, 2015.

http://www.cascading.org
http://storm.apache.org

Part Il

Collection of publications

73

Papers

7.1 Paper1
Robertsen, E.M., Kahlke, T., Raknes, I.A., Pedersen, E., Semb, E.K., Ernstsen,

M., Bongo, L.A., Willassen, N.P.: Meta-pipe - pipeline annotation, analysis and
visualization of marine metagenomic sequence data (2016) arXiv:1604.04103

75

7.2 / PAPER?2 99

7.2 Paper2

E. Pedersen and L. A. Bongo, "Large-scale Biological reference database Man-
agement," in Future Generation Computer Systems, in Press.

7.3 / PAPER 3 121

7.3 Paper3

E. Pedersen , I. A. Raknes, M. Ernstsen , and L. A. Bongo, “Integrating Data
Intensive Computing Systems with Biological Data Analysis Frameworks,” in
Proc. of 23rd Euromicro International Conference on Parallel, Distributed and
Network-based Processing. IEEE, 2015, pp. 733-740.

7.4 / PAPER 4 131

7-4 Paper 4

L. A. Bongo, E. Pedersen, and M. Ernstsen, “Data-Intensive Computing Infras-
tructure Systems for Unmodified Biological Data Analysis Pipelines,” in Compu-
tational Intelligence Methods for Bioinformatics and Biostatistics, ser. LNBI, vol.
8623, 2014.

7.5 / PAPER§ 147

7.5 Papers

E. Pedersen and L. A. Bongo, Resource Management for Big Data Applications.
Springer, 2016, ch. Big Biological Data Management. In Press.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	I Thesis
	1 Introduction
	1.1 Problems With Data Management in Bioinformatics
	1.2 The File-based Distributed Data Materialization Model (FDDM)
	1.3 Use of FDDM
	1.4 Summary of Results
	1.5 Included Papers
	1.5.1 Paper 1
	1.5.2 Paper 2
	1.5.3 Paper 3
	1.5.4 Paper 4
	1.5.5 Paper 5

	1.6 Dissertation Plan

	2 Biological Data Analysis Pipelines
	2.1 Background
	2.1.1 Workflow managers
	2.1.2 Data Management

	2.2 Overview of Analysis Workflow
	2.2.1 Sampling
	2.2.2 Sequencing
	2.2.3 Data Analysis
	2.2.4 Data Exploration
	2.2.5 Data Archiving

	2.3 META-pipe
	2.3.1 Analysis Tools
	2.3.2 Workflow Manager

	2.4 Hardware Infrastructures
	2.4.1 Fat Server
	2.4.2 Lab Cluster
	2.4.3 Supercomputers
	2.4.4 Cloud Computing
	2.4.5 Infrastructure Used by META-Pipe

	2.5 META-pipe Performance
	2.5.1 Methodology
	2.5.2 Results and Discussion
	2.5.3 Experiment Summary

	2.6 Related Work
	2.7 Summary

	3 GeStore
	3.1 Motivation and Requirement Analysis
	3.2 Design
	3.2.1 File-based Data Management Model
	3.2.2 Storage
	3.2.3 Operations
	3.2.4 Reference Database Caching and Internal Data Structures

	3.3 Interfaces
	3.3.1 Plugin Framework

	3.4 Evaluation
	3.4.1 Methodology
	3.4.2 Add and Update Reference Databases
	3.4.3 Retrieve Reference Databases
	3.4.4 Retrieve and Split Reference Database
	3.4.5 Space Usage
	3.4.6 Comparison to Ad Hoc Approaches
	3.4.7 Application Benchmarks
	3.4.8 Discussion

	3.5 Related Work
	3.5.1 Comparison of Structured Data Storage Systems
	3.5.2 Experiences using Hadoop

	3.6 Summary

	4 Integration
	4.1 Workflow Manager Integration
	4.1.1 The three approaches
	4.1.2 Discussion

	4.2 Use of Data-intensive Computing Systems in Bioinformatics
	4.2.1 Discussion

	4.3 Conclusion

	5 Conclusions
	5.1 Lessons Learned
	5.2 Availability

	6 Future Work
	6.1 GeStore Improvements
	6.2 Deployment Challenges and Opportunities
	6.3 Quality Control and Error Detection

	Bibliography

	II Collection of publications
	7 Papers
	7.1 Paper 1
	7.2 Paper 2
	7.3 Paper 3
	7.4 Paper 4
	7.5 Paper 5

