
Faculty of Technology and Engineering Sciences

Motion Capturing Machine Learning
Bluetooth motion sensors

Elisabeth Razafimandimby Gangenes
Master’s Thesis in Computer Science SHO-6264 - December 2016

Motion Capturing Machine Learning

Elisabeth Razafimandimby Gangenes

December 30, 2016

Abstract

Good and efficient care for our elderly is a major concern in our ever aging popu-

lation. The elderly’s greatest fear is falling to the ground, not being able to get up

or get help. Use of Bluetooth motion sensors and appropriate agents can help alert

for in the event of a person falling. In this master thesis an experimental sensor

rig has been created together with an android application which can capture and

save the data from the rig. This data has then been transfered to a feed-forward

backpropagating network in order to train it to recogise falls and separate them

from five daily activities. We have used three sensors to accomplish this: an ac-

celerometer; a gyroscope; and a magnetometer. Sensory data from these has been

given to three separate networks which performs their own prediction before being

sent to an overarching network to perform the final prediction. Results show that

it is possible to use such a system to a high degree of recognition, however the

system is vulnerable to overfitting so care must be taken during training.

Keywords: artificial intelligence; pattern recognition; accelerometer; machine learning;

bluetooth low energy; gyroscope; magnetometer; artificial neural network; deep learning; motion

capture; human activities; data analysis; android applications; feed-forward network; backpropa-

gation network;

Aknowledgements

I would like to thank professor Bernt A. Bremdal for providing his insight and

suggestions during the planning and development of this thesis.

Furthermore I would like to thank Asbjørn Danielsen for his invaluable as-

sistance in providing insight and advise on litterature, aswell as giving feedback

during development.

I also wish to extend a special thanks to the ten volunteers I had for the

experiments performed in this thesis.

Finally I would like to extend my deepest gratitude to everyone who has helped

to keep me motivated and inspired during this thesis.

Contents

1 Introduction 6

1.1 Background . 7

1.2 Existing systems and collaboration 7

1.3 Thesis description . 8

1.4 Limitations . 8

1.4.1 The Data Set . 8

1.4.2 The learning method . 9

1.4.3 Software limitations . 9

2 Theory 10

2.1 Motion Capture . 10

2.1.1 Inside In . 10

2.1.2 Inside Out . 12

2.1.3 Outside In . 13

2.1.4 Discussion . 15

2.2 Bluetooth Low Energy, BLE Technology 16

2.2.1 Attribute Protocol, ATT, and Generic Attribute Profile, GATT 16

2.3 Android . 17

2.3.1 Android 4.3, API Level 18 17

2.4 Machine learning methods . 17

2

2.4.1 Support Vector Machines . 17

2.4.2 Neural Networking . 18

2.4.3 k-Nearest Neighbour . 19

2.4.4 Discussion . 20

3 Methods 22

3.1 Experimental Rig . 22

3.1.1 TI SimpleLink Multi-Standard SensorTag, CC2650 wireless

MCU . 22

3.1.2 The sensor rig . 25

3.1.3 Capture Device . 25

3.1.4 Learning Agent . 26

3.2 The exercies . 27

3.2.1 Participant Survey . 28

3.3 TI Sensor Tag android application - Modified BLE Sensor Tag (cap-

ture device) . 28

3.3.1 Data structure . 28

3.3.2 Saved data naming convention 30

3.4 The machine learning agent, artificial neural network 30

3.4.1 Overview . 30

3.4.2 The perceptron . 30

3.4.3 Feed forward and backpropagation network 33

4 Using the software 41

4.1 The modified BLE Sensor Tag application 41

4.2 Back Propagation Network . 46

4.2.1 File explorer . 46

4.2.2 Document parser . 47

3

4.2.3 Neural Network creation . 49

4.2.4 Neural Network training . 53

5 Results and discussion 55

5.1 Results . 55

5.1.1 Overview . 55

5.1.2 Test 1 - First test run of a complete network 56

5.1.3 Test 2-4 - Refining the network 61

5.1.4 Summary . 78

5.2 Discussion . 78

5.2.1 The first test run . 78

5.2.2 Refining the network . 79

6 Conclusions and future work 85

6.1 Reviewing the objectives . 85

6.2 Observations of note made during the thesis 86

6.2.1 The inadequacy of the barometric pressure sensor 86

6.2.2 The gyroscope and magnetometer contributions to the ac-

curacy . 86

6.2.3 Top network can overtrain on one subnetwork 87

6.3 Future work . 87

Bibliography 89

Appendices 93

A Thesis description document i

B Abbreviations and acronyms v

4

C List of figures vii

D List of tables xii

5

Chapter 1

Introduction

This paper is the report for a Master’s Thesis for the Master of Science program

Computer Science (Narvik) - master, ran at UiT / Norges Arktiske Universitet -

Campus Narvik in 2016.

Motion capture is the act of recording the movements of people, or objects. It

has a broad specturm of applications: military; civilian; entertainment; medical;

the possibilities are endless. In this thesis we will examine a medical approach

to motion capture and use it to capture and recognise some activities performed

daily, and one particular accident case: a fall.

Machine learning, first described in 1959 by Arthur L. Samuel [27], is a field

within computer science used to describe the field which “gives computers the abil-

ity to learn without being explicitly programmed”. The field has evolved from the

study of pattern recognition computational learning theory into an area encom-

passing algorithms capable of learning from and making predictions on data [11].

We will use a machine learning algorithm in order to process and train an agent

to see whether a set of data is of a set of someone who is falling or not.

6

1.1 Background

In the public healthcare system there are several applications where active mo-

tion analysis can be useful for monitoring the state of patients. In particular in

monitoring elderly patients, who are prone to falling over. According to an article

by Christine Gulbrandsen (2009) for forskning.no, elderly who fall over more than

twice a year has a 57 % higher fatality rate compared to those who do not [5]. The

injuries from these falls are a major health burden, particularily in the long-term

care environment and they account for majority of hip and wrist fractures and

head injuries, according to a study made by Grisso, Schwarz, Wishner, Weene,

Holmes, and Sutton (1990) [7].

It is in society’s best interest to develop preventative measures for these falls

or ways to detect and alert if a fall has occured. An observational study made

by Robinovitch and Feldman (2012) found that a fall is caused when the patient

attempts to move the center of gravity before moving their feet [24]. If we can

monitor the patient’s center of gravity and possibly other limbs, we can predict

when a fall is about to occur and if we also can monitor the location of the patient’s

chest and/or head we can detect if the patient is lying prone after a fall. But for this

thesis we will see if it is possible to create a portable, personal capture system using

bluetooth sensors and an agent which can analyse and recognise the movements

of subjects.

1.2 Existing systems and collaboration

This thesis has been carried out independently, but I have recieved much insight

from my supervisor and assistant supervisor. When it comes to fall detection and

the like there are several existing solutions and studies done on the subject. Look-

ing at the market there are several existing devices which can detect falls. However

7

looking into reviews of these devices reveal that even the best have a detection

rate between 50% and 80% [22] when tested by Top Ten Review. According to

what’s written on Top Ten Review the norm seems to be a detection rate of 75%

for these devices.

1.3 Thesis description

The goal of this project is demonstrate movement capturing and recognition by

means of bluetooth sensors. This implies that an experimental rig will be created

that connect one or more bluetooth devices which can capture movement patterns

of a person and develop an agent which can learn to recognise these movements. A

smart phone will be used to record the data, while a desktop program will perform

the machine learning. Examine the learning process.

1.4 Limitations

1.4.1 The Data Set

The work and study performed in this thesis is based around a limited dataset

with preset exercises and supervised learning. The participants of the exercises

described in Section 3.2 are aged between 20 and 50 years old and are of both

genders, but the age range is not represented within the genders. Because the

exercises are planned the data sets will not account for other activities and vari-

ations within these activities outside of the participant’s performance. There are

also limitations on the sensor selected for the data collection: it is not designed

for outdoor and extreme enviromental conditions, therefore the data sets will be

limited to indoor movements.

When compiling all the data sets together we get around 5768 data sets, where

8

710 of them are of the participants falling.

1.4.2 The learning method

Several algorithms exists for supervised learning, and we will explore some in 2.4,

but only one has been selected for further study in this thesis.

1.4.3 Software limitations

The software I have created during this thesis is built as suit-for-purpose. It

currently does not support any other type of data and will fail to read and interpret

data sets that does not follow the data structures described in 3.3.1.

Furthermore I have not had the opportunity to implement saving functionality

for the machine learning software. This may make it difficult to recreate my results,

even if give the refined network settings are given, due to the randomised starting

positions in the machine learning system.

Lastly the system operates on a “fall detected” and “no fall detected” on the

outputs.

9

Chapter 2

Theory

2.1 Motion Capture

Motion capture is the act of capturing motions performed by an actor. In the

context of this thesis, this term is usually used to animate characters in computer

games or movies, but it has other more unexplored applications aswell. There

are several ways to do this and there are three main categories of motion capture

systems: inside in, inside out and outside in. Most of the material in this section

can be found in [31].

2.1.1 Inside In

There are three primary ways to perform inside in based motion capture: elec-

tromechanical suites, optical fiber and accelerometer based systems. Inside In’s

benefits are that they are very portable and can mostly be used anywhere. Accu-

racy in these systems vary greatly, but some are also heavily restricted in the type

of motions they can capture. More on these restrictions in the paragraphs about

the systems. Examples of all these systems can be seen in figure 2.1.

10

Electromechanical suites

Electromechanical suites typically involve exo-skeletons or armatures worn over

the subject. It is outfitted with rods connected with potentiometers which record

the analog voltage changes and convert it into digital values. This gives the user

a very accurate capture of motions in real-time. The biggest problem with these

suites is that they’re very restrictive, generally not allowing full range of motions

and they need to be customised for the user to match the body proportions. They

also do not allow for global positions.

Optical fiber

Optical fiber are the most restrictive type of the Inside In systems. It is typically

used for data gloves and work by running fiber-optic sensors along the seams, in

the case of gloves along the fingers. The bent fibers attenuates light and this light

is converted into measurement. This gives real-time and inexpensive measurement,

but are typically only used for hands and are of poor quality. Hence this method

is best suited for capturing gestures.

Accelerometer based systems

Accelerometer based systems works by having internal gyroscopes and accelerom-

eters to measure acceleration and orientation. Typically built into suits, they are

inexpensive and work in real-time, however they do not provide global position and

the suit can be restrictive. Some may also contain ultrasonic sensors to measure

distance, but from what I have found this particular feature isn’t as common for

personal use devices.

11

Figure 2.1: a) Gypso 6 exosceleton from Animazoo. Source: Wordpress b) 5DT -

5 sensor Data Glove. Source: Metamotion c) XSens Inertia Suit. Source: XSens

2.1.2 Inside Out

Inside Out typically has three main ways to capture motions: Electromagnetic,

Semi-passive and Optical capture. The portability of these systems vary, as does

the systems’ accuracy.

Electromagnetic

Electromagnetic systems work by putting external transmitters to establish mag-

netic fields in space. Sensors are then used to capture the transmitter’s positions

and orientations. The data from these sensors are then transmitted back either

wirelessly or across wire. This method captures motions in real-time, however it

has limited range, is vulnerable to interference from metal objects in the space and

the system is quite expensive to maintain and use.

12

Semi-passive

These systems typically work by either using Multi-LED IR projectors in the

environment which emit spatially varying patterns. Photo-sensitive markers tags

on the subjects decote the signals and estimates their position. This gives them

real-time and high speed tracking at a low cost. However due to the nature of

IR they can struggle with the accuracy and they do no support global position.

Furthermore this method is rather invasive on the subject due to the number of

markers which needs to be attached to the subject. It also makes portability an

issue outside of one’s home, as we will need to bring the IR projectors with us.

Optical

The optical inside-out system involves use of several high framerate cameras in

order to capture the environment around the user. It then uses a method called

Scale Invariant Features Transformation, SIFT [16], to extract features from the

environment to triangulate the cameras’ positions. This yields a very portable

method of motion capture which can give global position. However for personal

use this is a very expensive method, as each camera has a moderate cost, but the

user requires several of them in order to get useable data. The data given, however,

is not of high quality as it reconstructs an environment based on the features in

order to find it’s position. This also makes the system very slow.

2.1.3 Outside In

The most common method of outside in motion capture is the use of optical sys-

tems and markers, but there also exists marker-less systems. This involves placing

markers on the actor’s body to track them with two or more cameras and tri-

angulating the markers’ positions in a 3D environment using these cameras, see

13

Figure 2.2: A dancer wearing a suit with passive markers used in an optical motion

capture system. Source: Wikipedia

figure 2.2. These markers can be as simple as retroreflective surfaces to reflect

light generated close to the capturing cameras, called passive markers, to flashing

LEDs and accompanying software to recognise their relative positions, called ac-

tive markers. This method offers the highest possible precision, but it’s not very

portable.

Passive markers

Passive markers have the weakness of marker swap occuring. This is when the

system gets confused by the relative position of one or more markers, placing

any one marker in multiple positions. To combat this effect a system typically

has upwards to 48 cameras. The advantage of passive markers is that the user

is not required to wear additional wires or electronic systems, which gives them

more freedom of movement. The framerate of the capturing system also affect

the accuracy of the sample data. It is typical to capture at a rate of 120 to 160

14

on movement, but having as high as 10000 fps when capturing smaller regions of

interest, such as capturing facial expressions.

Active markers

Active markers typically include illuminating one LED at a time at a rapid pace

and identifying their positions with software. This method has a higher accuracy

potential when compared to the passive markers, down to 0.1 milimeters [14]. The

downside is that these markers take more space and may not be suitable for minute

measurements like capturing facial expressions.

2.1.4 Discussion

After looking into the varying ways of capturing motion we can exclude both Inside

Out and Outside In methods, they have several problems which will make them

unsuitable for our use. When it comes to Inside In systems we can discard an

electromagnetical suite as they do not allow for the freedom of movement needed

for personal use, and they need to be customised for the subjects. The optical

fiber is discarded on it’s limitations aswell, as we need to capture more than just

hand gestures.

This leaves the accelerometer based system. They are typically built into suits,

but if we can find sensors which are small enough to strap onto the actor’s body

in various places we can create a system which allows us to effectively capture the

movements. The device will need to be small enough to not restrict the actor’s

motions, yet sensitive enough to also register minute movements.

15

2.2 Bluetooth Low Energy, BLE Technology

Bluetooth Low Energy, also marketed as Bluetooth Smart, is a wireless personal

area network system created and marketed by Bluetooth Special Interest Group.

It was introduced under the name Wibree in 2006 [17] by Nokia. It hold certain

characteristics that differ from regular Bluetooth such as a lower transferral rate,

1 Mbps as opposed to Bluetooth’s 3 Mbps and the chips being smaller. The most

prominent feature however is that BLE remains in sleep mode except for when a

connection is initiated [12]. This contributes to the increased battery expectancy

when using BLE over Bluetooth. It was later introduced as part of Bluetooth 4.0.

One noteworthy attribute when developing with BLE technology is that, unlike

normal Bluetooh, every device always functions as a server, while the interracting

device is always a client. This is an important distinction when working with

multiple devices on a single application, which might be the case with this project

(see 3.1). This is due to the GATT/ATT relationship which is a standard when

working with BLE profiles [4].

2.2.1 Attribute Protocol, ATT, and Generic Attribute Profile, GATT

The Attribute Protocol, ATT, is a low level wire application protocol that defines

how to transfer a unit of data. An attribute is composed of three elements: a

16-bit handle, an standardised 128-bit format string called a Universally Unique

Identifier (UUID) [4] which defines the attribute type and a value of a certain

length [20].

The Generic Attribute Profile, GATT, is built on top of the Attribute Protocol,

and it dictates how the ATT is employed in service composition [20]. It is a base

profile for all top-level LE profiles and details how various ATT attributes are

grouped together to form meaningful services. The GATT is what serves as the

16

unit’s server and is what connects the BLE device to whatever client application

is using the unit.

2.3 Android

Android is an operating system created by Google for use on mobile devices, par-

ticularly on touchscreen devices. It’s based on the Linux kernel. When developing

to the system it is important to note the API levels. These levels decide the com-

patibility of your application with various devices. As a rule of thumb, it’s best to

utilise the lowest possible level to have the broadest possible compatibility.

2.3.1 Android 4.3, API Level 18

BLE was first introduced into Android devices with version 4.3. So this will be

the minimum application level.

2.4 Machine learning methods

This section will look into the three supervised machine learning algorithms eval-

uated for this thesis. There has been several other publications on this topic, and

their findings and analysis will be referenced throughout the section.

2.4.1 Support Vector Machines

Support Vector Machines, SVM, is a supervised learning model. This means that

the system is trained by giving examples at which to build it’s recognition. It

constructs a hyperplane, or a set of hyperplanes, in a high- or infinite-dimensional

space. This plane is then used to divide the data into clusters

17

In standard formulation the SVMs are linear classifiers, however it is possible

to extend the SVM by using a technique called Kernel Trick, or Kernel Method,

to achieve non-linear classification [3]. This method involves projecting the data

from the original data space to a high dimensional feature space by using a non-

linear kernel function. Linear separation can then be achieved by using Cover’s

theorem [3, ref: 66]. This method is however time-consuming and may not be

appropriate to use with large quantities of data. The algorithm also only has one

output.

According to [2] the SVM is the best second best performing algorithm for

inertia based sensors, however it also has the slowest training- and testing times.

2.4.2 Neural Networking

An artificial neural network is a machine learing algorithm inspired by the bi-

ological neural networks, in particular the brain, which is used to estimate or

approximate functions [19]. First concieved in 1943 by Warren McCulloch [21], it

can process a large number of inputs, that are generally unknown, into an out-

put. They are typically secified using three attributes: the architechture which

specifies the variables involved in the network and their topological relationships;

the activity rule which defines how the activities of neurons change in response

to each other, typically by a weight parameter; and the learning rule which spec-

ifies the rate at which the weights of the system changes. Allende, Moraga and

Salas’ article, Artificial Neural Networks in Time Series Forecasting: A Compar-

ative Analysis [26, c. 3], has an excellent description of the workings of a neural

network, it’s research and it’s applications.

A neural network has three essential features: the neurons, can also be called

nodes or perceptrons, which are the basic processing elements of the network;

the network architecture which describes how these nodes are connected; and the

18

training algorithm used to find the values of the network parameters for performing

a task. The neurons are organised into three layers: input; hidden which may

have more than one layer within it; and output. The number of input units is

determined by the application of the network, eg. data points to be processed to

an output. Once again Allende, Moraga and Salas’ article provides an excellent

rundown on the elements of an artificial neural network and it’s mathematical

construction [26, c. 3.1].

A problem with neural networks are that they are somewhat of a black box. It

is hard to see how they’re solving a problem, and because if this it is difficult to

troubleshoot them. They are also not probabilistic, so it’s hard to predict how an

epoch will turn out. Furthermore they cannot be retrained with additional data.

If one wants to add data to the network one needs to retrain the whole thing from

the bottom.

According to [2] the neural network is the worst performing algorithm for inertia

based sensors looked into for this study, scored at number 5 of 7 in their study. It

also has the second slowest training time, however the testing time for the neural

network is among the best in [2], and for this thesis it is the fastes for testing,

which is crucial in the public healthcare system.

2.4.3 k-Nearest Neighbour

The k-Nearest Neighbours, k-NN, algorithm is a non-parametric method for classi-

fication and regression [1]. In classification the output is a class membership where

the input object is assigned to a class by a majority vote by it’s neighbours, with

the object assigned to the class most common among it’s k nearest neighbours. If

k=1 then the object is assigned to the class of that single nearest neighbour. In the

case of regression the output is the property value of the object and this value is

the average of values of it’s nearest k neighbours. The advantages to the algorithm

19

is it’s robustness to noisy training data and it’s effectiveness with large training

data. The main drawback of this algorithm is the complexity in searching for the

nearest neighbours for each sample and the high computational costs because of

this complexity. Other drawbacks includes the need to determine the parameter

for k and that distance based learning is not clear on what type of distance to use;

do we use all attributes or just some?

[2] and [3] finds the k-NN algorithm as the best algorithm for recognizing

human activities with inertia based sensors at a staggering 96,26% accuracy. The

training and testing time for the algorithm is however mediocre [2, t. 4]. Both

training and testing times are listed together t 3.4 seconds, which puts it as the

fastest training algorithm in this thesis, but as the second at training.

2.4.4 Discussion

When looking at the study made by Attal, Hohammed, Debabrishvili, Cham-

roukhi, Oukhellou and Amirat on movement recognition when using raw data, we

can see that the k-Nearest Neighbour is the best algorithm for supervised learning.

It has a high precision rate of 94% [3, Table. 3, 4]. Use of k-Nearest Neighbour is

also supported in [?], where it is the algorithm with the highest accuracy of 96%.

After looking into the algorithms and discussing them with my supervisor, we

agreed upon going forward with the Neural Network algorithm for this thesis. We

will look more into the spesifics of the neural network in 3.4. The publications I’ve

studies also does not seem to utilise a deeper learning network, nor do they seem

to be using more than one network.

At the end of the thesis I believe it might have been more beneficial to have

chosen SVM or k-NN like [2] suggests for recognition, however it is worth noting

that according to [2] both SVM and k-NN is far slower than the Neural Network

once trained, with testing times of 5.95 seconds and 3.4 seconds for the SVM and

20

k-NN respectively against the 0.02 of the neural network. This difference in time

can be crucial in the public health sector.

21

Chapter 3

Methods

3.1 Experimental Rig

The experimental rig consists of three connecting modules: the sensors, the cap-

turing device and the learning agent, see figure 3.1 on page 23. The sensors will

consist of one or more bluetooth devices which the capturing device will read and

save data from. From there the saved data files will be transmitted or extracted,

be it automatically or manually, to the learning agent for analysis.

Because the project demands capturing movement at any time, we will use an

Inside In approach to capture the motions. This is due to the portability and need

to capture motions outside a pre-setup studio.

3.1.1 TI SimpleLink Multi-Standard SensorTag, CC2650 wireless MCU

In recommendation from assistant supervisor, Asbjørn Danielsen, I have decided to

make use of the Texas Instruments SimpleLink Multi-Standard SensorTag CC2650

wireless MCU, hencefourth refered to as the CC2650, as the motion capturing sen-

sor. It is a portable sensor, being only a few centimeters in length (see figure 3.2),

which can easily be attached upon a subject’s body and operates through Blue-

22

Figure 3.1: Mockup of experimental rig

tooth Low Energy, see section 2.2. The CC2650 features several different sensors,

but for the purposes of this project I predict only two of them will be used: the

movement sensor and barometric pressure sensor. One thing to note is that the

CC2650 is not designed for outdoor and extreme enviromental conditions, there-

fore this study will limit the test cases to movement indoors. They also need to

be properly secured, as the unit currently only has a small handle which can be

used to fasten the sensor. A distinct advantage is that the CC2650 has readily

available software and source code available, so I do not have to develop a protocol

to capture and interpret the data from the sensor.

Movement Sensors

The CC2650 features the MPU-9250 created by InvenSense [9] which is the com-

pany’s second generation 9-axis motion tracking devies. It is a System in Package

which combines two chips: the MPU-6500, which has a 3-axis gyroscope, an 3-

23

Figure 3.2: TI SimpleLink Multi-Standard SensorTag, CC2650 wireless MCU

axis accelerometer, and an Digital Motion Processor (DMP) capable of processing

MotionFusion algorithms; and the AK8963, a 3-axis digital compass. The sensor

outputs raw data which consists of nine 16-bit signed values, one for each axis.

The device is compliant with Android version 4.1, Jelly Bean [10], and supports

new low-power DMP capabilities that offload the host processor to reduce energy

consumption and simplify application development. Rough spesifications of the

sensor’s capabilities, dimensions and power demand can be seen in Figure 3.3.

Pressure Sensor

The CC2650 features the BMP280 created by Bosch Sensortec [9] which is an

absolute barometric pressure sensor. According to Bosch Sensortec the sensor

can be used for indoor navigation for detecting floors and elevators [29]. This

functionality will let us analyse the movement of the subject’s movements in the y-

axis to determine if they are moving in stairs, elevators or other forms of elevation,

24

Figure 3.3: MPU-9250 spesification table. Source: Invensense

which can be useful for telling where the they are located. Tests will determine

if the sensor is sensitive enough to determine whether the subject is lying on the

floor or not, but the technical data suggests the data resolution seems to be with

a precision of less than 10 cm [29], with a relative absolute accuracy of within 1

meter, so this functionality should be possible to implement.

3.1.2 The sensor rig

The sensor rig is a simple construction consisting of a single CC2650 unit, a belt,

a hairtie and duct tape to secure the sensor to the belt, as shown in Figure 3.4.

The belt is strapped around the waist of the subject where the hip bone meets the

spine, as that gives the highest single sensor recognition [3, Table. 1].

3.1.3 Capture Device

We will be using an Samsung Galaxy S6 for the purposes of capturing the data

broadcasted by the CC2650. Texas Instruments has a capturing software for an-

droid devices, but it only accomodates one sensor at a time and does not save the

data. Texas Instruments has the source code for this software available on their

Gitorious server and appropriate modifications will be done to it to allow saving

of data and possibly use of multiple sensors. The capturing device will not be

25

Figure 3.4: Experimental sensor rig

performing any analysis of the data.

Preliminary study suggests that a Raspberry Pi might be more suitable as a

capture device for commercial use, but for the purpose of this study a smartphone

is more suitable due to Texas Instrument’s ready to use software.

3.1.4 Learning Agent

In order to process the data we will create a machine learning algorithm and a

pre-processing method to interpret the data of each sensor in conjunction with

what it’s company sensors detect, as stated by the thesis description. This will be

a desktop software and will not be running in real-time with the sensors for the

purposes of this project.

The algorithm selected for this agent is the Artificial Neural Network, the

workings of which we will examine in-depth in 3.4.

The data is pre-processed through a parser which will separate the various sen-

sor data and organise them into data sets. During this processing the barometric

data is currently filtered out and is not included into the data sets. The reasons

for this will be examined and discussed in 4.1.

26

3.2 The exercies

To obtain a varied data set I have employed a small group of volunteers that

will perform some simple exercies with the CC2650 SensorTags attached to a belt

which will be strapped around the lower back. The participants will be given no

spesific instruction on how to perform the actions and they will be free to perform

them however they like. To obtain a suitable amount of data I have opted to have

a sample rate of 16 observations per second, however a different number may be

found to be more appropriate later. The participants will also perform each action

three times in three separate sets of data.

The exercises are as follows:

1. Walking: A simple walking exerices will be performed over the course of 10

seconds.

2. Fall onto a falling mat: Participants will fall forward onto a large mat. A

study done by Xingou Yu for the Institute for Infocomm Research puts falls

into four types: fall from sleeping (bed); fall from sitting (chair); fall from

standing or walking on the floor; and fall from standing on supports such as

ladders [34]. For this we will be focusing just on the third type.

3. Walking up stairs: The participant will walk up a normal, one floor set of

stairs.

4. Sitting down into a chair at a table: A chair will be placed by a table for

the participant to sit down into. This will involve moving the chair from the

table and sitting down.

5. Picking an item up from the floor, sitting: An item will be placed on the

floor for the participant to pick up. The participant will start from a sitting

position and return to the sitting position.

27

6. Picking an item up from the floor, standing: An item will be placed on the

floor for the participant to pick up. The participant will start from a standing

position and return to the standing position.

3.2.1 Participant Survey

The participants of this study are annonomys, however a small survey of the

participating subjects will be held where we note the participant’s gender, age and

height. In the initial analysis of the data this survey’s information will not be

utilised, however some of the information found in it may be relevant in further

study of the subject’s motions.

3.3 TI Sensor Tag android application - Modified BLE Sensor

Tag (capture device)

The Texas Instruments provides a ready to use software for capturing the data

from it’s sensor tags, however the application does not support saving this data

to a file and it only supports one data sensor at a time. The source code for this

software was found on Texas Instrument’s own Gitorious repository [8].

This software was then modified to exclude the sensors we do not use, aswell

as functionality to record and save the data recorded from the sensors.

3.3.1 Data structure

The data given by the sensor is structured in the Data class. This class contains: an

array containing said data; an array containing a list of enumerators to differentiate

the data, in case of different update frequencies on sensors which may be useful for

the barometric sensor; and a integer timestamp which dentoes the time at which

28

Table 3.1: Structure of the data set

Sensor Id Data Type Description Surfix

Accelerometer

0 Accel X Accelerometer data in X direction AX

1 Accel Y Accelerometer data in Y direction AY

2 Accel Z Accelerometer data in Z direction AZ

Gyroscope

3 Gyro X Gyroscope rotating on X axis GX

4 Gyro Y Gyroscope rotating on Y axis GY

5 Gyro Z Gyroscope rotating on Z axis GZ

Magnometer

6 Mag X Orientation X CX

7 Mag Y Orientation Y CY

8 Mag Z Orientation Z CZ

Barometer 9 Bar Barometric pressure value BA

this data is recorded as marked by Unix Timestamp.

Furthermore the data class contains functions which will allow additional data

points to be inserted. Because a data object can contain a varying amount of

data the structure is standardised to structure seen in Table 3.1, in addition to the

timestamp. Should an entry be missing from the data set or be empty it will be

denoted in the entry as ND. This destinction is important as the updates from the

CC2650 are not syncronised, meaning data from the movement detecting sensors

will not contain data from the barometer and vice versa.

I had originally intended to have a sample rate of 16 samples per second,

however the highest possible sample rate was 10 per second, which was a hard

coded limit put into the original software.

29

3.3.2 Saved data naming convention

The data from the exercise will be saved into separate files for each activity and

iteration. To categorise these data files they will follow a naming convention

XX Y Z.csv, where: XX denotes the participant number; Y denotes the activity,

as described in 3.2; and Z denotes the interation.

3.4 The machine learning agent, artificial neural network

3.4.1 Overview

The learning agent is a multilayered artificial neural network with two primary

layers: one layer which process the raw sensor data and a layer which process

the output from the previous layer. Furthermore the first layer consists of three

separate neural networks, one for each sensor in use. During the experiments I

discovered that the barometric sensor was not functioning properly or was not

precise enough, therefore it is being excluded from the network.

3.4.2 The perceptron

The artificial perceptron is the basic building block of a artificial neural network.

It is also called an artificial neuron, or in some cases a node, and it works as a

classifier that can map an input vector xn of real or boolean values and passes it

through an activation function. Figure 3.5 shows this function as a simple step

function, but there are several ways to do this.

For example the step function in Figure 3.5 could be:

f(x) =

1 if
∑n

j=1wjxj + b > 0

0 otherwise
(3.1)

30

Figure 3.5: Illustration of a perceptron with inputs, weights, a bias and an output.

where the sum of the real-valued weights, w, multiplied with the n number of

inputs, x, needs to be greater than the bias, |b|, in order to give the output of 1,

or the activation of the perceptron.

If the perceptron is part of a large network, a sigmoid transfer function may

be put before or in place of the step function.

Training the perceptron

In order to train the perceptron we utilise an algorithm [15]:

Definitions:

D = (x1, d1), ...(xs, ds) is the training set of s samples

xj is the n-dimensional input vector

dj is the target output for xj

wi(t) is the weight for for the i’th node at time t

yj(t) is the output calculated at time t

(3.2)

The error, or cost, fuction for a training is defined as:

E =
1

s

s∑
j

[dj − yj(t)] (3.3)

31

In order to train the perceptron we need to update the weights until the inputs

is close to the desired output for all examples in the training set D. The error is

calculated between the actual output and the target output using Equation 3.3,

and can be thought of as an gradient descent [19].

The perceptron is initialised and updated utilizing the following steps:

1. Initialise the weights wi(0) with small random values.

2. For each sample Dj do the following operations for each input xj and the

target output dj

(a) Calculate the output from the perceptron by:

yj(t) = f [w(t) · xj] = f [
∑
n

wn(t)xj,n] (3.4)

(b) Update the weights by

wi(t+ 1) = f [w(t) · xj] = f [
∑
n

wn(t)xj,n] (3.5)

for all nodes 0 ≤ i ≤ b.

3. Repeat from 2. until a sufficiently low error has been found or until the

number of iterations, or epochs, have reached a set limit.

Limitations of a single perceptron

While it is a simple construction, the perceptron can find a solution to several

datasets provided they are linearly separable. The training set D is linearly sepa-

rable if the data can be separated by a hyperplane.

The typical example given when explaining this with a perceptron are the

logical expressions “AND”, “OR” and “XOR”. Of these expressions “AND” and

32

“OR” are linearly separable and thus can be solved by a single perceptron. “XOR”

on the other hand is not linearly separable, and thus cannot be learned by a single

perceptron.

In order to learn the nonlinear expressions we build layers of perceptrons into a

network where the output of one layer is fed into the next layer as inputs through

a logistic function. Typically this is the sigmoid function, explained below, and

through this method we can approximate solutions to nonlinear sets. This con-

struction is called a “feed forward” neural network, as it feeds the layer outputs

forward to the next layer.

3.4.3 Feed forward and backpropagation network

This project implements an artificial neural network, or a feed forward and back-

propagation network, to analyse the data sets. Like a single perceptron, it requires

a training set with desired outcomes in order to learn. The error is calculated in

a similar way, however unlike the single perceptron the error is backpropagated

through the neurons in each layer of connected perceptrons. The weights are also

updated in a different way by their influence on the error. Much of the implemen-

tations have been derived from [18,19]

Sigmoid neuron

When building a of perceptrons into a neural network, a sigmoid function is typ-

ically used as outputs to give a representation of the activation output for the

neuron. The sigmoid transfer output is given as:

y = σ(t) =
1

1 + e−t
(3.6)

where:

t =
n∑
j=1

wjxj + b (3.7)

33

Figure 3.6: Sigmoid fuction

with xj as the inputs for the node, wj as weights of the inputs and the bias b. The

sigmoid function is continous and differentiable by:

dy

dt
= y(t)[1− y(t)] (3.8)

This differential is used when updating the weights and it is far less intensive com-

putationally, which is why the sigmoid is often used in backpropagation networks.

Figure 3.6 illustrates how the sigmoid function behaves.

Training a neural network

In order to train a neural network certain steps are required. For the purposes of

explaining we will look at a simple neural network with a simple input, X; single

hidden layer, H; and a single output neuron, O, see Figure 3.7. The output, O,

for this network is defined by:

O = y(w1x1 + w2x2 + ...+ wnxn + b) (3.9)

where w is the weight vetor, x is the input vector and b is the bias.

34

Figure 3.7: A simple neural network with one input, one hidden layer and one

output.

Definitions:

xi,l is the input vector of the i’th neuron in the l’th layer

bi,l is the bias of the i’th neuron in the l’th layer

oi,l is the output of the i’th neuron in the l’th layer

wli,j is the weight connecting to neuron j in the previous

layer to neuron i in the current layer l

y(x) is the transfer function

di is the target output for the i’th neuron in the output layer.

δi,l is the delta of the i‘th neuron in the l’th layer

α is the learning rate

θ is the momentum

(3.10)

Unlike the perceptron, the neural network typically uses a different error func-

tion. The most normal function for this is the Mean Squared Error, defined as:

E =
1

2

s∑
iεO

(oi − di)2 (3.11)

In order to minimise the error of each output we need to calculate a ∆ value. This

delta determines the rate of change in the error per weight in the current layer

to the previous layer. This value is then used to adjust the weights backwards

through the network through backpropagation.

35

The deltas are calculated in the following way:

• For the output layer, l = O:

∆O
i,j =

∂E

∂wi,j
=

∂

∂wi,j

1

2

∑
iεO

(oi,O − di,O)2 =
∂

∂wi,j
oi,O (oi,O − di,O)

=
∂

∂wi,j
y(xi) (oi,O − di,O) =

∂

∂wi,j
xi,O y(xi,O)(1− y(xi,O))(oi,O − di,O)

= oi,O(oi,O − di,O)(1− oi,O)(oi,H)

(3.12)

As the expression is dependant on the previous layer we can simplify the

expression as:

δi,O = oi,O(oi,O − di,O)(1− oi,O) (3.13)

∆O
i,j =

∂E

∂wi,j
= δi,O oi,H (3.14)

• Likewise for the hidden layer, l = H:

∆H
i,j =

∂E

∂wi,j
= oi,H(1− oi,H)(oi,X)

∑
iεO

(oi,O − di,O)oi,O(1− oi,O)wOi,j

(3.15)

We can here substitute
∑

iεO oi,O(oi,O − di,O)(1 − oi,O), as we can see in

Equation 3.13:

∆H
i,j = oi,H(1− oi,H)(oi,X)

∑
iεO

δi,Ow
O
i,j (3.16)

Which gives the simplifications:

δi,H = oi,H(1− oi,H)
∑
iεO

δi,Ow
O
i,j (3.17)

∆H
i,j =

∂E

∂wi,j
= oi,X δi,H (3.18)

As we can see in the Equation 3.15, the starting derivatives in Eqaution 3.13

propagating through the hidden layer. Should there be more than one hidden

layer, the X through Equations 3.15- 3.18 will be replaced with that layer

36

number. When we finally go from the hidden layer to the input layer, the

expression will likewise have grown to include all the deltas, like in Equa-

tion 3.17.

The biases output a constant value of 1 and they have no inputs, and serve to shift

the activation functions of the neurons.

Now that we know how to calculate the deltas, we initialise the network and

use the deltas to update the weights by the following steps:

1. Initialise the weights wli,j with random values.

2. Run the feed forward function once to get an initial output.

3. For each oi,O calculate δi,O.

4. For each oi,H calculate δi,H .

5. Update the weights by:

∆l
i,j = −α · δi,l · oi,l−1 (3.19)

which gives the new weight:

wli,j
+
= ∆wli,j (3.20)

6. Repeat from 2. until a sufficiently low error has been found or until the

number of iterations, or epochs, have reached a set limit.

The learning rate, α is typically 0.0001 ≤ α ≤ 1, however any number can be

selected. [18, c. 3] has a good illustration of the effects of the learning rate where

the effects of the learning rates α = 0.025, α = 0.25 and α = 2.5 and what it does

to the training. The summary of the fuction of the learning rate is that it controls

37

the step size within the error gradient descent, to make sure we do not overshoot,

but also have an efficient learning.

[18, c. 3] also has a good method of determining the value of α when refining

one’s network. It also describes changing the learning rate as the network improves,

however this has not been implemented with this system.

Introducing the momentum term

Because the errors calculated are like a surface, one problem that can occur is a

local minimum in the error surface. This will cause the training to get stuck, as it

will not find a better low error. In order to combat this we introduce a momentum-

term to the deltas updating in order to push the system out of any potential local

minimums. This is done by using the momentum to add a fraction of the previous

delta to the current iteration.

This implementation gives a new equation for ∆l
i,j:

∆l
i,j = ∆l

i,j(t) = −α · δi,l · oi,l−1 + θ ·∆l
i,j(t− 1) (3.21)

where t is the current epoch, or iteration.

Reducing overtraining

One problem we must respect when it comes to training any sort of machine

learning agent is overtraining the system. Figure 3.8 illustrates a case of overfit-

ting where noisy linear data has been fitted perfectly with a polynominal function.

According to [6] “overfitting is the use of models or procedures that violate parsi-

mony - that is, that include more terms than are necessary or use more complicated

approaches than are necessary”. In other words: overfitting typically occurs when

the system is overly complex compared to the problem being analysed. In the case

of a neural network this could be having too many neurons within the system,

38

Figure 3.8: Noisy rougly linear data which has been fitted with a polynominal

function.

which will let the agent assign each neuron to a spesific task to memorise the solu-

tion to the problem, instead of creating a generalization, and therefore be unable

to accurately predict or classify new data being introduced.

Several methods exist to avoid overfitting, for example: cross-validation [32];

utilising different cost functions [18]; regularisation and weight decay [18, 23];

adding noise to the input [13, 23]; early stopping [13, 23]; and pruning, also called

dropout [25].

In order to combat overfitting within my system I have introduced a gaussean

noise to the input vectors which change with each epoch. They are only present

in the very first layer of the network, and the amount of possible noise is a setting

the user can decide. The noise for every input will be different for every epoch,

and this will make the network more robust and resillient to overfitting.

I have also introduced a system where the network will test the training error

and compare it to the best possible error previously experienced. If the error is

lower, then the neurons will save the weights and deltas at that time. Then when

the network is done training it will restore these weights. This is a variation on

the early stopping method, with the difference being that the system keeps going

until one of the other stopping conditions have been met.

39

Comparing the outputs

In order to simplify the network I have introduced a step function to round the

outputs in my network:

ẏ = f(σ(t))) =

0 for σ(t) < 0.2

1 for σ(t) > 0.8

−1 for anything else

(3.22)

This function is only used when comparing the target output with the actual

output. If the output is later used as an input for a overlaying network, the

output will be the pure σ(t). 1 indicates activation, 0 indicates a non-responsive

output and -1 represents an insufficiently tuned output. When comparing the

results we will have three possible outcomes: success, which is when the rounded

output and target output is the same; error, which is when the rounded output is

opposite of the target output; and unknown, which is when the rounded output is

given as -1.

40

Chapter 4

Using the software

This chapter is a brief system walkthrough that shows how to use the system I have

developed during the project, aswell as the settings used to obtain the final results

presented in 5.4. There are two pieces of software developed: a modified version

of the BLE Sensor Tag Android application, originally developed by Texas Instru-

ments [8]; and the artificial neural network software which parses and processes

the data collected by the Android application. Precompiled Windows binaries for

the Neural Network are included in the attached CD/Flash Drive. The modified

BLE Sensor Tag application however does not have a compiled .apk, and needs to

be installed through an IDE.

4.1 The modified BLE Sensor Tag application

I found ten participants to perform the exercises described in 3.2, consisting of four

women and six men. Table 4.1 shows a small exert from one of the experiments

performed, excluding the timestamp which comes first, the surfixes described in

Table 3.1 when there is data in the cell and rounded to four decimals. The exper-

iment took place within the gymnasium hall and it’s facilities just next to UiT.

41

Figure 4.1: BLE SensorTag screenshot

Figure 4.1 shows the main screen for this module. When wanting to record

data we start by giving the session a name, which will be the file name aswell. In

other words we will follow the naming convention described in 3.3.2 on the session

name. Once a name has been selected we hit the “Start new recording” button in

order to set it into recording mode. Following this we select the sensor we want

to use from the list. This will take us to a new screen, which shows the activities

of the various sensors: the movement sensor and barometric sensor.

To terminate the recording of data simply go back to the main screen, by hitting

the back button on the android device, and hit the stop recording button. Then

the data is prepared to be saved by using the save session to file. This will save

the session to a file with the same name as the session with the added extension

of the session’s timestamp and extention .csv to the application’s public folder.

These samples are saved locally on the android device and needs to be manually

42

Table 4.1: Exert from participant 2, exercise 2, take 3

Accel X Accel Y Accel Z Gyro X Gyro Y Gyro Z Mag X Mag Y Mag Z Bar

3.9258 -0.10254 -0.0088 -0.9141 0.7422 -0.8594 -103.5 14.1667 48.5CZ 0.0UK

0.0UK 0.0UK 0.0UK 0.0UK 0.0UK 0.0UK 0.0UK 0.0UK 0.0UK 102113.28

3.9326 -0.1133 -0.01270 -0.6875 0.6484 -0.5781 -106.1667 15.1667 51.8333 0.0UK

extracted to the desktop. In this case a simple USB connection between the

android device and desktop sufficed.

The barometric pressure sensor

While not much to show on the data sets, there are two aspects of the data sets I

would like to highlight. Figures 4.2-4.5 show the plots of one of the participant’s

walking up a set of stairs. As we can see in Figure 4.2 and 4.4 we can see clear

patterns of movement, however the barometer, Figure 4.5, was far more difficult

to see anything conclusive.

In this case we should see a gradual decrease in the atmospheric pressure,

however this is not happening. In the beginning we can see it jumping up and

down before stabilizing for several seconds, until it finally drops a little at the

top of the stairs. This behaviour is however not consistent. Some times the

barometric value stays around 102115 Pascal; in other samples it can sporadically

jump between the values shown in the figure; and in some samples it flatlines.

The sensor as described from the manufacturers, see the paragraph about the

sensor in Section 3.1.1, is capable of detecting shifts in height within 1 m margins,

however the recieve during the experiments did not show this. It also did not show

any changes when altitudes changed by higher amount.

It was tested by walking up stairs, however no noticable changes in the output

were detected. After discussing it with peers, we speculate this discrepancy could

be caused by the environment of which the experiments were taking place in.

As the sensor is dependant on detecting air pressure, ventilation systems could

43

Figure 4.2: Plot of accelerometer data from the first participant’s first execution

of exercise 3. Blue - x, red - y, yellow, z

influence the data. In order to challenge this, I also attempted to test the stairs

in various places on campus, however no significant differences in the output were

observed.

It could also be that the default settings for the application are not made to

be as sensitive as I need it. According to the system documents for the BMP280

it should be sensitive enough to detect variations within ± 0.12 hPa, or ± 1 meter

difference in altitude, hence it should easily be possible to see the differences in

pressure when taking the device up and down stairs.

Lastly it could be that the sensor’s filter settings are not configured correctly.

Reading through the datasheets about the sensor on their page shows several use

cases with different settings [30, Table 7]. It could simply be that the sensor’s

filter settings are wrong for this use case.

Regardless the reason, because of the unreliable data I elected to exclude the

barometric pressure sensor from the data sets and network, hence the CSVReader

ignores the lines which contains barometric data when it parses files.

44

Figure 4.3: Plot of gyroscope data from the first participant’s first execution of

exercise 3. Blue - x, red - y, yellow, z

Figure 4.4: Plot of magnetometer data from the first participant’s first execution

of exercise 3. Blue - x, red - y, yellow, z

45

Figure 4.5: Plot of barometer data from the first participant’s first execution of

exercise 3.

4.2 Back Propagation Network

In order to analyse the data given by the BLE Sensor Tag application I have

developed a rudimentary program which is programmed spesifically for analysing

it’s data. While the software could easily be modified to accomodate any sort of

data, the structure of the program’s document parser and the way the network

extracts the data for processing is specified for analysing the data given by the

BLE Sensor Tag.

4.2.1 File explorer

The very first step of using the software is to select the files we’re going to analyse.

I have included a default data set, which I used to train the network, but if one

wants to use other data this is where it’s done. Find the files with the explorer, as

shown in Figure 4.6, and simply add the files to the list of eligible files. There is

46

Figure 4.6: Main Window File Explorer tab

a security net which prevents the user from adding files apart from .csv files, but

this does not inhibit the user from adding files which do not have the structure

needed to be read by the system.

4.2.2 Document parser

Next in order to parse the files we need to identify what data they contain. The

comboboxes on the left, in Figure 4.7 lets the user identify the content of the file,

and which activity is being performed in it. Currently the system does not support

files filled with data to identify what activity is going on. Furthermore the user

needs to check which files are to be parsed to a collection, in case the user wants to

separate the files into different sets. It is however important to note that a single

collection needs to contain sufficient falling and non-falling activities in order to

train the system properly.

The user gives the collection a name, which is how we identify the collection

47

Figure 4.7: Document parser and data set tab

later, and determine the number of entries in the files and separator. We do not

need to change anything here, as the presets are set for the experimental data

obtained in 4.1. Then the files are parsed into a Data Collection.

We then need to determine the training- and testing-sets’ parameters. One

part of these sets are called Data Segments, and they’re built by determining an

n size, or length, to the set, default of which is 5. We thus create:

imax = number of entries in collection− n (4.1)

data segments from the parsed collection of documents.

The size of the Data Segment determines the number of inputs we give to the

neural network, and thus the number of input nodes the network needs. This is

equal to three times the size of the segment plus one. With the default size of 5

we get a data segment which yields 16 inputs for each sensor: 1 input, ||ai|| which

is the total length of the values within the segment:

48

||ai|| =

√√√√n−1∑
j=0

x2
i+j +

n−1∑
j=0

y2
i+j +

n−1∑
j=0

z2
i+j (4.2)

and the 5 values for x, y and z.

Lastly we need to decide how large part of the entire collection should be

used for training, and by extension how many should be used for testing. The

default value is currently set to 25%, however I believe smaller sets may be more

appropriate. Because of this the default sets I have used to train the network only

has 15% of the segments used for training. Once the training set size is determined

the collection of segments are randomly shuffled and divided into training and

testing sets.

In order to simplify the processes of training and testing I have included three

default data collections: “First training run”, which contains the data used in the

networks labled with “First” and contains only data from exercise 1 and 2, see 3.2;

“Refined network”, which contains the data used to train the networks labeld “Re-

fined” and it contains all six exercises, however only 3 files per exercise; and “All

experiments”, which contains all the data collected during the experimentation

and this set has been used to test the networks once training is complete.

4.2.3 Neural Network creation

This tab is responsible for managing the networks and their structure. It contains

a list of the networks, aswell as buttons for creating new, editing or deleting

networks, see Figure 4.8.

There are two parts of the network creation dialog: creating a brand new

simple neural network, see Figure 4.9; and creating a network with other networks

as inputs, see Figure 4.10. Theoretically the system supports any depth with these

networks, but I have only tested for with a depth of two.

49

Figure 4.8: Network creation tab

Through the dialog the user can specify the network’s name, which is how we

identify the network although these names do not need to be unique as they have

a hidden unique identity; the network’s error, or cost, calculation although only

Mean Square Error is currently supported; the network’s type, which specifies what

sensor data we are extracting from the training set; and the number of neurons

to have in each layer aswell as their output type, though only sigmoid output is

currently implemented. Finally in the “Create new network from sub-networks”

the number of inputs is replaced by a list of existing networks which the network

can use as inputs.

Should the user wish to edit a network this will display the Network creation

dialog, but with the editorial mode instead, where they can edit any part of the

network’s structure. It is however currently not possible to edit networks which

takes other networks as inputs, so if the user wants to edit such a network they

will currently need to delete the old one and create a new.

Just like the document parser, to make training and testing more efficient,

50

Figure 4.9: Network creation dialog

Figure 4.10: Network creation by using subnetworks dialog

51

there exists a couple of presets networks. With the final build of this software

these are the settings used to get the results in: 5.1.2, which are the networks

labled “First”; and 5.1.3, which are labled “Refined”. I will not go into detail

for the “First” networks here, see 5.1.2 for those details, but the structure of the

“Refined” networks are as follows:

Structure: Network layer 1, network 1 - Accelerometer network

• Inputs: 16

• Hidden: 16, 6

• Outputs: 2

Structure: Network layer 1, network 2 - Gyroscope network

• Inputs: 16

• Hidden: 16, 6

• Outputs: 2

Structure: Network layer 1, network 3 - Magnetometer network

• Inputs: 16

• Hidden: 2, 3

• Outputs: 2

52

Structure: Network layer 2, network 1 - Top network

Unlike the other networks this network has a preset amount of input nodes, no

matter the size of the size of the data segments used in the underlying networks:

six, two for each of the underlying networks’ outputs. Therefore this network has

the following structure:

• Inputs: Accelerometer network, Gyroscope network, Magnetometer network

• Hidden: 2, 4

• Outputs: 2

4.2.4 Neural Network training

The final figure, Figure 4.11, shows the training window which is where we select

which networks to train, which data sets to use, and the parameters for the train-

ing. In addition it also includes graphs to illustrate the accuracy and error per

epoch for the networks, aswell as settings for how these are rendered. Training a

network will generate a file which contains the accuracy and error for the testing

and training sets within the error, and the epoch with the lowest error will be

noted in the file’s name. It is worth noting that it’s not necessary to train the

underlying networks, one can assign the top network for training and it’ll train the

underlying networks automatically with the learning parameters set for the top

network. This will however clutter the graphs with all the networks at once, so it

changing the display settings might be necessary during runtime of the network.

Should one want to prematurely stop the training of a subnetwork during this, one

needs to select that particular subnetwork in the list and click the stop training

button.

Should one however want to exercise more control over the learning of each

subnetwork it is possible to set their settings and train them individually. We will

53

Figure 4.11: Network training tab

see more about the effects of this in 5.2.2.

Finally there is a button missing from the figure. This is the “Test network”

button, which lets the user run the entire selected data set through a network and

get an analysis of the performance on the entire set, like a testing set epoch, but

with much greater details. This will create a .csv file named after the network and

data set containing the accuracy of the set, the set’s error, aswell as a compilation

of the network outputs compared to the targets for every set.

54

Chapter 5

Results and discussion

5.1 Results

5.1.1 Overview

Table 5.1: Overview of the tests with their training data, networks and learning

parameters

Test number Data set Networks Learning Rate Momentum Target Accuracy Max epochs

1 First training run

FirstAccelerometer 0,01 0,90 80 1000

FirstGyroscope 0,01 0,90 80 1000

FirstCompass 0,01 0,90 80 1000

FirstTopNetwork 0,01 0,90 80 1000

2 Refined Network

RefinedAccelerometer 0,0025 0,90 90 5000

RefinedGyroscope 0,0025 0,90 90 5000

RefinedCompass 0,0025 0,90 90 5000

3 Refined Network

RefinedAccelerometer 0,0005 0,90 80 1000

RefinedGyroscope 0,0005 0,90 80 1000

RefinedCompass 0,0005 0,90 80 1000

RefinedTopNetwork 0,0005 0,90 80 1000

4 Refined Network

RefinedAccelerometer 0,0025 0,90 90 5000

RefinedGyroscope 0,0025 0,90 90 5000

RefinedCompass 0,0005 0,90 80 5000

RefinedTopNetwork 0,0001 0,90 80 5000

55

Table 5.2: Description of what the tests entail

Test number Description

1 First run of a complete neural network.

2 Finding the structure of subnetworks.

3 Finding the structure of the top network and adjusting parameters.

4 Finalise learning parameters for each network.

From Test 2 and onwards a test of the network was performed with the “All

experiments” data set in order to validate the network on unknown data. These

network tests will be the basis of the results.

Table 5.3: Structures of the networks

Network name Input neurons Hidden neurons Output neurons

FirstAccelerometer 16 16 — 6 2

FirstGyroscope 16 16 — 6 2

FirstCompass 16 16 — 6 2

FirstTopNetwork Accel — Gyro — Compass 16 — 6 2

RefinedAccelerometer 16 16 — 6 2

RefinedGyroscope 16 16 — 6 2

RefinedCompass 16 2 — 3 2

RefinedTopNetwork Accel — Gyro — Compass 2 — 4 2

5.1.2 Test 1 - First test run of a complete network

The first test was made with the neural network in order to check if the network

would properly feed forward and backpropagate.

56

Figure 5.1: First full accelerometer MSE and Accuracy, Test 1

57

Figure 5.2: First full gyroscope MSE and Accuracy, Test 1

58

Figure 5.3: First full compass MSE and Accuracy, Test 1

59

Figure 5.4: First full total network MSE and Accuracy, Test 1

60

5.1.3 Test 2-4 - Refining the network

Figure 5.5: Test 2 accelerometer error

61

Figure 5.6: Test 2 accelerometer accuracy

Figure 5.7: Test 2 accelerometer network test

62

Figure 5.8: Test 2 gyroscope error

Figure 5.9: Test 2 gyroscope accuracy

63

Figure 5.10: Test 2 gyroscope network test

Figure 5.11: Test 2 magnetometer error

64

Figure 5.12: Test 2 magnetometer accuracy

Figure 5.13: Test 2 magnetometer network test

65

Figure 5.14: Test 3 accelerometer error

Figure 5.15: Test 3 accelerometer accuracy

66

Figure 5.16: Test 3 accelerometer network test

Figure 5.17: Test 3 gyroscope error

67

Figure 5.18: Test 3 gyroscope accuracy

Figure 5.19: Test 3 gyroscope network test

68

Figure 5.20: Test 3 magnetometer error

Figure 5.21: Test 3 magnetometer accuracy

69

Figure 5.22: Test 3 magnetometer network test

Figure 5.23: Test 3 top error

70

Figure 5.24: Test 3 top accuracy

Figure 5.25: Test 3 top network test

71

Figure 5.26: Test 4 accelerometer error

Figure 5.27: Test 4 accelerometer accuracy

72

Figure 5.28: Test 4 accelerometer network test

Figure 5.29: Test 4 gyroscope error

73

Figure 5.30: Test 4 gyroscope accuracy

Figure 5.31: Test 4 gyroscope network test

74

Figure 5.32: Test 4 magnetometer error

Figure 5.33: Test 4 magnetometer accuracy

75

Figure 5.34: Test 4 magnetometer network test

Figure 5.35: Test 4 top error

76

Figure 5.36: Test 4 top accuracy

Figure 5.37: Test 4 top network test

77

5.1.4 Summary

Table 5.4 shows a summary of the network tests performed with the “All experi-

ments” data set with at the epoch with the lowest error for the testing set. It is

important to note that the table counts every output, not just the result. There-

fore the Accuracy percent column is not indicative to the other columns, but rather

represents the accuracy of the end results, not the individual output neurons.

Table 5.4: Summary of the network tests at best epoch

Test number Network Epoch Successes Errors Unknowns Accuracy percent Test error

2

RefinedAccelerometer 244 10212 577 737 86,06 0,057638

RefinedGyroscope 115 8520 768 2238 71,49 0,095971

RefinedCompass 136 10186 1216 124 87,92 0,098995

3

RefinedAccelerometer 113 9689 1090 747 79,28 0,102948

RefinedGyroscope 221 9618 1067 841 78,45 0,096587

RefinedCompass 118 10240 1286 0 88,84 0,105003

RefinedTopNetwork 144 10240 1286 0 88,84 0,104971

4

RefinedAccelerometer 266 9995 553 978 86,47 0,056876

RefinedGyroscope 92 9115 893 1518 76,07 0,095555

RefinedCompass 130 10080 1224 222 86,97 0,104124

RefinedTopNetwork 554 9608 1268 650 77,88 0,104988

5.2 Discussion

5.2.1 The first test run

The very first test with a complete network, with the network being constructed of

subnetworks, the subnetworks had identical settings: 16 inputs, two hidden layeres

with 16 and 6 nodes within the respective layers and 2 output nodes which serves

as the input nodes for the overarching network. The overarching network had the

same number of hidden layers and the same number of nodes within them, aswell

as two output nodes representing fall and not fall. Additionally there were no stop

78

functionality in case of overfitting, hence I expected overfitting to occur. This was

test was performed to see if the system developed would work, not for getting

results, but it yielded interesting insight in the workings of the data. Figures 5.1

to 5.4 shows the accuracy and error done with these networks.

When it comes to the selected data sets for this first run I had only selected

two exercises: number 1 and number 3, which is represented by the ready made

collection “First testing run”.

As can be seen in Figure 5.4 the training accuracy is vastly higher than the

testing accuracy. As mentioned earlier overfitting was expected to be an issue for

this first test, however this is likely due to the extreme complexity compared to

the input of that part of the network. Essencially it has 6 input nodes, where the

inputs range between 0 and 1. The large number of hidden neurons are therefore

excessive in terms of analysing the inputs.

We can also see that the compass network does not really contribute at all with

it’s low accuracy and high errors with this configuration. I do however suspect that

this trend will continue even when I start to refine the network settings.

One thing that must be mentioned, which I did not notice until very late in the

refining of the network, is that the biases in the network were not being updated

when I performed the first test run. Because of this the biases were always the

same, and could hamper the learning. After running the same conditions again I

would get roughly the same results.

5.2.2 Refining the network

The accelerometer network is one we often see capable of having an accuracy in

the 80-90% range. Because of this I haven’t changed the structure of this network.

From Test 2 to Test 4 we can see it consistently hitting the target accuracy,

see Figures 5.6, 5.15 and 5.27. A common trend we can see by looking at the

79

figures of this network is that once they start increasing the initial accuracy it

quickly climbs to high recognition rates. This is often reflected in the errors, see

Figures 5.5, 5.14,and 5.26. Both Test 2 and Test 4 show this behaviour where

the error quickly decreases and then slowly converges. Test 3 is an annomaly

amongst the two, however this is explained by the very low learning rate present

when performing this test. Although the network tests performed in Test 2 and

Test 4 are further from their target accuracies than Test 3, these two tests also

have a lower test error. This can be attributed the longer training cycle which

these two networks enjoy. I quickly performed a test on Test 3 by changing the

target accuracy from 80% to 90%, and I found that with this learning rate, the

higher accuracy requirement could be obtained, however the difference in training

time would not be worth the difference and risk overtraining the network, which

sometimes would occur.

The gyroscope network was the most puzzling of the sub-networks to study.

It never hit the target accuracies set in the tests, and had to be stopped early in

every test. I attempted to use several different structures for the network: 1 hidden

layer with different number of nodes; 2 layers with different number of nodes; and

3 layers with different number of nodes. Little did much to improve the errors and

accuracies, nor my problem of overfitting. Therefore I kept the initial structure

and went to tweak on the learning parameters. We do see improvements in the

error between Test 3 and Test 4. We do see from both Figure 5.8 and 5.29 that the

network overlearns extremely quickly at higher learning rates, so with the current

structure it is more reasonable to use a lower learning rate in order to get a better

stopping point for the network.

In 5.2.1 I mentioned that I suspected that the compass would not contribute

much to the network. After refining the learning settings and network structure

I’m pleased to say I was wrong on my suspicious. After refinement we can see that

80

the compass has consistently contributed with a high accuracy, see Table 5.4. It is

however important to note that this network can quickly become overtrained, and

needs to be stopped early manually. I have seen it manage to somehow overfit the

testing set, at least it seemed that way when the testing set accuracy would be

in the high 80%’s, but when running the “All experiments” data set the accuracy

would be around 25%. Because of this it is recommended to run a low learning

rate on this network and stop it early. It is also noteworthy that that this network

typically has the highest number of errors to unknowns of the sub networks. So

while the network has a high recognition, it also has many wrong predictions, as

opposed to simply not knowing what action is being performed.

Lastly the top network is only present in Test 3 and Test 4. In Test 3 we can

see the alarming similarity between the RefinedTopNetwork and RefinedCompass

for this test. They have an identical number of successes, errors, unknowns and

accuracy, with the sole differences being the epoch this was achieved and the test

error. Looking into the output data for the tests for the two networks I can see

that they are mostly identical. They have the same errors for the same data

sets. This tells me that the top network can learn to lean too much on one of it’s

subnetwork’s outputs, which is what I suspect happened here. Because of this I

lowered the learning rate for Test 4 to keep an eye on the error, but looking at

both Figures 5.23 and 5.35 gives little indication on what’s going on.

But when we look at the top network’s accuracies we something interesting,

see Figures 5.24 and 5.36: the testing accuracies starts climbing rapidly, before

the testing accuracy. We also see that the training accuracy rockets up and then

flatlines onwards. We can also see that the testing accuracy slows down a little

around the time the training accuracy catches up, but it quickly gains steam af-

terwards. I haven’t been able to find any litterature explaining this phenomena,

however I suspect that it’s learning to lean on one network’s outputs, thus over-

81

Figure 5.38: Top network flatline accuracy. Red - TopNetwork, blue - Gyroscope,

black - Compass, magenta - accelerometer.

Figure 5.39: Top network overtraining on one network, accuracy. Red - training,

cyan - testing

82

Figure 5.40: Top network overtraining on one network, error. Red - training, cyan

- testing

fitting on that network. This would explain the sudden jump in training accuracy

and why it flatlines the training accuracy, however because of the lower target

accuracy of 80% the network stops training before the overfitting becomes too se-

vere. The effects of this can be seen if we run the default learning parameters for

the subnetworks, but raise the top network’s target accuracy to 90%. We can then

see that the network’s training accuracy moves towards one of the sub-network’s

training accuracies and flatlines the training accuracy on it, see Figure 5.38. From

there we can see the training error very slowly decreasing, while the testing error

slowly increases until it reaches a breaking point, see Figures 5.39 and 5.40 and

we can definitely see overfitting of the network. I afterwards stopped and ran the

“All experiments” data set through it where it got the best results at epoch 28.

By looking at Table 5.5 we can quickly discern which network the top network

is leaning on. The testing and training accuracies between the top and compass

networks are alarmingly similar, and the errors between the two aren’t far away

83

Table 5.5: Top network overtraining test

Network Epoch Training Error Training Accuracy Testing Error Testing Accuracy

RefinedTopNetwork 28 0,121549 85,858586 0,088184 90,476190

RefinedAccelerometer 6 0,121296 80,808081 0,090468 88,888889

RefinedGyroscope 20 0,079371 75,757576 0,079970 80,423280

RefinedCompass 8 0,121957 85,858586 0,090332 90,476190

from each other either. Running the “All experiments” data on both networks

yield near identical results.

This means the top network requires more countermeasures against overfitting;

or maybe it simply has the wrong structure; or the learning parameters aren’t

optimal, as we do not see this exact scenario in Test 4, however the results in

Test 4 can be the result of variance within the neural network. This has not

been further researched during this thesis. Instead, due to time constraints, I have

used this potentially overtrained network, as it yields adequate testing accuracies

with the entirety of the data colllection, however doing more experiments and

implementing more data sets into the testing may reduce this accuracy.

84

Chapter 6

Conclusions and future work

6.1 Reviewing the objectives

The objective of this thesis was to demonstrate movement capturing and recog-

nition by means of bluetooth sensors. This implied creating an experimental rig

and software which can capture and store movement data. Futhermore a machine

learning agent was to be developed in order to analyse and learn these activities.

A simple experimental rig has been created with one single CC2650 sensor and

can be strapped around a person’s waist for use. A modification of the accompany-

ing software, originally by Texas Instruments, has been created which can capture,

store and save these motions for analysis. This rig has then been used to test and

record six different activities, repeated three times, by ten different individuals.

An artificial neural network has been developed as the machine learning agent

and we have seen a higher recognition on falls against non-falls than the average

commercial fall detection sensor of 75% [22], but the small sample size and lim-

ited variations in the activities is highly likely to skew the recognition rate. The

accuracy of the top network can also be skewed by overlearning on a sub-network,

which was discussed in detail in 5.2.2.

85

Through the results we have proven that it is possible to capture motions from

bluetooth sensors and use this data to train an machine learning algorithm to

recognise activities, or at the very least distinguish one activity from every other

activity, with a high level of accuracy.

6.2 Observations of note made during the thesis

6.2.1 The inadequacy of the barometric pressure sensor

It was planned to use the barometric pressure sensor in conjunction with the other

sensors in order to give a sense of broader vertical movement. This could for

example help discern if a person is: moving in an elevator; moving up or down

stairs; and many other activities. The barometric pressure sensor did however

not deliver data of sufficient relevancy. It was deemed too inaccurate and it’s

implementation was therefore cut from the learning agent. The capture device

does still capture and save the barometric data, however.

6.2.2 The gyroscope and magnetometer contributions to the accuracy

In 5.2.1 I made the claim that I suspected the magnetometer to be the least

contributing sensor to the network’s accuracy. However I found that the gyroscope

is the least contributing sensor to the recognition, at least with the final structure

used in this thesis. This was a surprise, as I expected the gyroscope to contribute

a great deal together with the accelerometer to yield recognition. I speculate that

the motions recorded by the gyroscope may be too similar to each other to gain a

higher accuracy with the current structure. Another speculation is that the data

resolution for the gyroscope is too low at a sampling frequency of 10 Hz.

I did not expect the magnetometer to gain this high recognition rate either. It

86

could be caused by the preset locations the experiments were performed in, with

the only direction variance being exercise 1 where the participant had free reign of

movement within a gymmnastic hall. For every other exercise there was practically

a preset direction for every activity. This warrants further study to conclude, but

it is highly likely.

6.2.3 Top network can overtrain on one subnetwork

As discussed at length in 5.2.2 we can see that a top layer network can potentially

overtrain on the sub-networks. It does this by overly emphasising the inputs from

this network over the other sub-networks, and thus mimicing the results of said sub-

network. While the results yielded for this report were deemed sufficient as proof

of concept, I believe the networks created during this study to be fit for purpose

and can be a good starting point, and therefore further study and development is

necessary in order to use them for larger analysises.

6.3 Future work

Because of the nature of this project there are several ways to extend it. Not

all plans and discoveries could be researched and implemented within the time

constraints. Therefore I suggest the following tasks to research, in no particular

order:

• Implementing more ways to combat overfitting (e.g: regularization; weight

decay; other error functions; pruning; and/or more).

• Create a graphical representation of the network and it’s connecting weights

- makes it easier to analyse the network itself.

87

• Real time analysis - create a server-client relationship between the learning

agent and the capturing device to analyse activities live (e.g live testing).

• Expand the number of activities.

• Genetic algorithm [28, 33] to optimise structure and learning parameters of

the networks.

• Save the trained networks to files.

• Create a better pre-processing parser for data collections, aswell as change

the network to use any data (the software can currently only read and analyse

data from the modified BLE Sensor Tag application).

• Research the barometric pressure sensor and if it can be calibrated better,

and if so implement it into the system.

• Implementing sensor configuration for the capture device (e.g disabling cap-

ture of certain sensors).

88

Bibliography

[1] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992.

[2] K. Safi; F. Attal; S. Mohammed; M. Khalil; Y. Amirat. Physical activ-

ity recognition using inertial wearable sensors x2014; a review of supervised

classification algorithms. In 2015 International Conference on Advances in

Biomedical Engineering (ICABME), pages 313–316, Sept 2015.

[3] Ferhat Attal; Samer Mohammed; Mariam Debabrishvili. Physical human

activity recognition using wearable sensors. Sensors, 1(15):31315–31338, 2015.

[4] Android Developers. Bluetooth low energy. https://developer.android.com/

guide/topics/connectivity/bluetooth-le.html. Last accessed 20 June 2016.

[5] Christine Gulbrandsen. Høy dødsrisiko for de som faller. http:

//forskning.no/aldring-forebyggende-helse-fysioterapi-helsepolitikk/

2009/10/hoy-dodsrisiko-de-som-faller. Last accessed 05 September 2016.

[6] Douglas M. Hawkins. The problem of overfitting. Journal of Chemical Infor-

mation and Modeling, 44:1–12, 2004.

[7] JA Grisso; DF Schwarz; AR Wishner; B Weene; JH Holmes; and RL Sutton.

Injuries in an elderly inner-city population. Journal of the American Geriatics

Society, 38(12):1326–1331, 1990.

89

[8] Multiple. Owner Texas Instruments. Sensortag-20-android gitorious reposi-

tory. https://git.ti.com/sensortag-20-android. Last accessed 14 July 2016.

[9] Texas Instruments. Cc2650 sensortag user’s guide. http://processors.

wiki.ti.com/index.php/CC2650_SensorTag_User’s_Guide. Last accessed 05

September 2016.

[10] Inc. InvenSense. Mpu-9250 nine-axis (gyro + accelerometer + compass)

mems motiontrackingTM device. https://www.invensense.com/products/

motion-tracking/9-axis/mpu-9250/. Last accessed 05 September 2016.

[11] Ron Kohavi. Glossary of terms special issue on applications of machine learn-

ing and the knowledge discovery process. http://ai.stanford.edu/~ronnyk/

glossary.html. Last accessed 27 December 2016.

[12] Link Labs. Bluetooth vs. bluetooth low energy: What’s the difference?

http://www.link-labs.com/bluetooth-vs-bluetooth-low-energy. Last ac-

cessed 19 June 2016.

[13] David Leverington. A basic introduction to feedforward backpropagation

neural networksk. http://www.webpages.ttu.edu/dleverin/neural_network/

neural_networks.html. Last accessed 27 December 2016.

[14] Lorin P. Maletsky; Junyi Sun; Nicholas A. Morton. Accuracy of an optical

active-marker system to track the relative motion of rigid bodies. Journal of

Biomechanics, 40(3):682–685, 2006.

[15] Multiple. Perceptron. https://en.wikipedia.org/wiki/Perceptron. Last

accessed 25 December 2016.

[16] Multiple. Scale-invariant feature transform. https://en.wikipedia.org/

wiki/Scale-invariant_feature_transform. Last accessed 27 December 2016.

90

[17] BBC News. Bluetooth rival unveiled by nokia. http://news.bbc.co.uk/2/hi/

technology/5403564.stm. Last accessed 19 June 2016.

[18] Michael Nielsen. Neural networks and deep learning, a free online book.

http://neuralnetworksanddeeplearning.com/index.html. Last accessed 27

December 2016.

[19] Stuart Russel; Peter Norvig. Artificial Intelligence A Modern Approach. Pren-

tice Hall, 2010.

[20] Elvis Pfützenreuter. Bluetooth: Att and gatt. https://epxx.co/artigos/

bluetooth_gatt.html. Last accessed 06 September 2016.

[21] Warren S. McCullochWalter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,

1943.

[22] Jeph Preece. The best fall detection sensors of 2016. http://www.

toptenreviews.com/health/senior-care/best-fall-detection-sensors/.

Last accessed 15 December 2016.

[23] Lorenzo L. Pesce; Richard M. Zur; Yulei Jiang and Karen Drukker. Noise

injection for training artificial neural networks: A comparison with weight

decay and early stopping. Medical Physics, 36(10):1929–1958, 2009.

[24] Stephen N Robinovitch; and Fabio Feldman. Video capture of the circum-

stances of falls in elderly people residing in long-term care: an observational

study. The Lancet, 381(9860):47–54, 2012.

[25] Nitish Srivastava; Geoffrey Hinton; Alekx Krizhevsky; Ilya Sutskever; Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Reserach, 15(1):1929–1958, 2014.

91

[26] Hector Allende; Claudio Moraga; Rodrigo Salas. Artificial neural networks in

time series forecasting: A comparative analysis. Kybernetika, 38(6):685–707,

2002.

[27] Arthur L. Samuel. Some studies in machine learning using the game of check-

ers. IBM Journal of Research and Development, 3(3):535–554, 1959.

[28] Lothar M. Schmitt. Theory of genetic algorithms. Theoretical Computer

Science, 259(1-2):1–61, 2001.

[29] Bosch Sensortec. Bmp280 barometric pressure sensors. https://www.

bosch-sensortec.com/bst/products/all_products/bmp280. Last accessed 05

September 2016.

[30] Bosch Sensortec. Data sheet bmp280 digital pressure sensor. System

document on Bosch’s webpage, https://ae-bst.resource.bosch.com/media/

_tech/media/datasheets/BST-BMP280-DS001-12.pdf, 2015.

[31] Leonid Sigal. Lecture 3 (marker-based) motion capture. Web lecture notes,

http://www.cs.cmu.edu/~yaser/Lecture-3-MarkerBasedMocap.pdf, 2012.

[32] Gavin C. Cawley; Nicola L. C. Talbot. On over-fitting in model selection

and subsequent selection bias in performance evaluation. Journal of Machine

Learning Reserach, 11(1):2079–2107, 2010.

[33] Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory.

MIT Press, Cambridge, MA, USA, 1998.

[34] Xingou Yu. Approaches and principles of fall detection for elderly and patient.

IEEE Intl. Conf. on e-Health Networking, Applications and Service, 10(1):42–

47, 2008.

92

Appendices

93

Appendix A

Thesis description document

i

Master of Science

Master thesis by

Stud. techn. Elisabeth Gangenes

Motion Capturing Machine Learning

UiT – Norges arktiske universitet

Faculty of Technology and Engineering Sciences

Computer Science - autumn 2016

The goal of this project is demonstrate movement capturing and recognition by means of

bluetooth sensors. This implies that an experimental rig will be created that connect one or more

bluetooth devices which can capture movement patterns of a person and develop an agent which

can learn to recognize these movements. A smart phone will be used to record the data, while a

desktop program will perform the machine learning. Examine the learning process

A literature study of relevant topics should be included.

Consequently the student should:

1. Create an application which can capture and store motion data for analysis.

2. Create a case of motions to capture with a suitable device or set of devices.

3. Establish a machine learning algorithm and pre-processing method to interpret the data of

each sensor in conjunction with what it’s company sensors detect.

4. Run test cases on the system.

5. Document method, experimental rig and results from the experiment

General information

This master thesis should include:

❄ Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement specifications, definitions, design requirements, given

standards or norms, guidelines and practical experience etc.
- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

❄ Selection & investigation of actual materials
❄ Development (creating a model or model concept)
❄ Experimental work (planned in the preliminary work/literature study part)
❄ Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a preliminary study should be

completed within 4 weeks. It should include bullet points 1 and 2 in “The work shall include”, and a

plan of the progress. The preliminary study may be submitted as a separate report or “natural”

incorporated in the main thesis report. A plan of progress and a deviation report (gap report) can

be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by the supervisor
before the student can continue with the rest of the master thesis. In the evaluation of this thesis

emphasis will be placed on the thorough documentation of the work performed.

Reporting requirements

The thesis should be submitted as a research report and must include the following parts; Abstract,

Introduction, Material & Methods, Results & Discussion, Conclusions, Acknowledgements,

Bibliography, References and Appendices. Choices should be well documented with evidence,

references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able, testable, accessible, well

written, and documented.

Materials which are developed during the project (thesis) such as software/codes or physical

equipment are considered to be a part of this paper (thesis). Documentation for correct use of

such information should be added, as far as possible, to this paper (thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external company, the

candidate should following the guidelines or other directives given by the management of the

company.

The candidate does not have the authority to enter or access external companies’ information

system, production equipment or likewise. If such should be necessary for solving the task in a

satisfactory way a detailed permission should be given by the management in the company before

any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if and only

if, this is not covered by an agreement between the candidate and the management in the

enterprises.

If the candidate enters some unexpected problems or challenges during the work with the tasks

and these will cause changes to the work plan, it should be addressed to the supervisor at the UiT

or the person which is responsible, without any delay in time.

Submission requirements

This thesis should result in a final report with an electronic copy (i.e. CD/DVD, memory stick) of the

report included appendices and necessary software codes, simulations and calculations. The final

report with its appendices will be the basis for the evaluation and grading of the thesis. The report

with all materials should be delivered in one signed loose leaf copy, together with three bound. If

there is an external company that needs a copy of the thesis, the candidate must arrange this. A

standard front page, which can be found on the Narvik University College internet site, should be

used. Otherwise, refer to the “General guidelines for thesis” and the subject description for master

thesis.

The final report with its appendices should be submitted no later than the decided final date. The

final report should be delivered to the adviser at the office of the IVT Faculty at the UiT.

Date of distributing the task:

Date for submission (deadline):

Supervisor UiT - IVT

Co-supervisor UiT - IVT

Professor Bernt A. Bremdal

Phone: (+47) 90061173

e-mail: bernt.a.bremdal@uit.no

Asbjørn Danielsen

Candidate contact information

Elisabeth R. Gangenes

e-mail: elisabeth.dimby@gmail.com

Appendix B

Abbreviations and acronyms

• API: Application Programming Interface

• ATT: Attribute Protocol

• BLE: Bluetooth Low Energy

• CC2650: CC2650 SimpleLink multi-standard 2.4 GHz ultra-low power wire-

less MCU

• CSV. Comma-separated Values

• DMP: Digital Motion Processor

• GATT: Generic Attribute Profile

• IDE: Integrated Development Environment

• IR: Infra-red

• LE: Low Energy

• LED: Light Emitting Diode

v

• k-NN: k-Nearest Neighbour

• Mbps: Megabit per second

• MSE: Mean Square Error

• SVM: Support Vector Machine

• UiT: Universitetet i Tromsø

• UUID: Universally Unique Identifier

vi

Appendix C

List of figures

vii

List of Figures

2.1 a) Gypso 6 exosceleton from Animazoo. Source: Wordpress b) 5DT

- 5 sensor Data Glove. Source: Metamotion c) XSens Inertia Suit.

Source: XSens . 12

2.2 A dancer wearing a suit with passive markers used in an optical

motion capture system. Source: Wikipedia 14

3.1 Mockup of experimental rig . 23

3.2 TI SimpleLink Multi-Standard SensorTag, CC2650 wireless MCU . 24

3.3 MPU-9250 spesification table. Source: Invensense 25

3.4 Experimental sensor rig . 26

3.5 Illustration of a perceptron with inputs, weights, a bias and an output. 31

3.6 Sigmoid fuction . 34

3.7 A simple neural network with one input, one hidden layer and one

output. 35

3.8 Noisy rougly linear data which has been fitted with a polynominal

function. 39

4.1 BLE SensorTag screenshot . 42

4.2 Plot of accelerometer data from the first participant’s first execution

of exercise 3. Blue - x, red - y, yellow, z 44

viii

4.3 Plot of gyroscope data from the first participant’s first execution of

exercise 3. Blue - x, red - y, yellow, z 45

4.4 Plot of magnetometer data from the first participant’s first execu-

tion of exercise 3. Blue - x, red - y, yellow, z 45

4.5 Plot of barometer data from the first participant’s first execution of

exercise 3. 46

4.6 Main Window File Explorer tab . 47

4.7 Document parser and data set tab 48

4.8 Network creation tab . 50

4.9 Network creation dialog . 51

4.10 Network creation by using subnetworks dialog 51

4.11 Network training tab . 54

5.1 First full accelerometer MSE and Accuracy, Test 1 57

5.2 First full gyroscope MSE and Accuracy, Test 1 58

5.3 First full compass MSE and Accuracy, Test 1 59

5.4 First full total network MSE and Accuracy, Test 1 60

5.5 Test 2 accelerometer error . 61

5.6 Test 2 accelerometer accuracy . 62

5.7 Test 2 accelerometer network test 62

5.8 Test 2 gyroscope error . 63

5.9 Test 2 gyroscope accuracy . 63

5.10 Test 2 gyroscope network test . 64

5.11 Test 2 magnetometer error . 64

5.12 Test 2 magnetometer accuracy . 65

5.13 Test 2 magnetometer network test 65

5.14 Test 3 accelerometer error . 66

5.15 Test 3 accelerometer accuracy . 66

ix

5.16 Test 3 accelerometer network test 67

5.17 Test 3 gyroscope error . 67

5.18 Test 3 gyroscope accuracy . 68

5.19 Test 3 gyroscope network test . 68

5.20 Test 3 magnetometer error . 69

5.21 Test 3 magnetometer accuracy . 69

5.22 Test 3 magnetometer network test 70

5.23 Test 3 top error . 70

5.24 Test 3 top accuracy . 71

5.25 Test 3 top network test . 71

5.26 Test 4 accelerometer error . 72

5.27 Test 4 accelerometer accuracy . 72

5.28 Test 4 accelerometer network test 73

5.29 Test 4 gyroscope error . 73

5.30 Test 4 gyroscope accuracy . 74

5.31 Test 4 gyroscope network test . 74

5.32 Test 4 magnetometer error . 75

5.33 Test 4 magnetometer accuracy . 75

5.34 Test 4 magnetometer network test 76

5.35 Test 4 top error . 76

5.36 Test 4 top accuracy . 77

5.37 Test 4 top network test . 77

5.38 Top network flatline accuracy. Red - TopNetwork, blue - Gyroscope,

black - Compass, magenta - accelerometer. 82

5.39 Top network overtraining on one network, accuracy. Red - training,

cyan - testing . 82

x

5.40 Top network overtraining on one network, error. Red - training,

cyan - testing . 83

xi

Appendix D

List of tables

xii

List of Tables

3.1 Structure of the data set . 29

4.1 Exert from participant 2, exercise 2, take 3 43

5.1 Overview of the tests with their training data, networks and learning

parameters . 55

5.2 Description of what the tests entail 56

5.3 Structures of the networks . 56

5.4 Summary of the network tests at best epoch 78

5.5 Top network overtraining test . 84

xiii

