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This project should be based on previous MSc work on Ant Colony Optimization
(ACO) undertaken by Kristoffer Tangrand in 2015 and the present ACO program
developed in Pyhton in the FlexChEV project. References should also be made
to similar projects such as IVIsion of Fraunhofer and the Helsinki el-bus project
supported, among others, by VTT. Data and specifications will be gathered from
Troms fylkeskommune’s el-bus project in 2016.

The goal of the project is to use Ant Colony Optimization techniques with Genetic
Algorithm(s) to design and analyze routes and recharging schedules for electric buses.
Two systems will be analyzed. One system will use “en route” charging where the
bus applies a kind of pantograph at bus stops to recharge the bus batteries. This
implies more frequent, but short recharging intervals. Another will address “depot
recharging”. This means that the buses will be recharged when they park at depots
for the night. The latter will usually require larger batteries that again will require
more space and impose greater weight loads for the bus. Simulations should take into
account temperature, congestions, road conditions, traffic incidents and topography.
Inclusion of topography is important as up-hill driving will require more power,
especially during winter time when it can be very slippery. Down-hill driving opens-
for quick charging by means of brakes and braking. Some buses have this opportunity.

Consequently, the student should:
1. Apply the present ACO program to investigate a selection of bus routes in

Tromsø where real tests of different types of electric buses might be performed.
The selection process should be made together with the transportation department
at Troms Fylkeskommune (TF). Two routes should be selected and modeled for
more detailed analysis. The aim is to make up-front analyses and prognoses of how
different bus and recharging technologies could behave when serving the two bus
routes selected by TF.

2. In face of the challenges confronted with in #1 above the student should
recommend improvements to the present program and implement these. This should
be done together with TF, the advisor and Mr. Tangrand.

3. Particular focus needs to be directed towards bus technologies using a kind
of pantograph system. The student should create a GA that together with the
ACO designs a recharging system along the two routes. The aim is to minimize
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investments, costs of operation and time of travel for passengers. Other relevant
constraints should be defined too if necessary. The system should thus define the
number of charging stations for the pantograph, the distance between them and the
stops required at each one for 365 days of operation under variable conditions. The
GA will suggest alternative solutions and the ACO will rank them.

The student should familiarize herself with the problem and related literature and
create a work plan for the project. The work plan should be due after three weeks.
A final report should be prepared and delivered at the end of the project together
with the program developed. The report should follow the standards applied to
regular scientific articles describing the background for the project, state-of-the-art
in research and transport, the definition of the problem undertaken, assumptions
and limitations, the method applied to solve the problem, an extensive description
of different results, a discussion of such results and a final conclusion. A proper
reference list is required. Besides the report a system primer is required that could
help users apply the program in a fruitful way.

Supervisor UIT - Navik: Professor Bernt A. Bremdal
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Abstract

The goal of the project is to use Ant Colony Optimization techniques with Genetic
Algorithm to design and analyse routes and recharging schedules for electric buses.
One system so-called “en route” charging was analysed where the bus applies a kind
of pantograph at bus stops to recharge the bus batteries. This implies more frequent,
but short recharging intervals. The program offers different variants of placing for
charging station with different characteristics and amount. Also there is possible to
predict the best battery capacity for electric bus. The application was implemented
for five different cases: if we don’t want to place new bus stops, we use homogeneous
charging stations and fixed battery capacity; if we don’t place new bus stops, we
use inhomogeneous charging stations and fixed battery capacity; if we want to place
new bus stops, we use homogeneous charging stations and fixed battery capacity;
if we want to place new bus stops, we use inhomogeneous charging stations and
fixed battery capacity; if we don’t want to place new bus stops, we use homogeneous
charging stations and variable battery capacity. In the presented project we have the
main focus on the cases where we don’t place the new bus stops, because we analyse
only one route. Also we focus on the case where we use variable battery capacity, in
this case we can analyse if there is possibility to reduce the battery capacity for the
bus.
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Chapter 1

Introduction

The master’s thesis work presents the machine learning approach including Ant
Colony Optimization (ACO) techniques with Genetic Algorithm (GA) to solve the
Vehicle Routing Problem. The goal of the project is to use ACO with GA to
design and analyse routes and recharging schedules for electric buses. The task
with corresponding data was given by Troms fylkeskommune. Their el-bus project
was started in 2016. The problem is to find the optimal solution for placing charging
stations along one bus route in Tromsø.

Electric vehicles have become very popular the latest time and there is many
reasons why, the main is that it is ecological transport. In Norway electric transport
is especially popular. Of course for comfortable using such type of transport we need
to develop necessary infrastructure, like charging stations for electric vehicles. We
need to explore possible placement of stations, and the important point is to reduce
the cost of this process.

Electric vehicles are a very good solution for public transport, for example electric
buses. The present project is focused on developing the infrastructure for charging
process of elecric buses. Much attention was paid to analyse the topography, because
of mountainous areas.

1.1 FlexChEV project

The Flexible Electric Vehicle Charging Infrastructure (FlexChEV) project is a
project that has been granted funds by EU’s SmartGrids ERA-NET program.
The project funding encompasses UIT - campus Narvik, Aalborg University and
University of Zagreb Faculty of Electrical Engineering and Computing [18]. The
project is focusing on several areas of research, some of them [8]:

� To integrate the energy storage system in distribution grids as an imortant part
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of smart charging station;

� To find optimal storage technology and capacity;

� To control the design of charging stations and allow widely use of the electric
vehicles;

� To coordinate concept between the constructed flexible electric vehicle charging
infrastructure.

The vision of the Flexible Electric Vehicle Charging Infrastructure project is to
develop an integrated concept of smart charging stations.

The goal of the project is to develop a new concept for flexible electric
vehicles charging stations. Emerging technologies and control methods deployed
in distributed generation systems and microgrids are used to reach this goal. A
new distributed coordination strategy between the grid and energy storage systems
converters will be implemented. This strategy will provide expandability and
robustness of the system.

The focus of the project is also on a new generation of fast hybrid electric vehicle
charging stations, on theoretical development and experimental verification of such
type of charging stations. We can say with confidence that flexible fast charging
stations will be an important part of the future intelligent power systems [8].

1.2 Troms fylkeskommune’s el-bus project

In our thesis we will focus more on another project. Troms fylkeskommune’s el-bus
project started in 2016. Nowdays, many countries (for example, Finland, Germany,
Netherlands, Sweden...) start to use electric buses for public transport. And it is
clear, the electric vehicle is ecologic transport, electric vehicles are much more energy
efficient, maintenance cost, including fuel cost, is much lower with an el-bus [20].

Norway has probably the world’s best incentives for Zero Emission Vehicles, and
a correspondingly the world’s highest number of electric cars per capita by a wide
margin [6].

In 2016 the project connected with el-bus was started in Tromsø. In the beginning
of the project it appears many important questions for analysing [7]:

� Battery range in Tromsø: topography, long winters, a lot of snow and demanding
winter maintenance of roads, chain use, much cold and wet precipitation, and
high requirements for the use of energy for air circulation in the bus.

� Recommended charging infrastructure: night charge, charging on bus stops or
mix?

2



� How to prepare for changes in batteries in advance?

� Best routes: short, slightly flat, densely populated due to noise, possible location
of any pantograph.

� etc ...[7]

This work will help to analyse charging infrastructure system for electric buses in
Tromsø.

1.3 Previous Work

This project should be based on previous MSc work on Ant Colony Optimization
(ACO) undertaken by Kristoffer Tangrand in 2015 and the present ACO program
developed in Pyhton in the FlexChEV project [18]. Data and specifications will
be gathered from Troms fylkeskommune’s el-bus project in 2016. The goal of the
presented MSc work of work Kristoffer Tangrand was to implement ACO approach
for electric vehicles and simulate the traffic flow. The results and basic development
of ACO approach with corresponding classes from this thesis are used in present
work.

1.4 Contribution

The main goal is to improve presented implementation of ACO approach and use this
approach in application with genetic algorithm. The GA approach was implemented
in presented work, which with ACO helping to find optimal placing for charging
stations. ACO is actually a part of GA. ACO ranks result, which the GA generates.

1.5 Plan of work

The first thing that we did was writing a detailed report with stepwize instructions
and comments what should be done during the project. The plan consists of main
research and implementation steps.

1. General preparation:

1.1 Read the literature with relevant material

1.1.1 Read general theory about Ant Colony Optimization algorithm.

The first question is to learn the general theory about algorithms: Genetic algorithm
and Ant Colony Optimization algorithm. Ant Colony Optimization algorithm
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applied in different spheres. I concentrated on the book of Marco Dorigo and Thomas
Stützle: Ant Colony Optimization [4].

1.1.2 Read general theory about Genetic algorithm [9].

1.1.3 Read theory about how to apply these algorithms in optimal routing problem.

The big problem now is to figure out how to use GA in our routing problem, for
example we don’t know which fitness function will we use. Here we need to read
literature about already solved routing problems and examples.

1.2 Familiarization with Python programming language (books, internet materials,
internet courses).

2 Preparation according the given task:

2.1 Apply the present ACO program:

2.1.1 Familiarization with ACO program developed earlier by Kristoffer Tangrand:
create a test network, test application with this network.

2.1.2 Write a specification for implementation, where describing the problem and
what needs to be taken into account when it relates to routing of electric buses.

2.1.3 Find the theoretical ground for analyzing the routes according to the data in
account (formulas).

2.1.4 Collect the data about routes, types of electric buses (get data from Troms
fylkeskommune and Troms fylkestrafikk).

2.1.5 Apply ACO program for two types of electric buses in two selected routes (was
selected only one type of buses - pantograph system and one route was analysed
).

2.2 Make up-front analysis and prognoses of how different bus and recharging
technologies could behave when serving the bus routes selected by Troms
fylkeskommune.

2.3 In face of the challenges confronted with in 2.1 and 2.2 above, recommend
improvements to the present program and implement these. This should be
done together with Troms fylkeskommune, the advisor and Kristoffer Tangrand.

2.3.1 Recommend improvements to the present application according to the new
case with electric buses and discuss these improvements with other participants.

2.3.2 Implement the improvements.
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2.4 Implementation of new solution of the problem using Genetic Algorithm together
with Ant Colony Optimization algorithm. The GA will suggest alternative
solutions and the ACO will rank them.

2.4.1 Implement Genetic algorithm in general case.

2.4.2 Apply GA for routing problem, create the application on Python.

2.4.3 Connect GA and ACO together in one solution.

Here I want to answer the question how to use both algorithms together, explain and
analyse results, describe advantages (or disadvantages) of method.

3 Write final report:

3.1 Describe all obtained results.

3.2 Write conclusion.

3.3 Collect all literature which has been used.

3.4 Prepare CD, attachments and other extra materials.
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Chapter 2

Preliminaries

2.1 Vehicle Routing Problem

The target of vehicle routing problem is to minimize the total cost of the routes
of the vehicles, serving a number of clients. The problem can be presented as
a complete weighted graph G = (V,A, d), where the vertices are represented as
V = (v0, v1, ..., vn), and the arc as A = {(vi, vj), vi! = vj}. The central transport
base, which is the beginning and end of each route, represented by the vertice v0,
the other vertices represent N clients. For arc (i, j) is given the destination dij. For
the customer i set to positive demand qi, capacity is limited by number Q of each
vehicle. Also, the following constraints are specified for the task [3][11]:

� each customer must be visited only once;

� the beginning and end of all routes of the vehicles are in the transport base v0;

� total demand served by each vehicle should not exceed Q.

A special case of VRP problems, when the demand of each customer is 0, is the
traveling salesman problem. The task of routing is to transport combinatorial
discrete optimization problem in which the number of permissible routes increases
exponentially with increasing number of customers, and belongs to the class of
complexity NP. For such problems, the use of heuristic algorithms seems reasonable,
for example to use the algorithm of ant colonies [11].

2.2 Ant Colony Optimization algorithm

2.2.1 General description of ACO

Ant colony algorithm is part of a large class of group intelligence algorithms, in which
for solving the problem it is used behaviors of social insects such as bees and ants.
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Ant colony algorithm is based on ants ability to find the shortest path to a food
source, and to adapt to changing conditions. Ants communicate with each other via
the external secretions - pheromones, a fixed amount which they leave in their path.
An ant, who has found a shortest route, will upgrade more intensely the pheromone
trail. By choosing the direction of motion ants consider intensity of the pheromone
trail, thus they will choose the shorter path. The evaporation of the pheromone and
the element of randomness in choosing the path, allow to avoid the local optima and
find shorter routes [11].

2.2.2 Applying ACO for Vehicle Routing Problem

When we solve the problem of transport routing ants imitate vehicles, routes are
being built step by step by selection of the next client until you have served all
customers. In the beginning, the ant starts on the base and list of customers, included
in his route, is empty. The ant chooses the next customer from the list of clients
and updates current load before selecting the next one. The ant returns to the depot
when reached maximum load capacity, or all customers already are visited. The total
length Lk is calculated as the value of the object function of full route of k-th ant.
Ant colony algorithm builds a full route for the first ant before the second begins the
movement. It continues as long as a certain number of ants m will build a full route
[11].

Selection of the next customer is done randomly, based on a probability formula:

pkij =
ταijη

β
ij∑

l∈Nk
i
ταil η

β
il

if j ∈ Nk
i , otherwise 0.

τ - the amount of pheromone on the path between the current position i and
possible position j;
ηij = 1

dij
- reverse value for the destination between positions i and j;

the parameters α and β, respectively, represent the relative importance of the
number of pheromone and distance when selecting the next customer.

When α = 0 the algorithm degenerates into a greedy, when you select the closest
city, excluding the amount of pheromone.
Nk
i - all possible vertices to which we can go from vertex i (neighbouring nodes)

[18].
In order to achieve the improvement of future routes it is necessary to update

the pheromone trail, depending on the quality of the solutions. This process is a
key element of adaptive technology training algorithm of ant colonies, and helps to
improve the subsequent decisions. Updating the pheromone trail consists of two
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stages: simulating pheromone evaporation, and the next update, depending on the
quality of the solutions. Evaporation of pheromone produced is represented by the
following formula:

τij = (1− ρ)τij + σ

ρ- parameter controlling the evaporation rate of pheromone;
σ- setting guarantees a minimum concentration of pheromone on the edge, which

is arbitrary, sufficiently small value.
For arc (i, j) and route Tk pheromone is defined like this:

4τij,k =

{
O
Lk
, (i, j) ∈ Tk

0, (i, j) /∈ Tk
where O - value of optimal length of all routes, for the edge (i, j) the total amount

of pheromone is determined according to the following formula:

4τij =
m∑
k=0

4τij,k

where m - the number of ants in the colony.
Thus, the sum of the two steps of the amount of pheromone given by the formula:

τij = (1− ρ)τij + σ +4τij

2.3 Genetic Algorithm

2.3.1 General description of GA

The genetic algorithm (GA) is an optimization and search approach, which is based
on the rules of genetics and natural selection. During the work, the genetic algorithm
generates many populations with big amount of individuals, these populations
become more “fit” for the present problem after using selection rules, i.e. we will
minimize the cost function step by step in every new population. This method was
developed by John Holland over the course of the 1960s and 1970s, and finally used
and popularized by one of his students, David Goldberg. David solved a difficult
problem connected with the control of gas-pipeline transmission for his dissertation
[9].

The main steps of the algorithm are presented on the Fig 2.1 [9]:

� Selection of the variables (chromosome), variable encoding and decoding
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Figure 2.1: Steps of the genetic algorithm.

9



Genetic algorithm starts by defining a chromosome or an array of variable values
which we need to optimize. If the chromosome has n variables given by a1, a2, ..., an,
then the chromosome is written as an n element row vector. We can use binary
representation of the chromosome:

chromosome = [a1, a2, ..., an]

chromosome = [1, 0, 0, 1, 1, 1, 0]

The variable values are represented in binary, so there must be a way of converting
continuous values into binary, and visa versa. Sometimes it is difficult to represent
the present data into binary. If we can not represent the data in binary, we can
use continuous values, but for convergence of algorithm we must have enough initial
material, a big amount of initial data for producing offsprings that will pass the
fittest.

� Select the cost function

The cost function generates an output from a set of input chromosomes. The cost
function can be a mathematical function or an experiment. We use the cost function
to estimate the fitness of our set of chromosomes.

� The Population

The population is a group of chromosomes, for example the population has p
chromosomes.

� Natural selection

Now we need to select the best chromosomes in our population to reproduce new
offsprings. The fittest discards the chromosomes with the highest cost. First, the p
costs and associated chromosomes are ranked from lowest cost to highest cost. Then,
only the best are selected to continue, while the rest are deleted.

� Selection and Crossover

Two chromosomes are selected from k chromosomes to produce two new offspring
through the crossover operation. The crossover is the creation of one or more
offspring from the parents. The most common case of crossover is when two parents
produce two offspring. A crossover point should be randomly (in some problems can
be not randomly) selecteded between the first and last bits of the parents’ set of
chromosomes.
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� Mutations

Random mutations change a certain amount of the bits in the list of chromosomes.
“A single point mutation changes a 1 to a 0, and visa versa.” [9]

� The next generation

After the mutations, we calculate the costs related to the offspring and mutated
chromosomes. This process is iterated. The results after crossover and mutation
will be ranking and will be formed new generation. For example, the bottom m
chromosomes are discarded and replaced by offspring from the top m parents.

� Convergence

After several iterations all the chromosomes and related costs will become the same
if it were not for mutations. At this stage the algorithm should be stopped.

Also we want to say that genetic algorithms are different from the majority of
ordinary optimization and search methods in 4 points [14]:

� GA operates with coded set of parameters, and not by parameters themselves;

� GA finds a population of points, not a single point;

� GA uses the value of the object (target) function and not a derivative or other
support values;

� In the GA it is used probabilistic transition rule, not deterministic.

In our problem we need to apply GA for the Vehicle Routing Problem.

If we will refer the present problem to some type of optimization, we can see that
our problem belongs to following categories [9]:

� multidimensional - the problem requires several variables

� dynamic - the solution depends on the time

� discrete - the values can have only finite number of possible values

� constrained - we have some constrains to variables, for example positions of
charging stations on the route
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2.3.2 Applying GA for Vehicle Routing Problem

The main problem for applying GA for Vehicle Routing Problem was how to
implement the crossover operator. The mutation operator was more clear for
implementation.

We can look at the example of the crossover proposed in [13] and [21]: the Best
cost route crossover. Best cost route crossover creates two offsprings from two
parents. To explain the method let’s consider that we have to routes A and B. First
we choose two subroutes from each route: a and b. Then we remove the subroute a
from route B and subroute b from route A. The next step will be to locate deleted
subroutes to the best possible locations. So we will locate the subroute a in route B
and subroute b in route A. The best insertion location is the location which give us
total minimum cost routes.

2.4 Hamiltonian paths

The next theory we can consider is the theory about Hamiltonian paths [1], because
we need to implement the algorithm for building a route through all nodes and visit
each node once. Other words we need to solve “Travelling salesman problem” (Fig.
2.2).

When we will find all routes through all nodes we can predict optimal conditions
for routes, for example predict positions of extra charging stations using genetic
algorithm.

For temperature, road conditions and topography we can add some parameters
of the arc and then use these coefficients in the algorithm.

But now we will just implement the algorithm for finding the route through all
nodes.

In a theoretical way we can formulate the problem like this: we need to find the
Hamiltonian paths (or cycles, depends on route) in the graph (route). Hamiltonian
path is a path in an undirected or directed graph which visits each vertex exactly
once, so that is what we need in our problem [1].

Hamiltonian cycle (path) is called a simple cycle (path) that contains all the
vertices of the graph. In the graph shown in Fig. 2.3 the left Hamiltonian cycle is, for
example, the sequence 1, 2, 5, 3, 4, 1. The graph shown in the center, no Hamiltonian
cycles, but there is Hamiltonian path, for example 2, 1, 5, 3, 4. In the right column
there are no Hamiltonian paths.

For the Hamiltonian cycle (and for paths) there is no simply verifiable, necessary
and sufficient conditions for their existence. All known algorithms require to look
over a large number of variants when you apply algorithm for a big graphs.

A Hamiltonian cycle is, with a combinatorial point of view, a permutation of
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Figure 2.2: Travelling salesman problem

Figure 2.3: Hamiltonian paths

13



vertices. At the same time you can select any node as the starting top of the cycle.
The most easy Hamiltonian cycle research plan is a consistent consideration of all
these permutations and verification for each of them, if it is a cycle in the graph.
This method is already impracticable at not a very large number of vertices because
of the fast growth of the number of permutations - there is (n− 1)! permutations of
n elements if the first member is fixed.

A more rational approach is to consider all possible ways starting at an arbitrary
starting vertex a, as long as a Hamiltonian cycle is detected or all possible paths have
been explored. In fact, we are also talking about iterating through the permutations,
but reduced - if, for example, the vertex b is not adjacent to a vertex a, then all the
(n − 2)! permutations in which the first place is a, and b in the second, are not
considered.

Consider this algorithm in detail. We assume that the graph is given like
neighborhoods of vertices: for each vertex x it is given a set of vertices adjacent
to x. At each step of the algorithm there is already constructed part of the route, it
is stored in the PATH stack. For each vertex x, included in the PATH, it is stored
a set N(x) of all vertices adjacent to x, which was not yet seen as a possible way out
from the vertex x. When the vertex x is added to the path, a set N(x) is assumed
equal to V (x). In further consideration all the visited vertices are removed from the
set. The next step is to explore the adjacent vertices of the last vertex x of the path
PATH . If N(x) 6= � and N(x) have vertices that do not belong to our route, one
such vertex is added to the route. Otherwise vertex x is excluded from the stack.
When, after adding to the path the next vertex, the path contains all the vertices of
the graph, it remains to verify whether the first and the last vertex of the path are
neighbours, and if this is true, than we got the Hamiltonian cycle [1].

Now we can describe the algorithm using pseudo programming language [1]:

Select randomly vertex a

a =⇒ PATH

N(a): = V(a)

while PATH 6= � do

x : = top(PATH)

if N (x) 6= �

then take y ∈ N(x)

N(x): = N(x) - y

if the vertex y is not in the PATH

then y =⇒ PATH
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N(y): = V(y)

if PATH contains all the vertices

then if y is adjacent to a

then show the cycle

else remove the vertex x of PATH

Now we can try to implement Hamiltonian path (and cycle) using Python. There
are two cases of routes: in first case the starting station and the final station are the
same, in the second case they are different. So in the first case we need to find just
the Hamiltonian path, in the second case we need to implement the Hamiltonian
cycle.

The first case is more simple. We can just find all paths in the graph and check
if the length of the path is equal to the amount of nodes. But of course this method
is not optimal and will work slowly when we will have a graph with high amount of
nodes. But if we have not so complex graph we can apply this algorithm.

def hamilton path(start, path = []):

path = path + [start]

if start == goal:

return [path]

if not graph.has key(start):

return []

paths = []

adjacent = graph[start].keys() # all adjacent nodes to our node

for x in adjacent:

if x not in path:

newpaths = hamilton path(x, path)

for newpath in newpaths:

if len(newpath) == len(graph):

paths.append(newpath)

return paths

For example we have such graph like on Fig. 2.4.
We will get the following result of the function.

[1, 2, 3, 4, 5, 6, 7]

[1, 2, 4, 5, 6, 3, 7]
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Figure 2.4: Hamiltonian path.

Figure 2.5: Hamiltonian cycle.
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Next step is to implement the Hamilton cycle. For example we add three extra edges
to our graph, we will get the following graph (Fig. 2.5).

We will have here only one cycle starting on node 1.

[1, 2, 3, 4, 7, 6, 5, 1]

The presented theory about Hamiltonian paths is useful if we want to change
the bus route (sequence of bus stops), if we want to advice better and more optimal
solution for placing bus stops. For example, we have many routes, which have general
bus stops. So we can change the sequence of stops (by that we change sequence of
charging stations) for several routes, and by that we can optimize the cost.

We will not use presented algorithm for Hamiltonian paths in our program,
because we will start to work and analyse only one route. For one route, changing
placement of bus stops can influence cost, but we will use a route in the city where
bus stops can be placed on perpendicular streets, so we are not so free to change
sequence of bus stations. It will be useful for future work.
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Chapter 3

Specification for application

The first step is to write a kind of specification for future program. The main goal
here is to familiarize with presented previous work of Kristoffer Tangrand [18], read
more relevant theory and create a plan for work. Presented specification summarize
results from previous work, which are useful for solving our problem. The goal of
the specification is not to describe the precise solution, the main goal is to start to
analyse which data we need to use, if we can use the previous results of Kristoffer’s
work and how we can use it, if we can use these results, how to apply and improve
presented application for our case. The specification consists of a general overview
of possible ways of solution.

The work was started with familiarization with Kristoffer’s application for a single
vehicle case with homogeneous nodes. Several networks were created and we can
see one of the output results on Fig.3.1. The ant tries to find the shortest path
through the graph, he has some energy amount, he try to recharge on the charging
stations (nodes) just enough to reach the next node. Because this is a homogeneous
case, every node will have the same class of charging stations, it means the time of
recharging on stations will be the same (the output will be the same). Also every arc
has cost of travel (this is the time of travelling) and weight (this is the pheromone
trail from previous ants) [18][19].

In the case with inhomogeneous nodes, the class of charging stations will be
different, so we will have different time of charging and the ant will also need to
choose between the charging stations. The solution in present application is to
charge on maximum level if we don’t know the next class of charging station. After
some iterations the agent which is travelling on the graph can already have access
to information regarding the charge output for the current node and the next node
on the path.

We can present a table of parameters for the present program (single vehicle case)
(Table 3.1).
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Figure 3.1: Single vehicle test with homogeneous nodes.

Table 3.1: Table with parameters for presented application.
Part of the graph Parameters

Nodes cost of charging (time of charging)
output (case with inhomogeneous nodes)

Arcs treveling cost (time and distance)
weight (pheromone trail)

Ants energy capacity
energy amount
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Figure 3.2: Example of possible network

Account of present program for single vehicle case contains such information: cost
of travel and pheromone trail on the arc, cost of charging (different for inhomogeneous
case) for nodes, energy of ants (cars).

What we considered next was a multi - vehicle case (deterministic case). The main
difference from single vehicle case is that here we also consider traffic congestions.
We can create the test graph of network to try to use the present application with
it. On Fig. 3.2 we can see the directed graph with eleven nodes.

On Fig. 3.3 we can see the matrix of weights of this graph.
On Fig. 3.4 we can see the result of applying multi-vehicle case (deterministic

case) for the graph of network on Fig. 3.2.
If we will analyse the data we can see that there are two shortest paths:

1→ 3→ 10→ 11

1→ 8→ 9→ 11

Now we can try to describe the case for routes of electric buses. For the case of
electric busses we will need some extra information to take in account.

We need to describe some extra conditions:
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0 15 10 0 0 0 0 10 0 0 0
15 0 7 0 0 0 0 0 0 0 15
10 7 0 7 0 10 0 0 0 9 0
0 0 7 0 5 0 0 0 0 0 0
0 0 0 5 0 5 7 0 0 0 0
0 0 10 0 5 0 4 0 0 8 0
0 0 0 0 7 4 0 0 6 0 0
10 0 0 0 0 0 6 0 5 0 0
0 0 0 0 0 0 0 5 0 9 7
0 0 9 0 0 8 0 0 9 0 0
0 15 0 0 0 0 0 0 7 0 0

Figure 3.3: Matrix for network

Figure 3.4: Output of application with network from Figure 3.2.
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Figure 3.5: Travelling salesman problem.

� visit all bus stations

First of all we can say that in case of buses we will need to solve “Travelling salesman
problem”. The difference between present program and the case with buses is that
now we need to visit all nodes (bus stations), one time each, and use the shortest
path. So the ants must go through every node and reach the goal. After several
iterations the shortest path should be selected.

� two types of buses (two types of charge)

In Table 3.2 we can see difference between two types of buses, which have different
types of recharging method. The first type will recharge on every bus stops during
the route. It means the bus need to have enough energy to reach the next bus stop
and charge just enough on the recharge station. Another type of bus will charge just
one time during the day, it can stay and recharge all night before the work day. This
type of bus need to have very big battery capacity to work the whole day without
recharging.

� influence of the outdoor temperature on energy consumption

It is known that the energy consumption is different at different outdoor temperature.
So in the winter the car will consume more energy than in the summer. In Table 3.3
we can see the approximate difference between the energy consumption in different
seasons [22]:

� traffic congestions and traffic incidents influence on the time in the route and
energy consumption
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Table 3.2: Two types of electric buses.
Type of bus Parameters

“en route” charging The bus applies a kind of pantograph at bus stops to
recharge the bus batteries. This implies more frequent,
but short recharging intervals.

“depot recharging” This means that the buses will be recharged when they
park at depots for the night. The latter will usually
require larger batteries that again will require more
space and impose greater weight loads for the bus.

Table 3.3: Energy consumption of electric buses in different seasons.
Season Energy consumtion

Summer approximately 300 - 315 kWh/h
Winter approximately 350 - 365 kWh/h

In the present program of Kristoffer Tangrand these conditions are presented by
using the following formula [10]:

T kij(xij) =
dij ∗ xkij

vf (1− ( ki
kjam

)l)m

This is the travel time on a single arc for an ant k. The pheromone deposition is
dependent on the travel time which is a combination of distance and congestion [10].

� road conditions: ice, bumpy road

We can present an example of how road conditions can influence on energy
consumption.

For example, if we will drive a car on a flat road 50 km from point A to point B
we will need x kWh [5].

Of course, we will need more energy to drive the same car from point A to point
B if we travel on a bumpy road. The amount of energy is calculated by the distance
traveled over the friction, which is the friction factor (F ), to compensate for the
bumpiness of the road, times the distance to travel divided by the kilometers per
kWh the car gets on flat surfaces (D = km

KMperkW
,where km - kilometers traveled and

KMperkW - kilometers per kWh), resulting in the following formula, where E - is
amount of used energy [5]:

E = F ∗D

� topography
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Figure 3.6: Energy expended traveling on a flat road is a function of distance.

Figure 3.7: Extra energy is expended traveling on a bumpy road.

Let’s calculate the amount of energy if the route from point A to point B is uphill.
For now we can ignore the fact that additional energy would be necessary to move
the car uphill. If we will contunue the previous example, we can see that the car now
must travel on the surface for a longer distance. When considering surface distance
(SD replaces D), the following formula is for used energy [5]:

E = F ∗ SD
Another factor that can influence to the energy consumption of the car is the

uphill or downhill slope, we can call this factor the vertical factor. We can see if the
car is going downhill, the total cost of travel will decrease, because the car can have
possibility to charge; if it is going uphill, the total cost will increase. If we will add
the vertical factor (V F ) into the previous formula we will get the following formula
[5]:

E = F ∗ SD ∗ V F
Also down-hill driving opens opportunity for quick charging by means of brakes

and braking. Some buses have this opportunity.
Also we can describe the dependence of energy consumption on the topography
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Figure 3.8: Extra energy is expended when going uphill.

Figure 3.9: Less energy is expended going downhill, in this case the slope is negative.
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Table 3.4: Table with parameters in case of electric buses.
Part of the graph Parameters

Nodes cost of charging
output - inhomogeneous nodes

energy capacity of charging station
Arcs treveling cost (time)

treveling cost (distance)
weight (pheromone trail)

capacity of arc
Ants (bus) energy capacity

energy amount
type of bus

Another temperature
congestions

road conditions
traffic incidents

topography

in another way. If we need amount of energy E to travel a distance D , and the
specific energy consumption required to travel from A to B is R, so we have:

E = R ∗D +X

X here includes the increased energy consumption from rolling resistance and
topography, we can describe X in following way:

X = Xroll +Xup +Xsd +Xdown

where Xroll - the increased energy consumption from rolling resistance and
Xup +Xsd +Xdown - the increased energy consumption from topography.

So now we can summarize all these factors and decide what we can take in account
in the case with electric busses.

In Table 3.4 we can see parameters which we can take in account for the case of
electric buses:

After writing the specification we can start to implement necessary algorithms.
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Chapter 4

Genetic algorithm implementation

One of the main research goals of the project is to develop the Genetic algorithm
approach. The important questions here are: choose the data structure for chro-
mosomes and choose fitness function for ranking individuals in the population. The
structure selection is very important, because we need to choose such chromosomes
with which we can produce more various populations, so the algorithm can converge.
We will describe the data structure for chromosome in a separate section. We need
to remember that “the genetic operators must always generate legal solutions” [15],
so it means we need to check everytime if we have some undesirable cases of positions
of charging stations in our populations, for example in cases when the bus will have
not enough energy to reach a depot.

Like we said earlier, the role of so-called fitness function in our application will
play ACO approach. The cost function in our ACO algorithm will consist of two
parameters, which we want to minimize: this is cost of charging stations and this is
battery consumption for electric bus. This cost function will be our fitness function
in GA algorithm. We will describe the fitness function later in a separate section.

First we can try to model some example network and try to apply for this
experimental network GA approach. In the next section we will describe the modelled
network.

4.1 The experimental network

On Fig. 4.1 we can see example of the route with charging stations. The red dots
represent proposed charging stations. The GA suggests charging stations. The ACO
analyse how beneficial the various configurations of charging stations are for the
traffic system and rank solutions produced by the GA.

First we need to develop the genetic algorithm which can offer to us different
positions of charging stations.
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Figure 4.1: Test route with charging stations.

4.2 First try

As we said earlier the important question in the beginning is which data structure to
use for implementing the algorithm. The first thinking was to create the coordinate
system like on Fig. 4.2. All nodes and charging stations will have its own coordinate.
All routes will have their own linear equation.

So we can start to describe the data in the following way:

#describe the first selection of positions of charging stations

st 1 : [5.5,4.5];

st 2 : [9.5,5.5];

st 3 : [9.0,10.0];

st 4 : [5.5,11.0];

st 5 : [8.0,16.0];

st 6 : [13.0,10.5];

st 7 : [18.0,11.0];

st 8 : [19.0,9.0];

st 9 : [15.0,8.0];

st 10 : [27.0,9.0];

st 11 : [17.0,13.0];

#describe all lines (all roads)

#each part of route has own line equation

#we need a point on line and direction vector, coefficients: [M(x, y), V(u, w)]

#if we want calculate distance from point A(a, b) to the line we calculate the following:

# AM = (x - a, y - b) # AM x V = (x - a)*w - (y - b)*u

# distance = ((x - a)*w - (y - b)*u)/sqrt(u^2 + w^2)
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Figure 4.2: Coordinate system with charging stations.

one two line coeff = [7.0, 3.0, -3.0, 4.0]

two three line coeff = [4.0, 9.0, -5.0, 3.0]

three four line coeff = [9.0, 3.0, -6.0, 2.0]

four five line coeff = [3.0, 8.0, 5.0, 4.0]

five six line coeff = [0.0, 16.0, 1.0, 0.0]

six seven line coeff = [13.0, 17.0, 4.0, -3.0]

six three line coeff = [13.0, 9.0, -4.0, -6.0]

seven eight line coeff = [17.0, 19.0, 2.0, -4.0]

eight nine line coeff = [19.0, 12.0, -7.0, -1.0]

three nine line coeff = [9.0, 12.0, 3.0, -2.0]

eight eleven line coeff = [19.0, 24.0, 5.0, -2.0]

eleven twelve line coeff = [24.0, 27.0, 2.0, 2.0]

eight ten line coeff = [19.0, 17.0, -2.0, -6.0]

#describe fitness function

#graphic implementation

In researched problem we don’t need so precise variables in data structure for
chromosomes and there is another more simply and effective way for implementing
GA. It is better to place charging stations in the same place as bus stops, by that
reason we will not use the coordinate system for prediction. We will use positions of
bus stops in out chromosomes, in another case we will use position in between the
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two bus stops for checking the new opportunity for bus stop. The data structure for
chromosomes and all necessary operators of Genetic algorithm are described in the
next sections.

4.3 Implementation

4.3.1 Data structure

As we said earlier choice of data structure is very important step. For the case where
we will not add new bus stops we can just use one-dimensional arrays:

[0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]

Where each value of the array presents bus stop, if the value is 0 it means that the
bus stop doesn’t have a charging station, if the value is 1 it means the bus stop has
charging station.

For the case where we will add new bus stops we can use the following structures
(dictionary type in Python):

cs = {
1: {2: 1.0},
2: {3: 1.0},
3: {3: 0.0, 4: 1.0},
4: {4: 0.0},
5: {5: 0.0},
6: {6: 0.0},
7: {7: 1.0},
8: {8: 0.0, 9: 1.0},
9: {9: 0.0},
10: {10: 0.0},
11: {11: 0.0},
12: {12: 1.0}
}

The following cases describe the positions of stations:

� 1: {1: 0.0} - no charging station in node 1;

� 1: {1: 1.0} - there is charging station in node 1;

� 1: {2: 1.0} - charging station between node 1 and node 2;

� 1: {2: 0.0} - no charging stations between node 1 and node 2;

� 1: {9: 1.0} - charging station between not connected nodes.

We will describe structure more clearly in the Chapter 7.
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Figure 4.3: Variants to form the initial population.

4.3.2 Initial population

First step we need to implement is to choose the initial population of our charging
stations. For the first population we need to generate randomly several variants
of positions for charging stations. But of course it will be better to not choose all
randomly. There is several cases to do this:

� create amount of routes with different charging stations positions, implement
crossover between the different routes (Fig. 4.3, left);

� use only one first route with initial positions of charging stations and implement
the crossover operator between the sub routes (Fig. 4.3, right).

In our algorithm we use the first case.
For first implementation I chose the first case with only four initial charging

stations positions, because the main target for me now was to try to implement
crossover and mutation operators. We will describe crossover and mutation operators
more detailed in the next sections. We will describe GA operators using the case
with new bus stops, like more complicated (the new bus stop appears between the
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Figure 4.4: Crossover operator in the case with new bus stops.

existing bus stops), but in the Results section we will describe the results for cases
without adding new bus stops, by reason that we analyse only one route and we
don’t need extra bus stops (in case with large amount of routes it can be applicable).

4.3.3 Crossover operator

So next we could look at other publications according to this problem, and found
some interesting works. There is many interesting science works according the VRP
problem solving the GA approach, for example [2], [13], [16] and [21].

The main problem in developing of genetic algorithm is to define the fitness
function, crossover and mutation. There is many variants of crossover operator of
genetic algorithm in Vehicle Routing Problem. First we can try to find some simple
case for describing these operators. The first case can be to define the crossover and
mutation like this: the mutation is changing of position of charging station to nearest
node. The crossover can be different combinations of positions of charging stations
of two routes. We can also use some supporting operators.

On the Fig. 4.4 we can see the possible crossover operator. We choose on the
first route a subroute, the same we do with the second route. Then we just swap the
subroutes.
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The following code was implemented for crossover operator.
First we randomly choose two parts of the routes (subroutes):

def choose parents():

print ’Parents:’

first pos = math.ceil(random()*5)

second pos = math.ceil(random()*7)

print(first pos)

print(second pos)

for i in range(1, 10):

first parent[i] = cs[first pos+i]

second parent[i] = cs2[second pos+i]

positions = [int(first pos), int(second pos)]

return positions

Then implement crossover operator:

def crossover(first, second):

temp0 = first[1]

temp1 = first[2]

first[1] = second[1]

first[2] = second[2]

second[1] = temp0

second[2] = temp1

offspring 1 = first

offspring 2 = second

arr = [offspring 1, offspring 2]

return arr

4.3.4 Mutation operator

The mutation operation can be described in the following way (Fig. 4.5). We can
just move the charging station to the nearest bus stop or if we want to create new
bus stop we can move it in the middle between existing bus stops (like on Fig. 4.5).

We implemented the following code for mutation operator, here we move the
charging station to the nearest node:

def mutation(offspring):

print(’Mutation’)

p = math.ceil(random()*10)

# move cs to the nearest node

offspring[p] = {p: 0.0}
offspring[p+1] = {p+1: 1.0}

return 0
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Figure 4.5: Mutation operator in the case with new bus stops.

4.3.5 Graphic representation

For graphic representation we use classes Node, Arc and ACO from present program.
We show all charging stations for the case with new bus stops using the following
code:

if cs array[int(variable.get())][i] == {i: 1.0}:

cs positions[i-1] = node[i-1]

if cs array[int(variable.get())][i] == {j: 1.0}:

cs positions[i-1] = (node[i-1] + node[j-1])/2

if cs array[int(variable.get())][i] == {i: 1.0, j: 1.0}:
cs positions[i-1] = node[i-1]

cs positions[i] = (node[i-1] + node[j-1])/2

4.4 Fitness function - ACO algorithm

As fitness function we can use ACO approach, which will rank the results of the
genetic algorithm. We will describe the ACO algorithm in next chapter.

4.5 Results

In this report we presented one available simple example of genetic algorithm
operators. On Fig. 4.6, 4.7, 4.8, 4.9 we can see the output of the application - the
initial positions of charging stations and two offsprings, which we get after crossover
between two routes.

The next step will be to implement the ranking function for genetic algorithm. We
will use the ACO approach as ranking function . The ACO approach was already
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Figure 4.6: Initial positions of charging stations, first parent.

Figure 4.7: Initial positions of charging stations, second parent.
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Figure 4.8: First offspring.

Figure 4.9: Second offspring.
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implemented by Kristoffer Tangrand, but we need to improve and add other cost
parameters to the arc.
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Chapter 5

ACO improvement

In this Chapter we will analyse how to improve the presented ACO algorithm,
developed by Kristoffer Tangrand for our problem. For our ACO implementation
we use the present application of Kristoffer [18]. But we need to improve the base
class according to our requirements.

The following code describes in which way we add cost parameters.

def step(self):

alt = self.graph[self.pos]

if not alt:

return None

dest = wrand(alt)

arc = self.graph[self.pos][dest]

time = 0

while arc.cost > self.energy:

time += self.graph[self.pos].costPerTime

self.energy += 1.0

self.cost += arc.cost

self.cost += time

self.energy -= arc.cost

self.pos = dest

self.path.append(dest)

return self.pos

We will use the following part of the code to add other cost parameters:

self.cost += arc.cost

self.cost += time
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Figure 5.1: The energy consumtion will depend on angle of inclination.

5.1 Topography analysis

In this section we will analyse the possible influence of topography to energy
consumption. The energy consumption can increse in several times depending on
the angle of inclination. In the presented project we will analyse only topography
factor. In the future we can also analyse other factors like temperature, congestions,
road conditions, traffic incidents (see specification).

5.1.1 Uphill driving

If the route from point A to point B is uphill, the energy consumtion will depend on
angle of inclination.

We can simply describe dependence of energy consumption with sinα. The
function sinα increases on the segment

[
0, π

2

]
. The bigger sinα is the bigger will

the energy consumption be (Fig. 5.1):

sinα =
a

c
where a is the difference between meters above sea level of two different bus stops

and c is the distance between bus stops.
The following code can be used:

self.energy -= arc.cost #distance

self.energy -= self.energy*arc.hight #topography: hight = sin(angle)

But we can also use extra forces that affects the bus (Fig. 5.2) [23].

A = F1c+ Ffrc
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Figure 5.2: Extra energy is expended when going uphill.

where

F1 = mg sinα

Ffr = µmg cosα

where µ- friction coefficient.

cosα =
√

1− sin 2α

A = mgc(sinα + µ cosα)

P =
A

t

The code:

mass = 15000 + 30*70 # kg

a = 5 #meters

c = 500 #meters

f = 0.72 #traction coefficient for dry asphalt

A = mass*9.8*c(math.sin(a/c) + f*math.cos(a/c)) #Joule

t = 5*60 #seconds

P = A/t #Watt

Data that we need for analysis of topography when the bus goes uphill is presented
in the Table 5.1.
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Table 5.1: Data that we need for analysis of topography when the bus goes uphill.
Parameters Measure

Mass of the bus kg
Distance between the bus stops km

Difference between the meters above sea level m
Speed of the bus km/h

Timetable h
Total amount of seats

Average amount of passengers

Figure 5.3: Less energy is expended going downhill.

5.1.2 Downhill driving

In this example, if the bus is going downhill, the total cost of travel will decrease
(Fig. 5.3) [23].

The second law of dynamics [23]:

m−→a = m−→g +
−→
N

Ox : mg sinα = max
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Table 5.2: Data that we need for analysis of topography when the bus goes downhill.
Parameters Measure

Mass of the bus kg
Speed of the bus km/h

Distance between the bus stops km
Difference between the meters above sea level m

Data that we need for analysis of topography when the bus goes downhill is
presented in the Table 5.2.

Also down-hill driving opens opportunity for quick charging by means of brakes
and braking. Some buses have this opportunity. In presented project we don’t use
charging by means of brakes anf braking, we just analyse the energy which we will
lose. In the future we can improve the application by adding the opportunity to
charge going downhill and maybe it can help to decrease the amount of charging
stations.

5.2 Simplify the calculations

To simplify the calculations we can use the following data:

� Ediesel - amount of energy that diesel bus uses on flat road for 1 km

� Eαdiesel - amount of energy that diesel bus uses going uphill with angle α for 1
km

� Eel - amount of energy that electric bus uses on flat road for 1 km

� Eαel - amount of energy that electric bus uses going uphill with angle α for 1
km

We can get the first three parameters and calculate the fourth one using the following
proportion:

Eαdiesel
Ediesel

=
Eαel
Eel

Eαel =
Eαdiesel ∗ Eel

Ediesel
We can get data for diesel for one angle and calculate values for diesel for other

angles using the following proportion:
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Table 5.3: Increasing of energy consumption depending on incline.
Consumption increases going uphill 5% incline approximately by 4.5 times

Consumption increases going uphill more than 5% incline approximately by 7.3 times

Eαdiesel
Eβdiesel

=
α

β

Eβdiesel =
Eαdiesel ∗ β

α

The following code illustrates this:

angle = 30 # angle about which we got the necessary data

energy d = x (unknown) #amount of energy that diesel bus uses on flat road for 1 km

energy d angle = y (unknown) #amount of energy that diesel bus uses going

#uphill with angle alpha for 1 km

energy el = 1.2 #amount of energy that electric bus uses on flat road for 1 km

energy d arc angle = (energy d angle*arc.angle)/angle

energy el arc angle = (energy d arc angle*energy el)/energy d

self.energy -= arc.dist*energy el arc angle

Now we don’t use this code because we don’t have the value of consumption for
certain angle for diesel buses. But we can use the data from Table 5.3.

We use the following code to describe the increasing of energy consumption:

if (arc.angle == 0.0):

self.energy -= arc.dist*energy km

if ((arc.angle > 0.0)&(arc.angle <= 2.0)):

self.energy -= (arc.dist*energy km)*2.3

if ((arc.angle > 2.0)&(arc.angle < 5.5)):

self.energy -= (arc.dist*energy km)*4.5

if (arc.angle > 5.5):

self.energy -= (arc.dist*energy km)*7.3
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Chapter 6

Connection of GA and ACO

6.1 Connecting two algorithms

The next step is to connect both algorithms in one application.
The ranking is based on cost of charging stations and battery capacity of the bus.

The following code shows this:

for j in range(0, len(all cost)):

for i in range(len(all cost) - 1, j, -1):

if (all cost[i] < all cost[i-1]):

temp = cs array[i]

cs array[i] = cs array[i-1]

cs array[i-1] = temp

temp d = all cost[i]

all cost[i] = all cost[i-1]

all cost[i-1] = temp d

temp d = all energy[i]

all energy[i] = all energy[i-1]

all energy[i-1] = temp d

Exclude not suitable results:

for i in range(0, len(all energy)):

if (all energy[i] < 0):

del all cost[0]

del cs array[0]
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Figure 6.1: Interface of the program.

6.2 Interface

The interface of the program is presented on Fig. 6.1. It has one dropdown list and
one button. From the dropdownlist we can select the four best variants of placing
charging stations. When we click on the button “Show” the window with graphic
will be opened. On the picture we can see the route with bus stops.

After pushing on the button “Show” the window with graphic result will be appear
(Fig. 6.2).
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Figure 6.2: Output of the program.
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Chapter 7

Results

7.1 Analysed cases

We will analyse the five following cases:

� no new bus stops, homogeneous charging stations, fixed battery capacity

� no new bus stops, inhomogeneous charging stations, fixed battery capacity

� new bus stops, homogeneous charging stations, fixed battery capacity

� new bus stops, inhomogeneous charging stations, fixed battery capacity

� no new bus stops, homogeneous charging stations, variable battery capacity

7.1.1 No new bus stops, homogeneous charging stations, fixed battery
capacity

In this case we use the following type of chromosome:

[0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]

where “0” means that there is no charging station in the node and “1” means thet
there exists charging station in the node. On Fig. 7.1 we can see the example of
placing charging stations only on bus stops.

The following code presents how we choose the positions of charging stations

for j in range(0, len(cs array)):

for i in range(0, len(cs)):

if cs array[j][i] == 1:

all cs.append(i+1)

47



Figure 7.1: Example of placing charging stations only on bus stops.

aco.get all cs(all cs)

cs amount = len(all cs)

print(’All cs:’)

print(all cs)

cs cost = cs amount*100

all cost.append(cs cost)

7.1.2 No new bus stops, inhomogeneous charging stations, fixed battery
capacity

In this case we use the following type of chromosome:

[0.9, 0, 0, 0.7, 0.7, 0, 0, 0.9, 0, 1, 0, 0.7]

Here we also have positions of charging stations with different parameters.
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7.1.3 New bus stops, homogeneous charging stations, fixed battery
capacity

In this case we use the following type of chromosome:

cs = {
1: {1: 0.0},
2: {3: 0.0},
3: {3: 0.0},
4: {4: 0.0, 5: 1.0},
5: {5: 1.0},
6: {6: 0.0},
7: {7: 0.0},
8: {8: 1.0},
9: {9: 0.0},
10: {10: 1.0},
11: {11: 0.0},
12: {12: 0.0}
}

Here we can add charging stations between nodes. On the Fig. 7.2 the charging
stations (the new bus stops) appear between nodes 6 and 7, and also between nodes
7 and 8.

7.1.4 New bus stops, inhomogeneous charging stations, fixed battery
capacity

In this case we use the following type of chromosome:

cs = {
1: {1: 0.0},
2: {3: 0.0},
3: {3: 0.0},
4: {4: 0.0, 5: 0.7},
5: {5: 0.3},
6: {6: 0.0},
7: {7: 0.0},
8: {8: 0.5},
9: {9: 0.0},
10: {10: 0.9},
11: {11: 0.0},
12: {12: 0.0}
}
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Figure 7.2: Example of placing charging stations not only on bus stops.
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Table 7.1: The data about chosen bus route.
Parameter Value

Chosen bus route 26
Total time of the route 1h 10 min (both directions)

Average speed on the route 19 km/h
Consumption of diesel for bus (100 km) 55 l

Consumption increase going uphill 5% incline by 4.5 times
Consumption increase going uphill more than 5% incline by 7.3 times

Consumption of electric bus (1 km) 1.2 kWh
Amount of trips for one bus a day 14

Table 7.2: The bus parameters.
Parameter Value

Weight 12 400 kg (empty) /18 000 kg
Amount of passengers 32 (seated), 49 (standing)

Length of the bus 12 m
Battery capacities for bus 120 kWh

7.1.5 No new bus stops, homogeneous charging stations, variable battery
capacity

In this case we use the following type of chromosome:

[1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 100]

[1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 120]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 80]

[1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 110]

The last value in the chromosome can be the battery capacity.

7.2 Real data

As experemental route we chose the route 26 in Tromsø.
We got the following data from Troms fylkeskommune (Tables 7.1, 7.2, 7.3, 7.4,

7.5).
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Table 7.3: The charging station parameters.
Parameter Value

Type of connection Pantograph system
Type of charging station 300 kW

Charging for 2 minutes on bus stop +10 kWh
Charging for 3 minutes on depot +15 kWh
Charging for 8 minutes on depot +40 kWh
Charging for 18 minutes on depot +90 kWh

Table 7.4: The general overwiew of topography on the rooute 26 direction 1.
Parameter Value

Meters above sea level (start of the route) 7 m
Distance to highest point 5542 m

Highest point (meters above sea level) 104 m
Distance from highest point 4714 m

Meters above sea level (end of the route) 5 m

Table 7.5: The general overwiew of topography on the rooute 26 direction 2.
Parameter Value

Meters above sea level (start of the route) 5 m
Distance to highest point 7266 m

Highest point (meters above sea level) 104 m
Distance from highest point 5156 m

Meters above sea level (end of the route) 7 m
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Table 7.6: Route 26, direction 1.
Bus stop Time Distance (m) Topography

Giæverbukta 05:57 0 Flat
Postterminalen 05:59 928 Flat
Sjølundvegen 06:00 336 Flat

Fiolvegen 06:01 374 Flat
UNN, Åsg̊ard 06:02 645 Flat

Lars Eriksens veg 06:02 372 Uphill 5.2%
Holtvegen 06:03 480 Uphill 5.2%

Barduvegen 06:04 304 Uphill 5.2%
Elverhøy 06:05 158 Uphill 5.2%

Sommerlyst skole 06:05 301 Uphill 5.0%
Kirkeg̊arden 06:06 145 Uphill 5.0%
Vervarslinga 06:06 280 Uphill 5.0%

Trykkbassenget 06:07 211 Uphill 5.0%
Myrengvegen sør 06:07 244 Uphill 5.0%

Myreng 06:08 264 Uphill 5.0%
Grimsbyvegen 06:09 217 Uphill 5.0%

Skoglyst 06:10 283 Uphill 5.0%
Maristuen 06:10 190 Downhill 4.6%
Snarvegen 06:11 342 Downhill 4.6%

Petersborggata 06:12 569 Downhill 4.6%
Kongsbakken 06:13 360 Downhill 4.6%

Wito 06:15 166 Downhill 4.6%
Sjøgata S1 06:20 318 Downhill 4.6%

Skippergata 06:21 353 Uphill 8.0%
Tromsdalen Bruvegen 06:23 1301 Bridge

Novasenteret 06:24 732 Downhill 8%
Pyramiden 06:25 383 Flat

Data from chosen route 26

Route 26, direction 1: travel time 28 min, 27 bus stops (Table 7.6). The percent of
the incline in the tables is calculated according to the following formula:

diff

distance
∗ 100

, where diff - height difference between two points in meters, distance - distance
between two points in meters.

Route 26, direction 2: travel time 42 min, 40 bus stops (Table 7.7).
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Table 7.7: Route 26, direction 2.
Bus stop Time Distance (m) Topography

Pyramiden 06:25 0 Uphill 2%
Hjorten 06:25 231 Uphill 2%

Isbjørnvegen 06:26 219 Uphill 2%
Nordselvegen 06:26 238 Uphill 2%
Møllervegen 06:27 259 Uphill 2%
Fjellheisen 06:27 252 Uphill 2%
Risøyvegen 06:28 239 Uphill 2%

Ecornsenteret 06:29 234 Uphill 2%
Gausdalsvegen 06:30 284 Uphill 2%

Fløyvegen 06:31 165 Uphill 2%
Åsvegen 06:32 369 Downhill 2%

Tromsdalen skole 06:33 263 Downhill 2%
Skogvegen 06:34 287 Downhill 2%

Tromsdalen Kirke 06:35 225 Uphill 8%
Skippergata 06:37 1265 Bridge
Torgcenteret 06:40 314 Downhill 8%

Fr. Langes gate F2 06:45 334 Uphill 7%
Petersborggata 06:46 464 Uphill 7%

Bispeg̊arden 06:47 600 Uphill 7%
Myrengvegen sør 06:47 260 Uphill 7%

Myreng 06:48 264 Uphill 5% (up and down hills)
Grimsbyvegen 06:49 217 Uphill 5% (up and down hills)

Skoglyst 06:50 283 Uphill 5% (up and down hills)
Maristuen 06:50 190 Uphill 5% (up and down hills)
Snarvegen 06:51 342 Uphill 5% (up and down hills)

Bispeg̊arden 06:52 193 Uphill 5% (up and down hills)
Trykkbassenget 06:53 173 Uphill 5% (up and down hills)

Vervarslinga 06:53 213 Uphill 5% (up and down hills)
Kirkeg̊arden 06:54 280 Uphill 5% (up and down hills)

Sommerlyst skole 06:55 196 Uphill 5% (up and down hills)
Elverhøy 06:56 243 Downhill 5%

Barduvegen 06:56 160 Downhill 5%
Holtvegen 06:57 305 Downhill 5%

Boligstiftelsen 06:57 292 Downhill 5%
Lars Eriksens veg 06:58 245 Downhill 5%

UNN, Åsg̊ard 06:59 256 Downhill 5%
Fiolvegen 07:00 652 Downhill 5%

Sjølundvegen 07:01 344 Downhill 5%
Postterminalen 07:03 440 Flat
Giæverbukta 07:07 632 Flat
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Table 7.8: Schedule of charging on depots during the working day.
� trip Depot Pyramiden Pyramiden Depot Stop (min) Charging time

1 5:57 6:25 6:25 7:07 5 3
2 7:12 7:40 7:40 8:22 10 8
3 8:32 9:00 9:00 9:42 10 8
4 9:52 10:20 10:20 11:02 10 8
5 11:12 11:40 11:40 12:22 10 8
6 12:32 13:00 13:00 13:42 10 8
7 13:52 14:20 14:20 15:02 10 8
8 15:12 15:45 15:45 16:32 0 0
9 16:32 17:00 17:00 17:42 5 3
10 17:47 18:15 18:15 18:57 20 18
11 19:17 19:45 19:45 20:27 20 18
12 20:47 21:15 21:15 21:57 20 18
13 22:17 22:45 22:45 23:27 20 18
14 23:47 00:15 00:15 00:29 - Torgcenteret

Presented analysis of topography was done with a bit overlapping, it was done
to consider the worst result. In practice many factors can influence on energy
consumption besides the topography. These factors we can consider in future work.

In Table 7.8 we can see all trips and possible charging time for the bus on depot
(the time for connection to pantograph and unconnection we consider 1 min).

We will also consider that the charging time on charging stations which are
placed on bus stops is 2 minutes (plus the time for connection to pantograph and
unconnection - 1 min).

7.3 Execution and results

First we construct our route (Fig. 7.3). The graphic representation of the route on
the output was made schematically, the drawing scale is not accurate.

The distance between the bus stops and approximate percent of incline:

...

aco[7][8] = Arc(0.304, 5.2)

aco[8][9] = Arc(0.158, 5.2)

aco[9][10] = Arc(0.301, 5.2)

aco[10][11] = Arc(0.145, 5.0)

...
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Figure 7.3: Route 26.
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Add the parameters to the code:

energy km = 1.2 #kWh energy consumption for 1 km

self.energy = 120.0 #kWh battery capacity - start amount of energy

Amount of trips we take are 14 for both directions of the route.

Result output

We will consider that the cost of one charging station is 100. We will consider the
first, second and the fifth cases for both directions like more interesting cases. The
rest of the cases (third and fourth) we will consider as examples only for one direction.

For better understanding of the output of the program we can describe the
steps which the application does. The application does three cycles with considered
amount of trips (n). Every cycle algorithm offer several positions for charging stations
and the bus goes through the bus stops n times, - simulating one work day, and these
results are ranked. The best results goes to the next cycle. The one best result after
three cycles is presented in the tables below. Also it is important to note that when
we choose the best result we consider only variants when the amount of energy is
more than 30 percent of battery capacity.

The best result after n trips means that we did three cycles only when bus goes
n trips.

We are interested in 14 trips for route 26 (one work day), but we also consider
the result after 5 trips, just to see the difference. For the cases three and four we
considered 28 trips as an example. Also it is important to say that we can get
different results for the same amount of charging stations at the same route. We
can easily explain it. The battery capacity of the bus is fixed, so if on one charging
station the bus will get more energy than the battery capacity, the amount of energy
will be equal the battery capacity.

7.3.1 Case 1: no new bus stops, homogeneous charging stations, fixed
battery capacity

In case 1 we present the results, when we consider both directions of the route. Here
we consider that on bus stop number 1 is a depot, where the bus can charge from
3 to 18 minutes depending on the number of trip. On other bus stops the bus can
charge 2 min. The results are presented in Tables 7.9, 7.10.

Here we can see that we need 4 charging stations. We can analyse all routes on
the map of Tromsø and place charging stations on bus stops which are general for
several bus routes, so we can use these charging stations not only for one route, by
that we can decrease the cost. For now GA algorithm offers positions for charging
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Table 7.9: The best result after 5 trips.
Parameter Value

Amount of charging stations 4
The rest of the energy in the end of the day (start with 120 kWh) 40.773 kWh

Cost of charging stations 400
Battery capacity 120 kWh

Table 7.10: The best result after 14 trips.
Parameter Value

Amount of charging stations 5
The rest of the energy in the end of the day (start with 120 kWh) 44.977 kWh

Cost of charging stations 500
Battery capacity 120 kWh

stations without considering the other routes, later we can add such check. The
output for case 1 is presented on Fig. 7.4.

7.3.2 Case 2: no new bus stops, inhomogeneous charging stations, fixed
battery capacity

The results, if we consider both directions of the route (Tables 7.11, 7.12). The
output for case 2 is presented on Fig. 7.5. Here we need to say that best result from
first population in GA was 6 charging stations with the rest of the energy 60.977
kWh in the end of the working day. So in the future we need to work for better
convergence of the algorithm.

Table 7.11: The best result after 5 trips.
Parameter Value

Amount of charging stations 6
The rest of the energy in the end of the day (start with 120 kWh) 91.045 kWh

Cost of charging stations 600
Battery capacity 120 kWh
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Figure 7.4: Output for case 1.

Table 7.12: The best result after 14 trips.
Parameter Value

Amount of charging stations 7
The rest of the energy in the end of the day (start with 120 kWh) 58.977 kWh

Cost of charging stations 700
Battery capacity 120 kWh
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Figure 7.5: Output for case 2.
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Figure 7.6: Output for case 3.

7.3.3 Case 3: new bus stops, homogeneous charging stations, fixed
battery capacity

This case we consider as an example case and it was implemented only for one
direction of the route. We can see on Fig. 7.6 that new bus stop appears between
the bus stops number 16 and 17.

7.3.4 Case 4: new bus stops, inhomogeneous charging stations, fixed
battery capacity

This case we consider as an example case and it was implemented only for one
direction of the route. As we can see on Fig. 7.7 we need more charging stations
than in case 3, by reason that we use inhomogeneous charging stations. We can
also see that several charging stations can appear between the bus stops, but we can
move them to the nearest bus stop.
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Figure 7.7: Output for case 4.
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Table 7.13: The best result after 5 trips.
Parameter Value

Amount of charging stations 4
The rest of the energy in the end of the day 40.773 kWh

Cost of charging stations 500
Battery capacity 120 kWh

Table 7.14: The best result after 14 trips.
Parameter Value

Amount of charging stations 5
The rest of the energy in the end of the day 34.977 kWh

Cost of charging stations 500
Battery capacity 110 kWh

7.3.5 Case 5: no new bus stops, homogeneous charging stations, variable
battery capacity

The results, if we consider both directions of the route (Tables 7.13, 7.14). We can
see from results in Table 7.14 that we it is possible to decrease the battery capacity
for the bus. The output for case 5 is presented on Fig. 7.8.
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Figure 7.8: Output for case 5.
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Chapter 8

Concluding Remarks

8.1 Discussion

In this work we used the machine learning methods, but we didn’t discussed why
we apply such methods for present problem. In this part we want to compare the
classical optimization methods with GA and ACO approach.

Advantages of GA [9], [14]:

� Suitable for large-scale optimization problems;

� Can be used in problems with the changing environment;

� Effective parallelization;

� Does not need any information about the behavior of the function (continuous,
differentiability);

� Easy to implement.

GA disadvantages [14]:

� We can not optimally encode parameters for all problems;

� Difficult to apply for multi extremal problems (Rastrigin function), GA is
difficult to apply for isolated functions.

The optimization method for vehicle routing problem can be for example: The Least
Squares Method, Lagrangian Method [12] and others. Let’s consider the simple
problem. We have a coordinate system and we have three points, which are not on
a line. We need to find the line which will be near to the all points, it means the
distance between the point and the value on the line will be possibly minimum. Let’s
consider the same problem, but the amount of points will be much more. To solve
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this problem with the least squares method will not be so much complicated as when
we had just three points.

Instead of simple example presented above the Vehicle Routing Problem is the NP-
hard problem. The main reason why we use GA for such large problems is because
we don’t need a precise solution, we can use close-to-optimal solution. Of course for
one route we can use more simple algorithms, instead of using GA connecting with
ACO approach for calculating the energy and ranking results. But let’s consider the
large network with a big amount of routes. Having our prepeard algorithm we can
simply extend it to the large amount of routes. So here it already will be useful to
build new bus stops and change sequence of some bus routes. And for fast working
of application we can apply parallelization in genetic algorithm for calculation of
different populations.

At present, GA is used for tasks such as [14]:

� Search for global extremum multiparameter function

� Approximation of functions

� The problem of the shortest path

� Location problem

� Set up an artificial neural network

� Game strategy

� Machine learning

The important question is the convergence of the genetic algorithm. In article
“Convergence of genetic algorithm” [17] the authors focus on convergence of
algorithm.

8.2 Conclusions

Based on the main results and discussion we can conclude that we reached the main
goal of the master’s thesis problem. We developed the application that can help to
analyse necessary amount of charging stations for certain bus route. The following
cases were analysed:

� no new bus stops, homogeneous charging stations, fixed battery capacity,

� no new bus stops, inhomogeneous charging stations, fixed battery capacity

� new bus stops, homogeneous charging stations, fixed battery capacity
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� new bus stops, inhomogeneous charging stations, fixed battery capacity

� no new bus stops, homogeneous charging stations, variable battery capacity

More usefull case for our route becomes the case number five: no new bus stops,
inhomogeneous charging stations, variable battery capacity. So far as we have only
one testing route and this route has not so long distance between bus stops, we don’t
need to build new bus stops, but it is interesting to see if we can decrease the battery
capacity for the bus. As we can see from results, we can do it.

The cases where we recommend new bus stop are not so applicable in one not so
long route.

8.3 Recommendations for Future Work

We can add the following improvements in future application:

� Improve GA considering several bus routes.

� Add cycle for GA implementation which will check the convergence of algorithm.

� In present program we analyse just one type of system: “en route” charging.
Later we can also analyse another system, using “depot recharging”. This means
that the buses will be recharged when they park at depots for the night.

� Also in the present program we don’t use the possible charging going downhill,
we can add such possibility in the future.
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Appendix A

CD index

In the following directories on the attached CD you may find:

REPORT This report (.pdf file).

CODE The Python code of the application for 5 considered cases.

70


	Abstract
	Preface
	Introduction
	FlexChEV project
	Troms fylkeskommune’s el-bus project
	Previous Work
	Contribution
	Plan of work

	Preliminaries
	Vehicle Routing Problem
	Ant Colony Optimization algorithm
	General description of ACO
	Applying ACO for Vehicle Routing Problem

	Genetic Algorithm
	General description of GA
	Applying GA for Vehicle Routing Problem

	Hamiltonian paths

	Specification for application
	Genetic algorithm implementation
	The experimental network
	First try
	Implementation
	Data structure
	Initial population
	Crossover operator
	Mutation operator
	Graphic representation

	Fitness function - ACO algorithm
	Results

	ACO improvement
	Topography analysis
	Uphill driving
	Downhill driving

	Simplify the calculations

	Connection of GA and ACO
	Connecting two algorithms
	Interface

	Results
	Analysed cases
	No new bus stops, homogeneous charging stations, fixed battery capacity
	No new bus stops, inhomogeneous charging stations, fixed battery capacity
	New bus stops, homogeneous charging stations, fixed battery capacity
	New bus stops, inhomogeneous charging stations, fixed battery capacity
	No new bus stops, homogeneous charging stations, variable battery capacity

	Real data
	Execution and results
	Case 1: no new bus stops, homogeneous charging stations, fixed battery capacity
	Case 2: no new bus stops, inhomogeneous charging stations, fixed battery capacity
	Case 3: new bus stops, homogeneous charging stations, fixed battery capacity
	Case 4: new bus stops, inhomogeneous charging stations, fixed battery capacity
	Case 5: no new bus stops, homogeneous charging stations, variable battery capacity


	Concluding Remarks
	Discussion
	Conclusions
	Recommendations for Future Work

	CD index

