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Randomized controlled trial 

SET   

SV 

SW 
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V0 
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4. Introduction

4.1 Acute heart failure 

4.1.1 Epidemiology of HF 

During the past 50 years, the advances in the prevention, diagnosis, and management of 

cardiovascular disease (CVD) have been tremendous. Age-adjusted CVD-related deaths have 

declined by approximately two-thirds in industrialized nations1. There has also been a dramatic 

reduction in mortality rates associated with acute coronary syndrome (ACS)2, valvular and 

congenital heart disease, uncontrolled hypertension, and many arrhythmias. 

Heart failure (HF) stands out as an exception to this positive trend. HF is the leading cause of 

hospitalization in patients>65 years old3. In Europe, chronic HF has a prevalence of 1-2% 

(10%>60 years). Although the age-adjusted death rate has declined 4,5 and the mean age of death 

Preface-	clinical	relevance	
A	woman	(60	years	old)	with	no	prior	history	of	heart	disease	arrives	at	the	
hospital	with	an	acute	ST-segment	myocardial	infarction.	Prehospital	
thrombolysis	is	unable	to	reverse	ST-segment	elevations	on	the	
electrocardiogram.	Six	hours	have	passed	since	the	first	appearance	of	chest	
pain.	She	is	confused,	presents	with	mottled	skin,	and	is	immediately	admitted	to	
percutaneous	coronary	intervention	(PCI)	for	revascularization	of	a	coronary	
main	stem	occlusion.	Post-revascularization,	she	is	hemodynamically	unstable,	
with	accompanying	signs	of	tissue	hypoperfusion.	In	the	ICU,	a	Swan-Ganz	
catheter	is	placed	and	measures	a	cardiac	index	of	1.8	L/min/m2	and	a	left	
ventricular	(LV)	filling	pressure	of	22	mmHg.	Ultrasound	of	the	heart	shows	
hypokinesisa/akinesisa	in	the	lateral	and	anterior	wall	of	the	LV.	She	is	
intubated	and	put	on	a	respirator	because	of	increasing	confusion	and	
respiratory	distress.	To	increase	cardiac	output	(CO),	dobutamine	infusion	is	
increased	stepwise	in	addition	to	employment	of	noradrenaline	to	achieve	a	
mean	arterial	pressure	(MAP)	above	60	mmHg.	However,	CO	is	still	inadequate,	
with	no	resolution	of	her	metabolic	acidosis.	Additionally,	a	progressive	sinus	
tachycardia	of	130	bpm	has	become	a	major	concern,	as	the	short	diastolic	time	
severely	impairs	ventricular	filling	and	coronary	perfusion.	How	should	this	
patient	be	treated?	
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from HF has risen during the last decades, the 5-year mortality is still approximately 50%, 

comparable to that of colorectal cancer 6. Temporal trends suggest a stable or perhaps decreasing 

incidence of HF over the last decades7.  

Patients with acute HF (AHF), as opposed to patients with chronic heart failure (CHF), are 

unstable and need urgent interventions and/or treatment. According to the European Society of 

Cardiology (ESC) guidelines, AHF can be defined as follows8: “The rapid onset of symptoms and 

signs secondary to abnormal cardiac function. The cardiac dysfunction can be related to systolic or 

diastolic dysfunction, to abnormalities in cardiac rhythm, or to preload and afterload mismatch. It 

is often life-threatening and requires urgent treatment” 8.  

AHF can be divided into 6 distinct clinical syndromes: 

• Acute decompensated HF

• Hypertensive AHF

• Pulmonary oedema

• Cardiogenic shock (CS)

• High output failure

• Right HF

It is evident that patients present with a large clinical spectrum of symptoms, signs and 

associated prognoses. ACS is the dominant cause of both acute decompensated CHF and de novo 

AHF9. Other common aetiologies include valvular pathology, arrhythmias, viral myopathies, 

endocrine myopathies, and others. Patients who develop AHF have either acute decompensated 

chronic HF 10(2/3) or de novo AHF11(1/3). Overall, the 1-year mortality after hospitalization for 

AHF ranges from 25 to 35%12. Patients with de novo AHF have significantly better survival than 

those with decompensated CHF. The in-hospital mortality ranges from 2 to 40%10 depending on 

the clinical subtype of HF. Patients suffering from CS have the worst prognosis. Hermansen et 

al.13 showed that CS was present in 23% of patients with AHF hospitalized at UNN Tromsø, with 

a related mortality of 46%. Importantly, 2-year survival for hospital survivors is the same for CS 

and less severe AHF, thus motivating efforts to improve AHF prognosis by optimizing initial 

supportive treatment.  

The presenting symptoms of AHF include breathlessness, fatigue, and tiredness and are 

accompanied by the following signs: tachycardia, tachypnoea, pulmonary rales, pleural effusion, 

hepatomegaly, and peripheral oedema. Oliguria, hypotension and hyperlactataemia occur when the 

condition evolves into CS. 
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4.1.2 Pathophysiology of ACS-induced HF 

In 1935, Tennant and Wiggers published a study showing that coronary artery occlusion leads to 

systolic left ventricular (LV) dysfunction 14. Oxygen was identified as the link between 

myocardial blood flow (MBF) and systolic function. Later, Ross Jr 15 performed several studies 

further exploring the close correlation between changes in systolic wall thickening and decreases 

in sub-endocardial blood flow, termed perfusion-contraction matching. The major determinants of 

myocardial oxygen demand are heart rate (HR), wall stress, and LV contractility16. Wall stress is 

directly related to systolic blood pressure and LV diameter and inversely related to wall thickness. 

At rest, the oxygen extraction of the heart is 75% compared to total body extraction of 

approximately 30%. Because of its limited ability to further increase oxygen extraction, the 

myocardium depends on changes in MBF to increase oxygen supply. In exercising healthy 

individuals, the MBF can increase 5-fold17. Imbalance in the oxygen supply and demand of the 

myocardium may lead to ischaemia. 

Reduced LV contractility is a hallmark of LV ischaemia/postischaemia18 and is an 

important predictor of mortality after myocardial ischaemia19. Contractility describes the intrinsic 

force and velocity of myocardial contraction (inotropic state) independent of HR and loading 

conditions. In the acute phase, with ongoing ischaemia and acidosis, Ca2+ transients and Ca2+ 

sensitivity of the myofilaments are reduced20. The resultant reduction in contractility is evident as 

decreases in preload-recruitable stroke work (PRSW),with a concomitant increase in the end-

systolic volume (ESV) and a decrease in the LV ejection fraction (EF)18.  

Diastolic function is dependent on Ca2+ reuptake at the sarcomere, which is reduced in 

ischaemia. This diastolic dysfunction is displayed as incomplete or delayed early relaxation (Tau, 

dP/dtmin) or acute stiffening of the ventricle, causing late diastolic constraint21.  

 The potential for regeneration of cardiac function is primarily dependent on timely 

reperfusion22. Furthermore, a reduction in LV function of unknown magnitude is not directly 

accounted for by myocardial necrosis and is not relieved by reperfusion. This condition, initially 

termed “myocardial stunning”23, is reversible within days and is caused by metabolic 

abnormalities, oxidative stress, Ca2+ overload and oedema24. Therefore, treatment of acute 

ischaemic HF depends on timely reperfusion of obstructed coronary vessels in combination with 

haemodynamic support to secure optimal recovery of the post-ischaemic LV dysfunction.  

The acute reduction of LV function initiates acute adaptive and compensating mechanisms 

(Figure 1) mediated by intravascular baroreceptors. Among the most important compensating 
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mechanisms is activation of the sympathetic system (α– and β-adrenergic receptors) and renin-

angiotensin-aldosterone system (RAAS), resulting in fluid retention, vasoconstriction, increased 

contractility and tachycardia.  

Continuous neurohormonal activation, oxidative stress, inflammation and haemodynamic 

abnormalities follow the acute phase. Over weeks and months, this myriad of mechanisms 

together lead to remodelling of the heart, with myocardial damage and fibrosis25. In addition, renal 

function is compromised to varying degrees. There is dilatation of the LV with increases in ESV, 

EDV and left atrial (LA) diastolic pressure. Stroke volume (SV) can be sustained at the expense of 

increased filling pressures and wall tension. When this situation is stable, the patient has 

compensated chronic HF. Over time, the remodelling further reduces LV compliance, with a 

resulting increase in LV filling pressure26. Reduced renal function contributes to fluid and salt 

retention. At one point, the condition rapidly deteriorates, with signs of acute decompensated HF 

or pulmonary oedema; at worst, CS occurs. 

Figure 1. Development of acute and chronic ischaemic heart failure. Schematic illustration of the 
development of ischaemic acute and chronic heart failure. SV, stroke volume; ESV, end-systolic volume; 
EDV, end-diastolic volume; EDP, end-diastolic pressure; EF, ejection fraction; CHF, chronic heart failure. 
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4.1.3 Treatment of AHF 

In the initial phase, correction of the precipitating cause is the first priority. Timely reperfusion is 

the main predictor of mortality after acute coronary occlusion27. Another important treatment goal 

is hypertension and arrhythmia management. 

After immediate management, the treatment principle is reduction of the LV pressure-

volume (PV) load. Unloading improves haemodynamics and symptoms. First-line treatment is the 

use of fluid removal (loop diuretics) and/or vasodilatation (nitrogen monoxide-donors) to decrease 

pre- and afterload, with concomitant reductions in wall tension, LV filling pressures and oxygen 

consumption. To counteract severely depressed LV function, administration of volume and/or 

inotropic agents may be indicated. Patients with AHF who respond haemodynamically to 

unloading with reduced ESV and EDV have a reduced risk of mortality28. 

After these patients are stabilized, they are considered to have CHF and are treated 

according to current guidelines with neurohormonal inhibition (β-blockers and ACE-

antagonists)29. This therapy is sufficient in patients with moderate AHF and in the majority of 

patients with decompensated CHF. However, neuroendocrine inhibition is potentially harmful in 

unstable patients30. 

In low-output states with signs of organ hypoperfusion (such as CS), inotropes should be 

used29. Reports have indicated the use of inotropes in 10-39% of all admissions due to AHF11,31. 

The first-line inotropic drug is dobutamine32,29. Intracellular effects of catecholamines are 

discussed in paper 3. In brief, at myocytes, dobutamine acts via β-adrenergic receptors to greatly 

enhance the transient amplitude of cytosolic Ca2+ (inotropy) and to speed up sarcoplasmic 

reticulum (SR) Ca2+ reuptake (lusitropy)20 (Figure 2). The Ca2+ fluxes are haemodynamically 

mirrored in the whole heart by indexes such as dP/dtmin and dP/dtmax. In principal, dobutamine 

reverses some of the altered Ca2+ fluxes and counteracts the reduced myofilament Ca2+ sensitivity 

caused by ischaemia20. Side effects of dobutamine include tachycardia, hypermetabolism, 

apoptosis33, and a debated dose-dependent oxygen waste caused by increased Ca2+ handling34. 

These side effects have motivated researchers to develop alternative inotropes that do not alter 

intracellular Ca2+ levels, such as Ca2+ sensitizers and myosin activators.  

A novel synthetic cardiac inotrope with a unique mechanism of action, omecamtiv 

mecarbil (OM), is presently in phase 2 of clinical research. This inotrope is classified as a myosin 

activator and was discovered through high-throughput screening with a cardiac myosin ATPase 

bioassay 35. OM increases the LV EF by enhancing the systolic ejection time (SET) and sarcomere 
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shortening. Analogously, this enhancement has been described as “more hands pulling on the 

rope” 36. The intracellular effects of OM are discussed in paper 3. Briefly, this compound 

accelerates the transition from weakly to strongly bound actin-myosin, which is the rate-limiting 

step in actin-myosin crossbridge formation (Figure 2). At cardiomyocytes, this enhancement is 

displayed as atypical inotropic action with a negative treppe effect (force-frequency relationship) 

and offset in the relationship between intracellular calcium amplitude and sarcomere shortening 37. 

This compound has been identified as a potential strengthener of cardiac muscle and is presently 

being tested in a phase 2 study of chronic HF38. By acting directly on myosin ATPase, Ca2+ 

handling is not affected. In contrast, increasing myosin ATPase activity and reducing time for 

diastole may come at a cost. 

Figure 2. Simplified schematic illustration of intracellular actions of β-adrenergic agonists and 
omecamtiv mecarbil (OM) in cardiac myocytes. β-Receptor stimulation, through a stimulatory G-protein 
unit, activates the adenyl cyclase system, which results in increased concentrations of cAMP. cAMP further 
activates membrane-bound Ca2+ channels and releases Ca2+ from the SR, which leads to Ca2+-mediated 
positive inotropy by increasing the contractility of the actin-myosin-troponin system, and enhanced 
chronotropic response.  
OM binds directly to myosin ATPase and accelerates the transition from weakly bound to strongly bound 
actin-myosin. 



14	

4.1.4 Controlling HR in AHF 

A heart cycle consists of isovolumetric contraction, systolic ejection time (SET), isovolumetric 

relaxation, and diastolic filling time (DFT) (Figure 3). With decreasing RR intervals, DFTs are 

relatively shorter than SETs39,40. 

Tachycardia is a double-edged sword in the pathogenesis and treatment of AHF. Acute and 

chronic neuroendocrine compensation causes tachycardia that compensates for a loss of SV at the 

expense of increased myocardial oxygen consumption (MVO2) and reduced DFT. To maintain SV 

in this setting, the shortened diastole implies enhanced filling rates. Normally, in physiological 

tachycardia (i.e., exercise), the ventricle compresses the myocardium in the preceding systole 

beyond the resting shape, generating restoring forces that are released in diastole. The ventricle 

recoils to its passive shape and sucks blood into the cavity 41. This phenomenon, termed diastolic 

suction, is dependent on contractility. Consequently, acute ischaemia is believed to reduce suction. 

Therefore, tachycardia may induce decompensation due to diastolic suction-HR mismatch. 

HR reduction alone may be beneficial in both chronic HF and AHF42,43, as this may reduce 

myocardial oxygen demand and the risk of sub-endocardial ischaemia44. β-Antagonists have 

proven to be fundamental in the treatment of CHF45. Several mechanisms are responsible for their 

beneficial effect; however, the negative inotrope effect accompanying β-blockers limits their use 

to haemodynamically stable AHF patients with reduced EF29,46. 

A pharmacological intervention that separates inotropic and chronotropic responses has not 

been available until the recent development of ivabradine. This funny channel (If) antagonist is 

approved for clinical use in patients with stable angina and chronic HF29. Ivabradine acts by 

inhibiting the If channels in the sinoatrial node, thereby decelerating the spontaneous 

depolarization of pacemaker cells47 and leading to a lower HR. In acute myocardial ischaemia, 

attenuating tachycardia by a selective negative chronotrope (ivabradine) has beneficial effects 

beyond reduced total oxygen demand, including an increased coronary perfusion time, reduced 

risk of sub-endocardial ischaemia48, and reduced risk of major ventricular arrhythmias49. Notably, 

a recent publication by Kleinbongard et al.50 indicated that the non-HR-related cardioprotective 

effects of ivabradine are probably caused by reduced ROS production. In addition, using 

ivabradine, we are now able to attenuate the chronotropic effect of β-adrenergic drugs without 

affecting their inotropy51,52. Recently, two clinical studies demonstrated promising outcomes of 

combined dobutamine-ivabradine treatment of severe AHF53,54. 
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Figure 3. A modified Wiggers diagram (with permission, originally from55). dP/dtmax and dP/dtmin 
denote the peak positive and negative derivatives of LV pressure and are indices of contraction and early 
relaxation of the ventricle, respectively. The time constant of isovolumetric relaxation (Tau) is another 
index of early LV diastolic function. Tau is the estimated time between aortic valve closure and mitral 
valve opening as estimated by the method described by Weiss56. Systolic ejection time (SET) was defined 
in papers 1-3 as the time between dP/dtmax and dP/dtmin in pigs and between the minimum aortic pressure 
and the dicrotic notch in ex vivo mouse hearts. Diastolic filling time (DFT) was simplified defined as the 
cardiac cycle minus SET. 
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4.2 Cardiac function 

 4.2.1 Systolic function 

No ideal index of contractility exists. CO, SV and EF are often applied in clinical practice despite 

load and HR dependency. Nevertheless, invasive techniques provide tools that are not available in 

clinical practice. The PV loop (Figure 4) and the first derivative of the LV ejection pressure over 

time (dP/dt) are common ways to describe systolic and diastolic properties. Unfortunately, these 

indices are also limited by load and HR dependency 57. Two indexes that incorporate different 

loads are the preload recruitable stroke work (PRSW) and the end-systolic elastance, Ees (slope of 

the end-systolic pressure volume relation, ESPVR). The SW/EDV relationship is termed PRSW, 

and increased slope (Mw) indicates increased contractility. PRSW is relatively independent of load 

and HR58; however, one shortcoming is that EDV is determined by both systolic and diastolic 

properties. Obtaining PV loops at different abrupt load interventions and extrapolating a line 

through the ESPVR provide a slope termed Ees and an x-intercept named Vo (se Figure 5). In 

theory, an increase in slope with an unchanged Vo indicates increased contractility, while an 

increase in Vo with an unchanged slope represents reduced contractility. However, in vivo studies 

have proven the ESPVR to be curvilinear57 and dependent on HR and afterload59. 

Figure 4. A typical pressure-volume (PV) loop showing the LV ejection phase indices SV, SW and EF 
derived from one heartbeat. To follow the events of one cardiac cycle, the loop shows the events of one 
cardiac cycle when followed counter-clockwise (with permission, originally from 55). 
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4.2.2 Diastolic function 

In myocardial ischaemia, microvascular dysfunction, cell necrosis and wall motion abnormalities 

impair active relaxation. Interstitial oedema and fibrocellular infiltration will further directly affect 

LV chamber stiffness and indirectly affect the diastolic filling of the heart. 

 The diastolic period can be subdivided into early diastole, active myocardial relaxation, 

and the passive process of late diastolic filling. dP/dtmin, which is the first derivative of 

isovolumetric relaxation56, and Tau, which is the time constant of isovolumetric relaxation, 

describe early diastole. Tau is independent of preload. The strain rate of myocardial shortening 

also describes early diastolic function.  

Late diastolic function can be described by the slope of the end-diastolic 

pressure volume relationship (EDPVR) (Figure 5). In addition, we can measure the 

driving force across the mitral valve in diastole. The maximum atrioventricular 

gradient (L V-A Max ) is the maximal pressure difference between the left atrium and 

the left ventricle during diastole, and the atrioventricular pressure gradient integral    

(L V-A INTG ) is the area under the curve of the negative pressure gradient during 

diastole. These two indices integrate early and late diastolic myocardial functions with 

loading conditions.  

4.3 Cardiac efficiency 

The heart maintains its pumping action by converting chemical energy in metabolic substrates into 

mechanical energy. As with any mechanical pump, only part of the energy invested is converted to 

external power. More than 50% of the energy is converted to heat, and the mechanical energy is 

split into energy used to develop ventricular pressure and energy used for external work (stroke 

work [SW]). The ratio of cardiac work to myocardial energy expenditure is termed cardiac 

efficiency (CE).  

Myocardial oxygen consumption (MVO2) is used as indirect calorimetry to measure total 

myocardial energy expenditure because the majority of ATP production in the normoxic 

myocardium is derived from oxidative phosphorylation (>90%)60. In addition, this method 

assumes a constant ratio between the different metabolic substrates throughout the experiment. 

The healthy heart switches between lipids and carbohydrates as energy substrates, depending on 
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availability. The efficiency of ATP production, which is expressed as the ratio of ATP to O2 

consumed (P:O), differs depending on the mix of substrates oxidized: the P:O is ∼15% higher for 

oxidation of glucose only vs fatty acids only61.  

From studies of cardiac energetics, we have learned that failing hearts have a limited 

energy reserve and reduced efficiency62. An increase in cardiac work comes at a higher cost of 

contraction, with increased susceptibility to arrhythmia and ischaemic injury. Decreased fatty acid 

oxidation and increased reliance on glucose oxidation and glycolysis also occur63. The increase in 

glucose oxidation is regarded as adaptive because fatty acids are energetically less efficient 

compared to glucose.  

Several indices are used to express cardiac work. SW is the product of LV pressure (Pmax–

Pmin) and SV obtained at different steady state preload reductions and was first described by Bing 

& Hammond in 194964. Under normal conditions, the SW/MVO2 ratio is ≈25% and is termed 

external efficiency. Analyses of SW do not rely on absolute volumes (ESV and EDV) but are 

highly load dependent.  

In Suga’s 1979 publication65, he introduced the concept of pressure volume area (PVA) 

and found PVA to be a good predictor of MVO2, independent of contractile state and loading 

conditions. The ratio of PVA to MVO2 is termed “total mechanical efficiency”. His intention was 

to create an index that could differentiate between energy used for activation (unloaded heart) and 

contractility of the heart. In brief, PVA consists of the area bounded by the PV loop (SW) and the 

triangular area limited by the line of the ESPVR and EDPVR, as obtained by a transient vena cava 

occlusion (Figure 5). PVA is plotted against MVO2 using the same unit (J/beat). PVA is calculated 

by the formula: 

PVA= SW[ESP×(ESV-V0)/2][EDP×(ESV-V0)/4]65 where SW is calculated from the PV data and 

ESP and ESV are end-systolic pressure and volume, respectively; V0 is the interpolated x-intercept 

of the quadratic-fitted ESPVR during steady state recordings; and EDP is end-diastolic pressure. 
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Figure 5. Pressure-volume area (PVA) concept. A: The PVA consists of the area of the PV loop (SW) 
and the triangular area (PE), which is limited by the ESPVR, EDPVR and the descending limb of the PV 
loop. B: The relationship between MVO2 and PVA, which shows work-dependent and work-independent 
MVO2. The inverse slope of the PVA-MVO2 relationship is the contractile efficiency of the heart. 

The y-intercept in the PVA-MVO2 relation indicates the myocardial oxygen cost not 

related to pump function, also referred to as unloaded MVO2, which is reported to be increased in 

several models of HF66. This work-independent MVO2 defines the energy used for excitation-

contraction coupling (ECC) and basal metabolism. The energy cost of ECC is primarily defined 

by Ca2+ handling by SR ATPase. Suga showed that both catecholamines and Ca2+ increased 

unloaded MVO2 independent of the slope of the PVA-MVO2 relation due to increased Ca2+ 

handling during ECC. The energy expenditure of the quiescent myocardium (BM; basal 

metabolism) can be assessed in KCL-arrested hearts. Korvald et al.67 demonstrated that the PVA-

MVO2 relationship was affected by metabolic substrates without a change in contractility. 

In contrast, the inverse slope (1/slope) of the PVA-MVO2 relation describes myocardial 

efficiency (contractile efficiency) independent of basal metabolism and ECC. The work-dependent 

MVO2 reflects the energy cost for the mechanical processes and includes the generation of 

myocardial force and pressure in the ventricular wall (PE) and ejection of blood against an 

afterload pressure (SW). 

Total mechanical efficiency (PVA/MVO2) is largely dependent on the size of the unloaded MVO2 

because the slope of the PVA-MVO2 relation has been proven to be quite stable68,65. Importantly, 
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this concept was developed in an in vitro model of cross-circulated dog hearts69. Although this 

model was validated in vivo, some of the determining factors can only be extrapolated, not 

directly measured. Vo is extrapolated from ESPVR in vivo; thus, unloaded MVO2 must be 

extrapolated from the PVA-MVO2 relationship. Further complicating in vivo analysis is the fact 

that ESPVR in vivo is curvilinear70: it is convex in low-contractility states and concave in high-

contractility states. Regardless of the limitations in vivo, the PVA-MVO2 concept shows a close 

correlation between MVO2 and PVA and enables a split between mechanical and non-mechanical 

energy. This framework is useful for describing changes in myocardial efficiency after 

interventions (i.e., drug treatment). 

5. Aims of the studies

5.1 Overall aim 

This thesis focused on investigating two new suggested treatment principles of AHF regarding 

cardiometabolic function (papers 1 and 2), LV systolic function (papers 1 and 3) and LV diastolic 

function (paper 3). 

5.2 Paper 1 

• We set out to investigate whether the inotropic and lucitropic effects of dobutamine were

preserved when combined with ivabradine in a clinically relevant model of LV post-

ischaemic dysfunction.

• We also assessed to what extent this co-treatment could restore SV and CO, in theory, by

prolonging the diastolic time interval.

• Finally, we investigated whether adding ivabradine to dobutamine could improve CE in

the post-ischaemic pig. CE was measured as the relation between MVO2 and external

cardiac work.
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5.3 Paper 2 

• Unlike catecholamines, OM reduces the diastolic time as a consequence of the increase in

SET. Thus, the time for diastolic myocardial perfusion and filling are reduced71 with OM.

• The aim of this study was to clarify the cardiac energetic and metabolic profiles of OM35.

• In addition to healthy pigs, we used a clinically relevant pig model of post-ischaemic LV

dysfunction72, an ex vivo working mouse heart model without neurohumoral influence73

and isolated mitochondria from mouse myocardium.

• Our hypothesis was that OM has a neutral effect on myocardial energy consumption, as the

favourable effects of reduced wall stress potentially can be counteracted by the

prolongation of systole through myosin ATPase activity.

5.4 Paper 3 

• In this study, we performed a detailed invasive assessment of diastolic function in a pig

model with severe LV ischaemia74.

• Assessments were conducted at intrinsic HR and during pacing-induced tachycardia.

• Furthermore, we used this model to assess two novel inotropic principles to improve

systolic unloading and its impact on diastolic function: the myosin activator OM versus a

combination dobutamine and ivabradine (D+I) treatment.

6. Methodological considerations

6.1 The animal models 

We used domestic castrated male pigs in all 3 studies (papers 1-3), and NMRI mice were used in 

papers 1 and 2. All in vivo experiments were conducted under general anaesthesia.  

Considerable insight into the molecular and cellular basis of cardiovascular biology has 

come from small animal models, particularly mice (murine model). However, significant 

differences exist with regard to cardiac characteristics, such as HR, oxygen consumption and 
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adrenergic receptor ratios, as well as responses to a loss of regulatory proteins, when mice are 

compared to humans75. Compared to murine models, large animal models of AHF more closely 

approximate human anatomy, function and pathophysiology. Therefore, large animal models are 

instrumental in bridging discoveries from murine models into clinical practice76. 

6.1.1 The pig model in cardiovascular research 

The phylogenetic development of humans and pigs as omnivorous and their accommodation to a 

sedentary lifestyle have produced similar metabolism and cardiovascular systems. These 

characteristics, together with similarities in size, structure and blood composition, make pigs 

suitable for performing in vivo cardiovascular experiments77. Still, some differences between 

humans and pigs need to be considered when interpreting results from porcine studies. 

Interestingly, based on our pig studies, we have noted significant discrepancies compared to 

humans regarding haemodynamic effects of vasoactive drugs. How et al.74 found noradrenalin 

(100 ng/kg/min) to be a pure inotrope in pigs, whereas the same dose in humans is a vasopressor. 

In pigs, low-dose dobutamine (5 µg/kg/min) proved more potent as an inotrope compared to 

equivalent doses in humans (paper 1). The different expression and function profiles of β–

receptors can explain some of these findings. The combination of comorbidity, prior chronic HF 

and age make patients with HF prone to desensitization of β-receptors in the myocardium78; in 

contrast, young healthy pigs have a hypersensitive autonomic system.  

Coronary vessel anatomy is strikingly similar between pigs and humans, and the 

determinants of MVO2 are closely related in both species77. However, low haemoglobin (7-9 

g/dl)/haematocrit ratios in pigs lead to increased blood flow to tissues with high metabolic demand 

compared to humans77. One difficulty of using pigs is their predisposition to arrhythmias76. To 

minimize this, we applied strict control of ventilation, oxygenation, glucose levels and electrolyte 

levels and administered 5 mg/kg amiodarone prior to instrumentation. Hexamethonium (20 

mg/kg) was used (paper 3) to minimize the impact of autonomic reflexes on repeated LV function 

measurements79. We chose an open-chest model72 in all protocols to facilitate the surgical 

preparation of the heart. In papers 1 and 2, we placed flow probes on the three main coronary 

arteries and the pulmonary trunk and a catheter in the great cardiac vein via the coronary sinus 

(after ligating the hemiazygos vein). In papers 1-3, we installed sonomicrometry crystals on the 

epicardium for LV strain and dimension measurements. To measure the atrioventricular pressure 
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gradient in diastole, we inserted a fluid-filled manometer pressure catheter through a small 

thoracic incision into the left atrium (paper 3). 

Large animal models continue to be a mainstay for drug and gene therapy development, 

for device development and for surgical procedure testing80. However, there is still a large gap 

between pre-clinical studies and clinical studies regarding the reproducibility of positive results. 

To increase rigor and reproducibility, Steven P Jones et al.81 have suggested a new paradigm with 

a multicentre, randomized, controlled, clinical trial-like infrastructure for pre-clinical evaluation of 

cardioprotective strategies, which may bridge the gap between animal and human studies. This 

multicentre cooperation is now operative and generates reproducible results of cardioprotection 

studies using mice, rats and pigs as models. 

6.1.2 Induction of LV HF in pigs 

We applied two different strategies to induce LV dysfunction: ischaemia-reperfusion72 (papers 1 

and 2) and coronary microembolization (CME)82 (paper 3). The ischaemia-reperfusion model 

induces moderate LV systolic post-ischaemic dysfunction (stunning) that is reversible after several 

hours72. ROS generation, together with Ca2+ overload and EC uncoupling, seem to be the most 

prominent24 pathogenic factors. Repetitive ischaemia-reperfusion episodes are also a clinically 

relevant problem83. Since the 1980s, the era of revascularization has generated increased interest 

in stunning. The rationales to revascularize hypokinetic regions after coronary occlusions are 

based on the presumption that some, or all, of contractile dysfunction is caused by stunning, which 

is reversible after timely revascularization. Importantly, the stability of the model makes it feasible 

to perform reproducible energetic measurements (5-7 preload reductions per intervention)72. We 

also measured an increase in troponin release in this model, indicating a component of irreversible 

myocardial damage that may be related to direct cardiac compressions performed in ventricular 

fibrillation prior to DC conversion. 

In paper 3, we aimed to generate a severe form of LV dysfunction with a significant 

increase in LA pressure. Based on previous results from our group79,84, the CME model allow us 

to induce a severe stable LV failure to targets of 20 mmHg LA pressure and 30% reduction in SV, 

respectively. A review by Heusch et al. underpinned the potential clinical relevance of this 

model82. Post-mortem biopsy studies, experimental studies and clinical evidence have revealed 
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that CME is frequently a component of acute myocardial contractile dysfunction. CME occurs in 

approximately 25% of all PCI-procedures.  

6.1.3 Ex vivo mouse hearts 

In papers 1 and 2, we perfused ex vivo mouse hearts73. This ex vivo preparation provides a model 

for assessing cardiometabolic function under controlled loading conditions and is, to a large 

extent, free of the potentially confounding effects of anaesthesia and neurohumoral influences85. 

The isolated heart is denervated so that values of LV dP/dtmax are typically less than 50% of those 

found in anaesthetized preparations in vivo85. The hearts were initially retrograde perfused 

(Langendorff) with recycled Krebs-Henseleit bicarbonate buffer containing 10 mM glucose and 

0.5% palmitate bound to 3% bovine serum albumin. 

In the retrograde-perfused hearts used for estimating unloaded MVO2 (papers 1-2), the 

ventricular cavity was vented by inserting a 25 G steel cannula through the apex of the heart, 

allowing drainage of any perfusate trapped in the LV lumen. 

The working heart perfusions were used to assess haemodynamics (papers 1-2) and CE 

(paper 1), and radiolabelled isotopes86 were used to assess myocardial glucose and fatty acid 

oxidation rates (paper 2). The left atrium was cannulated with a 16 G steel cannula connected to a 

preload reservoir to ensure forward perfusion through the aortic valve. Aortic and filling pressures 

were set to column heights of 55 and 12 mmHg, respectively. HR and temperature were set to 

fixed values. 

In paper 2, we added the myosin ATPase inhibitor 2,3-butanedione monoxide (BDM) 

(Sigma Aldrich, USA) after basal MVO2 measurements. The specificity of BDM as a myosin 

inhibitor is not known; some researchers have found that it also affects ECC 87. However, in a 

study of rat myocytes where all membrane-bound ATPase activity was stripped away by Triton X-

100 before exposure to BDM, researchers were able to show that 40% of the basal activity 

remained88, suggesting that myosin ATPase has a large role in determining the unloaded MVO2 of 

the basal metabolic rate.  
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6.2 Assessment of myocardial oxygen consumption in pigs 

When assessing MVO2; correct assessment of CBF is critical. We used transit–time flow probes 

(Medi-stim, Norway) placed on the stems of the three main coronary arteries. A flow computer 

reported continuous mean flow in ml/min. 

The arteriovenous difference was determined by arterial and coronary venous samples 

from the aorta abdominalis and sinus coronarius/vena coronarius sinister, respectively. The vena 

hemiazygos fuses with vena coronarius sinister in pigs; therefore, we ligated the vena hemiazygos 

in all animals and introduced a catheter into the sinus coronarius/vena coronarius sinister for 

sampling. 

In hearts with intact autoregulation, the oxygen saturation difference is quite stable, leaving blood 

flow as the main regulator of MVO2. In paper 1, the LV coronary blood flow was estimated from 

the following formula: LVCBF=CBF · 0.7 89 where LVCBF and CBF are the LV and total 

coronary blood flow, respectively. The weight of the LV was calculated as 3.3 g LV weight/kg pig 

weight90. In paper 2, the LV CBF was calculated from the following formula: LVCBF=CBF/W · 

LVW89 where LVCBF and CBF are LV and total CBF, respectively. W and LVW are total 

myocardial and LV myocardial weight, respectively.  

6.3 Cardiac volumetry 

6.3.1 Available methods on LV volumetry 

The ideal tool to evaluate LV volume should be non-invasive and accurate, with high 

reproducibility and easy application. For decades, two-dimensional (2D) echocardiography has 

been the main non-invasive imaging modality used to evaluate LV function in the clinical setting. 

However, there are many limitations to echocardiography. Intra- and inter-observer variations, 

inadvertent use of foreshortened views of the left ventricle and reliance on geometric modelling 

have reduced the accuracy and reproducibility of this method.  

Three-dimensional (3D) echo is a promising tool to reduce the need for geometrical 

assumptions. This method depends on stable LV long-axis projections. Unfortunately, this 

projection is not available in pigs, as the apex is attached to the dorsal side of the distal sternum, 
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resulting in foreshortened views. In addition, the left lung is interposed between the oesophagus 

and the heart, making optimal imaging with TEE difficult. 

Since the 1970s, cardiac magnetic resonance imaging (CMRI) has been considered the gold 

standard of cardiac volumetry. Cardiac computer tomography (CCT) is an alternative to CMRI; 

however, compared to CMRI, CCT overestimates EDVs and ESVs, resulting in a significant bias 

in the EF91. 

In our lab, it is not feasible to obtain the absolute volumes with CCT or CMRI. Still, the 

open–chest model allows us to use invasive techniques that are not available to clinicians. CO and 

SV can be measured with a time-transit flow probe on the pulmonary artery (Medi-stim, Norway). 

This method slightly underestimates CO because of bronchial veins draining distal to the probe. 

Nevertheless, flow probe measurement of CO is found to be more accurate than thermodilution 

techniques in pigs92. 

Unlike time-transit flow and thermodilution techniques, the conductance catheter 

technique enables real-time assessment of LV volume in vivo. This method employs a multi-

electrode catheter that sets up a low-level current field within the ventricle, allowing measurement 

of time-varying electrical conductivity that changes proportionally with ventricular blood volume. 

The formula used to convert conductance to volume is as follows: V(t)=1/α·ρ·L2·(G(t)-Gp)59 

where V(t) is total intraventricular volume, α the slope factor relating conductance volume to an 

independent volume estimation, L is the inter-electrode distance, ρ is the blood resistivity, and 

G(t) and Gp are the sums of segmental conductances and the parallel conductance, respectively. 

This method has several assumptions. Alpha correction was not critical to us because 

relative changes in volume would suffice in our model. However, changes in LV volume detected 

with conductance technique are vulnerable to changes in parallel volume. There are several 

caveats regarding parallel volume in this model. Both a slow increase in blood/fluid into the 

mediastinum, and dilatation of the right ventricle following ischaemia-reperfusion increase 

parallel volume, causing a leftward shift of LV volume (reduction in ESV). In addition, this 

conductance technique is very sensitive to the position of the LV catheter, in contrast to fixed 

crystals. Last, accurate assessments of conductance volumetry require multiple injections of 

hypertonic saline (assessment of parallel conductance) throughout the experiments. This solution 

ends up in the coronary arteries and transiently impairs cardiac function, a side effect that we 

wanted to avoid. Based on these shortcomings, we discarded the conductance catheter technique. 

 As an alternative, we applied sonomicrometry crystals (Sonometrics Corporation, trx 4, 

Canada) combined with 2D echo (Vivid I, GE, USA) and a geometrical model93. Sonomicrometry 

is the measurement of distance using ultrasound. Transit times of ultrasound between different 
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crystals are converted to distance (typically 1550 metres per second in biological material). Transit 

time is measured digitally, typically in steps of 15 nanoseconds, resulting in a resolution of 24 µm. 

This technique allows us to measure myocardial shortening in different axes with great accuracy, 

even at high heartrates; thus, we reduced the need for repeated 2D echo. A limitation of this 

approach is the dependency on geometrical models to convert distances into volumes.  

To summarize, SV can be measured quite accurately by time–transit flow probes. In 

contrast, invasive measurement of absolute volumes is affected by a number of limitations. As a 

consequence, consistent measurement of relative volume changes was our main objective. 

6.3.2 Different LV volumetric models using sonomicrometry 

In papers 1-3, we used a combined LV pressure/volume catheter (Millar, Houston, TX, USA) to 

measure LV pressure. In paper 1, SW was used as a work index to avoid the uncertainties of 

absolute volume assessment. We used a combination of SVs from time-transit flow measurements 

on the pulmonary trunk, and sonometric measurements of long-axis movement based on a 

spherical model of LV. To obtain relative differences in dimensions throughout the experiments, 

the sonomicrometry crystals were calibrated to end-systolic and end-diastolic diameters (ESD, 

EDD) at baseline. ESD and EDD were estimated from epicardial echocardiograms (2-D short 

axis). In this simplistic model, we used ΔLV dimension as a surrogate for ΔLV volume. 

In paper 2, we wanted to apply the PVA index of cardiac work and therefore needed a 

more accurate model of LV volumes to estimate the ESV, EDV and Vo. Thus, we improved the 

LV volumetric model by combining LV short- and long-axis sonomicrometry. At baseline and 

after interventions, the LV EDV was calculated from epicardial short-axis ultrasound data using 

Teicholz’s formula EDV= [7/(2.4+EDDendo)] · (EDDendo
3
). The ESV was calculated by subtracting

SV (from a time-transit flow probe on the pulmonary artery) from the EDV. The short- and long-

axis sonomicrometry crystals were converted to a composite output using the area-length (Bullet) 

formula 94: Volume= 5/6 · Aendo · Lendo. The composite sonomicrometric output was calibrated 

against ESV and EDV at each intervention. 

In paper 3, we further modified the LV volumetric model from paper 2. The 

dyskinesia/akinesia observed in HF induced by ischaemia-reperfusion (paper 1-2) are even more 

profound in the CME (paper 3). These segmental wall motion abnormalities are detected by short-

axis (Cx) and anterior long-axis (LAD) sonometric input. To improve LV volumetric accuracy in 
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the CME model a prolate ellipsoid model by Zile (V= π·(EDDendo)2/6·Lendo)95 was used. This 

formula has been validated in normally shaped and sized ventricles, whereas only the biplane 

(Simpsons) method has been validated in ventricles with segmental wall motion abnormalities96. 

Additionally, the sonometric signals were corrected to measurements from epicardial short-axis 

ultrasound data (Vivid i, GE) at baseline. The echocardiographic Lendo (endocardial length) was 

calculated from EDDendo (endocardial diameter) at a ratio of 1.3797. The SV from the time-transit 

flow probe on the pulmonary artery was reported independent of the estimated sonometric 

volumes. 

6.3.3 Assessment of preload-recruitable stroke work 

PRSW is usually obtained by abrupt VCO. To plot SW versus EDV we need accurate beat-to-beat 

SV. This measurement cannot be obtained by the time-transit flow probe; therefore, we chose to 

use sonomicrometry instead. Thus, the uncertainties connected to LV volumetry also apply for 

PRSW.  

However, in paper 1, the post-processing of data obtained by abrupt VCO was inadequate 

because of a low regression coefficient. Therefore, to evaluate PRSW, we used the sequential 

steady state measurements obtained by different preload reductions from the LV energetic 

assessment, which allowed us to use SV obtained from the time-transit flow probe.  

To estimate PRSW in paper 3, we performed an abrupt VCO and used the volume from the 

conductance catheter because the sonomicrometric model used in steady state measurements 

seemed to be increasingly inaccurate with VCOs. We theorized that the large degree of LV 

conformational change associated with the VCO in the CME-model was not adequately reflected 

by the two sonomicrometric axes. 
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7. Summary of results

7.1 Paper 1 

In this study, we investigated haemodynamic and energetic effects of D+I cotreatment in an acute 

pig model of post-ischaemic LV dysfunction. After 20 minutes of accumulated ischaemia, the HR 

(100 bpm) and ESD increased, while the external mechanical energy output (SW) and SV were 

reduced by 44% and 27% from baseline, respectively. After dobutamine infusion, a further 

increase in HR occurred (130 bpm), and ESD was reduced to baseline levels with unchanged SV. 

After ivabradine was added, we observed a reversal of the dobutamine-induced tachycardia (24% 

reduction). SW and SV increased significantly, by 23% and 20%, respectively, compared with 

dobutamine alone (Figure 6). There was no significant change in CO or MAP after adding 

ivabradine, and there was no significant change in LV function after adding ivabradine to 

dobutamine. Ivabradine had no impact on the SW-MVO2 relations at a broad range of workloads, 

resulting in maintained CE65 (Figure 7).  
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Figure 6. Individual data (n=10) of the selected main haemodynamic indices. The data are presented as 
connected dot-plots from 4 consecutive measurement periods: Baseline, post-ischaemia, dobutamine 
(dobut) and dobutamine+ivabradine (dobut+iva). Panel A, heart rate; Panel B, cardiac output; Panel C, 
stroke volume; Panel D, dP/dtmax. Between timepoint differences:* P<0.05 vs baseline,† P<0.05 vs post-
ischaemia, ‡ P<0,05 vs dobutamine. 
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Figure	7.	All	panels	show	
left	ventricular	(LV)	
mechanical	work-
myocardial	oxygen	
consumption	(MVO2)	
relationship.	LV	mechanical	
work	is	presented	as	stroke	
work	(SW).	The	top	panel	
displays	the	data	from	a	
single	experiment,	whereas	
the	middle	panel	displays	
pooled	scatter	data	for	all	of	
the	experiments	following	
dobutamine	and	
dobutamine/ivabradine	
infusion.	The	bottom	panel	
displays	the	regression	line	
based	on	pooled	data	of	the	
SW-MVO2	relationships	
between	all	interventions	in	
all	experiments.	Here,	the	
individual	scatters	are	
removed	for	simplicity.	No	
significant	differences	were	
detected	between	the	
dobutamine	and	
dobutamine/ivabradine	
timepoints.	Iva,	ivabradine;	
Dobut,	dobutamine.	
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In ex vivo mouse hearts, we assessed the combination of a β-agonist (isoproterenol) and 

ivabradine. Isoproterenol addition led to increased MVO2 and CO due to an elevated HR. Adding 

ivabradine returned the HR and CO to their baseline values, with a proportionate reduction in 

MVO2. There was no significant alteration in SV, but the trends were similar to the findings in 

vivo. Adding ivabradine had no effect on CE (stroke work/MVO2) in neither the pre- nor the post-

ischaemic working heart. 

7.2 Paper 2 

The haemodynamic, energetic and metabolic effects of OM were assessed in an open-chest model 

of healthy and post-ischaemic pigs and in ex vivo mouse heart models. OM was administered in a 

dose targeting a 20% increase in SET, which is considered a clinically relevant level. This 

treatment reduced LV volumes, resulting in increased EF, without changes in SV and HR. OM 

addition increased unloaded MVO2 (y-intercept of the PVA-MVO2 relationship) in both healthy 

and post-ischaemic pigs (Figure 8) and in ex vivo mouse hearts (Figure 9). Furthermore, 

contractile efficiency was impaired (increase in the slope of the PVA-MVO2 regression) in healthy 

and post-ischaemic pigs. Myocardial substrate oxidation was minimally affected in pigs but 

resulted in a significant metabolic switch to glucose oxidation in the mouse protocol. However, 

adding the myosin ATPase inhibitor BDM to arrested mouse hearts abolished the surplus MVO2 

in the OM group (Figure 9). Thus, increased basal metabolism explains the increase in unloaded 

MVO2 after OM administration. 
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Figure 8. Pooled scatters of left ventricular (LV) mechanical work–myocardial oxygen consumption 
(MVO2) relationships from all experiments. LV mechanical work is presented as pressure–volume area 
(PVA). Left panel are from healthy pigs (n=7), and right panels are from pigs with post-ischaemic LV 
dysfunction (n=7). The data were obtained at various workloads before (○) and after (�) infusion of 
omecamtiv mecarbil (OM). The y-intercept represents unloaded MVO2, that is, energy used for excitation–
contraction coupling (ECC) and basal metabolism. 1/slope of the regression line represents the contractile 
efficiency of the heart. OM impairs cardiac efficiency, as indicated by a significant increase in y-intercept 
and slope values in all panels, except for only an increased y-intercept value in the lower right panel. 
*P<0.05 vs no drug for y-intercept; †P<0.05 vs no drug for slope (linear mixed model analysis).
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Figure 9. MVO2 in ex vivo mouse hearts retrograde perfused in Langendorff mode. Dot plots 
presenting data in all panels. Mean values are presented as circles crossed by a horizontal line. Left: 
Significant increases in unloaded MVO2 and oxygen consumption from basal metabolism in hearts treated 
with OM (n=17) compared with time-matched controls (n=13). Oxygen cost for excitation–contraction 
coupling (ECC) was unaffected by OM. Right: Addition of 2,3-butanedione monoxime (BDM) abolished 
surplus basal MVO2 in the OM-treated hearts (n=7), whereas no effect of BDM was observed in the 
controls (n=7). *P<0.05 vs omecamtiv; †P<0.05 vs without BDM; analysed by the Mann–Whitney-
Wilcoxon test.  

7.3 Paper 3 

In a pig model of severe LV ischaemia, we performed an invasive assessment of the 

haemodynamics and LV diastolic function of two novel inotropic treatment principles, the myosin 

activator OM versus a combination D+I treatment. Assessments were conducted at intrinsic HR 

and during pacing-induced tachycardia. Left CME was followed by decreases in the SV, EF, CO, 

dP/dtmax, and dP/dtmin and by increases in LAP and EDP. HR was only slightly elevated. CO and 

EF increased in the D+I group but not in the OM group (Figure 10). SET increased from 42 to 

54% of the cardiac cycle in the OM group but decreased from 45 to 39% in the D+I group. 

The two treatment principles had opposite effects on early diastole. Tau increased 

significantly in the OM group, while it was significantly decreased in the D+I group. The rate of 
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relaxation of the myocardium (negative strain rate), as measured by long-axis ultrasonic crystal 

movement, was significantly faster in the D+I-treated animals, while in the OM-treated animals, 

we observed a nonsignificant slowing of relaxation. dP/dtmax and dP/dtmin, parameters of 

myocardial contraction and relaxation, respectively, were decreased in the OM group but 

increased in the D+I group. The L V-Amax and the L V-Aintegral were increased in the D+I group but 

reduced in the OM group at spontaneous HR. These differences are illustrated in Figure 11. 

The animals were paced at 120 and 160 before and after treatment. The lengthening effect 

of OM on the SET diminished with higher HR. In D+I-treated animals, we observed a decreased 

SET. The CO and MAP diminished at higher pacing rates in the OM-treated group, while they 

were sustained in the D+I-treated group.  

Figure 10. Representative PV recordings. Left panel shows pre- (dotted line) and ischemia (solid 
line). The middle panel shows treatment with dobutamine combined with ivabradine (D+I, yellow line) 
compared with untreated ischemia. The right panel shows treatment with omecamtiv (OM, blue line) 
compared with untreated ischemia. Steady-state loops are calibrated against mean values of ESV, 
EDV,EDP and ESP.
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Figure 11. Modified Wigger’s diagram showing examples of actual tracings of the left atrial-
ventricular pressure interplay. Left column: dobutamine-ivabradine (D-I) treatment, pre-
ischemia, ischemia, treatment. Right column: omecamtiv (OM) treatment, pre-ischemia, ischemia, 
treatment. LVP, left ventricular pressure; LAP, left atrial pressure; dP/dtmax and dP/dtmin, 
maximal and minimal derivative of the LV pressure, respectively; Tau, isovolumetric relaxation 
constant; Pmin, minimal pressure in the LV during the cardiac cycle; L V-A MAX, maximal left 
ventricular-atrial pressure difference in diastole; L V-A INTG ,left ventricular-atrial pressure-time-
integral during diastole; DFT, diastolic filling time; SET, systolic ejection time. 
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8. Discussion

Clinical experience and knowledge of the distinct pathophysiological syndromes is vital to 

applying optimal pharmacologic therapies in AHF. Accordingly, intravenous diuretics and 

vasodilators are recommended in patients with pulmonary and/or systemic venous congestion, as 

well as in patients with signs of elevated filling pressures. In patients with signs of malperfusion, 

or shock, intravenous inotropic support should be considered to maintain the peripheral perfusion 

by increasing the CO and the blood pressure. Jeger et al. reported28 SV to be the best early 

haemodynamic predictor of mortality in CS. ESC guidelines suggest dobutamine as the first drug 

of choice29 based on pre-clinical studies and expert opinion (class of recommendation, IIB; level 

of evidence, C), despite lack of evidence from randomized controlled trials (RCTs)29. In contrast, 

clinical studies have reported a lack of, or even negative, effects of these drugs when used long 

term98. There are multiple reasons for this gap between clinical practice and scientific evidence. 

First, inotropic drugs are frequently used as short-term rescue therapy in conditions with 

malperfusion, for example, pre-revascularization or post-CABG HF. Thus, designing controlled 

studies to represent these conditions is not feasible for ethical reasons. Second, different 

combinations of vasoactive drugs are often combined to tailor the patients’ haemodynamic 

profiles. Third, studies have failed to enrol only patients in absolute need of inotropic support99. 

As a consequence of heterogeneity, a large study may contain subgroups of individuals with 

haemodynamic profiles who benefit from treatment, although the overall results are indifferent. 

Therefore, ongoing research on inotrope drugs should follow two courses. One, RCTs with 

clearly defined aetiology and pathophysiological profiles that more closely represent clinical 

reality are needed. Two, pre-clinical studies assessing new drugs or new combinations of drugs are 

needed. The ideal drug should improve both systolic and diastolic properties without 

compromising, and maybe even improving CE. 

When assessing the adjuvance of ivabradine to dobutamine in LV post-ischaemic 

dysfunction, both systolic and diastolic function was unchanged; thus, the enhanced ventricular 

relaxation100 (Tau and peak filling rates) caused by dobutamine was maintained. Ivabradine 

abolished the chronotropic effect of dobutamine, resulting in prolonged diastolic filling time (by 

45±19%) and increased SV. Taken together, these findings suggest that this drug combination, 

with simultaneously contractile enhancement and prolongation of diastole, provides an optimized 

pump function for the left ventricle.  
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Unlike the above-mentioned treatment, OM represents a new mechanism for improving 

myocardial performance. Classic inotropes increase myocardial contractility, while OM exhibits 

systolic unloading by prolonging SET101, thus leading to an increase in the EF similar to other 

inotropes by improved emptying in systole. In contrast, classic inotrope indices such as dP/dtmax

and dP/dtmin are only marginally affected by OM. We found no significant changes in SV and CO 

in the LV post-ischaemic dysfunction model, despite an increased EF. Shen et al. 102 found a small 

increase in SV in dogs with pacing-induced HF given OM, and this increase could be explained by 

a reduced afterload as observed by a concomitant reduction in vascular resistance in these dogs. In 

addition, the lack of time controls failed to address the reversibility of their rapid-ventricular 

pacing HF model. Notably, OM proved promising with increases in the SET and SV in a phase 2 

study of systolic HF103. Further afield in the pipeline, a randomized and controlled phase II B trial 

(ATOMIC HF) was undertaken to investigate the effect of OM on hospitalized patients with AHF; 

this study showed a significant increase in SET, but no change in the LV shortening fraction, EDV 

or SV, and did not meet the primary end point of reduced dyspnea104.  

The key to explaining the increased SV with D+I and the lack of increased LV output by 

OM seems to be the diastolic performance of the heart. Therefore, we compared the two principles 

(D+I vs OM) in a model with severe systolic and diastolic dysfunction induced by LV CME. 

Based on previous work from our group74, we know that CME induces a restrictive pattern of 

profound LV diastolic dysfunction with reduced early (Tau and dP/dtmin) and late (EDPVR) 

diastolic function and a corresponding increase in the LV EDP. In contrast, the ischaemia-

reperfusion model we used for energetic assessments reduces early diastolic function (Tau, 

dp/dtmin) without an increase in LV EDP, suggesting a less severe LV relaxation dysfunction34.  

Both animal groups receiving OM or D+I were able to enhance systolic unloading in the 

ischaemic LV. Thus, both treatments should increase the restoring forces that subsequently 

facilitate suction in early diastole105. However, regarding diastole, the two principles work in 

opposition. D+I increases SV by concomitantly accelerating contraction and relaxation through 

enhanced Ca2+ flux, which results in improved early relaxation (reduced Tau, increased dP/dtmin) 

and an increased driving force across the mitral valve (L V-Amax pressure gradient). In contrast, 

the direct effect of OM on myosin ATPase unloads the heart by prolonging the SET at the expense 

of impaired early relaxation (increased Tau, reduced dP/dtmin and L V-Amax pressure gradient) and 

DFT. OM increase the force of contraction, without increase in rate of contraction, leading to 

increase in SET71. Hypothermia mimics the actions of OM on the heart, namely, an increase in 

SET, combined with unchanged or reduced HR106. Both OM and hypothermia prolong myocardial 

relaxation (increased Tau, reduced dP/dtmin), without a change in calcium transients. Hypothermia 
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is hypothesized to slow the calcium-troponin reaction rate, leading to deceleration of contraction 

and relaxation106. At present, there is no indication that OM acts by modulating calcium 

handling71. However, in both conditions, the prolonged relaxation may simply mirror the 

prolonged time to maximum force of contraction. 

Investigating LV myocardial function is necessary, but not sufficient, to evaluate drug 

interventions on cardiac performance. Normally, the heart is a fine-tuned aerobic machine that 

produces mechanical work from energy consumption at a ratio of 20-25% (CE). Potential drug 

effects on CE must be determined. In 1971, Braunwald described the major determinants of 

MVO2; HR, contractile state and afterload 16. These determinants are integrated in the indices of 

cardiac work, SW and PVA, which provide us with a framework for evaluating CE.  

Dobutamine (and other catecholamines or PDE inhibitors) are Ca2+ mobilizer inotropic 

agents that load cardiomyocytes with Ca2+ to improve cardiac contractility. Ca2+ loading is 

associated with impaired CE caused by increased work-independent MVO2 for ECC. The 

enhanced MVO2, increased HR, and greater risk of arrhythmias have been suspected to contribute 

to the higher morbidity and mortality rates107,108. Data from our group show no excess MVO2 

compared to cardiac work with the use of clinically relevant doses of dobutamine (2 µg/kg/min) in 

pigs with post-ischaemic AHF. However, myocardial oxygen waste was observed at 

supratherapeutic levels (10 µg/kg/min) and was associated with a complete offset in 

haemodynamics 34. In our D+I experiments, an infusion of 5 µg/kg/min dobutamine caused 

substantial and proportional increases in the CO, HR and MVO2 while maintaining cardio-

metabolic efficiency109. Attenuating the tachycardia by ivabradine did not improve CE. Perhaps 

the increase in SW by ivabradine counteracts the oxygen-sparing effect of HR reduction. Similar 

findings were reported with ivabradine monotherapy in exercising dogs 110.  

However, MVO2 is not only determined by haemodynamic variables. In theory, the 

metabolic profile can explain up to a 15% difference in O2 consumption if you compare pure FFA 

metabolism versus strictly glucose-dependent metabolism111. Importantly, in 1971, Mjøs et al. 

reported that increased uptake of FFA reduced CE in intact dogs. Of note, we observed a gradual 

increase in FFA during infusion of dobutamine; thus, the short dobutamine infusion time (2 hours) 

and corresponding CE in our experiments may not be representative of the effects of long-term 

infusion (days). 

The evaluation of the energetic properties of OM gave results that were more surprising. 

Earlier studies suggested that OM treatment improved CE 102; however, our evaluation using the 

PVA-MVO2 framework 65 gave conflicting results. In both healthy and post-ischaemic pig hearts, 

we observed a pronounced impairment in CE following OM infusion. This impairment was 
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evidenced by increases in both the y-intercept and the slope of the PVA-MVO2 regression. This 

observation is compatible with the proposed action of OM; activation of myosin ATPase was used 

in the sliding contraction of the myofilaments; the traditional increased inotropy-controlled 

intracellular calcium transients were not used112. The pronounced deterioration in CE with OM is 

a rare observation in our laboratory. During the 20 years of experience with this model, only the 

synthetic NO blocker L-NAME has demonstrated myocardial oxygen wastage to the same extent 
113. Both L-NAME and OM are synthetic compounds that have been introduced in an evolutionary 

fine-tuned biological system.  

In contrast to Ca2+-mediated inotropes, OM increased work-independent MVO2 related to 

increased basal metabolism. The possible contributors to this increase are changes in 

mitochondrial function, myosin ATPase or substrate utilization. We found only a marginal 

metabolic switch towards glucose utilization and thus a tendency towards an improved P:O ratio. 

Adding OM to mouse heart mitochondria did not change the P:O ratio or respiratory state, 

indicating that OM did not have a direct effect on mitochondrial function. However, adding BDM 

to arrested OM mouse hearts abolished surplus MVO2, indicating that myosin ATPase is the 

culprit of OM-induced oxygen waste. 

We have identified two important shortcomings of OM. The combination of reduced 

efficiency and impaired diastolic function seem incompatible with clinical use. Nevertheless, a 

new phase 2 study is now recruiting patients114. In clinical studies with healthy volunteers 36, 

subjects with mild HF 103 and subjects with AHF 104, OM is reported to be safe. Still, in the 

clinical reality outside of protocols, the patient’s condition is a moving target. Arrhythmias, 

coronary insults, and decompensation episodes all complicate the clinical course. Based on our 

findings, conditions with impaired diastolic function and/or CBF could potentially unmask 

detrimental effects of OM, leading to aggravation of ischaemia. 

9. Conclusions

Paper 1. Adding ivabradine reversed the chronotropic effect of dobutamine and restored the SV 

and SW by increasing the DFT while maintaining the MAP and CO. Additionally, adding 

ivabradine partly counteracted the dobutamine-induced increase in MVO2. However, the work-

MVO2 relationship was unaffected, suggesting that CE was maintained by the combined use of 

dobutamine and ivabradine.  
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Paper 2. The main finding of this study was that OM contributed to a significantly increased 

myocardial oxygen cost in both healthy and post-ischaemic stunned hearts. OM increased oxygen 

consumption due to energetically inefficient LV function and increased oxygen consumption by 

non-contractile processes. The increase in MVO2 was mediated by overactive myosin ATPase. 

Paper 3. Our data showed that combined D+I treatment was able to improve diastolic function in 

ischaemic hearts. In contrast, OM treatment impaired diastolic function; thus, we hypothesized 

that altering the intracellular calcium flux is probably mandatory for improving diastolic function 

in ischaemic hearts.  
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