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Preface 
 

Every day, Incoherent Scatter Radars (ISR) receives a huge amount of information from the 

universe. The data will collect by the Incoherent Scatter Radars (ISR) which located at 

Arecibo, USA, and EISCAT in Northern Scandinavia and some ground stations around the 

world. The main problem is to process the giant amount of data efficiently. Currently, they are 

using the Python and MATLAB to process data by several algorithms which can smooth and 

find the peaks of the plasma line data. 

 

The main focus of my thesis is to investigate and develop an efficient tool for processing a 

huge plasma line data by using the GPGPU technology. In the physical science, the peaks 

represent for the scientist the signals of valuable data. The problem with the plasma lines is 

that there are a lot of noise data which show the fake peaks. However, the scientist wants to 

have a clear data to show the real peaks of data. There are several ways to clean the data and 

algorithms to solve the problem, but because of the big amount of data so it takes a lot of time 

to process and a huge amount of power to process those data. In my thesis, we choose the 

Match Filter algorithm to filter the data. In addition, we also implement the example 

algorithms by using Python code. We have received 1.8 TB data from Arecibo, USA station 

as example data to process. 

 

For the development, I have chosen to use Qt’s framework and Qt Creator to implement C++ 

coding. In addition, we also used Python code for implementing the example algorithms. 

Moreover, I have chosen the CUDA (Compute Unified Device Architecture) which developed 

by NVIDIA for implementing and processing data. 
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1. Introduction 

1.1. Some theories 

1.1.1. Incoherent Scatter Radars (ISR)  

First, we should understand about what is RADAR (RAdio Detection And Ranging), this 

is the technique using to detect the presence of objects in the atmosphere. Radar was born 

shortly before World War II. From primary purpose, RADAR just used for detecting the 

presence of aircraft. Nowadays, Radar uses in a wide application in the life but, mainly 

using for detecting precipitation and other meteorological events.  

[1] 

 

Incoherent Scattering is a type of scattering phenomenon in physics. It is mostly to use 

when referring to scattering of an electromagnetic wave by random fluctuation in a gas of 

particles. Incoherent Scatter Radar (ISR) is the most well-known application of the 

Incoherent Scattering. ISR developed for studying the Earth ionosphere first proposed by 

Professor Bill Gordon in 1958. By this technology, the radar beam scatters off electrons in 

the ionospheric plasma, which created by Incoherent Scatter return. The Incoherent 

Scatter signal allows measurement of electron density, which relates to ion temperature, 

electron temperatures, ion composition and plasma velocity. 

[2] 

 

Years Developer 

1958-1959 Bill Gordon conceives of the idea to Incoherent Scatter and construction 

begin at Arecibo, Puerto Rico, with the money supported from the Defense 

Advanced Research Project Office (DARPA). 

1961 The Jicamarca Observatory constructed at Lima, Peru, by the National Bureau 

of Standards. 

1962 Construction of Arecibo is completed. 

1963 The Millstone Hill zenith antenna constructed by MIT Lincoln Laboratories at 

a site near Boston, MA. 

1971 The Chatanika Radar moved from Stanford University to a new place near 

Fairbanks, Alaska. 

1982 The Chatanika Radar moved to a new location near Sondrestrom, Greenland. 

1970 – 1980 The United States National Science Foundation takes over operation of four 

incoherent scatter radars located at: Sondrestrom, Millstone Hill, Jicamarca 

and Arecibo. 

1981 The European began the construction of the EISCAT UHF system at Tromsø, 

Norway. 

1985 The EISCAT VHF system begins operation at Tromsø. 

1996 The EISCAT Svalbard Radar was built near Longyearbyen, Norway. 

 
Table 1: The history of development of Incoherent Scatter Radars 
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Figure 1: The global array of Incoherent Scatter Radars (2007). 

 

[3] 

1.1.2. The signal 

“According to the Merrian – Webster dictionary, «a signal is a sources of information 

generally a physical quantity which varies with respect to time, space, temperature like any 

independent variable»”.[4] 

 

There are two kinds of signals. The wave signal which is present by the functions: 

Y = S + Noise. 

Where Noise is the random and S is the power. 

Another kind of signal is the digital signal which is represented by the function: 

 y =  

Where A is the bit (0 or 1), 

In this kind of noise, it must be following the Gaussian distribution 

In the plasma line which we received by the Incoherent Scatter Radars, we have received the 

digital type. Mostly, we should be clear around 90% to 100% of noise by the algorithms.  

1.1.3. Plasma 

Plasma is one of the four fundamental of states of matter, the others being solid, liquid, and 

gas. In the properties, plasma have their properties different than other states. To define the 

plasma, we have three criteria to define: 

 

- The plasma approximation is the criteria defined by charging particles must be close 

enough together that each particle influences many nearly charged particles, rather 

than just interacts with the closet particle. The plasma approximation is valid when the 

number of charged carries within the sphere of influence of a particular particle is 

higher than unity for provides the collective behavior of the charged particles. 
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- Bulk interactions: it is the criteria in which the interactions in the bulk of the plasma 

are more important than those at each eagle, where boundary effects may take place. 

The plasma is quasineutral when this criteria satisfied. 

- Plasma frequency is satisfied, electrostatic interactions dominate over the process of 

ordinary gas kinetics. The plasma frequency is large compared to the electron – 

neutral collision frequency. 

 

Plasma has also had three properties which define by the ranges of parameters, the degree of 

ionization and temperature. 

 

In the real life, plasma is usually found in the most abundant form of ordinary matter in the 

universe, lighting and heating gas or subjecting it to a strong electromagnetic field applied 

with a laser or microwave generator. 

[5] 

 

1.1.4. Application of plasma line 

There are a several potential uses of plasma line. The system constrains for the Incoherent 

Scatter Radar can be determined with good accuracy for using plasma line frequency 

measurement. In addition, the ion line analysis can use to determine the electron temperature 

independently. In combination of the ion line and plasma lines of the Incoherent Scatter Radar 

data, it is possible to resolve the temperature/ composition ambiguity in the ion line 

autocorrelation function and it also can make the high time resolution electron temperature 

estimates. The measurement of the plasma line strength in restricted frequency intervals can 

be used to estimate the super thermal electron flux in different energy ranges.  

[6] 

1.2. Tools which are using in the project 

1.2.1. Qt 

Qt is a cross-platform application framework which is widen used for development software 

application which can run in various software and hardware platform. Qt trademark and 

copyright belong to Digia Company. This cross platform is available both commercial and 

open source, GPL v3, LGPL v3 and LGPL v2 licenses. There are four available editions of 

Qt, they are a community, inside mobile, professional and enterprise. Qt supported for a wide 

range of platform such as on Android, Linux, iOS, Windows, BlackBerry and some other 

platforms. 

[7] 

1.2.2. Cmake 

CMake is a cross-platform free and open-source software for managing the build progress of 

software using the complier-independent method. It has minimal dependencies, requiring only 

a C++ compiler on its own build system. In the original, ITK (Insight Segmentation and 

Registration Toolkit) funded by NLM as a part of the Visible Human Project where need a 

powerful cross – platform. 

[8] 

[9] 
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1.2.3. Git 

Git is a free, open source distributed version control system designed to handle everything 

from small to large project. Git distributed under terms of the GNU General Public License 

v2. Git development began in April 2005 when many developers cannot access BitKeeper, a 

source control management that is previously used to maintain the project. In design, Git’s 

design was inspired by BitKeeper and Monotone. Git was designed as a low-level version 

control system engine on top of which others could write front ends. 

[10], [11] 

1.2.4. CUDA 

CUDA is a parallel computing platform and programing model which was invented by 

NVIDIA. By using CUDA, it enables dynamic increases in computing performance by using 

the power of the graphics processing unit (GPU). There are several uses of the GPU with 

CUDA, for example, identify hidden plaque in arteries, analyze the air traffic flow, visualize 

molecules, and more fields in the scientific which can apply CUDA in the real life. 

[12] 

1.2.5. HDF5 

Hierarchical Data Format (HDF) is a set of file formats which designed to store and organize 

a huge amount of data. It is originally developed by the National Center for Supercomputing 

Applications, the HDF Group supported it, a non – profit corporation. The mission of HDF 

Group is to ensure that the Hierarchical Data Format continued development of HDF5 

technology and continued accessibility of data stored in HDF.  

 

To keep this goal, HDF Group keeps their libraries and associated tools are available under a 

liberal, BDS – like license for general use. This library also supported for a wide range of 

commercial and non-commercial software platforms, including Java, MATLAB, Scilab, 

Octave, IDL, Mathematica, Python, Jula, and R. The current version of this library  

 is HDF5.  

[13] 

 

1.2.6. Python 

The programming language, which accepted for the developer using in high-level, interpreted, 

and general – purpose and dynamic programming, is Python. Nowadays, it is widely used.  

This language design to allow programmers to express their code in a fewer line than in 

possible language such as C++, Java. This programming language also supported for both 

large scale and small scale application. 

 

Python began implementation in December 1989 by Guido van Rossum at Centrum 

Wiskunde & Informatica (CWI) in the Nertherlands. He is Python’s principal author. On the 

history of Python, the version 2.0, Python 2.0 was released on 16 October 2000. On 3 

December 2008, the version 3.0 was released after a long testing period. 

[14] 

1.2.7. cuFFT 

 

The NVIDIA CUDA Fast Fourier Transform library (cuFFT) is the library developed by 

NVIDIA. It provides a simple interface for computing FFTs up to 10x faster. cuFFT use 
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hundreds of processor cores inside NVIDIA GPUs, cuFFT can deliver the floating-point 

performance of GPU without having to develop your own custom GPU FFT implementation. 

 

Nowadays, there is a widely used in applications which using the computational physics for 

processing image and general signal processing, the Fast Fourier Transform is an efficient 

algorithm for computing Discrete Fourier transforms of complex or real-valued datasets. [15] 

1.3. Objective  

The thesis is to create the tool which can process a huge amount of data quickly to save time 

and power consumption. Due to workload and time-consuming tasks, the project is therefore 

limited in a wide range of option to run, for example, not running in muitl-node clusters nor 

using the Apache Spark to solve the problem. 

 

This idea is quite new when using GPGPU to solve this problem. Conventionally, space 

physicists solve the problem by running MATLAB and Python programs on the CPU. In this 

project, I just use the one node GPGPU to solve those problems based on Python code from 

Arecibo.  

1.4. Chapter summary 
This chapter will describe about the summary of the chapters in this thesis. 

 

Chapter 1. Introduction 

This chapter describes some theories which related to the thesis, the objective of the thesis 

and the introduction about the tools which used to solve the thesis problems. 

 

Chapter 2. Ideas 

Introduction about the current problems. For those problems, we have the ideas to solve it. 

 

Chapter 3. Background 

Information about the state of the art overview. 

 

Chapter 4. Previous work 

Introduction about some previous work. 

 

Chapter 5. Architecture 

Information about the architecture which is used in the system to solve the problem. 

 

Chapter 6. Design 

Information about the design details of the system to solve the problem. 

 

Chapter 7. Results 

Introduction about the results which got from applying the state of the art.  

 

Chapter 8. Discussion 

Information about the comparison of the results which got from the thesis and previous work. 

In addition, this chapter also contained the limitation and future work of this thesis. 

 

Chapter 10. Conclusion 

Conclusion for the thesis considering proposal. 
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2. Ideas 

2.1. Overview 

 

This section will show the recent problem of the space sciences. Based on this problem, we 

discuss about our ideas to solve. Moreover, this part also describes about the method which 

we plan to use to solve the problem. 

2.2. Recently problem 
Plasma line data is received every day and it is a huge amount of data when received it. As 

normally, the data which received from ISR (Incoherent Scatter Radars) always have noise 

depends on the weather condition and other conditions.  It is a not large problem for the 

storage data space in computer, but the big problem is that how the space scientist can 

recognize the real data and noise data in real time. Currently, the space scientist just received 

and store it but they are processing those data later because due to the computer speech it 

cannot solve the huge data in real time. There are a lot of algorithms to solve this problem, 

however, the current code just writing in MATLAB and Python, which process low speech 

and huge amount of power consumption.  

2.3.  Method to solve this problem 
Based on the above problem, running the system which can solve the real time analyze data to 

clear be a very convenient for the scientist to recognize quickly and make the data which 

received from Incoherent Scatter Radars (ISR) is valuable. Moreover, it also makes the 

scientist have a quickly report and have the decision faster than in the past. 

 

To give the scientist this convenience, we have an idea is that solve this problem by using 

CUDA to apply those filter algorithms to clean data and given the quickly results in real time. 

As we know, the GPGPU is primary using for graphics processing but in recent year, it is 

applied in many fields of computer science and applications. It is a very new and interesting 

idea.  

 

There are several algorithms to apply to find the peaks, which give for the scientist the clear 

data. However, we got the kindly help from the Arecibo station from the USA to give to us 

the data and also the Python Code. Finally, we decide to choose the plan is translate the code 

from Arecibo to GPGPU code.  
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3. Background 

3.1. Overview  

This part will represent the information about the algorithms and the background code which 

will using in the thesis to solve the problem. 

3.2. Understanding about the data structure 
The data, which received by Arecibo station is every 10 seconds and it occupied around 1.8 

TB. The data will come by the package pairs which have the extension .dcd and .hdr.  

 

The file which have extension .dcd include the real data, which received by ISR (Incoherent 

Scatter Radar) and have the cover for all height. By inspection about this file, this have only 

the number in the whole file. Moreover, this file includes the data in all height at the current 

time. 

 

The file which has the extension .hdr included the metadata for the .dcd file. They have the 

same structure for all packages and the structure look like the figure below: 

 
Figure 2: The structure of header file for data package number 1452074613. 

 

In this file, it contained some information’s. However, we just focus to use in some 

information which we will use in the thesis. The FILE_NUM show the number of package. 

NUM_HGHTS show the height number of data, in the example picture above, it show the 

3657 heights of data which contained in the package 1452074613. FFTLEN show the 

frequency of data which received from the ISR (Incoherent Scatter Radar). DATE_SECMID 

included the information about the date and second of the data package.  

 

There are the function to give back to the date and the time from header file. For example, in 

the above data, the first column is 20160106 present the package received from the date 06 

January 2016. The second column contained the information 21813 shows the time, which 

package received. To decode this number, we call the second column is secs then we apply 

the function: 

Hours = secs//3600 
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Minutes = (secs – Hours*3600)//60 

Seconds = (secs – Hours*3600 – Minutes*60) 

To apply the second column as example, we can see that. 

Hours = 21813//3600 = 6 

Minutes = (21813 – 6*3600)//60 = 3 

Seconds = (21813 – 6*3600 – 60*3) = 33 

For this, it means the package received at 6:03:33 UTC + 0. 

 

For every package, the time just change 10 seconds, for this, we can guess that the package 

number 1452074613 received at 06 January 2016 at 06:03:43 UTC + 0. 

3.3.  Python code from Arecibo 

In this part, it shows about the Python code which received from Arecibo, USA. From this 

code, it shows about the information of the peaks in one height, the overview of all height and 

processing the whole data in one second (about 1.8TB). 

3.3.1. Finding the peak in all height 

This section will show about the figure of the information when the data is an analysis of the 

Python code. Below is the black and while data and the color data. 

 
Figure 3: The black and while figure for the package number 1452105273 in raw data. 
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Figure 4: The color figure for the package 1452105273 in raw data. 

 

In both two figures, we can see that on the X – Axis, it shows the frequency of data which we 

received from the Incoherent Scatter Radar (ISR), the Y-Axis show the height, there are 3657 

heights and the color show the power of data. From black and while picture, we can see that 

there is the while color in the middle and it is also located in both two sides on the bottom and 

the top of the picture. We can see that the while color represents the peaks at the height, 

which we are coming to find it. We will see more clearly when we load the image in one 

height (2D). 

 

From this picture, we can see that there are 3657 height, but how many kilometers of this. To 

solve that, they also have the rule to decode it to kilometer unit of one height. From the 0 

height, it shows the 90 km, then we just take the real height by the number of height multiply 

by 0.3 and add with 90. To decode it, we have the function:  

From the number of height we call h, then we have the function: height = h*0.3 + 90 

(kilometer). For example, we have h=500, then we have height = 500*0.3 + 90 = 240 (Km). 

3.3.2. Finding the peak in one height 

 

In one height, we have the figure like the picture below: 
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Figure 5: The figure show about the 2D images for the package number 1452105273 at the height 550 (255 

km). 

 

We can see that from the figure of the 3D above, we have the 3D picture with the height on 

the Y-Axis, then we just cut at the height number 550 we will get this figure. From this figure, 

the X-Axis shows the frequency and the Y- Axis show the power of data. Also from this 

picture, we can see that there are a lot of noises in the data and it makes difficult to read and 

know what the real peak of data is. 

3.3.3. Processing the whole data 

To make data easy to read and quick to process, they also use the algorithms to clean data first 

then it will give to the user the end data in the .hdf5 extension. From this file extension, we 

will plot the data which they are needed. There are some example of the plotting data from the 

final extension file in some figures below: 
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Figure 6: The figure show the plasma frequency of the clean data on the day 06 January 2016 at 15:00. 

 
Figure 7: The figure show the plasma electron density of the clean data on 06 January 2016. 
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Figure 8: The figure show the plasma frequency of the clean data on 06 January 2016. 
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Figure 9: This figure show the plasma line power of the cleaning data on 06 January 2016. 

3.4.  Algorithms 

In this section, it will show about some algorithms which are researching and using to solve 

the problem. First, we will discuss about the processing for peak detection process in the 

figure below: 

 

 

 

 

There are a lot of algorithms for each step in the finding peaks. However, they can skip the 

baseline correction to go to peak peaking from the smoothing algorithms. 

 

They also have some algorithms for the smoothing algorithms, they are: 

 Moving Average filter 

 Savitzky – Golay filter 

 Gaussian filter 

 Least Square Mothod filter 

 Match filter  

 Kaiser window 

 Continuous Wavelet Transform 

 Discrete Wavelet Transform 

 Undicimated Discrete Wavelet Transform 

 

For the baseline correction, we also have some algorithms to do this: 

 Monotone Minimum 

 Linear Interpolation 

 Loess 

 Continuous Wavelet Transform 

 Moving Average of Minima 

 

For the peak finding algorithms, we have some algorithms for this: 

 SNR 

 Detection/ Intensity Threshold 

 Slopes of Peaks 

 Local Maximum 

 Shape Ratio 

 Ridge Line 

 Model-Based Criterion 

[16] 

 

In this section, we just discuss about the algorithms for the smoothing and finding peaks 

algorithms. 

3.4.1. Smoothing algorithms 

3.4.1.1. Moving Average  

 

Smoothing Baseline 

Correction 
Peak Peaking 
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This part will show about the moving average filter algorithm. For this algorithm, the output 

of the moving average filter can call is y[n]. It can create by the function: 

y[n] = x[n]*w[n] =  

Where w[n] = , -k ≤ n ≤ k. The odd number 2k+1 represents filter width. The greater the 

filter width, the more intense the smooth effect. 

 

In the function of the algorithm, k is the window size, x is the interval and y[n] is the output 

value. 

[16] 

3.4.1.2. Savitzky – Golay filter 

 

The Savitzky – Golay fitting can be considered as a generalizer moving average filter. It 

performs a least square fit of the set of conclusive data points to a polynomial and takes the 

central point of the fitted polynomial curve as output. 

 

The smoothed data point y[n] by applied Savitzky – Golay filtering is given by the following 

equation: 

y[n] = x[n]*w[n] =  

where w[n] = , -k ≤ n ≤ k. 

Here Ai controls the polynomial orders. 

[16] 

3.4.1.3. Gaussian Filter 
 

The output of the Gaussian Filter can show as the function below: 

 

y(t) = x(t)*w(t) =  w(t - )d  

Where w(t) =  

X(τ) is the signal. 
 
The degree of smoothing is determined by the standard deviation σ. In fact, we can view 
Gaussian Filter as a weight moving average filter. 
 
This filter sets large weight factors for points in the center and smaller weight factors for 
point away from the center. 
[16] 

3.4.1.4. Least Square Method Algorithm 
 

This is the most basic filter to run on the data. For the least square method, the data will 

smooth by the function (least square function) to find the curve fitting. The following function 

is the linear combination of g1... gn.  
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We have gj(x) = xj-1 

 
To solve the problem, we choose function g1… gn to represent polynomials and seek 
coefficients c1,…, cn so that 
 
P =  

Minimizes R (c1,.., cn) = E(p). To compute  i=1… n. we denoted that: 

 
 

Finally, the results is finding the coefficients matrix, then we replace it with x value (the value 

from raw data) to find the y value to fit it. 

[17] 

 

3.4.2. Peak peaking 

This section will show the results, when apply the algorithm for finding the peak based on the 

above smooth algorithms. Those figures run on the package number 1452074613 of Arecibo 

example data. 

 

The picture below show the peaks by using the least square method on the degree 7. 

 
Figure 10: The figure shows the 2D smoothing data by Least Square Method and peaks on both 

smoothing data and raw data. 
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From this picture, we can see that the red plus show the finding maximum peaks and the 

minimum peaks of the original data. On the red circle show the maximum peaks and 

minimum peaks which finding based on the curve fitting data. 

 

In addition, we will see the finding peak by the Savitzky-Golay algorithm method. 

 
Figure 11: The figure show the 2D smoothing data by the Savitzky – Golay algorithm and the peaks of 

data on both smooth and raw data. 

 

Moreover, we can see the finding peak by the moving average curve fitting algorithm in the 

figure below: 
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Figure 12: The figure show the 2D smoothing data by the Moving Average Algorithm and the peaks of 

data on both smooth and raw data. 

 

In the figure below, we can see the figure of finding peaks by the Gaussian curve fitting 

algorithm. 

 
Figure 13: This 2D figure show the smoothing data by the Gaussian algorithm and the peaks of data on 

both smooth and raw data. 



 

 

29 

 

4. Previous work 

4.1. Overview 

One of the most important part of research or creating the application is to find and learning 

«the state of the art», from this learning, we can  find the benefit and the mistake of each 

study and then we will understand the factor which can make this research or study become 

successful or not. 

 

Today, there are some applications which use to analysis the data which received by 

Incoherent Scatter Radar (ISR). However, in the field of this thesis, it is quite new and a few 

people work on this. The reason is that GPGPU is the new technology and most of the 

development is coming from the physics departments in the station around the world. Some of 

the most know the program will be analyzed and discussed. 

4.2. Python Code from Arecibo 

One of the most helpful study is from Arecibo station Python code. As discussed above in the 

background part, they are already developing based on the Match Filter algorithm to clear 

data and finding peaks of data. Moreover, it is also available for loading the image which give 

to the scientist the overview of the information from Incoherent Scatter Radar (ISR).  

 

It is very convenient code and very fully developed. However, it is taking much time to 

process the data. In addition, it also required the user need to install some special package of 

Python to run and the application running on the script which required the user need to have 

knowledge of Python to run this. 

4.3. Miami previous work 
This is the thesis of master student who submitted to the faculty of Miami University. In this 

thesis, they developed their application on the MATLAB script. They got some experimental 

results based on the algorithms which they got from their implementation. 

 

In their work, they have developed their algorithms on the most three algorithms, global 

method, Lorentzian Method and Moment method. They did not provide more information 

about their study about the algorithms on their thesis. However, they provided for the reader 

their code in MATLAB and their example results which show that their thesis is successful to 

implement their code. 

4.4. GPGPU  

At the first time, we can see that this is the most nearly paper with this thesis. However, when 

we are coming on the details of the study, we can see that this is the study for the lowest level 

of data which we are not using it in the thesis. This is the paper of Nathaniel J. Hilliard 

submitted on August 2015 at the Department of Physics, University of Wisconsin – Madison. 

The title of the paper is GPGPU Acceleration of ISR Plasma Line Data and Application to 

Arecibo Plasma Line Striations. 

 

In this paper, he used the cuFFT to transform the data and apply it to clean data while our 

thesis is developed for clean data and processing it in quickly as possible in the .hdf5 

extension file which contained the information of many days. 
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4.5. Summary 

There are several researches that based on the GPGPU idea. However, at the current time, 

there is no research idea as this thesis was found, with the concept of GPGPU idea. The ones 

found is that based on the CuFFT to process the data, but in the very low level of data while 

this thesis focuses on exporting the final data in .hdf5 extension. From this extension file, the 

end user can just use the simple script to load the data file in various formats and have the 

overview of the whole data in many days. 
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5. Architecture 

5.1. Overview 

This section gives the overview of the whole system when it is running in the real. In this 

section, we will overlook the physical facility in receiving signal and send the signal like 

radars, we just focus on the computer architecture which using to process the data. 

 

For the whole system, first, the data will receive from Incoherent Scatter Radar (ISR) then 

store it on the database system, then, the backend system will work to process the data and 

then export the data into the .hdf5 file extension. From this format, user can available to use 

some simple script in various programming language to read those results and export it to the 

format which they want. 

 

There is some requirement for the equipment which using for the thesis. Firstly, the computer 

which using to run the backend should have the NVIDIA graphics card, the reason is that the 

technology, which using in the thesis is CUDA, that require an NVIDIA graphics card to run. 

Moreover, the storage of the device which use for storing the data much larger space, one of 

the reasons is that it is a very large data to receive by Incoherent Scatter Radar (ISR) in the 

station, for example, the data which received by Incoherent Scatter Radar (ISR) on 06 January 

2016 which we are using here is 1.8TB for just a 10 seconds. 

5.2. Frontend  

The frontend is the final results which provided to the user to use. In finally, the final results 

which show to the end user is just the simple file which contained the meaningful data. The 

final file will have a very small amount of data compared with the original data and it 

contained many information included date, hours, data, and so on.  

 

To export the data into the pictures for overview of data, the end user should have a script to 

read the .hdf5 file. They are simple to read and simple to load it in the Python programming 

language. In the figure above on the background section, I already mention about those 

figures in final for the end user. Moreover, in the .hdf5 extension, it is easy for end users to 

write scripts to read, there are various programming languages available to read this file 

format. 

5.3. Backend 
Another part of this thesis architecture is the backend component. The backend is the most 

core processors to process the data. 

 

As required, the backend computer should have the NVIDIA graphics card for processing 

data. The main functions of backend is that it will receive data from the storage space in the 

pair of package in .dcd and .hdr formats and processing pair by pair, to clean the data. In this 

process, the meaningful data will store in the .hdf5 file. Meanwhile, the meanless data will be 

eliminated.  

5.4. Storage  
The third component of this thesis is the storage facility. The storage facility can be one 

computer which has the largest space to store the data and included processing data in the 

backend component (we use this architecture). However, it may be a separate computer which 
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just responsible to carry the data, then it will transfer data pair by pair to the processing 

computer to process data. 

 

As we can see that the second architecture is more safety of the data than the first architecture 

because if it have any problems with the processing computer, it still have the backup data. 

And in the final processing procedure, the end user cannot get in touch on the original data, it 

give for the system have a stable status and the lower risk status because the end user cannot 

change any information on the original data. 
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6. Design  

6.1. Overview 

This section will show about the fundamental design choices will be explained and 

elaborated, why they were made and how they are designed like this. As mention above, this 

thesis will design mostly in the backend for improving the speed of calculating and improve 

the result. 

 

In this thesis, the storage and the processing will run on the same machine. In addition, the 

results are also stored in the same machine. The script in Python code also the same. It makes 

for the developer easy to develop and looking back to the database and the results. It is also 

easy for the user to access the frontend data which show for them the real time result and they 

can easily to access the script which provided to them.  

 

In this section, we also discuss about the code analysis, which we got from Arecibo station. 

Moreover, we also discuss about which part we decide to apply to solve. 

 

However, they also have limited because when the processing machine make the system 

crash, the user also cannot access the computer and whole computer will down. Moreover, 

when system down, the system will run from the first time, it make the system rewrite it. 

 

In this section, we will also see elaborated further in this chapter is how a system designed 

with the help from the third party provider and how the system design communicate in the 

backend component. It also describe the experiment code of the design. 

6.2. The analysis from Arecibo Python code 

This part will describe about the analysis of the Arecibo Python code. The contents will 

include measuring the time of the whole process, the time measuring of each part of the code 

and then we will decide to apply which parts into GPGPU to improve it. For every time 

measurement, I measured 10 testing times, then get the average time. 

 

First, we will illustrate about the time measuring of the code (in seconds). Below is the table 

show the time measuring for the whole processing data for one pair of data in Arecibo code. 

 

Process Time 

1 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

6 

Time 

7 

Time 

8 

Time 

9 

Time 

10 

Average 

Time 

Main 

Process 

82.596 74.604 67.046 69.721 68.764 68.302 68.057 68.07 68.106 68.07 70.334 

Table 2. The table show the time processing for the whole data pairs in Python code. 

 

From the table above, we can see that the average time for processing a pair of data is 70.334 

seconds. This is quite large amount of data to process. For example, we have 1.8TB of data, it 

contained 7669 pairs of data, and it is simple to calculate that 7669*70.334 = 539391.446 

seconds. It takes around 6.24 days to process this directory.  

 

To inspect more details in the code, we can see that the code separate into two parts. One part 

is handled for reading the data, processing the data and exported it into the .hdf5 extension 
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file while another part handled for plotting the result in the figures. We can see more clearly 

in the figure below: 

 

 
 

Figure 14. Figure show the data processing of the Python code from Arecibo. 

 

Base on the figure, we can see that the most important part is the files handling part. We can 

see on the table below is the inspection of the code and also measuring time on each parts: 

 

Functions Tim

e 1 

Tim

e 2 

Tim

e 3 

Tim

e 4 

Tim

e 5 

Tim

e 6 

Tim

e 7 

Tim

e 8 

Tim

e 9 

Tim

e 10 

Averag

e Time 

Reading 

file 

1.26 1.38 1.19 1.2 1.19 1.28 1.29 1.2 1.2 1.19 1.238 

Loading 

variable 

0.02 0.08 0.09 0.08 0.06 0.02 0.02 0.09 0.06 0.06 0.058 

Processin

g file 

62.6 63.3 71.7 62.6 64.7 69.8 68.1 69.6 64.2 62.6 65.922 

Writing 

data 

0.03 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.036 

Table 3. This table show the loading time for the part in the handling file in Python code. 

 

From this table of data, we can see clearly in the error bar below: 
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Figure 15. The figure show the error bar in the time measuring in Python code. 

 

From this table, we can see that the most time taking part is the processing file part. To 

inspection this part, we will have the table in details of the function in the table below: 

 

Function Tim

e 1 

Tim

e 2 

Tim

e 3 

Tim

e 4 

Tim

e 5 

Tim

e 6 

Tim

e 7 

Tim

e 8 

Tim

e 9 

Tim

e 10 

Averag

e Time 

Filter1Dauspr 62.9 62.9 62.3 62.4 62.7 72.4 64.5 65 63.5 64.6 64.326 

Variable 0.01 0.03 0.05 0.03 0.01 0.01 0.05 0.01 0.01 0.01 0.02 

Findpfpuspr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Findslopesup

dn 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 4. This table show the data of time measuring on the function in Python code. 

 

From this table, we have the error bar like the picture below: 

 
Figure 16. This figure show the error bar of the time measuring in functions of Python code. 

 

From this inspection, we can see that the function name Filter1Dauspr is the function which 

took a lot of time. After discussion, we decide to apply the GPGPU into this part for 

implement the code in CUDA. 
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6.3. System layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 17: The figure show the design of complete system and the components connections. 

 

From the figure above, we can see that they provided the visual overview of how the system 

design and the connection between components on frontend, backend and storage. On the 

frontend components, it provided to the user figures which depends on what user need by 

defined on the user script. As mention above on the background, we can see that user can 

define to load the data by electron density, power, frequency, and so on.  

 

The backend component is in the processing data and store the data into the .hdf5 extension 

file. In the storage component, it just responsible to store the data and provided data for the 

backend to process. After process to clean the data, the backend will store the data into .hdf5 

file (only one file) to prepare for the frontend component access. 

6.4. Third-party provider 

6.4.1. Transform the number to Discrete Fourier Transform and back 

Discrete Fourier Transform (DFT) of a discrete set of real or complex number: x[n], for all 

integer n, is a Fourier series. NVIDIA provided a very interesting library which enable for 

Store data to  

Access to get data 

Figures User Script 

.hdf5 file extension 

Processing data 

Data Storage 

Provided data  

Export 
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the developer can change directly from the float number into Discrete Fourier 
Transform for calculating then transfer back from Discrete Fourier Transform to float 
number. 
 
By using this library, the aspect of the algorithms to transfer the number into the 
Discrete Fourier Transform number and back was removed. It has also made for the 
developer make sure their results is more correctly and quickly in the process because 
the CuFFT library is using the NVIDIA graphics card to process which is very quick than 
using the CPU. 

6.4.2. Storage the huge amount of data in small file 

For processing the big data, the output data is a big problem because after processing that, the 

output data must be small. To solve this problem, HDF5 Group provided a very perfect data 

structure to store the data, but occupied the very small amount of data.  

 

The Hierarchical Data Format product consisting of the data format specification and a 

supporting library implementation. By support of this data structure, we can classify the data 

from the original data, then store it into the group of data which can easy to process by the 

Python script. Moreover, the problem of the big amount of data also solved.  

6.5. Backend 
This part will show the backend design of the application. This is the core components of the 

application. In addition, in this part, we also discuss about the structure of the class inside the 

backend component, how they can interact together. It is implemented by the C++ language. 

6.5.1. The overview of the backend 

For the overview of the backend component, we can see the figure below: 
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Figure 18: The figure show the overview of the backend component. 

 

From this figure, we can see that the application will access the database to read data pairs by 

pairs to load the whole data of one pair into the RAM memory. From RAM memory, it will 

transfer those data into the GPU for processing quickly by the NVIDIA technique. There are 

various libraries of NVIDIA for the developer to use to develop and make it more quickly 

than processing by using the CPU.  

 

After processing the data by using the GPU, the data will transfer back and for the CPU to 

response to store those clean data into the .hdf5 file with the data groups and datasets for 

future use. 

 

For the next pairs, the system process the same processing. However, in the final, the data will 

be written continuously with the .hdf5 file before, it make this file increase the occupied 

memory and information also. 

6.5.2. The class design of backend component 

This section will show about the class designed in the backend component and the class 

interaction between this.  

 

The figure below will show the whole overview of the class design. 
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Figure 19: The figure show the classes’ diagram in the CUDA and C++ Programing Language. 

 

From this diagram, we can see that Main class is the most important class to call all functions 

in the thesis. From Main class, it calls the kernel which contained the CUDA code for transfer 

the data into GPU memory and it also calls the CPU code to process the data as normal. From 

this diagram, we can see clearly that there are two parts of the code, one is the kernel which 

contained the CUDA code and one is MainClass which contained the normal C++ code. Also 

from the diagram, we can see the Utility class is the lowest level class to contain the most 

basic function to processing data which using on both for kernel and the C++ normal code. 

 

Moreover, we can see that every class contained the clear functions of this, the ReadFile 

contained the code which can read the file from the database. WriteData class contained the 

code handled to write information down to the .hdf5 file extension. Llib class contained the 

code to clean the data by the algorithm and Smooth class contained the class to smooth the 

data before to clean that. 
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6.5.3. The function of the backend component 

First, let us discuss about the functions of the ReadFile class in the table below: 

 

Function name Meaning 

ReadFile This is the construction function 

~ReadFile This is the destruction function 

readHdr This is the function to read and return the 

string of header file 

tommhhss This is the function to read the second then 

return into the hours 

readd This function to read the .dcd data file 

getsizeofFile This function will get the total size of file 

coverHdr This function will return the string which 

contained the full path of the header package 

coverDcd This function will return the string which 

contained the full path of the data package 

coverHdrMnf This function will return the string which 

contained the full path of data package in the 

mnf mode 

coverDcdMnf This function will return the string which 

contained the full path of data package in mnf 

mode 

returnNumHGHTS This function will return the string which 

contained the NUM_HGHTS in the header 

file 

returnFFTLEN This function will return the string which 

contained the FFTLEN number in header file 

rdusrpplHeader This function to read the header file by the 

uspr mode 

rdusrpplData This function to read the data file by the uspr 

mode 

readssHeader This function to read the header file not by 

the uspr mode 

readssData This function to read the data file not by the 

uspr mode 

returnSecs This function return the string contained the 

second  

readfnHeader This function read the header file for the case 

not in any mode above 

readfnData This function read the header file for the case 

not in any mode above 

 
Table 5: The table show the name and meaning of the functions in the ReadFile class. 

 

Moreover, we can see that the function which have name WriteData will show the function 

name and the meaning in the table below: 

 

Function name Meaning of function 

WriteData The construction function 
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~WriteData The destruction function 

setVariableuspr This function will set the initial value for the 

variable to prepare to write 

writeUspr2HDF5 This is contained 2 functions which have the 

properties for the same name function, it 

response to write the data into the file  in the 

uspr mode 

writeComl2HDF5 This function which response to write the 

data into the .hdf5 file in coml mode 

writeUpdn2HDF5 This function which response to write the 

data into the .hdf5 file in updn mode 

save This function which response to write data 

into .hdf5 file in none of above mode 

 
Table 6: The table show the name and meaning of the functions in the WriteData class. 

 

The most basic class is the Utility class. In this class, contained all the convenience function 

which can re-use for all class. The name and meaning of those function will describe in the 

table below: 

 

Name of Function Meaning 

Utility The construction class 

~Utility The destruction class 

removeSpace This function will remove the space in the 

line of string 

fromStringToDouble This function will return double number from 

input string 

fromDoubleToString This function will return string from double 

number 

fromFloatToString This function will return string from float 

number 

fromIntToString This function will return string from integer 

number 

returnValue This function will return the value of input 

string which contained text, number and 

space in the middle 

fromCharToDouble This function will return the double number 

from character 

fromStringToLong This function will return long number from 

string 

fromStringToChar This function will return character from string 

array2DZeros This function return the 2D zeros array in 

dynamic 

array1DZeros This function return the 1D zero array in 

dynamic 

array3DZeros This function return the 3D zero array in 

dynamic 

linspace This function translate the numpy linspace 

function to C 

msqtf This function return the so-called square 
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triangle matrix 

clip This function translate the clip function in 

numpy library in Python 

multiplies1DArray This function return the multiply array  

plus1DArray This function return the plus array 

roll This function translate the roll function in 

numpy library of Python programming 

language 

exp This function return the exp function of 

double input 

expf This function return the exp function of float 

number input 

expArray This function return the array after 

enforcement exp function of input array 

fileExists This function return the path is exists or not 

fromCharToString This function return the string from character 

input 

listFileandShorted This function listed all the file in directory 

then short it by alphabet 

returnFileNumberDirectory This function return the number of file in the 

directory 

zeroArray This function set initial zero value for the 

array 

reshape3D This function return the 3D array which 

reshaped from 1D array 

fromStringToInt This function return the integer value from 

string input 

oneArray This function return the numpy function 

name ones of Python programming language 

selectionShort This function will sort the array in ascending 

reshape This function will reshape an array 

swap This function swap the value 

getFFTLEN This function get the FFTLEN from the string 

array4DZeros This function will return the zeros array in 4D 

array2DZerosInt This function will return the 2D array in 

integer number 

print1DMatrix This function will print 1D array 

arrange This function translate the arrange function in 

numpy library of Python programing 

language 

array1DZerosComplex This function create the 1D zeros array in 

complex type with initial value is 0 

fftshift_3D This function translate the fftshift function in 

numpy library of Python programing 

language 

devide3DMatrix This function divide the 3D matrix by the 

double number 

returnFloatNumber This function return float number from the 

complex number 



 

 

43 

 

print3DMatrix This function print 3D matrix  

print2DMatrix This function print 2D matrix 

returnMaxIndexValue3DThird Return the max index value of matrix in the 

third dimensions 

returnMaxIndexValue1D Return the max index value of 1D matrix 

maxpar Return the maximum value and the x location 

in the matrix 

setValueList1D This function will set the value of the 1D list 

printListVariable This function print the list variable 

array2DZerosComplex This function will return the array in complex 

2D 

passMemory2D This function will send the memory from 1D 

into 2D array 

returnValueFromHd This function return the string value from the 

input string and input substring then return 

the value 

fromFloatToCufftReal This function change the float number into 

cufftReal number in 1D and 2D 

 
Table 7: The table show the name and meaning of the functions in the Utility class. 

 

In addition, we also have the class to handle smooth the data. We can see the function and 

meaning of the function in the table below: 

Name of the function Meaning of the function 

Smooth The construction function 

~Smooth The destruction function 

makeHc Set the value for the matrix 

makeHl Set the value for the matrix 

makeHq Set the value for the matrix 

 
Table 8: The table show the name and meaning of functions in the Smooth class. 

 

The most important class is the class which apply the algorithms to clean the data. It is the 

Llib class. We will see the name and meaning of the function in this class in the table below: 

 

Function name Meaning of the function 

Llib This is the construction function 

~Llib  This is the destruction function 

calculateFilter1Dauspr This function will calculate the first part of 

the filter in uspr mode 

filter1Dauspr This function will calculate the filter in uspr 

mode 

filter1Daupdn This function calculate the filter in updn 

mode 

filter1Dacoml This function calculate the filter in coml 

mode 

getNcols This function return the _ncols value 

getNrows This function return the _nrows value 

getNslopes This function return the _nslopes value 
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getNskip This function return _nskip value 

getSlopes This function return _slopes value 

getnhts This function return _nhts value 

getnfft This function return _nfft value 

getWidth This function return the _width value 

getSqtfs This function return _sqtfs value 

setfqtfs This function will set the value of array fqtfs 

mllib This function will calculate the value for 

sqtfs, fsqtfs, widths, shifts array 

Filter1Dauspr_snr This function will read and pass the data into 

GPU 

 
Table 9: The table show the name and meaning of the functions in the class Llib. 

 

The important class in the CPU part coding is the MainClass. This is the class which 

contained all related class. The details about the name of the function and the meaning of 

those function will discuss in the table below: 

 

Name of function Meaning of the function 

MainClass This is the construction function 

~MainClass This is the destruction function 

setValue This is the function to set the initial value 

getNumChan This function return integer number which 

contained the NUM_CHAN value 

getNumHGHTS This function return the NUM_HGHTS value 

getFFTLEN This function return the FFTLEN value 

getNsLopes This function return the _nslopes value 

getnfft This function return the _nfft value 

getWidth This function return the _width variable 

getsqtfs This function return the _sqtfs array 

getNcols This function return the _ncols variable 

findpfpcoml Find the value from data in the coml mode 

findpfpupdn Find the value from data in the updn mode 

findpfpursp Find the value from data in the ursp mode 

findslopescoml Find the value slopes in coml mode 

findslopesupdn Find the value slopes in updn mode 

setfqtfs Set the value for fqtfs array 

mf1 This is the loop function which will loop-over 

when read the data packages 

processingData This function will processing data to get the 

final results 

getArr3D Get the array in 3D of data 

getar3Dx Get the x dimension numbers of data 3D 

array 

getar3Dy Get the y dimension numbers of data 3D 

array 

getar3Dz Get the z dimension numbers of data 3D 

array 

getnhts Get the _nhts variable value 
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getNrows Get the _nrows variable of data 

getShifts Get the _shifts variable of data 

 
Table 10: This table show the name and meaning of the functions in the MainClass class. 

6.6. Frontend  
In my thesis, the frontend for the user is the final .hdf5 file. In this file, it contained the 

information which can show to the user easy by just using the Python script to see. My thesis 

is not writing this script, the script is written and copyright by Arecibo Station in USA. Below 

is some example results in the final plotting data for the end user: 

 

 
 

Figure 20: The figure show the final frontend in the picture of plasma frequency. 

 

 
Figure 21: The example plasma frequency in plotting by the Python script from frontend .hdf5 extension 

file. 
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Figure 22: The figure show the plasma line power which plot by the Python script from frontend –hdf5 

extension file. 

 
Figure 23: The figure show the plasma electron density which plot from the .hdf5 extension file by the 

Python script. 
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As we can see that, the user can plot by the script is quite easy. In the picture below, it will 

show the structure of the .hdf5 file. 

 

 
 
Figure 24: The figure show the structure of the .hdf5 extension file. 

6.7. Experiment code 
In this section, I will discuss more detail about the several Python Script and the C++ class to 

use in the thesis. And it can be found in the apendix section. 

 

 CMakeLists.txt is the script to use for the CMake to run. It make my project have clear 

to organize. 

 

 main.cu is the main class which contained the main function to run this program. From 

this class, it contained both the CUDA code and normal C++ language code. 

 

 externalClass.cu and externalClass.cuh is the class which contained the code for the 

CUDA code. The CUDA code just can run on the .cu file. 

 

 llib.h and llib.cpp this is the class contained the code which handles to clean the data. 

 

 mainclass.h and mainclass.cpp, this is the class contained for the whole process in the 

project. In this class, it calls all small class likely the class figure above. And the main 

class calls this class. 

 

 Readfile.h and readfile.cpp, this is the class contained the code which handle for 

reading the file and all related code. 

 

 Smooth.h and smooth.cpp, this is the class contained the code for smoothing data. 
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 Utility.h and utility.cpp, this is the class handle for all related functions which can re-

use in all other classes.  

 

 Gaussian_filter.py is the script contained the code for smoothing data in the Gaussian 

algorithm. 

 

 Least_square.py is the script contained the code for smoothing data in the least square 

algorithm. 

 

 Moving_average.py is the script contained the code for smoothing data in the moving 

average algorithm. 

 

 Savitzky_golay.py is the script contained the code for smoothing data in the Savitzky 

Golay algorithm. 

 

 Findpeak_gaussian.py is the script which show the figure by apply the smoothing data 

in Gaussian algorithm and the peaks of that. 

 

 Findpeak_least_square.py is the script which show the figure by apply the smoothing 

data in least square method algorithm and the peaks of data also. 

 

 Findpeak_moving_average.py is the script which show the figure by apply the 

smoothing data in moving average algorithm and peaks of data. 

 

 Findpeak_savitzky_golay.py is the script which show the figure by apply the 

smoothing data in Savitzky Golay algorithm and the peaks of data. 

 

 3D_gaussian.py is the script which will plot the figure in 3D of black and while and 

color in Gaussian Filter algorithm. 

 

 3D_least_square_method.py is the Python script which handle to plot the figure in 3D 

of black and while and color in least square method algorithm. 

 

 3D_Moving_Average.py is the script handling for plot 3D picture in black and while 

and color in moving average filter algorithm. 

 

 3D_savitzky_golay.py is the script which handle for plot the 3D figure in black and 

while and color in Savitzky Golay algorithm. 
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7. Results 

7.1. Overview 

This section will summarize the data collected from the experiment conducted in the previous 

chapter. Moreover, this chapter also show more clearly about the results in figure and the 

algorithms time measurement.  

 

The experiment 1 part will show the experimental results which apply the algorithms in the 

background section in Python code. In addition, the experiment 2 will show the time 

measurement in applying the algorithm to clean data by using C++ and CUDA.  

 

In the figures below will show the plot picture in 3D both color and black and while for the 

raw data. Moreover, it also illustrates the 2D figure at the height 550 (255 km) for the raw 

data which without applying any smooth algorithm. 

 
Figure 25: The 3D figure in black and while for all height in raw data for the package number 

1452105273. 
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Figure 26: This figure show the 3D picture in color for all height in raw data for the package number 

1452105273. 

 

From the Figure 22 and Figure 23, we can see that both black and while and color figure is 

not clear and it contained a lot of noises. In these two figures, the X-Axis show the frequency 

of data while the Y-Axis shows the height number. 
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Figure 27: The figure illustrates the 2D image of the raw data at the height 550 (255 km) for the package 

number 1452105273. 

 

As we can see in the figure 24, this is the figure of data when we cut in the height 550 (255 

km). From this picture, the X-Axis show the frequency while the Y-Axis shows the power of 

data. It contained a wide range of noise which make us difficult to know where the real noise 

is and the fake noise. 

7.2. Experiment 1 

7.2.1. Smoothing data 

 

This section will discuss about the results which I got from the smoothing data algorithms in 

the background section. It contained the figure in 2D. Moreover, this part also shows the 

figure in 3D in both color, and black and while figure. 

7.2.1.1. Moving Average algorithm 

 

By apply the algorithms in the section moving average algorithm in background part, firstly, I 

would like to show the result in the 2D figure in the picture below: 

 

 
Figure 28: The 2D figure of the moving average algorithm in the height 550 (255 km) of the package 

number 1452105273. 

 

From this figure, we can see that the X-Axis show the frequency of data and the Y-Axis show 

the power of data. The green line shows the original data which contained noise. After 
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smoothing this by the moving average algorithm, we get the red line which show the smooth 

data by applying the moving average algorithm. 

 

Moreover, I also implement the Python code which available for plot the data in the 3D 

picture. In the two figures below, it is the 3D figures in both color and black and while 

figures. 

 
Figure 29: The figure show the Moving Average Algorithm in 3D at all height in black and while for the 

package number 1452150273. 
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Figure 30: The figure show the 3D figure in color by applied the Moving Average Algorithm at all height 

for the package number 1452150273. 

 

From these two figures, we can see that the X-Axis show the frequency of data while the Y-

Axis show the height. The color shows the power and there are the power range to show 

number of power also. In the picture, there are a very high power in the middle while the 

power come slow in two sides. They just become high in some place it show where we have 

the peaks. 

7.2.1.2. Savitzky – Golay algorithm 

 

By apply the Savitzky – Golay algorithm in the background section, we can see that the data 

which we got will show likely the picture below: 
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Figure 31: The figure show the 2D smoothing data by the Savitzky – Golay algorithm at the height 550 

(255 km) of the package number 1452150273. 

 

From this figure, we can see that the X-Axis show the frequency of data and the Y-Axis show 

the power of data. The green line shows the original data which contained noise. After 

smoothing this by the moving average algorithm, we get the red line which shows the smooth 

data by the Savitzky – Golay algorithm. Comparing with the moving average algorithm, we 

can see that the Savitzky – Golay algorithm is more correctly because we can see the noises 

just like shortly while the moving average algorithm show the smoothing line just look like 

the straight line. 

 

Moreover, I also implement the Python code which available for plot the data in 3D picture. 

In the two figures below, it is the 3D figures in both color and black and while figures. 
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Figure 32: The figure show the 3D smoothing data in black and while by the Savitzky – Golay algorithm 

at all height of the package number 1452150273. 

 
Figure 33: The figure show the 3D smoothing data in color by Savitzky – Golay algorithm at all height of 

the package number 1452105273. 

 

From those figures, we can see that the 3D figure shows the frequency in the X-Axis and the 

Y-Axis show the height number which will cover from the function in the background 
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section. By results comparing, we can see that this algorithm is a clearer picture than in the 

moving average algorithm and it also show clearly the peak of data. 

7.2.1.3. Gaussian Filter algorithm 

 

By apply the Gaussian filter algorithm in Python, we can see the results in 2D and 3D in the 

figures below: 

 

 
Figure 34: The figure show the 2D smoothing data by the Gaussian Filter algorithm at the height 550 (255 

km) of the package number 1452150273. 

 

From this figure, we can see that the X-Axis show the frequency of data and the Y-Axis show 

the power of data. From this picture, we can see that the green line shows the original data 

which contained noise. After smoothing this by the Gaussian algorithm, we get the red line 

which shows the smooth data. 

 

Moreover, I also implement the Python code which available for plot the data in the 3D 

picture. In the two figures below, it is the 3D figures in both color and black and while 

figures. 
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Figure 35: The figure show the 3D smoothing data in black and while by the Gaussian Filter algorithm at 

all height of the package number 1452150273. 
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Figure 36: The figure show the 3D smoothing data in color by Savitzky – Golay algorithm at all height of 

the package number 1452105273. 

 

From those figures, we can see that the 3D figure shows the frequency in the X-Axis and the 

Y-Axis show the height number, which will cover from the function in the background 

section. By results comparing, we can see that this algorithm is a clearer picture than in the 

moving average algorithm. However, we cannot know it is better than Gaussian Filter 

algorithm or not. 

7.2.1.4. Least Square Method algorithm 

 

By apply the least square method algorithm in Python code, we got the results in the figure in 

2D and 3D in the figures below: 

 

 
Figure 37: The figure show the 2D smoothing data by the Least Square Method algorithm at the height 

550 (255 km) of the package number 1452150273. 

 

From this figure, we can see that the X-Axis show the frequency of data and the Y-Axis show 

the power of data. From this picture, we can see that the green line shows the original data 

which contained noise. After smoothing this by the least square method algorithm, we get the 

red line which shows the smooth data. However, this is the most awful algorithm because it 

got the result less correctly than the last three algorithms. 

 

Moreover, I also implement the Python code which available for plot the data in the 3D 

picture to east to compare with the last three algorithms. In the two figures below, it is the 3D 

figures in both color and black and while figures. 
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Figure 38: The figure show the 3D smoothing data in black and while by the Gaussian Filter algorithm at 

all height of the package number 1452150273. 
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Figure 39: The figure show the 3D smoothing data in color by Savitzky – Golay algorithm at all height of 

the package number 1452105273. 

 

From those figures, we can see that the 3D figure shows the frequency in the X-Axis and the 

Y-Axis show the height number, which will cover from the function in the background 

section. By results comparing, we can see that this is the very bad algorithm, it shows the 

unclear picture with the very noise data.  

7.2.2. Find the peak 

 

From those smoothing algorithms, I have applied the algorithm to find the peak. In the figures 

below, we can see the plus will show the finding local maximum peaks and minimum peaks 

of raw data. The red circle will show the local maximum peaks and minimum peaks of the 

smooth data. 

 

The figure below is about the peaks finding based on the least square method smoothing 

algorithm. 

 

 
Figure 40: The figure show the peaks which found in both the smoothing data by Least Square Method 

algorithm and the raw data. 

 

From this figure, we can see that this is not correctly algorithm. To apply to the raw data, it 

found four maximum peaks and three minimum peaks. However, when applied this finding 

peak algorithm, it just found total three peaks in the smoothing line and it looks like not a real 

peaks for maximum and minimum peaks. 

 

To have more experiment data, I also applied to find the peaks in the raw data and smooth 

data by using the same finding peak algorithm but in the Gaussian filter algorithm. After 

applying it, I got the result. It will illustrate in the figure below: 
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Figure 41: The figure show the peaks by applied the algorithm on the raw data and smoothing data by 

applied the Gaussian Filter algorithm. 

 

From the figure above, we can see that is clearer in smoothing data. The number of maximum 

and minimum peaks is the same between the raw data and clean data. The changing in this 

figure has been just the power and frequency of the local maximum peaks and local minimum 

peaks. However, the gap between the peaks in raw data and the smooth data is not too large. 

 

I also implement the Python code for plot the result in the moving average filter algorithm. 

After applying those algorithms, I got the figure below: 
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Figure 42: This figure show the peaks by applied the algorithm on both the raw data and smoothing data 

by applied the Moving Average algorithm. 

 

From this figure, we also got the same number of local maximum peaks and local minimum 

peaks between the raw data and smoothing data. However, it looks like the gap between the 

peaks of raw data and smooth data is larger than the Gaussian Filter algorithm. It makes the 

frequency and power of peaks data between two data type is changed. 

 

Finally, I applied the finding peak algorithm to find the local maximum peaks and local 

minimum peaks by using the Savitzky – Golay algorithm to smooth data. After applied, I got 

the figure below: 

 

 
Figure 43: The figure show the peaks by applied the algorithm on both the raw data and the smooth data 

by the Savitzky – Golay algorithm. 

 

From this figure, we can see that this is the clearest figure because the number of peaks 

between the raw and smooth data is the same. Moreover, the gap between the smooth data 

peaks and the raw data peaks is not too much. As we can see that, because this exactly, the 

frequency just has a little change while the power also has a big change. 

7.3. Experiment 2 
 

In this section, we will see the measurement of the time consuming in the coding by C++ 

language and apply the CUDA also. For measuring the time of the process, I measured 10 

times, then I calculated the average to get the final time of the process. 
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From this, we can see that the algorithms for us to apply to the C++ language is matched filter 

algorithm. Below is the table for the results in time consuming by applying the C++ language 

and the CUDA technology for processing for one pair of data (in seconds). 

 

Below are the results in time measurement when running on the Arctic Green Computing 

Group server system. We can see the result like that: 

 

 

Process Time 

1 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

6 

Time 

7 

Time 

8 

Time 

9 

Time 

10 

Average 

Tine 

Main 

process 

92.87 93.06 93.41 92.89 93.07 93.02 92.85 93.48 92.94 93.50 93.109 

Table 11. The time processing in seconds when apply the algorithm to run on the AGC computer server 

by CUDA and C++ Programming Language. 

 

On the figure below, we can see the errors bar of this table: 

 

 
Figure 44. The error bar when applied the algorithm in C++ programing language time processing 

measurement on ACG Computer Server. 

 

This part will describe a little about the results which got from Arecibo code. From Arecibo 

station, we have the function to load the raw data in 2D. However, in 3D figure, I had 

developed it by myself. The table below show the time measuring in both 2D and 3D in 

second’s unit. 

 

Process Time 1 Time 2 Time 3 Time 

4 

Time 5 Time 6 Time 7 Time 8 Time 9 Time 

10 

Aver

age 

Tim

e 

2D 0.64 0.549 0.564 0.601 0.618 0.646 0.676 0.765 0.764 0.744 0.65

7 

3D 108.808 240.939 108.978 242.19 167.643 136.557 1014.099 238.804 395.215 742.44

7 

339.

586 
Table 12. The table show the time measurement of the 2D and 3D data plot in raw data. 
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For more details, we can see the error bar figure below: 

 

 
Figure 45. This figure shows the time measuring error bar by plot the data in 3D and 2D in raw data. 

 

Moreover, in the tables below will describe about the time plotting for Python code in plot the 

data in 2D and 3D.  

 

The table below will show the time plotting when applied the Least Square Method algorithm: 

 

Process Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 

10 

Avera

ge 

Tine 

2D 0.749 0.628 

 

0.607 

 

0.626 

 

0.65 

 

0.659 

 

0.685 

 

0.696 

 

0.721 

 

0.731 

 

0.6752 

 

3D 627.916 290.456 436.654 290.496 343.133 387.295 810.921 313.199 291.729 350.099 414.19 
Table 13. The table of time in plotting the Least Square Method algorithm by Python Code. 

 

The figure below will show the error bar of Least Square Method algorithm. 
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Figure 46. The figure show the error bar of the Least Square Method algorithm in time measurement. 

 

For plotting data in 2D and 3D by the Moving Average algorithm. This table below will show 

the data  

 

Process Time 1 Time 2 Time 3 Time 4 Time 5 Time 

6 

Time 7 Time 8 Time 

9 

Time 

10 

Average 

Tine 

2D 0.608 
 

0.501 
 

0.501 
 

0.497 
 

0.506 
 

0.504 
 

0.51 
 

0.504 
 

0.515 
 

0.51 
 

0.5156 
 

3D 211.625 343.033 200.065 337.265 197.916 368.46 261.803 299.662 232.27 295.65 274.775 
Table 14. The table show the time measurement by apply the Moving Average algorithm in Python code. 

 

The figure below will show the error bar of the time measurement of Moving Average 

algorithm. 

 

 
Figure 47. The figure show the error bar of the time measurement of Moving Average algorithm. 

 

In addition, I also make the measurement of time 2D and 3D plot in the Gaussian Filter 

algorithm. The table below show the time measurement in second’s unit. 

 

Process Time 1 Time 2 Time 3 Time 

4 

Time 5 Time 6 Time 

7 

Time 8 Time 9 Time 

10 

Average 

Tine 

2D 0.677 
 

0.555 

 

0.548 

 

0.56 

 

0.578 

 

0.597 

 

0.614 

 

0.642 

 

0.658 

 

0.692 

 

0.612 

 

3D 117.919 245.036 199.739 276.14 194.398 273.392 162.89 300.222 117.188 248.276 213.52 
Table 15. The table show the time measurement of Gaussian Filter algorithm. 

 

We will see more clearly in the error bar figure below: 
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Figure 48. The figure show the Gaussian Filter error bar in term of time measurement. 

 

Finally, I also measure the time in second’s unit of the Savitzky – Golay algorithm. The table 

below will show the measurement data: 

 

Process Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 

10 

Aver

age 

Tine 

2D 0.837 
 

0.783 

 

0.765 

 

0.804 

 

0.816 

 

0.851 

 

0.87 

 

0.901 

 

0.922 

 

0.962 

 

0.85
1 

 

3D 191.122 271.801 202.969 243.942 697.051 111.635 242.672 155.961 245.167 956.834 327.
915 

Table 16. This table show the time measurement in 2D and 3D of the Savitzky – Golay algorithm. 

 

For more details, we can see the figure in the error bar below: 

 

 
Figure 49. The figure show the error bar of time measurement in the Savitzky – Golay algorithm. 
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8. Discussion 

8.1. Overview 

This chapter will discuss about the design, implementation choice make, the comparison of 

results which got from the implementation in time measurement and the example in previous 

implementation, as well as discussing the key lessons learn through the process of the thesis. 

Moreover, the limitation and future work also discussed in this chapter. 

 

Firstly, the thesis is based on the most physics topics, it did for me a lot of difficult to 

understand about the theories. In addition, the thesis topic is new, it has an advantage when I 

have investigated the way to solve problem but it also have disadvantage is that it is very few 

documents and previous work before in reference.  

 

The programming language chooses is not a big problem with me. At the first time, we had 

discussed about that and earlier agree that we will choose the C++ programing language as 

the implement language. However, when I had received the example code from Arecibo 

Station in Python, we also have a branch to develop in Python for the algorithms code and 

example simulation code. 

 

The design of the code in the backend components in the code is based on the code which 

received from Arecibo. In Python Code, it provided for the user various results in for 

comparing with the example results. 

8.2. The results from Python Programing Language 

 

This part will discuss about the result which we got from the Python code both from my code 

and the implementation code of the Arecibo.  

 

By comparing the results which we got from the raw data in table 12 and the time 

measurement of the plotting data in the raw data and the Least Square Method 

implementation which show data in the Table 13. In overall, in the term floating data 2D and 

3D, we can see that the plotting results time in the raw data is quicker than the Least Square 

Method. The average time to plot the 2D figure in the raw data is 0.657 seconds while the 2D 

figure in the Least Square Method took 0.6752, based on this number, we can see that the 

Least Square Method run slower than raw data plot around 2.732 %. In the term of the 3D 

figure, the raw data plot is occupied 339.586 seconds while the Least Square Method took 

414.19 seconds. Based on this, the raw data are plot about 19.92 % quickly then Least Square 

Method. The figure below will show more clearly about the time difference between these 

two: 
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Figure 50. The figure show the time measuring between Least Square Method algorithm and the raw data 

plotting. 

 

Next, we will compare the results which we got from the raw data in table 12 and the time 

measurement of the plotting data in the raw data and the Moving Average Algorithm 

implementation which show data in the Table 14. In overall, in the term floating data 2D and 

3D, we can see that the plotting results time in the raw data is more slowly than the Moving 

Average Algorithm. The average time to plot the 2D figure in the raw data is 0.657 seconds 

while the 2D figure in the Moving Average Algorithm took 0.5156, based on this number, we 

can see that the raw plotting run slower than raw data plot around 24.12 %. In the term of the 

3D figure, the raw data plot is occupied 339.586 seconds while the Moving Average 

Algorithm took 274.775 seconds. Based on this, the raw data are plot about 21.1 % slowly 

than Moving Average Algorithm. The figure below will show more clearly about the time 

difference between this two plotting time: 

 

 
Figure 51. This figure show about the time comparing between the Moving Average Algorithm and raw 

data plotting time. 
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Next, we will compare the results which we got from the raw data in table 12 and the time 

measurement of the plotting data in the raw data and the Gaussian Filter Algorithm 

implementation which show data in the Table 15. In overall, in the term floating data 2D and 

3D, we can see that the plotting results time in the raw data is more slowly than the Gaussian 

Filter Algorithm. The average time to plot the 2D figure in the raw data is 0.657 seconds 

while the 2D figure in the Gaussian Filter Algorithm took 0.612, based on this number, we 

can see that the raw plotting run slower than raw data plot around 7.09%. In the term of the 

3D figure, the raw data plot is occupied 339.586 seconds while the Gaussian Filter Algorithm 

took 213.52 seconds. Based on this, the raw data is plotted about 45.58 % slowly than 

Gaussian Filter Algorithm. The figure below will show more clearly about the time difference 

between this two plotting time: 

 

 
Figure 52. This figure show about the time comparing between the Gaussian Filter Algorithm and raw 

data plotting time. 

 

Finally, we will compare the results which we got from the raw data in table 12 and the time 

measurement of the plotting data in the raw data and the Savitzky – Golay Algorithm 

implementation which show data in the Table 16. In overall, in the term floating data 2D and 

3D, we can see that the plotting results in 3D time in the raw data is more slowly than the 

Savitzky - Golay Algorithm. However, the 2D time in the Savitzky – Golay algorithm is 

slowly than the raw plotting time. The average time to plot the 2D figure in the raw data is 

0.657 seconds while the 2D figure in the Savitzky - Golay Algorithm took 0.851, based on 

this number, we can see that the raw plotting run faster than Savitzky – Golay Algorithm data 

plot around 25.73%. In the term of the 3D figure, the raw data plot is occupied 339.586 

seconds while the Savitzky - Golay Algorithm took 327.915 seconds. Based on this, the raw 

data is plotted about 3.5 % slowly than Savitzky – Golay Algorithm. The figure below will 

show more clearly about the time difference between this two plotting time: 
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Figure 53. This figure show about the time comparing between the Gaussian Filter Algorithm and raw 

data plotting time. 

 

By comparison between the four algorithms, we can see that the Moving Average algorithm 

has the time to plotting the 2D faster than other algorithms. However, Gaussian Filter 

algorithm has the plotting time in 3D faster than other algorithms. To comparing together, we 

can see the figure below to more clearly. 

 

 
Figure 54. This figure show the time measurement in fours algorithms. 

 

8.3. The results which got from C++ Programing Language 

This part will discuss about the results of time consuming of CUDA and C++ programming 

language code. We will compare the results with the total time in running on the Python, 

which described in the section 6.2. Based on the results of time measurement in the table 11 

and the table 2, we can see that the implement code of CUDA and C++ programming 

language is slower than the Python code. By comparison, we can see that the code in C++ 

consumes about 93.109 seconds to processing one pair of data while the Python just occupied 

70.334 seconds to processing one pair of data. It is 27.869 % faster the C++ code. The figure 
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below will show more details about the time consuming in every testing time and total in 

average time for both Python code and C++ code. 

 

 
Figure 55. The figure show the time measurement of the Python and C++ code for processing one pair of 

data. 

 

For the reason is that the Python also build the library which is convince to use. However, this 

library is not available in C++. I need to build it by myself in C++ and it makes the time 

consuming increase. In addition, when I applied the algorithm to CUDA, it is not supported in 

CUDA, one available for use is cuFFT to transfer and calculate in Discrete Fast Fourier 

Transform. It takes the most time in reading, writing and transfer the data into the GPU and 

transfer back. One of the reasons for that is the data to transfer is too big, even I applied the 

stream transfer.  

8.4. Limitation 

This part will discuss about the limitation of the thesis. There are a various problems in the 

first to start this thesis because of my background is in information technology. I spend too 

much time to learn about the algorithms and the theories in space physics. In addition, the 

topic of this thesis is new. It has less documents and various work for reference. 

 

In the final, I decide to develop it in the C++ Programing Language. However, we received 

the code from Arecibo, it is writing in Python. I do not learn Python before, that why I need to 

spend my time to learn Python to understand their work. And it has two programing language 

which I used in this thesis, Python and C++.  

 

For Python code, it is provided for the reader some figures which are in the picture for the 

reader to understand about the implementation of the algorithm. However, it is not for writing 

the big system. 

 

In C++ Programing Language code, I had implemented C++, CUDA, and cuFFT. But in the 

final results it just provided for the end user the files in .hdf5 extension. From this results, the 

frontend user can use the Python script to plot the data in the final. 
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8.5. Key lession learned 

Creating such a system has given to me a lot of experience for later project and in the future 

work. Some of the key lessons that are given to me is: 

 

 The thesis is given to me a new knowledge in space physics 

 In addition, it was given to me the knowledge of how to build a large system. 

 It also given to me the experimentation in the term of implementation and testing. 

 It has shown to me the experience in developing the plan for a long-term project. 

 It also given to me the experience in the critical and how to evaluate this criticize to 

concordant me and the project. 

 It has shown to me the experience of working in the group and how to communicate 

with the group member together for the best results. 

8.6. Future work 
Firstly, there are various limitations on this thesis, in the future work, this work should fix 

those limitations. In addition, the system did not provide to the frontend user any user 

interface, it will be very interested to the user if the system provided to the end user the 

interface for them to be easy to use. 

 

Moreover, this thesis just work on the one node code. In future, it can be used in multi-node 

code by some various programing languages such as MPI (Message Passing Interface), UPC 

(Unified Parallel C) to connect computers together and sharing the tasks together to solve it. It 

engages to make the system work more quickly and more efficiently.  

 

In addition, the system can future work by apply the Apache Spark or some big data solution 

to solve this problem. 
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9. Conclusion  
 

 

This thesis presents the idea, architecture, design, implementation, and the results which got 

from the project, a system for processing the big data of plasma line by applying the GPGPU 

technique. 

 

The system was designed to run on the large computer system which have a large data storage 

space to store the data, and have a high performance system to process the algorithms.  One of 

the limitation of this thesis is that the system does not provide the user interface. Moreover, 

the speed of the system has not improve as well. 

 

There are applied two programming languages to implement the code and the algorithms. 

Those programming language is Python and C++. There are the weakness and the bottlenecks 

in the experimentation, include in Python and C++. Some of these weaknesses were solved by 

other frameworks and libraries. 

 

The most significant different technologies used in this thesis are to apply the GPGPU to 

solve the space physics big data problem. This thesis documents the idea and the development 

of the system, in addition to the experiment results, as well as present the related work which 

somebody done before. 

 

The documented approach provides the valuable insight into building the big data system 

which carried a huge amount of data. The next step is applying other technologies to improve 

the performance and also implement the user interface for the frontend user easily to use. 



 

 

74 

 

References   
[1] “What is radar?” [Online]. Available: 

http://www.njaudubon.org/SectionOases/Whatisradar.aspx. [Accessed: 06-Aug-2016]. 

[2] “Incoherent scatter,” Wikipedia, the free encyclopedia. 09-Jan-2015. 

[3] “THF09a ROBINSON LFW AMISR talk.pdf.” . 

[4] “Signals and Systems/Definition of Signals and Systems - Wikibooks, open books for an 

open world.” [Online]. Available: 

https://en.wikibooks.org/wiki/Signals_and_Systems/Definition_of_Signals_and_System

s. [Accessed: 06-Aug-2016]. 

[5] “Plasma (physics),” Wikipedia, the free encyclopedia. 14-Mar-2016. 

[6] “>Plasma line research.” [Online]. Available: 

http://www.irf.se/upatm/old_020302/pll.html. [Accessed: 16-Mar-2016]. 

[7] “Qt (software),” Wikipedia, the free encyclopedia. 30-Jun-2016. 

[8] “Overview | CMake.” . 

[9] “CMake,” Wikipedia, the free encyclopedia. 21-Jul-2016. 

[10] “Git,” Wikipedia, the free encyclopedia. 05-Aug-2016. 

[11] “Git.” [Online]. Available: https://git-scm.com/. [Accessed: 06-Aug-2016]. 

[12] “Parallel Programming and Computing Platform | CUDA | NVIDIA | NVIDIA.” 

[Online]. Available: http://www.nvidia.com/object/cuda_home_new.html. [Accessed: 

06-Aug-2016]. 

[13] “Hierarchical Data Format,” Wikipedia, the free encyclopedia. 02-Jun-2016. 

[14] “Python (programming language),” Wikipedia, the free encyclopedia. 09-Aug-2016. 

[15] “cuFFT,” NVIDIA Developer, 26-Jan-2012. [Online]. Available: 

https://developer.nvidia.com/cufft. [Accessed: 10-Aug-2016]. 

[16] C. Yang, Z. He, and W. Yu, “Comparison of public peak detection algorithms for 

MALDI mass spectrometry data analysis,” BMC Bioinformatics, vol. 10, p. 4, Jan. 2009. 

[17] Curve fitting. . 

[18] P. Du, W. A. Kibbe, and S. M. Lin, “Improved peak detection in mass spectrum by 

incorporating continuous wavelet transform-based pattern matching,” Bioinformatics, 

vol. 22, no. 17, pp. 2059–2065, Sep. 2006. 

[19] “Find local maxima - MATLAB findpeaks - MathWorks Nordic.” [Online]. Available: 

http://se.mathworks.com/help/signal/ref/findpeaks.html. [Accessed: 25-Apr-2016]. 

[20] “04_55_Calibration_rpt.pdf.” . 

[21] “thesis.pdf.” . 

[22] “Hilliard_Poster.pdf.” . 

[23] “miami1344024880.pdf.” . 

[24] “angeo-14-1462-1996.pdf.” . 

[25] “1-s2.0-0029554X80907909-main.pdf.” . 

[26] “paper.pdf.” . 

[27] “Digital topology_Introduction and survey_J.ComputerVision_1989.pdf.” . 

[28] “Filtering and Smoothing Data - MATLAB & Simulink - MathWorks Nordic.” [Online]. 

Available: http://se.mathworks.com/help/curvefit/smoothing-

data.html?s_tid=gn_loc_drop. [Accessed: 16-Mar-2016]. 

[29] “GPU Accelerated Computing with C and C++,” NVIDIA Developer, 25-Nov-2013. 

[Online]. Available: https://developer.nvidia.com/how-to-cuda-c-cpp. [Accessed: 16-

Mar-2016]. 

[30] “CUDA Toolkit Documentation.” [Online]. Available: 

http://docs.nvidia.com/cuda/index.html#axzz3vbq83QlC. [Accessed: 16-Mar-2016]. 



 

 

75 

 

[31] “CUDA C Programming Guide.” [Online]. Available: http://docs.nvidia.com/cuda/cuda-

c-programming-guide/index.html#axzz3vbq83QlC. [Accessed: 16-Mar-2016]. 

[32] “Intro. to Signal Processing:Smoothing.” [Online]. Available: 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#algorithms. [Accessed: 16-

Mar-2016]. 

[33] “Digital signal processing,” Wikipedia, the free encyclopedia. 18-Dec-2015. 

[34] “Discrete Fourier transform,” Wikipedia, the free encyclopedia. 15-Mar-2016. 

[35] “Filter design,” Wikipedia, the free encyclopedia. 09-Mar-2016. 

[36] “Minimum phase,” Wikipedia, the free encyclopedia. 06-May-2015. 

[37] “Z-transform,” Wikipedia, the free encyclopedia. 16-Mar-2016. 

[38] “Goertzel algorithm,” Wikipedia, the free encyclopedia. 22-Feb-2016. 

[39] “Signal-Smoothing Algorithms.” [Online]. Available: 

http://www.chem.uoa.gr/applets/appletsmooth/appl_smooth2.html. [Accessed: 16-Mar-

2016]. 

[40] “numpy - how to smooth a curve in python - Stack Overflow.” [Online]. Available: 

http://stackoverflow.com/questions/22988882/how-to-smooth-a-curve-in-python. 

[Accessed: 16-Mar-2016]. 

[41] “Signal Smoothing - MATLAB & Simulink Example - MathWorks Nordic.” [Online]. 

Available: http://se.mathworks.com/help/signal/examples/signal-smoothing.html. 

[Accessed: 16-Mar-2016]. 

[42] “Peak detection in Python,” Gist. [Online]. Available: 

https://gist.github.com/sixtenbe/1178136. [Accessed: 22-Mar-2016]. 

[43] “moble/MatchedFiltering,” GitHub. [Online]. Available: 

https://github.com/moble/MatchedFiltering. [Accessed: 04-Apr-2016]. 

[44] “python code lorentzian - Tìm với Google.” [Online]. Available: 

https://www.google.com.vn/#q=python+code+lorentzian. [Accessed: 04-Apr-2016]. 

[45] “How to access HDF5 data from Python - LCLS Data Analysis - SLAC Confluence.” 

[Online]. Available: 

https://confluence.slac.stanford.edu/display/PSDM/How+to+access+HDF5+data+from+

Python#HowtoaccessHDF5datafromPython-

CheckiftheHDF5itemis“File”,“Group”,or“Dataset.” [Accessed: 08-Apr-2016]. 

[46] N. Nguyen, H. Huang, S. Oraintara, and A. Vo, “Mass spectrometry data processing 

using zero-crossing lines in multi-scale of Gaussian derivative wavelet,” Bioinformatics, 

vol. 26, no. 18, pp. i659–i665, Sep. 2010. 

[47] “Wavelet-Based Peak Detection - Online Technical Discussion Groups—Wolfram 

Community.” [Online]. Available: http://community.wolfram.com/groups/-/m/t/91868. 

[Accessed: 08-Apr-2016]. 

[48] T. A. Kristian Hovde Liland, “Optimal Choice of Baseline Correction for Multivariate 

Calibration of Spectra,” Appl. Spectrosc., vol. 64, no. 9, pp. 1007–16, 2010. 

[49] V. Agostini and M. Knaflitz, “An Algorithm for the Estimation of the Signal-To-Noise 

Ratio in Surface Myoelectric Signals Generated During Cyclic Movements,” IEEE 

Trans. Biomed. Eng., vol. 59, no. 1, pp. 219–225, Jan. 2012. 

[50] N. Nguyen, H. Huang, S. Oraintara, and A. Vo, “Mass spectrometry data processing 

using zero-crossing lines in multi-scale of Gaussian derivative wavelet,” Bioinformatics, 

vol. 26, no. 18, pp. i659–i665, Sep. 2010. 

[51] “Fast Fourier Transform (FFT) - MATLAB & Simulink - MathWorks Nordic.” [Online]. 

Available: http://se.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html. 

[Accessed: 26-Apr-2016]. 

[52] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median filtering algorithm,” 

IEEE Trans. Acoust. Speech Signal Process., vol. 27, no. 1, pp. 13–18, Feb. 1979. 



 

 

76 

 

[53] Y. Zhu and C. Huang, “An Improved Median Filtering Algorithm for Image Noise 

Reduction,” Phys. Procedia, vol. 25, pp. 609–616, 2012. 

[54] M. Al-Rawi and H. Karajeh, “Genetic algorithm matched filter optimization for 

automated detection of blood vessels from digital retinal images,” Comput. Methods 

Programs Biomed., vol. 87, no. 3, pp. 248–253, Sep. 2007. 

[55] “Lecture83.pdf.” . 

[56] “cuFFT.” [Online]. Available: 

http://docs.nvidia.com/cuda/cufft/index.html#axzz49iokfgdF. [Accessed: 26-May-2016]. 

[57] “AndiH/CMake,” GitHub. [Online]. Available: https://github.com/AndiH/CMake. 

[Accessed: 27-May-2016]. 

[58] “Fast Fourier Transform (FFT).” [Online]. Available: 

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html. 

[Accessed: 30-May-2016]. 

[59] “CUFFT_Library.pdf.” . 

[60] “cudaMemcpy3D and cudaMalloc cudaDeviceToDevice copies - NVIDIA Developer 

Forums.” [Online]. Available: 

https://devtalk.nvidia.com/default/topic/465886/cudamemcpy3d-and-cudamalloc-

cudadevicetodevice-copies/. [Accessed: 03-Jun-2016]. 

[61] “HDF5 File Creation.” [Online]. Available: 

http://beige.ucs.indiana.edu/I590/node122.html. [Accessed: 02-Jun-2016]. 

[62] “cuda-2d-profiling.pdf.” . 

[63] “HDF5 Datatypes.” [Online]. Available: 

https://www.hdfgroup.org/HDF5/release/dttable.html. [Accessed: 05-Jun-2016]. 

[64] “CUDA C Programming Guide.” [Online]. Available: http://docs.nvidia.com/cuda/cuda-

c-programming-guide/#axzz4BSw2G7kO. [Accessed: 13-Jun-2016]. 

[65] “CUDA C Best Practices Guide.” [Online]. Available: http://docs.nvidia.com/cuda/cuda-

c-best-practices-guide/#axzz4BSw2G7kO. [Accessed: 13-Jun-2016]. 

[66] “CUDA Education & Training,” NVIDIA Developer, 21-Mar-2011. [Online]. Available: 

https://developer.nvidia.com/cuda-education-training. [Accessed: 13-Jun-2016]. 

[67] “GPU Computing Webinars,” NVIDIA Developer, 20-May-2011. [Online]. Available: 

https://developer.nvidia.com/gpu-computing-webinars. [Accessed: 13-Jun-2016]. 

[68] “CUDA Toolkit Documentation.” [Online]. Available: 

http://docs.nvidia.com/cuda/#axzz4BSw2G7kO. [Accessed: 13-Jun-2016]. 

[69] “GPU Accelerated Computing with C and C++,” NVIDIA Developer, 25-Nov-2013. 

[Online]. Available: https://developer.nvidia.com/how-to-cuda-c-cpp. [Accessed: 13-

Jun-2016]. 

[70] “Training Material and Code Samples,” NVIDIA Developer, 05-Jun-2013. [Online]. 

Available: https://developer.nvidia.com/cuda-education. [Accessed: 13-Jun-2016]. 

[71] “GPU Computing Webinars,” NVIDIA Developer, 20-May-2011. [Online]. Available: 

https://developer.nvidia.com/gpu-computing-webinars. [Accessed: 13-Jun-2016]. 

[72] “cuFFT and streams | Answers Well.” [Online]. Available: 

http://answerswell.com/question/4878663/p5i6c3/cuFFT-and-streams. [Accessed: 23-

Jun-2016]. 

[73] “Tips for Writing Technical Papers.” [Online]. Available: 

http://cs.stanford.edu/people/widom/paper-writing.html. [Accessed: 28-Jun-2016]. 

[74] “CUDA Support/Measuring kernel runtime - CS Support Wiki.” [Online]. Available: 

https://www.cs.virginia.edu/~csadmin/wiki/index.php/CUDA_Support/Measuring_kerne

l_runtime. [Accessed: 28-Jun-2016]. 

[75] “How to measure time in NVIDA CUDA?,” Ivan’s blog, 09-May-2011. . 



 

 

77 

 

[76] “A Step-by-Step on How to Do a Background Study for a Thesis.” [Online]. Available: 

http://education.seattlepi.com/stepbystep-background-study-thesis-1626.html. 

[Accessed: 06-Jul-2016]. 



 

 

78 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices 



 

 

79 

 

Appendix A 

Abbreviation 
ISR: Incoherent Scatter Radars 

EISCAT: the European Incoherent Scatter Radars Scientific Association 

GPGPU: General – Purpose Computing on Graphics Processing Units 

CUDA: Compute Unified Device Architecture 

RADARS: Radio Detection And Ranging 

CPU: Central Processing Unit 

GPU: Graphics Processing Unit 

2D: Two dimensions 

3D. Three dimensions 
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Appendix B 
Source Code 
The source code is contained in the attachment CD. 

 


