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Abstract  
The presence of eclogites is one of the strongest evidences for high pressure metamorphism, 

and for the presence of a paleo subduction zone. Deformation of eclogites can yield important 

information about the kinematics of subduction zones. The main mechanism for fabric 

development in eclogites is still a matter of debate among various research groups and has split 

the field in two. Most previous studies suggest that dislocation creep is the main deformation 

mechanism, but some studies suggest grain boundary diffusion as the main mechanism for the 

elongation of the high-pressure minerals and fabric evolution.    

 
Eclogites from the Saxothuringian domain in the Czech part of the Erzgebirge in the Bohemian 

Massif exhibit a strong lineation fabric. Omphacite, zoisite and elongated garnet contribute 

most to this fabric. SEM, BSE, EDS and EBSD analysis of the eclogites show an asymmetric, 

prograde zonation in omphacite and garnet, which is related to the elongation direction, parallel 

to lineation. Zoisite is expected to act as a rigid particle without any intracrystalline 

deformation, yet it occurs as elongated particles in the lineation direction. Quartz is located as 

elongated aggregates in pressure shadows of garnet parallel to lineation and does not show any 

signs of intra crystalline deformation.  

 

The asymmetric prograde chemical zonation of omphacite and garnet indicates growth and 

elongation of garnet and omphacite during prograde and peak metamorphic conditions. The 

correlation of the zonation patterns in omphacite and garnet, as well as weak CPO in garnet 

suggest that the elongated shape of the minerals and the fabric in the eclogites are a result of 

dissolution and grain growth by grain boundary diffusion. As well as rotation and oriented 

dependent growth of omphacite in the [001] direction causing a strong CPO and elongation in 

the lineation direction.  
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Abbreviations 
2D – two dimensional  

3D – three dimensional 

BLG – bulging 

BSE – backscatter electron 

CPO – crystallographic preferred orientation 

EBSD – electron backscatter diffraction 

EDS – energy dispersive x-ray spectroscopy 

Equ corr r–equivalent corrected radius 

GBAR – grain boundary area reduction 

GBM – grain boundary migration 

Grt – garnet 

Hbl – hornblende 

HP – high pressure 

HT – high temperature 

kbar – kilobar 

LPO – lattice preferred orientation 

Ma – million years 

mbar – millibar 

Mud – multiples of uniform density  

NE – north east 

nm – nanometer 

ODF – orientation distribution function 

Omp – omphacite 

PAROR – particle orientation 

Pg – paragonite 

P-T – pressure and temperature 

px – pixel 

Qtz – quartz 

Rt – rutile 

SPO – shape preferred orientation 

SW – south west 

SURFOR – surface orientation 
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SGR – subgrain rotation 

TEM – transmission electron microscope 

UHP – ultra high pressure 

VPSC – visco plastic self-consistent 

wt% – weight percentage  

Zo – zoisite  

Ԑ – strain 

µm – micrometer 
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1.0 Introduction  
Eclogites from the Saxothuringian domain in the Czech part of the Erzgebirge in the Bohemian 

Massif are the result of a Devonian-Carboniferous oceanic subduction of the Saxothuringian 

oceanic crust (Jeřábek et al., 2016). Peak metamorphic conditions for the formation of these 

eclogites have been interpreted to be 600-650 ˚C and 25-26 kbar by Klapova et al. (1998) and 

Collett et al. (2017). Samples from Meluzina and Na skalách outcrops were studied using 

scanning electron microcopy (SEM), electron backscatter diffraction (EBSD) and energy 

dispersive x-ray spectroscopy (EDS). Image analysis software has been used for grain size and 

shape/particle orientation analysis.   

 

The fabric development in eclogites has been interpreted by previous studies to be a result of 

dislocation creep on dominant slip systems; [001] (100), [001] {110} or ½ <110> {110} 

(Godard and van Roermund, 1995; Rehman et al., 2016). The activation of these dominant slip 

systems produces a typical L- or S-type fabric, or an intermediate fabric between the two 

endmember symmetries. Helmstaedt et al. (1972) introduced that a L-type fabric normally is 

produced in a constrictional regime, while S-type fabric normally is a result of flattening. On 

the other hand, some other authors suggest that the fabric development during eclogite-facies 

deformation can be a result of grain boundary diffusion mechanisms, during which the 

orientation-dependent dissolution and growth causes elongation of minerals and production of 

CPO (Wheeler, 1992; Bons and den Brok, 2000; Mauler et al., 2001; Storey and Prior, 2005). 

 

Geological history and different deformation mechanisms will be presented, as well as 

dominant deformation mechanisms and related microstructures for eclogite facies minerals. All 

methods used for preparation and analysis of the samples and interpretation of the results will 

be presented. The results will then be discussed and compared to previous work and the thesis 

will summarize the main findings by presenting conclusions.  

 

Aim of the thesis 

The aim of the thesis is to study chemical zonation, zonation patterns and microstructures to 

discuss grain boundary diffusion creep as a mechanism for fabric and CPO development in 

eclogite facies minerals by using image analysis tools, SEM, BSE, EDS and EBSD orientation 

data.  
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2.0 Background 
In this chapter, the geological setting and tectonic evolution of the study area will be presented. 

Following this deformation mechanisms and structures will be presented in a general term as 

well as dominating deformation mechanisms and related structures for eclogite facies minerals. 

 

2.1 Geological setting 

The Bohemian Massif is a result of the closure of the Saxothuringian Ocean during Devonian 

oceanic subduction and subsequent early Carboniferous continent-continent collision (Jeřábek 

et al., 2016). The Saxothuringian oceanic crust was subducted beneath the eastern plate that 

today represent the Teplá-Barrandian domain, Moldanubian domain and Brunia domain 

(Schulmann et al., 2009). The Bohemian Massif is divided into several domains and 

allochthones, this thesis will focus on an area of the southeastern Saxothuringian domain (in 

green colors in Fig. 2.1.1) in the western Bohemian Massif, Czech Republic. The 

Saxothuringian domain, represents the lower plate collisional system, and it contains relics of 

the subduction zone. Teplá-Barrandian domain represented the fore-arc and the Moldanubian 

domain represented the back-arc region. The different domains of the Bohemian massif and 

their most prominent rock units are illustrated in Fig. 2.1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1.1: geological and tectonic map of the Bohemian Massif modified from Schulmann et al. (2014). 
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The Saxothuringian domain is divided into upper-Proterozoic basement rocks consisting of 

grey and red granitic gneisses, schists, metagreywackes,  micaschists and metaconglomerates, 

as well as overlying lower-Paleozoic metasedimentary rocks (quartzite, quartz 

metaconclomerate and dolomitic marble) (Lorenz, 1979; Hoth et al., 1983; Lorenz and Hoth, 

1990; Klapova et al., 1998). Above the basement in the highest structural position, 

orthogneisses and some metapelites, marbles and magnetite skarns are present (Lorenz and 

Hoth, 1967; Lorenz and Hoth, 1990). The uppermost allocthonous unit contain boudins of 

eclogites, which are studied in this thesis (Klapova et al., 1998). The Saxothuringian eclogites 

vary in cooling ages from 360-333 Ma, with the youngest in the north and oldest in the south. 

P-T conditions show a decrease of pressure and temperature from the SW to NE (Schmädicke 

et al., 1995).  

 

Between the Saxothuringian and the Teplá-Barrandian domain, the Teplá suture (the subduction 

channel) worked as an exhumation channel for the HP rocks during the subduction (Klapova et 

al., 1998; Schulmann et al., 2009; Schulmann et al., 2014). The exhumed, subduction-related 

rocks show similar peak metamorphic and cooling ages. This indicates a very fast exhumation 

of the rocks within the subduction channel, where the HP rocks were brought very quickly back 

to the surface (Schmädicke et al., 1995; Konopásek and Schulmann, 2005). The peak 

metamorphic conditions during the formation of the Erzgebirge eclogites have been determined 

by Collett et al. (2017) at 615 ˚C and 26 kbar. The metamorphic conditions for the Meluzina 

eclogites, which were sampled for this study, have been interpreted to be 600-650 ˚C and 25-

26 kbar by Klapova et al. (1998). 

 

The eclogites in the central Erzgebirge Mountains have been divided by Schmädicke et al. 

(1995) and Klapova et al. (1998) into three main types based on differences in mineral 

assemblage and grain size, called type 1-3:  

 

Type 1 is the most frequent of the three in the area. Compared to type 2 and 3 it is finer 

grained, darker in color and often banded with more omphacite-rich layers and more 

garnet-rich layers. Type 1 has a mineral assemblage of: 

 

omphacite + garnet + rutile + quartz + amphibole  

± paragonite ± phengite ± zoisite. 
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Type 2 is less frequent than type 1. It is lighter in color, coarser grained, and contains 

lenses or discontinuous bands of zoisite. Presence of talc and kyanite and the higher 

amount of zoisite differs this eclogite from type 1. The typical mineral assemblage for 

type 2 eclogite is: 

 

omphacite + garnet + zoisite + rutile  

± paragonite ± phengite ± kyanite ± talc ± amphibole ± quartz.  

A gradual transition in mineral assemblage between type 1 and type 2 can occur.  

 

Type 3 differs from type 1 and 2 by having a coarser grain size, it is missing the banded 

structure, and shows different distribution of omphacite and garnet. These less common 

eclogites from the Erzgebirge Mountains have a typical mineral assemblage of:  

  

omphacite + garnet + amphibole + quartz + rutile + white mica  

        ± primary carbonate.  

 

The study area is located around the Meluzina and Na skalách outcrops in the central Erzgebirge 

Mountains. The metamorphic age for the Meluzina eclogites was calculated by Hurych and 

Brueckner (1995) by Sm-Nd method to be 333 ± 2 Ma. Meluzina eclogites exhibit a strong 

mineral lineation and foliation, developed by two syn-eclogitic deformation events. Post-

eclogitic deformation events have affected some of the eclogite bodies. Folding of the area 

rotated some of the eclogite boudins and in a later deformation event, shear zones developed 

and caused intensive retrogression. Well preserved eclogite mineral assemblage is still present 

in areas not affected by the shear zones and the related retrogression (Klapova et al., 1998). 

These eclogites with preserved syn-eclogitic deformation fabric and mineral assemblage are 

important for the understanding of kinematics during deformation and fabric development in 

HP rocks, and these will be further discussed in this thesis.  
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2.2 Eclogite petrology 

Eclogite is a high pressure (HP) or ultra-high pressure (UHP) rock, mostly produced by 

subduction of a mafic (basaltic) oceanic crust or continental crust e.g. (Rehman et al., 2016). 

Research on eclogites is an important part of understanding mechanisms and deformation 

parameters in a convergent plate margin. These rocks can offer information on pressure and 

temperature (P-T) conditions and strain rates during formation and are important markers for 

reconstructing earlier orogenic belts and subduction zones e.g. (Godard and van Roermund, 

1995).  

 

2.3 Deformation mechanisms 

In HP regimes, mostly at deeper crustal levels, most minerals deform by different ductile flow 

processes. Different minerals react and deform in different ways during various factors such as 

grain size, mineralogy, external fluids, preferred orientation, porosity and permeability and 

external factors as temperature, fluid and lithostatic pressure, differential stress and strain rate. 

Some ductile deformation mechanisms will be explained in this chapter and the most prominent 

and relevant deformation structures in stable eclogite facies minerals will be enlightened 

(Passchier and Trouw, 1998). Deformation induced microstructures for different phases can 

help determine deformation processes and accommodate the study of deformation regimes and 

its kinematics.  

 

2.3.1 Brittle fracturing 

Brittle deformation by development of cracks, joints or faults can change grain shapes. This is 

common in low temperature (LT) or high strain rate regimes. Most micro-cracks in minerals 

develop in a certain crystallographic direction, for example in the cleavage direction of micas 

(Wong and Biegel, 1985). Fractures normally heal and close by a secondary phase, often the 

same as the host crystal of the cracked grain. Lager micro-cracks that show evidence for 

propagation or displacement can obtain information about the normal stress that have worked 

on the rock (Passchier and Trouw, 1998).  
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2.3.2 Diffusion creep  

Diffusion creep deform grains by migration of vacancies through the crystal lattice (grain-scale 

diffusive mass transfer) and transfers material from areas exposed to high normal stress to low 

normal stress areas of the grain. Diffusion creep mostly occurs at high temperatures, with 

respect to the melting temperature of the minerals in the deforming rock, and diffusion creep 

mechanisms may take over or accompany dynamic recrystallization by dislocation creep 

mechanisms. Diffusion creep also favors smaller grain sizes since the diffusion path is shorter. 

In conclusion grain size is one of the main parameters if a crystal deforms by dislocation creep 

or diffusion creep. The main types of diffusion creep are: Coble creep, Nabarro-Herring creep 

and pressure solution (if a fluid is present). During coble creep the vacancies diffuse through 

the crystal using the crystal lattice, while diffusion along a grain boundary is called Nabarro-

Herring creep. Grain boundary sliding is a process where crystals, especially fine grained 

crystals, slide past each other. To avoid voids between the sliding crystals diffusion creep 

processes fills these voids with transferred material. These two accommodating processes is 

referred to as granular flow (Knipe, 1989; Passchier and Trouw, 1998).   

 

Pressure solution deformation can change grain shapes in rocks that contain an intergranular 

fluid (Passchier and Trouw, 1998). Pressure solution is the equivalent deformation mechanism 

to Coble creep in dry rocks, and is an important deformation mechanism in the crust and upper 

mantle (Wheeler, 1992). The solubility of minerals is higher where the crystal lattice is under 

higher stress, so when stress is applied to the rock material in the grains will dissolve around 

areas with high differential stress and precipitate at areas around the grain with lower 

differential stress. This process can change the shape of grains and fabrics can be formed 

without internal deformation of the grain, by precipitation at a high angle to the highest stress 

direction and elongation of the grain perpendicular to the shortening direction. The dissolved 

material may also migrate and deposit in strain shadows of more rigid minerals or in veins 

(Passchier and Trouw, 1998).  

 

Grain boundary diffusion can occur in most deformation regimes, but some parameters favor 

this deformation mechanism. Around smaller grains the diffusion distance for the material in 

the fluid is shorter, so the dissolution and precipitation become a more competitive process in 

smaller grains. At lower temperatures, pressure solution processes are often more dominant 

than dislocation creep, since the activation energy for diffusion is lower than dislocation creep. 
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As well as at high stresses dislocation creep tends to be a more dominant deformation 

mechanism than pressure solution (Wheeler, 1992). 

 

Crystallographic preferred orientation (CPO) is often used as an indicator for dislocation creep 

deformation mechanisms. However Bons and den Brok (2000) have experimentally modelled 

that CPO in anisotropic minerals can form by dissolution precipitation creep and rigid rotation 

of the crystal. This is due to crystallographic orientation dependent dissolution and precipitation 

around the grains, and preferred precipitation and dissolution in respect to the highest and 

lowest normal stress.  

 

2.3.3 Intra crystalline deformation 

At elevated temperatures rocks deform by movement of defects within the crystal lattice. 

Different types of lattice defects can occur. Point defects are a missing or extra atoms or 

molecules in the crystal lattice, called vacancies and interstitials. There are several types of 

dislocations effecting the crystal lattice. A missing or extra part of a lattice plane is called an 

edge dislocation, a displaced or twisted lattice plane caused by a screw dislocation are some 

members of several more types of dislocations. Dislocation creep is an accommodating process 

between dislocation glide and recovery (see chapter 2.3.6). Deformation by dislocation creep 

occurs when dislocations glide in specific crystallographic planes and in a specific direction. 

The direction of the glide and the amount of displacement of a dislocation is called the Burgers 

vector. By transmission electron microscope (TEM) studies the Burgers vector of the moving 

dislocation can be determined, this is called the slip system. Slip systems are presented using 

Miller indices of the plane and slip direction e.g. (001) [010] for a specific (plane) and 

[direction] and e.g. {001} <010> for a family of equivalent {planes} and <directions>. 

Deformation by dislocation creep depends mainly on temperature, and some on differential 

stress, strain rate and water content. Different slip planes in different minerals can be activated 

based on the orientation of the grain and the magnitude of the stress. Since dislocations move 

in a specific slip system in a mineral during a deformation event, a CPO can develop. This CPO 

is commonly taken as a good indication for deformation by dislocation creep (Passchier and 

Trouw, 1998).  
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2.3.4 Recrystallization   

Recrystallization is a process during deformation (dynamic recrystallization) where new 

dislocation free grains are formed from a recovered or deformed grain that contains dislocations 

(Rollett et al., 2004). Recrystallization and formation of new grains and grain structure can lead 

to preferred orientation, misorientation and can change the shape and size of original grains or 

replace them completely (Guillope and Poirier, 1979). There are three different mechanisms 

depending on temperature and flow stress for dynamic recrystallization, corresponding to 

regime 1-3  of dislocation creep by Hirth and Tullis (1992). These are bulging (BLG), subgrain 

rotation (SGR) and grain boundary migration (GBM), in order from low to high temperature 

and high to low strain rate (Passchier and Trouw, 1998).  

 

Recrystallization by BLG is a mechanism where grains with a low dislocation density bulge 

into grains with a high dislocation density. New small, recrystallized grains are formed by the 

formation of subgrain boundaries that eventually can evolve into grain boundaries by rotation 

of the new grain (Passchier and Trouw, 1998).  

 

SGR recrystallization occurs when dislocations are added to a subgrain boundary by dislocation 

climb in the crystal lattice, normally at a higher temperature and lower flow stress than 

recrystallization by BLG. This will cause misorientation and rotation of the subgrain with 

respect to the host grain, and to other new recrystallized grains. Subgrains mostly occur as 

sheets between relics of the older host grains, or old grains get entirely consumed by new 

recrystallized grains (Passchier and Trouw, 1998).  

 

GBM recrystallization occur at higher temperatures than recrystallization by BLG and SRG. 

Grain boundaries become mobile and sweep through grains and remove dislocations and new 

dislocation free grains form. Recrystallization in this regime occurs by a mix of grain boundary 

migration and subgrain rotation. This forms new dislocation free grains and subgrain 

boundaries eventually evolve into grain boundaries and recrystallized grains forms. This 

mechanism often lead to interlobate grain shapes with few internal deformation structures like 

subgrains and undulose extinction (Hirth and Tullis, 1992; Passchier and Trouw, 1998).  
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2.3.5 Deformation twinning and kinking 

Twinning and kinking are described as an accommodating deformation mechanism at lower 

temperatures and mostly occur in certain minerals e.g. plagioclase, quartz, micas, jadeite and 

more. Deformation twinning in minerals is mostly restricted to develop in a specific 

crystallographic direction and plane. A crystallographic plane in the crystal is displaced and 

sheared causing a change in orientation in relation of the rest of the crystal (Christian and 

Mahajan, 1995). Kinking develops in the same way but is not restricted to a specific direction 

and plane in the crystal. It is more dominant in crystals with a single slip system like micas, but 

can also occur in other minerals e.g. feldspars, amphiboles, pyroxenes, quartz and kyanite. 

Deformation twins separate from growth twins by often have a tapered shape (thicker in the 

area with high strain and reduces towards the low strain area of the crystal) shown in Fig. 2.3.1 

b and more concentrated at high strain parts of the crystal, while growth twins commonly are 

straight and may have steps (Fig. 2.3.1 a) (Passchier and Trouw, 1998).  

 

 

 

 

 

 

 
Fig. 2.3.1: a) straight growth twins with step,  b) tapered deformation twins at a high stress site of a crystal 
(Passchier and Trouw, 1998). 

 

2.3.6 Recovery 

Recovery are mechanisms that reduce the dislocation density in a crystal. Longer length and 

higher amount of dislocation per volume of a crystal will cause a higher amount of internal 

strain energy. Recovery of the crystal can rearrange dislocations by straightening and shorten 

dislocation, as well as arrange dislocations into networks. This will lower the internal strain 

energy in the crystal. During recovery dislocations are often consternated in a planar zone, 

rather than distributed in the whole crystal, and decrease the dislocation density in these 

dislocation free areas. These bands of dislocations are called a deformation band. Deformation 

bands can evolve into a subgrain boundary that have a slightly different orientation than the 

host grain and other subgrains in the crystal (Gerald et al., 1983). A crystal containing subgrains 
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will show different extinction in the crystal, while dislocations distributed in the entire crystal 

often will show undulose extinction. Recovery mechanism in crystals can operate after the 

stress causing the deformation has stopped (Passchier and Trouw, 1998).  

 

2.3.7 Grain boundary area reduction (GBAR), grain growth and post-
tectonic recrystallization  

Grain boundaries can be seen as planar defects in the crystal, and store internal free energy as 

well as other defects in the crystal lattice do. GBAR is a process that lower the internal free 

energy of a crystal by decreasing the total surface area of grain boundaries, by straightening the 

boundaries and causing growth of more polygonal shaped crystals. GBAR is a much less 

effective process than recrystallization by SGB or GBM to decreases the internal energy in the 

crystal, so GBAR is a more prominent mechanism after the deformation has stopped. The 

strength of the GBAR depends on temperature, presence of other phases and fluids surrounding 

the grain, mineral chemistry and CPO. The most important factor for a grain to grow and the 

area of grain boundaries to reduce is that the grain can grow without obstacles (e.g. different 

phases surrounding the grain). This effect will cause monomineralic aggregates and layers to 

be more accepting to GBAR, and show coarser and more polygonal shaped grains in 

monomineralic areas and smaller grains in polymineralic areas (Passchier and Trouw, 1998).  

 

When the deformation of the rock stops crystals may still contain dislocations, subgrain 

boundaries and unstable grain boundaries, which leads to a higher internal free energy. If the 

temperature during deformation was high or if water was present in the system along grain 

boundaries, recrystallization, recovery and GBAR processes can continue to work in the rock 

to lower the internal energy of the crystals after the deformation have stopped. This process is 

known as static recrystallization and will replace unstable minerals, cause GBAR and remove 

dislocation tangles. It changes the grain and subgrain boundaries and can destroy the shape 

preferred orientation (SPO) but will not affect the CPO (Passchier and Trouw, 1998).  
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2.4 Deformation and microstructures in eclogite minerals  

Main minerals in the studied eclogites and the dominant deformation mechanism working in 

eclogite facies minerals will be presented in this chapter. Omphacite and garnet deformation 

and related microstructures at eclogite facies will be the main focus. Eclogite fabric is typically 

interpreted to be a result of dislocation creep, and the production of a strong CPO in omphacite 

and other eclogite facies minerals (Bascou et al., 2001; Zhang et al., 2006; Rehman et al., 2016). 

However some previous studies also suggest that the eclogite fabric may be connected with 

grain boundary diffusion creep and pressure solution as a CPO forming mechanism (Wheeler, 

1992; Bons and den Brok, 2000; Storey and Prior, 2005). If the fabric is mainly produced by 

dislocation or diffusion creep presently divides the field into two groups with different 

interpretations for the main mechanism for fabric development. 

 

2.4.1 Omphacite deformation at eclogite facies conditions 

Omphacite, the major component in eclogites, is a HP and Na-rich clinopyroxene variant, with 

a composition between diopside (MgCaSi2O6) and jadeite (NaAlSi2O6) (Zhang et al., 2006). 

Plastic deformation in minerals is an important deformation process in deformed rocks, and is 

often recorded by development of CPO in different minerals (Rehman et al., 2016). The 

formation of CPO in omphacites is interpreted to be a result of dislocation creep deformation, 

and main types of omphacite CPO fabric have been determined (Helmstaedt et al., 1972; 

Godard and van Roermund, 1995; Rehman et al., 2016) to be: 

1. S-type (foliation)  

2. L-type (lineation) 

3. Annealed fabrics 

4. Composite fabrics 

5. Misoriented fabrics 

Fig. 2.4.1: typical S- and L-type fabric in omphacite (Rehman et al., 2016). X=lineation, Y=foliation and 
Z=perpendicular to foliation.  
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S-type fabric is considered to be a flattening fabric and L-type a constrictional fabric. The S-

type fabric may indicate recrystallization of omphacite grains during flattening and 

development of a foliation, while L-type is believed to originate from recrystallization during 

constrictional conditions and develop a lineation of the omphacite. Both flattening and 

constrictional regimes can occur during the same deformation event, and an intermediate 

between L- and S-type fabrics can develop, called L-S-fabric. As illustrated in Fig. 2.4.1 S-type 

fabric has a strong [010] axes perpendicular to the foliation (Z) and [001] axes forms a girdle 

perpendicular to [010] and parallel to lineation (X). While the L-type fabric show a girdle of 

[010] axes perpendicular to lineation (X) and [001] axes form a strong girdle parallel to 

lineation (X) (Helmstaedt et al., 1972; Rehman et al., 2016). 

 

Dominant dislocation slip systems to produce the dominant L- and S-fabrics in omphacite, have 

been determined by several studies using TEM and viscoplastic self-consistent (VPSC) -

modeling. The dominant slip systems identified in omphacite are [001] (100), [001] {110} and 

½ <110> {110} (Godard and van Roermund, 1995; Rehman et al., 2016). 

 
Dislocation creep as the main deformation mechanism controlling the CPO has been discussed 

by several studies (Bascou et al., 2001; Zhang et al., 2006; Rehman et al., 2016), but diffusion 

creep or pressure solution as a mechanism for omphacite CPO has also been discussed as a 

possible mechanism (Wheeler, 1992; Bons and den Brok, 2000; Mauler et al., 2001). 

Anisotropic growth (growth rate not equal in all directions), and dissolution precipitation can 

also be a mechanism for development of CPO in omphacites (Bons and den Brok, 2000). This 

will cause the crystals to grow in the elongation direction and dissolve in the shortening 

direction in the rock (Wintsch and Yi, 2002). The C-axis of omphacite is the longest axis, and 

the growth rate parallel to the C-axis is higher than perpendicular to the C-axis or other 

directions. As seen in Fig. 2.4.2 the precipitation rate parallel to the C-axis and highest normal 

stress perpendicular to the C-axis (orientation A), is more efficient than for orientation B with 

the C-axis parallel to the highest normal stress. This effect will produce a grain shape fabric 

between the L- and S-type fabrics, and may account for development of CPO in eclogites by 

dissolution of material in unfavorable grain orientation and growth in  the elongation direction 

(Mauler et al., 2001) .  
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Fig. 2.4.2: illustration of the effect of grain shape and CPO of omphacite due to antistrophic dissolution and 
precipitation of omphacite (Mauler et al., 2001). 
 

Most eclogites exhumed to the surface have gone through some retrogression of the mineral 

assemblage. Symplectites of plagioclase and diopside between omphacite grains are a well-

known product of the retrograde P-T path of eclogites (Vogel, 1967; Engels, 1972). The 

symplectites may occur as lamellas of plagioclase and clinopyroxene or as a globular structure 

of the two phases  (Joanny et al., 1991).  

 

2.4.2 Garnet deformation at eclogite facies conditions 

Garnet is the main mineral in eclogite beside omphacite. The generic formula for garnet is: 

X32+ Y23+ Si3 O12 where X=Ca, Fe2+, Mn or Mg and Y=Al, Cr or Fe3+. The main members of the 

garnet group are:  

  

Pyrope: Mg3Al2Si3O12 

 Almandine: Fe32+Al2Si3O12 

 Grossular: Ca3Al2Si3O12 

 Spessartine: Mn3Al2Si3O12 

 Andradite: Ca3Fe23+Si3O12 

 Uvarovite: Ca3Cr2Si3O12 
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Garnet is an important mineral in many metamorphic rocks and the understanding of garnet 

deformation is important for understanding the kinematics of the crust, mantle, subduction 

processes and is used for many geothermobarometers (Storey and Prior, 2005). Garnet is 

especially important for understanding of ultra-high pressure rock deformation as in eclogites 

(Mainprice et al., 2004). In eclogites the cubic structure of garnet makes it a much more rigid 

mineral than omphacite and other minerals. Omphacite often accommodates the deformation 

while garnet acts as rigid particles in the rock (Rehman et al., 2016).  

 

By using EBSD, TEM and VPSC modeling microstructures in garnet can be studied, where 

other microscope techniques do not work for isotropic minerals such as garnet. Deformation by 

dislocation creep may occur in garnet at high temperatures, and the brittle-ductile transition in 

garnet occur at around 600-800 °C (Mainprice et al., 2004). CPO, dislocation and diffusion 

creep related microstructures in garnet has been discussed by several studies (Mainprice et al., 

2004; Storey and Prior, 2005) and dominant slip systems and deformation structures have been 

determined. By simulations and comparison with natural deformed garnets the dominant slip 

system in garnet has been interpreted to be the 1/2 <111> {110} slip (Mainprice et al., 2004; 

Storey and Prior, 2005). The cubic crystal structure of garnet comes with a large number of slip 

systems that can be activated during deformation. Either way CPO patterns in garnets are rarely 

strong. One explanation discussed by several authors is that garnet is mainly associated with 

other mechanically weaker minerals, and these will accommodate most of the strain and 

deformation while garnet grain acts as rigid particles (strain partitioning) (Mainprice et al., 

2004; Rehman et al., 2016). It has been interpreted by Mainprice et al. (2004) that formation of 

a strong CPO pattern in garnets high temperatures and strain are required, as found in the mantle 

transition zone and lower continental crust. Also rocks with a higher fraction of garnet should 

lower the partition of strain to weaker minerals, and garnets may develop a stronger CPO.  

 

Even if CPO patterns of garnets normally are weak and random, other deformation mechanism 

except dislocation creep can deform garnets. Garnet growth and production of chemical 

zonation requires diffusion processes. Grain boundary diffusion (coble creep or pressure 

solution) can deform garnet by change in grain shapes without effecting the internal structures 

of the garnet. Dislocation creep mechanisms such as subgrain rotation and recrystallization can 

produce more fine grained garnet. This can later accommodate grain-size sensitive flow 

(diffusion creep) processes (Storey and Prior, 2005).  
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The chemical composition of garnet is very sensitive to changes in temperature and pressure, 

and variations in the P-T conditions of metamorphic rocks can form chemical zonation in 

garnets and other minerals. These chemical changes and zonation patterns can be used for 

constraining the P-T conditions of the rock. Some zonation patterns and chemical composition 

of garnet have been determined to be typical for prograde metamorphism. The increase of XMg 

(Mg/Mg+Fe) pyrope content from core to rim is one of these typical prograde chemical 

zonation patterns (Konrad-Schmolke et al., 2006).  

 

Fibrous rims (kelyphites) composed of amphibole and plagioclase, are a known product of 

retrogression in eclogites, and have been observed surrounding garnet grains (Klapova et al., 

1998; Štípská and Powell, 2005).   

 

2.4.3 Accessory minerals 

The main focus in this thesis is to study deformation structures in garnet and omphacite, 

however accessory minerals such as quartz, zoisite, rutile, hornblende and paragonite are also 

often present in eclogite and will receive some attention in this study.  

 

Quartz (SiO2) is present in almost all eclogites in minor proportions but there are not many 

previous studies on quartz deformation and fabric development at eclogite facies. Mauler et al. 

(2001) studied lattice preferred orientation (LPO) fabrics in quartz in eclogites and did not find 

any preferred orientation or hardly any signs of intracrystalline deformation. The quartz grains 

had straight grain boundaries and a large grain size. Recovery or post-tectonic recrystallization 

by GBAR during retrogression in quartz may be the reason for the absent signs of 

intracrystalline deformation, the shape of the grains and may have erased a pre-existing SPO 

(Mauler et al., 2001). A study on microfabrics in eclogites from Keppler et al. (2016) stated 

that quartz in these samples are mostly found in pressure shadows of the garnets and more 

garnet and quartz rich layers forms.  

 

Zoisite, (Ca2Al3(Si2O7)(SiO4)O(OH)), mostly occurs as rigid minerals during deformation 

without intra crystalline plastic deformation. Solution mass transfer and diffusion creep along 

the grain boundaries may cause elongation and CPO of the grains by grain boundary diffusion 

dissolution and precipitation at grain areas with high and low stress (Stünitz, 1993). Collett et 
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al. (2017) suggest that zoisite is the product of hydration and/or cooling during an early stage 

of exhumation of eclogites.  

 

Amphiboles, in this case hornblende (Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2), in eclogites is reported 

to be mainly a product of retrograde metamorphism to lower P-T conditions and replacement 

of stable eclogite facies minerals. Hornblende can replace omphacite as crystals or form 

retrograde symplectite rims around garnet and omphacite in eclogites (Engels, 1972; Zhang et 

al., 2003). In some cases hornblende grains can show a similar CPO fabric as omphacite. When 

replacing the omphacite hornblende inherits the pre-existing CPO of the omphacite. This 

process is called homoaxial (Engels, 1972) or homotactic growth (Rehman et al., 2016). Growth 

of hornblende grains and symplectites during exhumation may also rely on influx of some 

hydrous fluid to the system, and not only decreasing P-T conditions (Massonne, 2012).  

 

Rutile (TiO2) is almost always present in eclogites in minor proportions. Rutile is tetragonal 

and often forms elongated prismatic crystals. It has been observed to have C-axis laying in the 

foliation plane and/or oriented parallel to the lineation and probably deforms by dislocation and 

diffusion creep mechanisms as other phases present in the rock (Mauler et al., 2001). 

Paragonite, Na-rich muscovite, can be present in eclogites in minor or larger amounts and often 

aligns along the foliation in rocks, as mica minerals normally do (Collett et al., 2017).  
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3.0 Methods 
Different methods for data collection were performed during this thesis: fieldwork, production 

of thin sections, different methods of imaging and digitalization of the thin section images, 

image analysis and statistical analysis. These methods will be presented in this chapter.  

 

3.1 Fieldwork 

The fieldwork took place in the Northern Bohemian Massif Area, around the Meluzina and Na 

skalách Mountains (see Fig. 3.1.1)  in the Czech part of the Erzgebirge. The goal of the 

fieldwork was to collect several rock samples and structural data from different localities in the 

eclogite bodies in the area. Lineation, foliation and sample number were marked on each sample 

that was collected in situ and the strike and dip/plunge were measured (see Table 3.1.1). The 

coordinates of the sample localities was noted. The samples, which were primarily used for the 

study, M1 and M7, are marked with bold text and have all the structural data available:  

 
Table 3.1.1: table showing samples, coordinates, name of outcrop, foliation and lineation. 

 

Sample Coordinate Outcrop Foliation  

(strike & dip) 

Lineation 

(strike & plunge) 

M1 N 50˚23,434’ 
E 013˚00,391’ 

Meluzina 184/53˚ 247/25˚ 

M2 N 50˚23,442’ 
E 013˚00,411’ 

Meluzina Loose block Loose Block 

M3A N 50˚23,435’ 
E 013˚00,490’ 

Meluzina 170/28˚ Not visible in field 

M3B N 50˚23,435’ 
E 013˚00,490’ 

Meluzina Loose block Loose block 

M4 N 50˚23,399’ 
E 013˚00,581’ 

Meluzina Not visible in field Not visible in field 

M5 N 50˚23,396’ 
E 013˚00,599’ 

Meluzina 205/45˚ 250/35˚ 

M6 N 50˚23,392’ 
E 013˚00,625’ 

Meluzina Not visible in field Not visible in field 

M7 N 50˚23,112’ 
E 012˚59,704’ 

Na skalách 268/54˚ 245/50˚ 

M8  Na skalách 240/50˚ 223/48˚ 
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Fig. 3.1.1: geological map of the Saxothuringian domain in the Erzgebirge Mountains in the Bohemian Massif 
presented by (Klapova et al., 1998), with modifications showing the sampled eclogite bodies (Na skalách and 
Meluzina) with red squares.  
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3.2 Preparation of thin sections 

The rock samples were first cut in two pieces parallel to the lineation and perpendicular to the 

foliation using a tile saw. The samples where further cut into 1 cm thick slices by cutting it 

parallel to the first cut. The slices were studied to find a preferred area for the thin section. Thin 

section areas had to be as unaffected as possible by retrogression as well as chemical and 

physical weathering. One thin section per sample was produced. Selected thin section areas 

were marked and cut into 1 cm (thick) x 2 cm (wide) x 3 cm (long) rectangles. Additional thin 

sections cut perpendicular to lineation and foliation were produced for selected samples to get 

a three dimensional (3D) view of the particles. The further preparation of the thin sections were 

done by the laboratory staff at Institute for Geosciences at University of Tromsø.  

 

3.3 Microscopy 

Polarization microscope Leica Laborlux 11 Pol S was used for observation of the thin sections, 

mineral identification and to gain a rough structural overview. After light microscope studies, 

two samples were chosen for further work: M1 and M7. The microscope was also used for 

mineral identification during the production of phase maps, and for identification of grain 

boundaries for the redrawing of phase and grain boundaries.  

 

3.4 Scanning electron microscopy (SEM) imaging and analysis 

Regions of interest on each section were imaged in the SEM. Element maps of some areas were 

produced by energy dispersive x-ray spectroscopy (EDS) for phase recognition. The thin 

sections M1-L and M7-L are the ones cut parallel to lineation and perpendicular to foliation, 

while M1-P and M7-P are cut perpendicular to lineation and foliation. Before producing images 

of the thin sections in the SEM a carbon coating was applied to avoid electron charging. This 

was done in a carbon evaporator, which coated the section with a thin (≈20 nm) carbon layer 

from a carbon thread. A Zeiss MERLIN VP compact SEM located at the Department of 

Medicine and Health at University of Tromsø was used for all imaging.  
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3.4.1 BSE and EDS imaging 

The greyscale of the back scatter electron (BSE) images is related to the average atomic number 

of the elements in the minerals present in the sample. The lower the atomic number of the 

elements, the darker the greyscale on the BSE-image. This is due to the number and intensity 

of backscattered electrons, and the energy absorbed by the BSE detector (Schwartz et al., 2009).  

The section was placed in the chamber of the SEM, and pumped down to a vacuum of at least 

1 x 10-5 mbar. The same magnification and working distance (the distance between the pole 

piece of the electron gun and the focused sample) was used for all BSE images produced for 

the redrawing of phase and grain boundary maps, 300x magnification and 8.5 mm working 

distance. The acceleration voltage (EHT) level applied was constant at 20.00 kV and a BSE 

detector was used for all images. The settings used are shown in Fig. 3.4.2.   

Fig. 3.4.1: setting used for BSE imaging.  
 

The contrast, brightness and focus was adjusted to achieve the clearest image of grain 

boundaries, zonation and phases. The images were taken one by one to cover the area of interest 

for each thin section by using a joystick that moved the stage the sample was placed on.  

 

Around 100 BSE images were taken with a working distance of 8.5 mm and 300x magnification 

for each thin section. Adobe Photoshop CS6 was used to stitch the separate images together 

and produce one map for each area of interest. This was done by inserting all the images to a 

blank canvas with no compression of the original image size (1024 x 768 pixels) to keep the 

high resolution and to not compress the size of the image.  

 

Element maps of selected areas from the BSE images was produced using the EDS detector and 

AZTEC software by Oxford instruments for post-processing. The EDS produces elements maps 

in AZTEC software where different elements are given different colors. The density of each 

color/element in different phases help to determine the mineral. The EDS detector was also 

used for point and linescan analysis to help identify different phases in the sample, and to study 

chemical zonation in single crystals. 
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3.4.2 EBSD-mapping 

EBSD is an additional technique in the SEM to obtain crystallographic orientation of grains 

and identification of phases. The electron beam hits the tilted sample and the diffracted 

electrons backscattered by the lattice planes form a Kikuchi pattern on a phosphorus screen, as 

illustrated in Fig. 3.4.2. A camera placed behind the phosphorus screen captures the pattern. 

The angles between the lines in the Kikuchi pattern and the pattern itself can identify the phase 

and the crystal orientation of the grain. The sample needs to be tilted about 70° to obtain high 

intensity Kikuchi patterns. The identification of phases are done automatically by a software, 

in this case AZTEC from Oxford instruments that recognizes the pattern and angles of the 

Kikuchi pattern from a database (Schwartz et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.4.2: illustration from (Schwartz et al., 2009) with the pole piece with the detector, the tilted sample and the 
phosphorus screen with a Kikuchi pattern.  
 

The sample was placed with a 70° tilt oriented parallel to the lineation. The area to be mapped 

was marked and phases present in the sample was chosen from a database. The Kikuchi pattern 

recognition software was checked to make sure it identified the right phase. The settings used 

for the EBSD are found in Table 3.4.1.  

 

 

 

 

 

 



26 
 

Table 3.4.1: settings used for EBSD analysis.  
 

 

 

 

3.4.3 Pole figures 

Pole figures was plotted and contoured using HKL Channel 5 by Oxford instruments. Equal 

area projection and lower hemisphere pole figures were constructed for all phases. Relevant 

crystallographic planes was chosen for each phase. The horizontal line in the pole figures is the 

lineation direction and is marked with X and foliation with Y, Z is perpendicular to X and Y. 

An estimation for amount of grains per phase in the EBSD maps, and hence number of grains 

used for the construction of pole figures were estimated from the grain boundary and phase 

maps for the samples.  

 

Sample M7-L  
(large map) 

M7-P  
(single 
window) 

 M7-L  
(single 
window) 

M1-L  
(large map) 

M1-L 
(single window) 

      
Coating Carbon Carbon Carbon Carbon Carbon 
Direction Parallel to X Parallel to X Parallel to X Parallel to X Parallel to X 
SEM Zeiss Merlin 

compact VP 
Zeiss Merlin 
compact VP 

Zeiss Merlin 
compact VP 

Zeiss Merlin 
compact VP 

Zeiss Merlin 
compact VP 

      
Tilt (deg) 70° 70° 70° 70° 70° 
Acc. Volt (kV) 20 kV 20 kV   20 kV 30 kV 30 kV 
Working 
distance 

23.9 mm 18.3 mm   22.9 mm 23.8 mm 23,8 mm 

EBSD Oxford 
instruments 

Oxford 
instruments 

 Oxford 
instruments 

Oxford 
instruments 

Oxford 
instruments 

Step (μm) 3 μm 0.7 μm  0.7 μm                           6 μm  2.5 μm 
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3.5 Production of grain boundary and phase maps 

For redrawing of grain boundaries and image analysis of the particles ImageJ, an image analysis 

software for image processing and analysis in Java and connected toolboxes was applied. The 

stitched images from sections M1-L, M1-P, M7-L and M7-P were used. The redrawing of grain 

boundaries was done by using a “paintbrush tool” with a 2 pixel wide brush. Each grain 

boundary was identified and drawn for all phases. A light microscope was used to separate 

cracks from grain boundaries and to help separate clustered grains. When the drawing of all 

boundaries was complete, the “thresholding tool” was used to extract only the black boundaries. 

Since some holes, cracks and noise are always present in a BSE image, post processing was 

done to remove this by using the “skeletonize tool” to first reduce all lines to a width of 1 pixel, 

then the “prune tool” to erase all non-closed lines, e.g. boundaries cut by the edge of the image 

and holes/noise. Most analysis in ImageJ rely on 2 pixel wide grain boundaries, so the tool 

“thicken lines” was used to make the perfect grain boundary map.  When the grain boundary 

map was complete, each of the 7 phases (omphacite, garnet, quartz, hornblende, zoisite, 

paragonite and rutile) was assigned its own greyscale, which varies from 0 (black)-255 (white) 

in ImageJ. The greyscale was chosen based the darkness/brightness the phases in the BSE image 

to avoid confusion. From darkest to lightest greyscale for each phase (in non-inverting LUT): 

 
 
Table 3.5.1: the different greyscales used for each mineral phase in the imaging. 0-255 from darkest to lightest 
greyscale. Calibration bare for greyscale to the right.  

 

 

 

 

 

 

 

 

 

 

 

 
Each phase was colored by using a “flood fill tool” in ImageJ. Identification of each phase was 

obtained by the BSE images and by using a light microscope. Some of the smaller grains that 

Phase Greyscale 

Quartz (Qtz) 55 

Paragonite (Pg) 83 

Omphacite (Omp) 111 

Hornblende (Hbl) 139 

Zoisite (Zo) 167 

Garnet (Grt) 195 

Rutile (Rt) 223 

Unidentified 250 

Boundaries + edge 0 
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were difficult to identify, both in the BSE image and in the light microscope, were marked with 

an own shade of grey (250) and called unidentified. To make sure that 100% of the image was 

filled with a greyscale, the “thresholding tool” was used. A grain boundary map and a phase 

and grain boundary map were now produced. Color maps were also produced to better separate 

the phases.  

 

Each grain boundary map and phase map was scaled using the scale bar on the BSE image. 

During stitching and pre-processing of the images, no resizing was done so all the images still 

had the same size. The scale is 1.1296 pixels/μm.  

 

3.6 Modal composition  

The modal composition of the different samples can be analyzed by using the grain boundary 

and phase maps. This was done by thresholding the phases one by one and see how much of 

the image contains that specific greyscale. This method will only give the area fraction of each 

phase in the image, but this is a good estimation for the volume fraction of the phases. The most 

important factor for the volume fraction is the total area of the image and sufficient amount of 

pixels per phase, based on this the average area fraction mostly equals the volume fraction of 

the section (Heilbronner and Barrett, 2014).  

 

3.7 Grain size analysis 

For the grain size analysis the phases were separated, and bitmaps of all the phases in each 

image were made (see Fig. 3.7.1) using “threshold tool” and grey level slicing. By separating 

the phases separate grain size analysis can be done for each phase.   

 

 

 

 

 
 
Fig. 3.7.1: example of 
bitmaps of phases in M1-
L.Mineral abbreviations by 
Siivola and Schmid (2007). 
Parallel to lineation (↔).  
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Each phase was analyzed by using the “analyze particles-tool” in ImageJ on an unscaled image. 

The data were imported to Kaleidagraph, a graphing and analyzing software, to continue the 

analysis. From the analysis the area of each grain was derived, which is the number of pixels 

in one grain and the perimeter of the grains. From this the equivalent corrected radius (equ corr 

r) can be calculated. This is a circle with equal area as the grain, with correction for the 2 pixel 

wide line that separates the grains. This is calculated for every grain using this formula 

(Heilbronner and Barrett, 2014): 

 

𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) =  �
𝐴𝐴𝑐𝑐𝑝𝑝𝐴𝐴 + 𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝𝑐𝑐

𝜋𝜋
                              𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑃𝑃𝑝𝑝𝑐𝑐𝐸𝐸 3.7.1 

 
Since an unscaled image was used the radius had to be recalculated from pixels to µm. The 

pixel resolution is 1, 1296 px/µm, so the equivalent corrected radius in µm was calculated using:  

 
𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 (µm) = 𝑝𝑝𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐(𝑝𝑝𝑝𝑝) ∗ 1,1296                             𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑃𝑃𝑝𝑝𝑐𝑐𝐸𝐸 3.7.2 

 

The equivalent corrected radius for each phase was calculated. In the statistics from the 

equivalent corrected radius column, the mean and median grain size can be found. While the 

modal grain size is represented by the highest occurrence of a grain size in the sample. This 

was found by binning the equivalent corrected radius data and make a histogram where the 

highest column represents the mode. Which ‘average’ that best fit the real grainsize can be 

determined by looking at the skewness of the histogram of equ corr r (μm). If the histogram is 

positively skewed, the mean is larger than the median and the median is larger than mode 

(Heilbronner and Barrett, 2014). All grain size data is in two dimensions (2D).  

 

3.8 PAROR & SURFOR analysis 

PAROR and SURFOR are two different approaches to study mineral fabrics, and this method 

was used to analyze particle and shape fabric of omphacite and garnet. Digitalized XY 

coordinates for single phase bit maps were obtained by using the Jazy Macro 

“Jazy_XY_export_header” and the tool “XY-export-regdist-smooth” in ImageJ and a pixel 

distance resolution of 5 for each XY point was used.  
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3.8.1 PAROR 

PAROR analysis of the particle fabric is based on 2D projections of the longest and shortest 

axis and the orientation of the longest axis of the particles (Panozzo, 1983). From the PAROR 

analysis, the preferred orientation of the particles and the axial ratio (shortest axis (b) divided 

by the longest axis (a) of the particle) can be obtained. The PAROR data will be presented as 

rose diagrams of the orientation distribution function (ODF) of the relative length of the longest 

axis of the particles. And projection curves of the relative length of projections divided by the 

longest projection of an axis. The minimum value of the projection curve is the axial ratio of 

the bulk fabric (Heilbronner and Barrett, 2014).  

 

3.8.2 SURFOR 

SURFOR analysis of particles in 2D are based on projection of outline segments of particles, 

and how the length of the projected outline is depending on the orientation of the particle. The 

SURFOR results are presented by a plot for the bulk characteristic shape of the particles, this 

is based on the total length of projected lines per orientation for the bulk surface fabric. As for 

the PAROR, rose diagrams of the distribution of the relative length of line segments per angle 

are presented. The axial ratio from the SURFOR analysis can be measured from the bulk 

characteristic shape of the particles, and shape preferred orientation (SPO) fabrics can be 

visualized (Heilbronner and Barrett, 2014).  
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4.0 Results 
In this chapter all data collected using the different methods will be presented. Original 

greyscale grain boundary and phase maps that where produced using ImageJ will be presented 

in the appendix (Fig. 8.1-8.4). BSE images, EDS data, EBSD phase maps and pole figures for 

the main phases will be presented in separate chapters for each phase. Finally grain size data 

will be shown.  

  

4.1 Grain boundary and phase maps 

Grain boundary maps and phase maps were produced for M1-L, M1-P, M7-L and M7-P. These 

maps and the single phase bit maps obtained from the phase maps were used for grain size 

analysis, volume fraction and SURFOR and PAROR analysis. The number of grains per map 

is relevant for the amount of data points available for the analysis. The amount of grains per 

phase is shown in Table 4.1.1.  

 
Table 4.1.1: number of grains for each phase, and total number of grains per image.  

 
 
 

Colored phase maps were produced for M1-L, M1-P, M7-L and M7-P to better separate the 

phases. Note that the color legend is different than the EBSD images, the colors in the phase 

map below were selected to best optimize the separation of the phases. The color phase and 

grain boundary maps are presented below in Fig.4.1.1-4.1.4.  

 
 
 

Phase M1-L M1-P M7-L M7-P 

Quartz 567 76 480 84 

Paragonite 71 45 7 0 

Omphacite 1704 757 2540 658 

Hornblende 25 18 22 5 

Zoisite 86 54 630 165 

Garnet 538 95 359 39 

Rutile 169 50 380 41 

Total 3160 1095 4418 992 
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Fig. 4.1.1: redrawn grain boundary and phase map of M1-L, with scale and calibration bar. Parallel to lineation 
(↔) 

Fig 4.1.2: redrawn grain boundary and phase map of M1-P, with scale and calibration bar. Perpendicular to 
lineation. 
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Fig. 4.1.3: redrawn grain boundary and phase map of M7-L, with scale and calibration bar. Parallel to lineation 
(↔). 

Fig. 4.1.4: redrawn grain boundary and phase map of M7-P, with scale and calibration bar. Perpendicular to 
lineation.  
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4.2 Mineralogy and volume fraction 

The main phases identified by EBSD phase maps, EDS (element maps, point and line analysis), 

BSE and light microscopy were: Omphacite + garnet + quartz + hornblende + zoisite + rutile ± 

paragonite. The phases are presented in EBSD image (Fig. 4.2.1) from M7-P. Paragonite is 

absent from this sample.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2.1: EBSD phase map of M7-P, cut perpendicular to lineation. Red=omp, blue=grt, purple=zo, yellow=qtz, 
green=rut and orange=hbl. 
 

The estimated volume fraction of each phase is presented in Table 4.2.2, together with the 
greyscale value, unidentified grains and boundaries + edge of the image. All phases, 
unidentified grains and boundaries/edges make 100%, indicating that all grains in the image 
have an assigned grey value.  
 
Table 4.2.2: Phases present in the four samples, greyscale used for each phase and percentage of each phase in 
each individual sample. 

 

 

 

 

 

 

 

 

 

Phase  Greyscale M1-L % M1-P % M7-L % M7-P % 

Quartz 55 9,85 3,01 3,08 3,54 

Paragonite 83 1,07 2,18 0,02 0,00 

Omphacite 111 31,36 32,94 42,61 42,29 

Hornblende 139 7,77 14,90 5,50 2,99 

Zoisite 167 5,34 2,08 11,89 7,55 

Garnet 195 26,75 19,47 19,03 22,55 

Rutile 223 0,96 1,14 1,47 1,08 

Unidentified 250 0,07 0,02 0,06 0,03 

Boundaries + edge 0 16,83 24,26 16,34 19,97 

Sum  100 100 100 100 
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4.3 Thin section description 

Four thin sections from two samples were used in this study: M1-L (Fig. 4.3.1a), M1-P (Fig. 

4.3.1b), M7-L (Fig. 4.3.1c) and M7-P (Fig. 4.3.1d). The thin sections were from outcrops about 

1-2 km apart. They have some differences in modal composition but are structurally similar. In 

all samples omphacite and garnet are the major components in the eclogites, and the focus of 

this study. Elongated minerals such as omphacite, garnet and zoisite form most of the fabric 

observed in the rock with the long axis parallel to the lineation.  

Fig. 4.3.1: from top left to bottom right M1-L, M1-P, M7-L and M7-P. BSE images of the different oriented samples. 
M7-L and M1-L parallel to lineation (↔) and M7-P and M1-P perpendicular to lineation. Phases and scale bare are 
presented on images.  
 

Omphacite grains occur as elongated euhedral crystals, and are elongated in the lineation 

direction and have a modal grain size diameter between 50 and 100 µm. Omphacite is uniformly 

distributed in the entire rock, except for higher concentration of omphacite in layers with less 

garnet, and it is the main rock forming mineral in the eclogites. Garnets occur mostly as 

euhedral single porphyroblasts but also in clusters of several smaller garnets and a few hollow 

garnets filled with another phase. More garnet rich layers occur parallel to the foliation plane, 

besides these layers the garnet is uniformly distributed in the entire rock. The garnets have an 

a) b) 

c) d) 
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elongated shape with its long axis parallel to the lineation direction, and with a modal grain size 

diameter between 60 and 300 µm. Analysis in the EDS indicates a hornblende composition of 

the amphiboles. Hornblende grains are large, euhedral porphyroblasts with a modal grain size 

diameter ranging from 180 to 350 µm. Hornblende is randomly distributed and orientated, as 

well as overgrowing the original fabric in the eclogites. Zoisite occurs as elongated, prismatic 

particles, as well as aggregates of several elongated zoisite particles. Zoisite grains are 

elongated parallel to the lineation direction and exhibit tabular, shorter particles perpendicular 

to lineation. Modal grain size diameter is between 30-45 µm for the zoisite. Quartz is most 

frequently associated with garnet or zoisite and almost never as single crystals in the omphacite 

matrix. Quartz occurs mainly as aggregates of quartz grains with straight grain boundaries and 

a modal grain size diameter of 15-40 µm. More garnet rich layers were observed in the rock 

with alternating omphacite rich layers. Since quartz dominantly is associated with garnet, there 

is a higher abundance of quartz in these garnet rich layers. Paragonite is only present in small 

proportions in M1-L and M1-P, and occurs as elongated needles in the lineation direction, with 

a modal grain size diameter between 35 and 75 µm. Rutile is present in all samples in small 

proportions as euhedral single grain randomly distributed in the rock, but often found as 

inclusions in the garnet. Rutile has a slight elongated shape in the lineation direction and has a 

modal grain size diameter of 15-50 µm.   

 
 

4.4 Description of phases 
Omphacite (≈32-43%) and garnet (≈19-26%) make up ≈50-65% of the samples. Zoisite (≈2-

11%), hornblende (≈3-15%) and quartz (≈3-10%) are the next most abundant phases, 

paragonite (≈0-2%) content varies in the samples and rutile (≈1-1.5%) was present in all 

samples in minor proportions, see table 4.2.2 for overview. In this section the main mineral 

facies will be described separately, with focus on omphacite and garnet. Chemical zonation of 

omphacite and garnet was studied using BSE images and EDS techniques such as point and 

linescans and chemical maps constructed in AZTEC. The zonation and the chemical differences 

are good indicators for P-T conditions during growth of the mineral. EBSD maps from M7-L 

single window and large map (see Fig. 4.4.1), M1-L large map (see Fig. 4.4.2), and M7-P single 

window (see Fig. 4.2.1) were used for construction of pole figures and for phase recognition. 
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Fig. 4.4.1: EBSD map (large map) of M7-L parallel to lineation (↔) 
 

Fig. 4.4.2: EBSD map (large map) of M1-L parallel to lineation (↔). 
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4.4.1 Omphacite 

In the BSE images chemical zonation are visible in some grains by lighter and darker areas 

indicating a difference in chemical composition (see Fig. 4.4.3).  

Fig. 4.4.3: asymmetric chemical zonation in single omphacite grains. The straight lines are scratches from the 
polishing. Parallel to lineation (↔).  
 

The point and linescan EDS analysis show that the omphacite has a core with a higher diopside 

content compared to the rim. Towards the grain boundary the Na and Al content increases while 

the Mg and Ca content decreases, and the composition changes to a more jadeite component. 

The zonation show an asymmetric character with a wider rim in the lineation direction of the 

grains. The zonation is not as clear in the BSE images in all omphacite grains, compared to the 

garnet, due to a low difference in the atomic weight of the elements making up the zonation 

(Na, Mg, Al, Ca).   

 

EDS linescans of single omphacite grains (see Fig. 4.4.4) confirms the trend with a core richer 

in Mg and Ca and a more diopside composition. Towards the rim the Ca and Mg content 

decreases while Na and Al increases, and the chemical composition changes to a more jadeite 

composition.  
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Fig. 4.4.4: EDS linescan of a single omphacite grain, Na (blue), Mg (yellow), Al (red) and Ca (green). Increase of 
Al and Na towards the rim and decrease of Ca and Mg, indicating chemical change from more diopside composition 
in the core and more jadeite composition towards the rim of the omphacite. Parallel to lineation (↔). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4.5: EDS point analysis from core (left) to rim (right) in a single omphacite grain. Two lines of points, referred 
to as upper and lower line of points. Parallel to lineation (↔).  
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EDS point analysis (see Fig. 4.4.5) from core to rim in single omphacite grains show the same 

trend with increasing Na and Al values and decreasing Mg and Ca values from core to rim.  

 
Table 4.4.1: spectrum  for chemical point data analysis in a single omphacite grain.  

Spectrum 98 and 102 have a higher content of Ca and Mg and a lower content of Na and Al 

and indicates a composition closer to diopside in the core. Spectrum 107 and 111 have 

increasing values of Na and Al compared to the core and hence a more jadeite composition in 

the rim (see Table 4.4.1).  

 

At the grain boundary of omphacite a rim (1-5 μm) of finer grained diopside and plagioclase 

symplectite surround the grains, as shown in BSE images in Fig. 4.4.6 a. The chemical point 

analysis done in the SEM identified these facies to be diopside and plagioclase. Symplectites 

were also observed in cracks in the omphacite grains, shown in BSE image Fig. 4.4.6 b. The 

fabric of the symplectites are parallel to the lineation direction of the rock, and wider in the 

lineation direction. The symplectites between the omphacite grains had a more globular 

structure of the two phases in some areas.  

Fig. 4.4.6: BSE images of diopside and plagioclase symplectites, parallel to lineation (↔). a) Globular symplectites 
between omphacite grains. b) Symplectite fabric parallel to lineation in cracks (see black box).  

a) b) 
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Fig. 4.4.7: omphacite pole figure from M7-L (large map), X=lineation, for ~ 9000 grains.  

Fig. 4.4.8: omphacite pole figure from M1-L (large map), X=lineation, for ~ 5000 grains.  

 

Omphacite pole figures for M7-L (Fig. 4.4.7) and M1-L (Fig. 4.4.8) show a strong alignment 

of {001} planes (the C-axis of omphacite) parallel to the lineation and {010} planes form a 

girdle perpendicular to lineation and parallel to foliation, but show some asymmetry. {100} 

planes show a weak maximum near the plane of foliation.  

 

Fig. 4.4.9: pole figure for M7-P, X=lineation, for ~ 600 grains. 
 

In M7-P (Fig. 4.4.9), cut perpendicular to lineation, the {100} planes show a random 

orientation. The {001} planes have a maximum perpendicular to lineation near the plane of 

foliation, and {010} planes show an alignment parallel to lineation.  
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Fig 4.4.10: SURFOR plots for omphacite from M1-L (1704 grains), M7-L (2540 grains), M1-P (757 grains) and M7-
P (658 grains). To the left plots for characteristic shape and to the right rose diagrams of orientation of the relative 
lengths of the line segment.  
 
 

Fig 4.4.11: PAROR plots for omphacite (same input data as the SUFOR plots). To the left relative length of 
projections curve and to the right rose diagrams of long axis in particles.  
 
The omphacite grains have a bulk axial ratio for the PAROR analysis of:  

0.411 for M1-L  

0.363 for M7-L 

0.741 for M1-P 

0.729 for M7-P  
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SURFOR analysis gave a bulk axial ratio of:  

0.437 for M1-L  

0.387 for M7-L  

0.750 for M1-P 

0.736 for M7-P  

 

The lower value of the axial ratio for M1-L and M7-L shows that omphacite is elongated. The 

rose diagrams and plot for characteristic shape indicates that the omphacite particles are 

elongated with its longest axis parallel to the lineation, and have a strong SPO in the lineation 

direction of the eclogites. Perpendicular to lineation in samples M1-P and M7-P omphacite 

have a higher value for the axial ratio indicating a less elongated shape. The rose diagrams and 

plots for characteristic shape indicate that, especially for the SURFOR analysis, that omphacite 

exhibit a rounder shape perpendicular to lineation. PAROR rose diagrams show some SPO of 

the longest axis of the particles, but much weaker and more random than for M1-L and M7-L.  
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4.4.2 Garnet 

Garnet mostly occurs as single crystals, but additionally as hollow garnets (see Fig. 4.4.12 a) 

and clusters (see Fig. 4.4.12 b). Based on the EDS analysis garnet have a composition varying 

between pyrope, almandine and grossular.  

 

 

 

 

 

 

 

 

 
Fig. 4.4.12: hollow garnet filled with quartz (a) and garnet cluster (b), parallel to lineation (↔).  

 

In the lineation direction garnets show an elongated shape (see Fig. 4.4.13a), while 

perpendicular to lineation they exhibit a rounder shape (see Fig. 4.4.13b). In BSE images a clear 

zonation in garnets are visible, with a lighter core and darker rim. As the omphacites, garnets 

also show an asymmetric zonation with a wider zonation in the lineation direction of the grains 

(see Fig. 4.4.13a elongated garnet). The zonation is seen as stronger in the BSE images in garnet 

compared to the omphacite, due to a higher difference in atomic weight of the present elements 

making up the zonation.  

Fig. 4.4.13: to the left a BSE image of an elongated garnet from M1-L showing the asymmetric zonation stronger 
in the lineation direction (↔). To the right a garnet exhibiting a more round shape from M1-P, cut perpendicular to 
lineation.  
 

 

a) b) 

a) b) 
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In EDS linescans of single garnet grains (see Fig. 4.4.14), the Ca and Fe values increase towards 

the core, while the Mg increases towards the rims of the garnet. The core of the garnet represents 

a more grossular/almandine (Ca2Al2Si3O12/Fe3Al2Si3O12) composition, with higher amounts of 

Fe and Ca. Towards the rim the Mg increases and the Fe and Ca decreases, this indicates a more 

pyrope (Mg3Al2Si3O12) composition.  

Fig. 4.4.14: linescan of a garnet showing chemical zonation, Mg(yellow), Al(red), Ca(green) and Fe(blue) in wt%. 
Fe and Ca decreases while Mg increases from core to rim, Al is consistent through the garnet grain. Parallel to 
lineation (↔).  
 

In the garnet a thin rim at the grain boundary with a different composition is present (see Fig. 

4.4.15). In the BSE images this outermost thin rim shows the same lighter grey as can be seen 

in the core of the garnet. Hence the rim has a higher Fe and Ca content, and a lower Mg content, 

similar to the chemical composition seen in the core. High magnification EDS point analysis of 

garnet from outer core, rim and outermost rim was done for single garnet grains (see Fig. 

4.4.15). 
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Fig. 4.4.15: point analysis from outer core in garnet, rim and outermost rim. 

 
Table 4.4.2: point analysis from EDS data for upper and lower point line (see Fig. 4.4.15). The red lines separates 
the spectrums indicating core, rim and outermost core composition. 

      CORE                                                 RIM                                                OUTER RIM 

 

Spectrums 1, 6, 11, 14 and 15 are from the upper point line and spectrum 16, 21, 27, 32 and 33 

are from the lower line of points (see Fig. 4.4.15) and shows chemical variations from outer 

core in the garnet (spectrum 1 and 16) to rim (spectrum 6, 11, 14, 21, 27 and 32) and outermost 

rim (spectrum 15 and 33). Fe is highest in the core (spectrum 1 and 16) and outer rim (spectrum 

15 and 33), and shows decreasing values in the rim (spectrum 6, 11, 14, 21, 27 and 32). Mg is 

increasing from the core to the rim, and decreases from the rim to the outermost thin rim. The 
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composition changes from a more almandine composition near the core, to a more pyrope 

composition in the rim and back to a more almandine composition in the outermost thin rim. 

Values shown in table 4.4.2. 

 

Some garnet grains show a retrograde, fibrous rim composed of plagioclase and amphibole (see 

Fig. 4.4.16). As in the symplectites around the omphacite grains the fibrous rim is oriented in 

the lineation direction of the eclogites.   

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 4.4.16: fibrous rim, in semi-parallel to the lineation direction (↔) of plagioclase and amphibole at the edge of a 
garnet.  
 

 

Garnet pole figures for M7-L (Fig. 4.4.17), M1-L (Fig. 4.4.18) and M7-P (Fig 4.4.19) show a 

low maximum multiple of uniform distribution (mud) intensity. There some weak maxima 

especially in the pole figures for {100} planes that may indicate a weak cross girdle pattern, 

and may show a weak CPO.  

Fig. 4.4.17: garnet pole figure of M7-L (large map), X=lineation, for ~ 1500 grains.  
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Fig. 4.4.18: garnet pole figure of M1-L (large map), X=lineation, for ~ 1600 grains.  

 

Fig 4.4.19: garnet pole figure of M7-P, X=lineation, for ~ 40 grains.  
 
 

 

Fig. 4.4.20: SURFOR analysis of garnet for M1-L (538 grains), M7-L (359 grains), M1-P (95 grains) and M7-P (39 
grains). To the left plots for characteristic shape and to the right rose diagrams of the orientation of relative length 
of the line segments. 
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Fig. 4.4.21: PAROR analysis of garnet (same input file as the SURFOR analysis). To the left projection curve of 
the relative length and to the right rose diagram of the relative longest axis in the particles.   
 

SURFOR (see Fig. 4.4.20) and PAROR (see Fig. 4.4.21) analysis for the garnet show that the 

garnets are elongated in the lineation direction and have a rounder shape perpendicular to 

lineation. The bulk axial ratio for the garnet particles for the PAROR analysis are:  

0.651 for M1-L  

0.713 for M7-L  

0.858 for M1-P  

0.896 for M7-P  

 

The bulk axial ratio for the SURFOR analysis are:  

0.688 for M1-L  

0.725 for M7-L  

0.866 for M1-P  

0.894 for M7-P  

 

The main findings indicate that the axial ratio and characteristic shape of garnet particles show 

that the garnets are elongated in the lineation direction and have a SPO with the longest axis of 

the particles parallel to lineation. Perpendicular to lineation garnet exhibits a more round shape 

and no clear SPO.  
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EBSD orientation measurements were done on a single garnet grain, constructing one pole 

figure for the left rim, the garnet core and the right rim. This was done by point analysis for 

the different garnet regions and construction of pole figures using AZTEC (point EBDS data 

cannot be constructed in Channel 5 software). The CPO for the three pole figures look 

identical even though they originate from different sites on the garnet crystal.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4.4.22: zonation in garnet from M7-L. Lower hemisphere pole figures from a single garnet grain reflecting 
different areas within the garnet (left rim, core and right rim), parallel to lineation (↔).  
 

The pole figures for the different areas in the garnet exhibits exactly the same CPO, indicating 

that the CPO of the garnet is independent from the chemical zonation.  
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4.4.3 Zoisite 

Fig. 4.4.23 shows an aggregate of elongated zoisite needles parallel to the lineation direction, 

and some smaller, single zoisite grains in the omphacite matrix.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4.23: elongated zoisite grains parallel to lineation (↔).  
 

Zoisite pole figures from M7-L (see Fig. 4.4.24) show a {100} (shortest axis) perpendicular to 

lineation and parallel to foliation, {001} planes form a weak maximum near the plane of 

foliation perpendicular to lineation and {010} planes, the long axis of the zoisite, align strongly 

parallel to lineation. The zoisite content in M1-L is much less and the pole figures are more 

diffuse, but the same CPO trend as M7-L is visible (see Fig. 4.4.25). 

Fig. 4.4.24: zoisite pole figure from M7-L (large map), X=lineation, for ~ 2200 grains. 

Fig. 4.4.25: zoisite pole figures from M1-L large map, X=lineation, for ~ 250 grains.  
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Fig. 4.4.26: zoisite pole figures from M7-P, X=lineation, for ~ 100 grains. 
 

Perpendicular to lineation, zoisite pole figures show a weak alignment of {100} planes parallel 

to lineation, and a maximum of {010} planes perpendicular to the lineation near the plane of 

the foliation. The {001} planes show no clear CPO (see Fig. 4.4.26).     

 
 
SURFOR (Fig. 4.4.27) and PAROR (Fig. 4.4.28) analysis for zoisite from M1-L, M1-P, M7-L 

and M7-P as for the omphacite and garnet. Both M1 and M7 samples show similar results, even 

though the volume fraction of zoisite is lower in M1 than M7. 

Fig. 4.4.27: SUFOR analysis of zoisite from M1-L (86 grains), M7-L (630 grains), M1-P (54 grains) and M7-P (165 
grains). To the left characteristic shape of the particles and to the right rose diagram of the surface ODF. 
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Fig. 4.4.28: PAROR analysis of zoisite particles (same input file as SURFOR analysis). To the left projection curve 
for relative length and to the right rose diagrams of the longest axis of the particles.  
 
The zoisite particles are strongly elongated in the lineation direction in M1-L and M7-L, as 

seen in the rose diagrams, and have a strong SPO nearly parallel to lineation. Axial ratio for the 

zoisite particles for PAROR analysis are:  

0.402 for M1-L  

0.242 for M7-L  

0.789 for M1-P 

0.577 for M1-P  

 

For the SURFOR analysis the axial ratio is:  

0.422 for M1-L  

0.271 for M7-L  

0.799 for M1-P 

0.597 for M7-P  

 

Due to the tabular shape, the zoisite particles show a weak elongation also perpendicular to 

lineation in M1-P and M7-P.  
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4.4.4 Hornblende 

Hornblende mostly occurs as larger grains overgrowing the fabric, with a random orientation 

while replacing the omphacite (see Fig. 4.4.29). Hornblende also occurs in retrograde rims in 

the kelyphites observed around some garnet grains (see Fig. 4.4.16).  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Fig. 4.4.29: large hornblende grain (in the middle) replacing omphacite and overgrowing the fabric with a random 
orientation compared to lineation (↔) from M1-L. 
 

Hornblende pole figures show a weak {001} alignment parallel to lineation, and most probably 

a weak {010} planes alignment perpendicular to lineation and parallel to foliation in M7-L (Fig. 

4.4.30) and M1-L (Fig. 4.4.31). The CPO fabric in the hornblende show similar patterns as for 

omphacite pole figures.   

 

Fig. 4.4.30: hornblende pole figures from M7-L (large map), X=lineation, for ~ 80 grains. 
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Fig. 4.4.31: hornblende pole figures for M1-L, X=lineation for ~ 50 grains. 

 

Fig. 4.4.32: hornblende pole figures for M7-P, X=lineation, for ~ 10 grains.  

 
 
EBSD image for M7-P contains fewer grains and data points than M7-L but there are still 

similarities in the orientations of the planes compared to the omphacite pole figures for M7-P. 

Especially for {001} planes that forms a weak maximum near the plane of the foliation, as 

expected perpendicular to the lineation (see Fig. 4.4.32). 
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4.4.5 Quartz 

Quartz mostly occurs in pressure shadows of garnets. The quartz around the garnets is more 

concentrated on the side of the crystal that is parallel to the lineation direction (see Fig. 4.4.33).  

 
 
 
 
 
 
 
 

 

 

 

 
Fig. 4.4.33: quartz in pressure shadow of garnets, parallel to the lineation (↔) from M1-L. 

 

In light microscopy observations, quartz show weak undulose extinction, but no other signs of 

intracrystalline deformation for example lobate grain boundaries or sub grains.   

 

Quartz pole figures show a low mud and a no obvious CPO for any crystallographic planes or 

directions. In M7-L (Fig. 4.4.34) and M1-L (Fig. 4.4.35) a weak maximum perpendicular to 

lineation near the plane of foliation may be present for {0001} plane.  

Fig. 4.4.34: quartz pole figure from M7-L (large map), X=lineation, for ~ 1700 grains.  

 

Fig. 4.4.35: quartz pole figures from M1-L (large map), X=lineation, for ~ 1700 grain.  
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Fig. 4.4.36: quartz pole figures from M7-P, X=lineation, for ~ 50 grains.  
 

 

4.5 Grain size analysis 

The average 2D diameter for mean, mode and median grain size for each phase in M1-L, MI-

P, M7-L and M7-P was calculated using statistical data in Kaleidagraph. In the selected samples 

the mean (see Table 4.5.1) > median (see Table 4.5.2)  > mode (see Table 4.5.3), typical for a 

positive skewed histogram (Heilbronner and Barrett, 2014). As presented earlier in results the 

amount of grains per sample varies (see Table 4.1.1). Since the mode indicates the most 

occurring grain size, from binned data and histograms, this was used for an average grain size 

in the description of thin sections (chapter 4.3). 

 
 
Table 4.5.1: mean 2D grain size diameter for all phases in all samples. 
Phase  M1-L M1-P M7-L M7-P 

Hornblende 323,63 µm 464,06 µm 254,95 µm 289,29 µm 

Garnet 133,45 µm 224,71 µm 126,53 µm 266,71 µm 

Paragonite 74,781 µm 113,52 µm 35,969 µm Not present 

Omphacite 82,688 µm 114,51 µm 81,660 µm 87,817 µm 

Quartz 70,783 µm 95,041 µm 42,585 µm 55,989 µm 

Rutile 45,671 µm 84,727 µm 39,590 µm 55,339 µm 

Zoisite 122,88 µm 102,53 µm 78,305 µm 71,130 µm 
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Table 4.5.2: median 2D grain size diameter for all phases in all samples.  

Phase  M1-L M1-P M7-L M7-P 

Hornblende 285,34 µm 402,33 µm 195,12 µm 279,79 µm 

Garnet 114,31 µm 178,00 µm 91,385 µm 290,17 µm 

Paragonite 56,618 µm 93,631 µm 36,012 µm Not present 

Omphacite 68,622 µm 97,402 µm 72,586 µm 77,182 µm 

Quartz 49,084 µm 66,920 µm 27,376 µm 32,582 µm 

Rutile 35,708 µm 73,709 µm 29,569 µm 48,362 µm 

Zoisite 81,776 µm 87,351 µm 59,401 µm 62,457 µm 

 
 
 
Table 4.5.3: modal 2D grain size diameter for all phases in all samples. 

Phase M1-L M1-P M7-L M7-P 

Hornblende 180 µm 350 µm 200 µm 200 µm 

Garnet 60 µm 125 µm 60 µm 300 µm 

Paragonite 35 µm 75 µm 40 µm Not present 

Omphacite 50 µm 100 µm 50 µm 60 µm 

Quartz 20 µm 40 µm 15 µm 25 µm 

Rutile 15 µm 50 µm 15 µm 30 µm 

Zoisite 30 µm 40 µm 45 µm 45 µm 

 

Mean values for the grain size show the largest average grain size followed by the median. The 

mean is calculated by adding all values for grain size and dividing by number of grains. While 

the median is the value in the middle of a sorted set of values from smallest to largest. So the 

mean and median average values will be more effected by a large difference in grain size, than 

the mode value that presents the most occurring value of grain sizes.  

 
 
 
 
 
 
 



59 
 

5.0 Discussion 
The two samples used for this study, M1 and M7, exhibit some differences in mineral 

assemblage. Based on the three eclogite types in terms of mineral assemblage (Schmädicke et 

al., 1995; Klapova et al., 1998), the Meluzina eclogite is similar to a type-1 eclogite, while M7 

from the Na Skalách is more similar to type-2 or an intermediate between the two, based on the 

higher zoisite content. Disregarding the slight difference in mineral assemblage the two samples 

are structurally similar with a strong lineation fabric.  

 

5.1 Metamorphic history and zonation  

The metamorphic history of the Czech part of the Erzgebirge eclogites is exposed in the 

chemical zonation of the omphacite and garnet as well as the occurrence of minerals and 

structures that are a product of retrogression. Garnets in this study exhibit a zonation with a 

change from a more almandine composition to pyrope from core to rim, typical for a prograde 

zonation (Konrad-Schmolke et al., 2006). In the outermost thin rim a chemical change to a more 

almandine composition was observed. This indicates a change back to lower P-T conditions 

confirmed by chemical change indicating retrograde metamorphism. Around some garnet 

grains retrograde rims or kelyphites composed of amphibole and plagioclase were observed. 

Amphibole and plagioclase are normally not stable in an eclogite facies mineral assemblage 

and also indicate retrogression of the stable mineral assemblage during a pressure and 

temperature decrease, and possibly hydration of the eclogite (Massonne, 2012). The outermost 

thin rim with a more almandine composition in the garnets are most probably the start of the 

decreasing pressure and temperature related to the exhumation of the eclogites. The kelyphite 

rims composed of plagioclase and amphibole are a continuation of the retrograde reactions 

during decreasing P-T conditions most probably related to the continuing exhumation.  

 

Omphacite exhibits a chemical zonation from a more diopside compositional core to a more 

jadeite composition in the rim. Omphacite is a solid solution between diopside and jadeite, 

where jadeite is the high pressure equivalent. Decrease in Mg and Ca (diopside endmember) 

found towards the rim and increase in Na and Al (jadeite endmember) indicates a pressure 

increase and a prograde zonation from core to rim in omphacite. Around omphacite grains a 

fine grained (1-5 μm wide) symplectite rim was observed. EDS analysis confirmed that the 

symplectite was composed of diopside and plagioclase. It indicates a pressure decrease and 
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breakdown of the stable eclogite facies mineral omphacite by replacement of the solid solution 

lower pressure equivalent in omphacite, diopside, and plagioclase (Vogel, 1967; Engels, 1972). 

The diopside and plagioclase symplectites indicate a pressure decrease, most likely during the 

onset of exhumation of the eclogites, and the rocks leave the stable P-T conditions needed for 

stable eclogite facies minerals.  

 

Larger hornblende grains overgrowing the fabric were observed in the eclogites. Replacement 

of omphacite by hornblende is a known process during retrogression and exhumation in 

eclogites (Engels, 1972; Zhang et al., 2003). During retrogression and hydration of the eclogites 

omphacite is no longer stable, and hornblende grows as symplectites or replaces entire grains.  

 

In both garnet and omphacite, the subduction, peak P-T conditions and exhumation history are 

preserved in the chemical zonation of the minerals. From prograde metamorphism during 

subduction until peak P-T conditions was reached, and change to lower P-T conditions during 

exhumation exposed as retrogression of the stable eclogite facies mineral assemblage.    

 

The metamorphic history of the Czech part of the Erzgebirge eclogites have been studied by 

e.g. Klapova et al. (1998), Schulmann et al. (2009) and Collett et al. (2017) that all proposed a 

prograde chemical zonation in the garnets, and retrograde metamorphism exposed as 

symplectite and kelyphite formation, as well as amphibole replacing the omphacite.  

 

Peak metamorphic conditions has been determined to be 600-650 ˚C and 25-26 kbar for the 

Meluzina eclogites by Klapova et al. (1998) and 615 ̊ C and 26 kbar for the Erzgebirge eclogites 

by Collett et al. (2017). By using the information about peak metamorphic conditions, the 

prograde to retrograde zonation observed in garnet and omphacite, as well as formation of 

hornblende grains and retrograde symplectite rims a simple illustration of a P-T diagram is 

shown in Fig. 5.1.1.  
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Fig. 5.1.1: illustration of a P-T diagram for the prograde-retrograde path of the eclogites. This is just a sketch and 
no values for P-T conditions are valid except for estimated peak metamorphic conditions (Klapova et al., 1998; 
Collett et al., 2017).  
 
 

5.2 Deformation structures and zonation pattern  

The chemical zonation in the omphacite and the garnet exhibit an asymmetric shape, where the 

prograde rim of the zonation in the particles are wider in the lineation direction. The fact that 

the prograde rim is wider in the elongation direction of the grains indicates that the fabric 

developed during prograde metamorphism and peak metamorphic conditions. Hence, the 

omphacite and garnet grew in the elongation direction of the rock during subduction. The 

lineation is the strongest feature in the eclogites, but a weak foliation of compositional layering 

with alternating garnet rich layers is present. 

 

The most obvious feature in the eclogites are the elongated omphacites, zoisites and garnets, 

which form a strong lineation in the foliation plane of the eclogites. EBSD analysis and 

construction of pole figures for the different phases show that the omphacite and zoisite have a 

strong CPO with their long axis parallel to the lineation direction. Omphacite [001] direction 

have a strong maximum alignment parallel to lineation and [010] direction perpendicular to 

lineation. This omphacite CPO corresponds to a typical L-type fabric in omphacite (Helmstaedt 

et al., 1972). While the garnet does not exhibit any clear CPO and a low mud, the observed 

maximums in the [100] plane pole figures may indicate a weak CPO. Mainprice et al. (2004) 

compared numerical simulations and EBSD data for garnet CPO in different strain regimes. By 
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comparing the pole figures from this study to the numerical simulations there may be some 

similarities in the pole figures for pure shear (see Fig. 5.2.1), but the overall garnet CPO in this 

study is weak and cannot explain the elongation of the garnets.    

                                                                                                                                                                                                                                                                                 

Fig. 5.2.1: Garnet pole figures from Mainprice et al. (2004). Z=compressional axis and X=extension axis. Lower 
hemisphere plots. Minimum and maximum mud is presented.  
 

Fig.4.4.22 presents CPO pole figures for a single garnet in rims and core. The pole figures for 

the rim and core are identical. This clearly shows that the CPO is completely independent from 

chemical zonation. 

 

Hornblende occurs as larger grains that overgrow the fabric, with a random orientation 

compared to the lineation. The amount of hornblende grains is much less than the amount of 

omphacite grains, so this may weaken the result of the EBSD data. However hornblende pole 

figures show similar CPO as the omphacite, with [001] direction showing a weak alignment 

parallel to the lineation and [010] direction forming a weak girdle perpendicular to lineation. 

Since the fabric in the eclogites most likely developed during subduction, and peak eclogite 

metamorphism at P-T conditions where hornblende is not part of the stable mineral assemblage, 

homotactic growth of the hornblende on expense of omphacite is likely to explain the similar 

crystallographic orientation of the hornblende (Rehman et al., 2016). Symplectites surrounding 

the omphacite and some garnet grains also show a fabric parallel to the lineation direction. The 

symplectites are composed of diopside, plagioclase and/or amphibole. Since the symplectites, 

which are a product of retrogression during exhumation, show elongation parallel to the 

elongation direction during prograde metamorphism, the elongation direction is expected to be 

the same throughout the entire metamorphic path and deformation history of the eclogites.   

 

Shape and particle orientation analysis show that omphacite, garnet and zoisite are elongated 

and show a strong SPO in the lineation direction of the rock. Perpendicular to lineation 
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omphacite and garnet show a more rounded shape and a more random SPO fabric. This 

indicates that in a 3D presentation of the particles garnet and omphacite are dominantly 

elongated in the lineation direction of the eclogite. Perpendicular to the lineation zoisite shows 

a weak elongation and SPO perpendicular to lineation (see Fig. 4.4.26). The reason for this 

might be that the tabular grain shape of zoisite will show some elongation also perpendicular 

to its longest axis in the [010] direction.  

 

Quartz is most often seen in connection with garnet, and has crystallized on the sides of the 

garnet particle that are parallel to the elongation direction. Quartz forms elongated aggregates 

of grains, with straight grain boundaries. There are no observed CPO of the quartz grains, and 

no signs of recrystallization and intracrystalline deformation, except for weak undulose 

extinction observed in the light microscope.  

 
 

5.3 Deformation mechanisms and fabric development 

If the dominant mechanism for fabric development in eclogites is grain boundary diffusion or 

dislocation creep is discussed by several studies. The asymmetric prograde zonation of the 

omphacite and garnet in the eclogites from the Czech part of the Erzgebirge indicate that grain 

boundary diffusion or pressure solution was the dominant deformation mechanism in these 

rocks. Omphacite exhibits a CPO with [001] direction strongly aligned parallel to the lineation, 

while garnet shows no clear CPO. The weak CPO in the garnets indicate that dislocation creep 

mechanism most likely did not cause the elongation and deformation of the garnet grains. Since 

both the omphacite and garnet have correlating prograde asymmetric zonation wider in the 

lineation direction, and an SPO parallel to lineation, this may indicate that the mechanism for 

the formation of the asymmetric zonation and elongation of the grains was the same for 

omphacite and garnet.  

 

The C-axis of the omphacite is parallel to the elongation direction of the eclogite, and most 

likely normal to the highest stress. If the omphacite crystals were rotated so the C-axis already 

was somewhat parallel, grain boundary diffusion can be a possible mechanism for the fabric 

and CPO development of omphacite (Bons and den Brok, 2000). Deformation during 

subduction will cause dissolution of material on the sides of the grain normal to the highest 

stress and precipitation and growth in the elongation direction of the particles. Mauler et al. 
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(2001) presented that in omphacite the precipitation rate parallel to the C-axis is more efficient 

than for any other crystallographic directions. This is the case in the omphacite in these studied 

eclogites, with a wider prograde rim parallel to the lineation direction and to the C-axis of the 

omphacite. It indicates anisotropic growth and orientation dependent grain boundary diffusion 

creep to most likely be the dominant mechanism for the elongation of the omphacite, CPO and 

fabric development.  

 

This is illustrated in Fig.5.3.1 with prograde mineral growth in omphacite parallel to the C-axis 

and dissolution perpendicular to the C-axis. The pole figure illustrates the same CPO observed 

in the omphacites in this study with [001] direction parallel to lineation and [010] direction 

perpendicular to lineation. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3.1: illustration modified from Mauler et al. (2001) showing the asymmetric chemical zonation and prograde 
growth of omphacite parallel to the C-axis, normal to the highest stress and in the lineation direction. As well as 
preferred growth of the omphacite in the [001] direction, and dissolution in the [010] direction. Omphacite grain is 
oriented parallel to lineation (↔).  
 

 

Garnet mostly acts as rigid particles in rocks, so elongation by pure flattening is not likely. 

Strain partitioning normally accommodate the strain in eclogites in mechanically weaker 

minerals, e.g. omphacite, and garnet particles are normally not deformed (Mainprice et al., 

2004; Rehman et al., 2016). It was not observed any strong CPO in garnets in these eclogites, 

so deformation by dislocation creep is also ruled out to be the mechanism for the elongation of 

garnet grains. The asymmetric zonation wider in the lineation direction, indicates that grain 
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boundary diffusion by dissolution on high stress areas and precipitation on low stress areas of 

the grain is the most likely mechanism for the elongation of garnet. Fig.4.4.22 shows identical 

CPO data from different areas in the garnet crystal (core and rim) and clearly shows that the 

CPO is completely independent from the chemical zonation and therefore from the elongation 

of garnet grains. If recrystallization processes by dislocation creep was an accommodating 

mechanism for elongation of garnet we would expect signs of change in the CPO in the garnet 

from core to rim e.g. as subgrains during crystal growth. Therefore the chemical zonation is 

independent from the microstructures and elongation most probably is a product of grain 

boundary diffusion processes and anisotropic crystal growth during prograde metamorphism.   

 

Stünitz (1993) proposed that zoisite grains acts as rigid particles during deformation and do not 

show any signs of intra crystal plastic deformation by dislocation creep. If this is the case also 

for the zoisite particles in these eclogites, the strong CPO and elongation of zoisite parallel to 

lineation can be a result of rotation and grain boundary diffusion as in omphacite and garnet. 

Collett et al. (2017) suggested that zoisite is a product of hydration and/or cooling during early 

exhumation. If the elongation direction has been the same during the retrograde path of the 

eclogites this may be the case, but the strong CPO and SPO parallel to the omphacite and garnet 

in the lineation direction may point to rotation and grain boundary diffusion during subduction 

as a mechanism for elongation of zoisite in the lineation direction. However there is no 

asymmetric zonation in zoisite to confirm that the elongation occurred during prograde 

metamorphism.  

 

The results of this study indicate that the strong lineation fabric mostly produced by elongation 

of omphacite, garnet and zoisite in the Czech Erzgebirge eclogites dominantly is a result of 

anisotropic grain growth by grain boundary diffusion and not crystal plastic deformation by 

dislocation creep. As well as the main mechanisms for CPO development in omphacite by 

orientation dependent grain growth in the C-axis direction of the omphacites.  

 

Quartz is dominantly found in pressure shadows of garnet in aggregates parallel to the lineation 

direction, and more quartz and garnet rich layers occur as Keppler et al. (2016) observed. One 

explanation for the garnet and quartz association might be that quartz has a larger stability field 

than e.g. omphacite. Quartz will then crystallize in areas with lower stress than omphacite in 

the pressure shadows of garnet. As discussed for diffusion processes, material will precipitate 

at areas with lower stress parallel to the elongation direction. The pressure shadows of garnet 
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will be parallel to the elongation direction, where quartz is found in these eclogites. So another 

possibility is that quartz formed by a grain boundary diffusion process, where excess SiO2 from 

garnet was dissolved at areas with high stress and transferred by diffusion to areas of lower 

stress. In addition the formation of quartz aggregates in pressure shadows also are a result of 

dissolution and precipitation by grain boundary diffusion creep. The absent CPO and 

recrystallization structures, as well as straight grain boundaries indicates that quartz has not 

been deformed by intracrystalline processes, or that post-tectonic deformation by GBAR and 

grain growth have effected quartz as Mauler et al. (2001) proposed. The fact that quartz is 

placed in pressure shadows of the rigid garnet particles can also be the reason for the lack of 

deformation structures in quartz.  

  

Symplectites surrounding the omphacite grains are another structure facilitating grain boundary 

diffusion. The rims surrounding omphacite are somewhat wider in the lineation direction, as 

well as the fibrous, kelyphite rims around garnet is oriented in the lineation direction. The 

formation of the symplectites require diffusion along the grain boundaries to break down 

omphacite and/or garnet and to precipitate the new minerals. Since the symplectites and the 

fibrous rims are elongated parallel to the prograde lineation, the elongation direction has to be 

the same during exhumation. The same processes for dissolution at sites on the grain exposed 

to the highest stress and precipitation at low stress areas during grain boundary diffusion, can 

explain the wider symplectite rims parallel to the lineation direction.  

 

The L-type fabric of omphacites in the Czech eclogites from the Erzgebirge are based on the 

model from Helmstaedt et al. (1972), formed in a constrictional regime (Ԑ1>Ԑ2=Ԑ3). This model 

is based on the type of strain regime during deformation and recrystallization to be the main 

process for CPO development in omphacite. In the eclogites in this study the fabric seems to 

be formed by dominantly grain boundary diffusion processes, and that the fabric is a result of 

pure grain growth, and not directly connected to a constrictional regime and recrystallization. 

So to connect the L-type fabric in these eclogites to a constrictional regime and recrystallization 

formed by dislocation creep processes can in this respect be misleading. Pure or simple shear 

can also form L-type fabric if the lineation is dominantly formed by crystal growth in a preferred 

orientation.  

 

Dislocation creep is a known formation process of CPO in minerals, and may have interfered 

in the formation of the strong CPO in omphacite and zoisite. However the weak CPO in garnet, 
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the correlation in chemical zonation patterns in omphacite and garnet, the precipitation of quartz 

in pressure shadows of garnet and symplectite formation, all point to grain boundary diffusion 

as a dominant mechanism for the fabric development and omphacite CPO.  

 

Dynamic recrystallization of minerals is a mechanism accommodated by dislocation creep in 

the crystal lattice. No recrystallized grains or signs of BLG, SGR or GBM are observed in the 

eclogites. Deformation twinning and kinking are also signs of intracrystalline deformation, 

and where not observed in any studied particles.  
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6.0 Conclusions  
Mafic eclogites samples from the northeastern part of the Czech Republic of the Saxothuringian 

domain in the central Erzgebirge were studied in this thesis. Samples M1 and M7 exhibit the 

same strong lineation fabric with elongated omphacite, garnet and zoisite in the lineation 

direction of the eclogites. This study was done to find the main deformation mechanism for 

fabric and CPO development in eclogite facies minerals. From the results of this thesis and 

comparison to previous work, these are the conclusions of this thesis:  

 
1. The chemical changes in the zonation in omphacite and garnet indicate elongation of the 

particle and fabric development during prograde metamorphism. Retrograde rims as 

symplectites, kelyphites and a thin outer almandine rich rim in garnet indicate pressure decrease 

probably at the start of exhumation of the eclogites. The eclogites show the prograde – 

retrograde path of subduction, peak metamorphism and exhumation.  

 

2. Asymmetric zonation patterns in omphacite and garnet indicate that grain boundary diffusion 

creep is an important mechanism for prograde growth of omphacite and garnet stronger in the 

lineation direction, as well as the fabric development in the eclogite. The [001] direction, the 

longest axis of the omphacite particles, is parallel to the lineation and have a strong CPO. By 

rotation and orientation dependent growth in the [001] and lineation direction, grain boundary 

diffusion is a possible main mechanism for CPO development in the omphacite.  

 

3. If the elongation of minerals and formation of fabric are a product of grain growth by grain 

boundary diffusion, connecting L-type or S-type fabric to a constrictional or flattening regime 

can be misleading. If orientation dependent growth during grain boundary diffusion is the main 

mechanisms for CPO development in the omphacite, the CPO can develop in different strain 

regimes, and is not connected to recrystallization by dislocation creep processes.  

 

4. Quartz is always associated with garnet and has most likely crystallized in pressure shadows 

of garnet parallel to the lineation direction, either in unfavorable areas for HP minerals e.g. 

omphacite to crystallize, or as a result of excess SiO2 in the system and dissolution by grain 

boundary diffusion in the elongation direction of the eclogite.  
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8.0 Appendix 
 

Fig. 8.1: grain boundary and phase map for M1-L. Gray scale of different phases are presented in the legend, 

parallel to lineation (↔). 
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Fig. 8.2: grain boundary and phase map for M1-P, perpendicular to lineation.  

Fig. 8.3: grain boundary and phase map for M7-L, parallel to lineation (↔).  
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Fig.8.4: grain boundary and phase map for M7-P, perpendicular to lineation.  
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