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I 

Abstract 

The Eger Complex is situated in the Saxothuringian domain at the western margin of Bohemian 

Massif (Czech Republic). Migmatitic orthogneisses associated with granofelses and high-pressure 

felsic granulites make up the majority of the complex, which is interpreted as an upper crystalline 

nappe exhumed from underneath the fore-arc Teplá-Barrandian domain during the Variscan 

orogeny. Studies conducted in the Eger Complex suggested rapid exhumation and cooling after a 

static heating event from temperatures of ~760° estimated for the granofelses to ~850°C estimated 

for the granulites at isobaric conditions of ~16 kbar. The heating event led to substantial 

modification of microstructure in the granitoid rocks of the Eger Complex and the processes 

responsible for these changes are the focus of investigation in this work. There is a progressive 

change from a banded orthogneiss consisting of monomineralic layers of recrystallized K-feldspar, 

plagioclase and quartz to a macroscopically equigranular microstructure observed in the granulite. 

Such microstructural change is studied in four samples representing the two end-member 

microstructures and two intermediate microstructural stages represented by a migmatitic 

orthogneiss and a granoblastic granofels. Microstructural changes leading to the granulitization have 

been quantified and described through manual digitization and subsequent statistical analysis of rock 

microstructures coupled with analysis of crystallographic preferred orientations and both 

macroscopic and microscopic observations.  Grain size analysis of K-feldspar, plagioclase and quartz 

suggests that the largest change in microstructure occurs at the beginning of anatexis when the 

strength of the aggregate distribution and the crystallographic preferred orientations are significantly 

reduced. This change is attributed to melt crystallization. Statistical evaluation of the transition from 

the migmatitic orthogneiss towards the granofels suggests considerable ripening of the 

microstructure. In the granulite, the temperature-increase from upper amphibolite to granulite facies 

resulted in increased melting and subsequent crystallization leading to an almost complete 

homogenization of the microstructure. Previously estimated melt proportions of ~0-8.5 % are 

considered insufficient to completely rework the originally strongly anisotropic fabric and a model of 

cyclic melt infiltration is proposed as the most likely mechanism for the destruction of the original 

rock fabric.     
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1 Introduction and aim of thesis 

Melt formation, it’s migration and subsequent crystallization in the lower crust has a major effect on 

rock macro- and microstructures. In extreme cases the melting-related process can lead to complete 

disintegration of previously developed anisotropy in favour of microstructurally homogenous rocks 

even at low proportions of partial melting. Disruption and disintegration of such anisotropy have 

substantial consequences for the mechanical and seismic properties of the lower crust (Lee et al. 

(2017) and references therein).  

The Eger Complex in the western Bohemian Massif represents an exhumed segment of deep seated 

crustal rocks comprised of high-pressure felsic orthogneisses and granulites along with intermediate 

rock types exhibiting various microstructures. Continuous transitions from strongly anisotropic 

orthogneisses through migmatitic orthogneisses to granoblastic granofelses and granulites can be 

observed on both outcrop and hand specimen scale (Figure 3.1-1). Konopásek et al. (2014) 

demonstrated that the microstructural changes took place in the presence of small volumes (<10 %) 

of melt that crystalized K-feldspar, plagioclase and quartz. Considering that there is a complete 

destruction of the banded fabric, the question is if the modelled melt proportion is sufficient to drive 

such a drastic change in the microstructure or if there were other processes operating. The sequence 

of samples collected within the Eger Complex provides a record of an evolutionary path from 

strongly anisotropic to apparently homogenous microstructure. The rocks of the Eger Complex show 

signs of partial melting and the study of the sampled sequence could provide important insight into 

how melting-related processes contribute to the disintegration of previously developed rock fabrics.  

In this thesis, a microstructural sequence of four samples from an initially strongly banded 

orthogneiss, through a migmatitic orthogneiss, a granofels to a macroscopically equigranular 

granulite was investigated with the aim to document and statistically quantify the microstructural 

changes. The protolith, a Lower Ordovician granite deformed under high-temperature conditions, is 

characterized by alternating monomineralic layers of recrystallized K-feldspar, plagioclase, quartz and 

thin bands of mica which is progressively transformed into a granulite with a homogenous 

microstructure.  

The major phases within the rock volume, K-feldspar, plagioclase and quartz were studied in detail 

through their microstructural and textural characteristics including grain size, spatial distribution and 

crystallographic preferred orientation. Based on the results of the mentioned analyses an 
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evolutionary model is proposed and the possible mechanisms that could account for the origin of the 

studied sequence of microstructures are discussed.  

 

1.1 Location of study area  

The area of interest in this thesis, the Eger Complex, is a small crystalline complex at the western 

margin of the Bohemian Massif. The complex emerges as an erosional window in Mesozoic and 

Cenozoic volcano-sedimentary units in the Eger river valley situated in the lower limits of the 

Erzgebirge Mountains in northwestern Czech Republic (Figure 1.1-1 and Figure 1.1-2). The samples 

analysed in this thesis were collected from two locations of exposed crystalline rocks along the Eger 

River, the first one being Zámecký park in Klasterec nad Ohri (N 50.3841376 E 13.1768775) and the 

other one being Krvava skala in Kadan (N 50.3731064 E 13.2762747E). Both localities are easily 

accessible by road as they are both within their respective city limits and the distance between the 

two localities comes to just over seven kilometres.

Figure 1.1-1 Macroscopic appearance of the Eger Complex metagranatoids  after Konopásek et al. (2014). The 
hand specimen exhibits a continuous transition from strongly banded orthogneisses (right side) with alternating 
layers of quartz, feldspars and mica through a diffusely banded gneiss towards a granoblastic granofels (left 
side). The compositional banding is cross cut by shear-band containing crystalized melt 
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Figure 1.1-2 Simplified geological 
map of a part of the Erzgebirge 
that includes the Eger Complex 
after Konopasek and Schulmann 
(2005). Sample locations are 
shown by black dots. The upper 
left inset shows the geometry of 
massifs within the European 
Variscides (BM, Bohemian 
Massif; MC, French Massif 
Central; AM, Armorican Massif). 
Also in the upper left corner, a 
simplified map of the Bohemian 
Massif, where a black rectangle 
marks the location of the main 
part of the figure.  

Figure 1.1-1 Tectonic map of the 
Bohemian Massif after 
Schulmann et al. (2014) 
illustrating how the massif is 
divided in four principal domains, 
Saxothuringian domain, Teplá-
Barrandian domain, 
Moldanubian domain and the 
Brunia domain. The 
Saxothuringian and parts of the 
Moldanubian domain belong to 
the lower plate and the rest 
belongs to the upper plate of the 
Variscan Orogen in Central 
Europe.  
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1.2 Abbreviations 

Minerals  

Ap  apatite  

Bt  biotite 

Grt   garnet 

Ilm  ilmenite  

Kfs   K-feldspar 

Ky  kyanite 

Plg  plagioclase 

Mu  muscovite 

Opq  opaque  

Qtz  quartz 

Ru  rutile 

 

 

 

 

Other 

λ  wave-length 

BSE   backscattered electrons 

CL   Cathodoluminescence 

CPO   crystallographic preferred orientation 

EAD  equal area diameter 

EBSD   electron backscatter diffraction 

EDX/EDS  energy dispersive X-ray spectroscopy  

kV  Kilovolt 

Ma     million years ago 

MUD  multiple of uniform distribution 

Myr  million years 

UHP  ultra-high pressure 

UHT  ultra-high temperature 

VPSE  variable pressure secondary electron 

XPL  cross polarized light 
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1.3 Geological setting 

The Bohemian Massif is one of the largest exposures of pre-Permian rocks in Western Europe and it 

records a complex evolutionary history involving both the Cadomian orogeny in the Neoproterozoic 

and the extensive Variscan orogeny in the late Paleozoic (Matte et al., 1990). Based on differences in 

structure and geological evolution, the massif can be divided into four litho-tectonic domains. From 

West to East these domains are the Saxothuringian domain, the Teplá-Barrandian domain, the 

Moldanubian domain and the Brunia domain (Figure 1.1-1 and Figure 1.1-2), together these four 

tectonic domains represent a complete section through a typical collisional orogeny (Schulmann et 

al., 2009).  As the Variscan orogeny commenced in Early Devonian, the Saxothuringian domain acted 

as a northwestern colliding block, and now it shows abundant evidence for subduction-related 

metamorphism. The Teplá-Barrandian domain is representative for a fore-arc region of the 

overriding plate. The Moldanubian domain itself represents a back-arc domain showing evidence for 

crustal thinning, severe deformation and high metamorphic grade (Schulmann et al., 2009). The 

contact zone between the Moldanubian and Teplá-Barrandian domains is characterized by calc-

alkaline intrusions and has been interpreted as a magmatic arc. Lastly, the Brunia domain acted as a 

rigid back-stop in the east, showing only few signs of crustal reworking.  

1.3.1 The Saxothuringian domain 

The Saxothuringian domain represents the northeastern boundary of the Bohemian Massif and is 

characterized by Cambrian to Carboniferous volcano-sedimentary rocks with greenschist or lower 

metamorphic grade with areas reaching amphibolite facies within deeply eroded parts of the zone. 

The Saxothuringian domain exhibits variable early Carboniferous (Variscan) overprint and the 

volcano-sedimentary sequences are cut by late- to post-collisional granites (O'Brien and Carswell, 

1993, Franke, 2000, Kroner, 2007).  The Cadomian basement-sequences developed along an active 

margin on the northern periphery of the Gondwana continent between 570 Ma and 540 Ma (Nance 

and Murphy, 1994, Linnemann et al., 2004). The evolution that followed has been linked to the 

rifting of the Saxothuringian domains from the Gondwana margin, an event which was accompanied 

by intrusions of acidic volcanic- and plutonic rocks and development of thick sedimentary sequences 

(Linnemann et al., 2000). Late Ordovician to Devonian deep-sea sediments suggest the establishment 

of a passive margin and the opening of an oceanic domain termed the Saxothuringian Ocean. Plate 

motions changed in the Early Devonian, leading to the closure of the Saxothuringian ocean through 

subduction (400-355 Ma) (Schulmann et al., 2009). In early Carboniferous, the subduction 

culminated in a collisional orogeny where the Saxothuringian domain was thrust under the 
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overriding Teplá-Barrandian plate (at ca. 340 Ma). The underthrusting resulted in deformation and 

metamorphism with increasing intensity toward the contact with the Teplá-Barrandian domain to 

the southeast. In the eastern parts of the Saxothuringian domain, the underthrusting led to 

eclogitization of both oceanic and continental crust (Konopasek and Schulmann, 2005). In the central 

part of the exposed eastern Saxothuringian domain, the early subduction along with continental 

underthrusting is responsible for high pressure metamorphism reaching the stability field of diamond 

(Kotkova et al., 2011). The high-pressure rocks reached their upper crustal position through a major 

period of exhumation in the Early Carboniferous within the subduction channel along the 

Saxothuringian-Teplá-Barrandian suture.  

Today, the rock-assemblage exhumed form the subduction zone is represented by high-pressure 

metasediments and orthogneisses with numerous exposures of mafic eclogites. One of these units, 

interpreted as a segment of the lower continental crust originating in (or exhumed from) the deep 

fore-arc region is the high-pressure/high-temperature Eger Complex, which is the subject study in 

this thesis.   

1.3.2 The Teplá-Barrandian domain 

The Teplá-Barrandian domain constitutes the for-arc domain of the Bohemian Massif and is the best 

preserved fragment of Cadomian basement in central Europe (Franke, 2000).  The domain represents 

a supracrustal complex that comprises deformed Neoproterozoic basement and Late Cambrian to 

Devonian volcanic and sedimentary rocks (Franke, 2000, Schulmann et al., 2009). The Teplá-

Barrandian domain has only a weak Variscan overprint, and was not subjected to Carboniferous high-

temperature/low -pressure metamorphism as the adjacent Saxothuringian and Moldanubian 

domains.  

1.3.3 Central Erzgebirge 

The Erzgebirge (meaning the Ore Mountains) is a high-grade metamorphic complex situated on the 

border between Germany and the Czech Republic. In geological terms, the Erzgebirge forms part of 

the Saxothuringian domain where it constitutes a large NE-SW trending antiform built up of nappes 

originating from exhumation from the root of the overthickened Teplá-Barrandian crust during the 

Variscan collisional event (Mingram et al., 2004, Konopásek et al., 2014). At its core, the Erzgebirge 

consist of a nappe or nappes of medium to ultra-high pressure para- and orthogneisses and mica 

schists with eclogite and peridotite lenses, surrounded and partly overlain by phyllites and intruded 

by late- to post- collisional granites. (Mingram, 1998, Roetzler et al., 1998, Mingram et al., 2004, 
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Perchuk, 2008). To the NE the Erzgebirge is bounded by the long lived strike-slip Elbe fault zone 

whereas the SE limit is defined by the Cenozoic Eger graben, characterized by Cenozoic sedimentary 

infill and basaltic flows (Štemprok and Blecha, 2015).  

In the central part of the Erzgebirge, three tectonometamorphic units can be recognized through 

their surface exposure (Figure 1.1-2). (1) The large orthogneiss body of the Sv.Katerina – Reitzenhein 

structure and overlying metasediments are together regarded as the lowermost parautochthonous 

tectonic unit (Mlčoch and Konopásek, 2010). (2)  The parautochthonous domain is partly overlain by 

an allochthonous Lower Crystalline Nappe comprised of medium temperature orthogneisses with 

associated eclogites. The Lower Crystalline Nappe within Central Erzgebirge is mainly exposed in 

synforms and antiforms, including Oberweisenthal synform, Medenec synform and antiform as well 

as the Klinovec structure. (3) In a number of places the metasediments of the parautochthonous unit 

are covered by an allochthonous Upper Crystalline Nappe of high-temperature migmatitic 

orthogneisses associated with granulitic gneisses and high-pressure granulites. The Upper Crystalline 

nappe is exposed in the Jöhstadt synform, the Zoblitz complex and the Eger crystalline complex. (For 

detailed overview of the tectonometamorphic units within the Central Erzgebirge see Konopasek and 

Schulmann (2005) and references therein).  

1.3.4 Eger Complex 

The Eger Complex is a high-grade crystalline complex exposed in an erosive window from Cenozoic 

volcanics at the foot of the Erzgebirge mountains (Konopásek et al., 2014). The complex forms the 

uppermost thrust sheet of a more extensive crustal nappe stack (Upper Crystalline Nappe) which is 

interpreted as having been exhumed from underneath the Teplá-Barrandian domain (Konopasek and 

Schulmann, 2005). The majority of the Eger Complex is built up of orthogneisses and felsic granulites. 

Field observations suggest that the felsic granulites form isolated outcrops surrounded by 

orthogneisses and granofelses with upper amphibolite-facies mineral assemblages (Konopásek et al., 

2014). Transitions from strongly banded orthogneiss to granofels lacking any apparent macroscopic 

foliation can be observed both on outcrop scale and in hand specimens (Figure 1.1-1).  

Thermodynamic modelling suggests that the peak metamorphic conditions were ~700°C and 9 kbar 

for partially molten orthogneisses, ~760°C and ~16 kbar for the granofelses and ~850°C and ~16 

kbar for the granulites. Additionally, thermodynamic modelling indicates that the rocks equilibrated 

in the presence a small fraction of melt amounting to ~4 wt % in the orthogneisses and ~5.5 to 8.5 

wt% in the granulites (Závada et al., 2007, Konopásek et al., 2014). Studies of the orthogneisses and 

granulites within the Eger Complex, suggest that that peak metamorphism occurred at c. 340 Ma and 
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that the static heating of the complex led to a partial granulitization of the which terminated due to 

rapid exhumation and cooling (Kotková et al., 1996, Zulauf et al., 2002, Konopásek et al., 2014). 

1.4  Previous work in the Eger Complex 

The Eger Complex has been a target of several studies the last thirty years and the most important 

findings of these studies are summarized within this chapter.  

Kotková et al. (1996) analysed zircons and rutile from a granulite within the Eger Complex along with 

two granulite samples from deep boreholes in the Central Bohemian Uplands, SE of the exposed Eger 

complex. As a result of the analysis, a mean 207Pb/206Pb age of 342±5 Ma was adopted to reflect the 

timing of peak HP metamorphism.  The authors also used the slightly lower 207Pb/206Pb age of rutile, 

attributed to a much lower closing temperature for the U-Pb isotopic system compared to zircon, as 

well as the data previously published Kotková (1993) to support the conclusions of Kotková (1992) 

and Kotková (1993) that the peak metamorphism of the Eger granulites was followed by relatively 

rapid uplift. The 207Pb/206Pb ages were in excellent agreement with zircon ages for granulites in 

Saxony and southern Bohemia, implying an extensive regional granulite metamorphism at 340 Ma 

(Kotková et al., 1996).   

Zulauf et al. (2002) carried out detailed structural and kinematic investigations along with U-Pb 

dating of monazite and 40Ar-39Ar dating of micas in orthogneisses and granulites of the Eger Complex.  

The results of their structural investigations suggested that dislocation creep and volume diffusion 

operated simultaneously during deformation of the Eger Complex rocks. They estimated a rapid 

cooling (50 +25/-17 °C Myr-1) and exhumation rate (1.2-2.5 mm Myr-1) based on U-Pb ages of 

monazite (342±1 Ma) representing the peak age of metamorphism and40Ar-39Ar dating of muscovite 

(341±1 Ma) representing the timing of exhumation and cooling of the Eger Complex orthogneisses. 

The rapid exhumation and cooling was attributed to a fast “elevator-style” movements in 

combination with the contact between the hot lower crustal rocks of the Eger Complex and the 

relatively cold crust of the Teplá-Barrandian domain. 

Závada et al. (2007) described the evolution of banded low- to high-strain orthogneisses of the Eger 

Complex in detail through microstructural analysis and CPO of quartz and feldspars. The authors 

documented the evolutionary impact of partial melting on the rock rheology and evolution of rock 

microstructure. With the help of thermodynamic modelling, they found that the orthogneiss 

contained ~2-4 vol % melt at its metamorphic peak.  
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Kotkova et al. (2011) compared granulite samples from the Eger Complex with granulite samples 

from drill-cores from the Central Bohemian Uplands and found diamond and coesite in garnet, 

kyanite and zircon documenting UHP conditions of P>40 kbar for presence of diamond and P>30 kbar 

for presence of coesite (Kotkova et al., 2011).  

Konopásek et al. (2014) studied redistribution of zirconium along minerals in orthogneisses, 

granofelses and granulites in the Eger Complex by focusing on CL-investigations, U-Pb dating and 

mass balance calculation, as well as thermodynamic modelling of P-T conditions of the different rock 

types. Their thermodynamic modelling suggested a short-lived static heating event from  ~760 to 

~850 °C at ~16 kbar. While CL-imaging and U-Pb dating of zircon cores yielded a protolith age of 

475-470 Ma, the dating of zircon rims confirmed the previously published age (340 Ma) for granulite-

facies metamorphism by Kotková et al. (1996). From zircon redistribution calculations they 

concluded that the formation of zircon rims results from solid-state recrystallization rather than new 

crystallization of zircon. The study ultimately concludes that a short-lived static event exposing the 

metagranitoids of the Eger Complex to a temperatures of ~850 °C at the base of an arc/fore-arc 

region led to a partial granulitization of the rocks that terminated due to rapid exhumation and 

cooling. 

Haifler and Kotková (2016) studied samples of garnet-clinopyroxene rocks by performing a 

petrographic study, bulk rock analysis, chemical analysis and Ti-in-zircon thermometry from which 

they reconstructed the metamorphic evolution. They found that the garnet-clinopyroxene rocks in 

the Eger Complex underwent UHP-UHT metamorphism experiencing temperatures within the 

diamond stability field (c. 1100 °C) at 50 kbar.   

1.5 Sample introduction  

Four rock samples believed to represent a microstructural sequence have been the focus of 

investigation in this thesis. The microstructural sequence includes a strongly banded granitic 

orthogneiss with a completely recrystallized fabric, a migmatitic orthogneiss showing evidence of 

partial melting and crystallization, a granofels approaching a complete granoblastic microstructure 

and a well-equilibrated felsic granulite. Based on microstructural appearance, the studied rocks have 

been divided into four microstructural stages, where type I microstructure is represented by an 

orthogneiss sample characterized by monomineralic aggregates of K-feldspar, plagioclase and quartz 

discretely separated by mica-rich domains. Type II microstructure corresponds to a migmatitic 

orthogneiss where K-feldspar, plagioclase and quartz aggregates contain interstitial grains of the 
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other phases (i.e quartz aggregates contains interstitial K-feldspar and plagioclase grains etc.). Type 

III microstructure is represented by a granofels lacking an apparent foliation and where domains 

enriched in K-feldspar, plagioclase and quartz are barely recognisable. Type IV microstructure is 

recognized in the granulite where the phases are largely intermixed and no foliation is visible. 

Detailed descriptions of these microstructural stages are presented in section 3.1. 
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2 Methods of work 

2.1 Microscopic area selection 

To draw decent conclusions from any quantitative data analysis, it is important that the analysis is 

performed on a valid dataset. In the case of this thesis, this entails redrawing a representative cross-

sectional area of samples that range from strongly anisotropic to granoblastic textures. Due to the 

compositional banding exhibited by the two orthogneiss samples (type I and type II microstructures) 

it would simply take an extensive amount of digitizing, likely spreading over several thin-sections to 

achieve completely representative data for these two sections. As this would be an impossible task 

to complete within the time constraints set for this work, digitizing areas for the two samples in 

question was chosen based on which areas within the thin sections would yield the most 

representative results. 

For the granofels and granulite (type III and type IV microstructures), the general distribution of 

grains is more homogenous which increases the likelihood that any randomly chosen area would be 

close to representative for the whole sample. Still, digitizing areas for these samples were also 

carefully chosen so that a representative cross sectional area for each microstructural type would be 

redrawn. 

2.2 Scanning electron microscopy (SEM) imaging 

Today, SEM-imaging is one of the most widely used instruments for direct studies of solid sample 

surfaces. Easy sample preparation, high-resolution imaging which is directly interpretable in terms of 

chemical and microstructural properties along with the possibility of using multiple detectors to 

obtain complementary information are the biggest draws for using SEM-imaging.  

2.2.1 Theory behind SEM-imaging 

A scanning electron microscope (SEM) usually operates in vacuum and images the sample by raster-

scanning the surface with a focused beam of high-energy incident electrons (Dehm et al., 2012). The 

electrons emitted from the electron gun carry a large amount of kinetic energy that dissipates as the 

incident electrons decelerate due to their interaction with the solid sample. Energy dissipated form 

this interaction takes on a variety of forms, including characteristic X-rays, backscattered electrons 

(BSE), secondary electrons (SE), visible light (cathodoluminescence) etc. These various emitted 
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signals are picked up by detectors and subsequently processed to create a grey-scale image where 

the intensity of the signal is presented by variable brightness. 

Back scattered electrons (BSE) 

BSE are generally defined as high-energy electrons that result from elastic collisions of the incident 

electrons with the solid sample, rather than inelastic collisions. Material with high average atomic 

numbers (𝑍) produces greater elastic scattering compared to material consisting of smaller atoms 

with lower 𝑍, this effect is shown in Figure 2.2-1 and is due the larger cross-sectional area of heavier 

atoms (Brandon et al., 2008, Marassi and Nobili, 2009). Consequently, the intensity of signal reaching 

the BSE-detector is proportional to the average atomic number of the sample volume, meaning that 

the grey-levels in the BSE output-image directly correlates to 𝑍 of the sampled material. In Earth 

sciences, this easy separation of material based on composition is especially useful when 

investigating mineral phase distributions within a sample.  

 

 

Cathodoluminescence (CL)  

Cathodoluminescence is the emission of photons induced in a sample subjected to bombardment of 

electrons. Electron-bombardment of samples causes electrons in specific chemical impurities to be 

exited to a higher energy-state, and when electrons return to their original ground-state the energy 

difference is released as photons.  Intensity of the CL-signal depends various complex factors, where 

mineral conductivity, nature and occurrence of crystal defects are the most significant. Similar to 

Figure 2.2-1 BSE electron-sample interaction. The figure illustrates how incident electrons and interact with 
samples of Titanium, representing material with larger Z, and Silicon, representing material with lower Z after 
Australian Microscopy & Microanalysis Research Facility (2014). 
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BSE-imaging, this allows interpretation of the brightness of the resulting grey-scale image as a 

function of chemical properties of minerals, but in addition, CL-imaging can reveal mineral zoning, 

growth- and dissolution features as well as deformation features. 

Energy dispersive X-ray spectroscopy (EDS)  

EDS is a chemical analysis tool used in combination with SEM in order to detect specific elemental 

composition of solid material. EDS detectors makes use of X-rays that are emitted from the sample 

when it interacts with a high-energy electron beam. The highly energized electron beam has the 

potential to knock electrons from the inner shells of the atoms within the sample out of their orbit, 

the resulting vacancies are quickly filled by electrons of a higher energy state.  As the higher energy 

electron falls down to fill the vacancy, an X-ray photon with sharply defined frequencies is released 

to balance the energy difference between the two electron states. Since each element has unique set 

of energy levels for their shells, each element will emit an X-ray pattern that is characteristic for that 

element. In this way, we can use EDS to map the surface of a sample in terms of its elemental 

composition. In the resulting map, the intensity or brightness will reveal the relative proportions of 

elements within the scanned area. EDS is also commonly used to determine mineral chemistry in 

terms of point analysis and to reveal compositional variations through line scans. 

2.2.2 SEM-imaging of the studied samples 

Prior to the SEM-imaging, all samples were carbon-coated to help charge dissipation of the non-

conductive samples. The main part of the SEM-imaging was carried out at the Faculty of Health 

Sciences of UiT the Arctic University of Norway using a Zeiss Merlin VP Compact equipped with 

various detectors. Because of a lengthy EDS malfunction at the Faculty of Health Sciences, a Hitachi 

TM3030 Tabletop Microscope located in the main laboratory at the Department of Geosciences was 

used as a substitute for analysis of type I orthogneiss.  

Back scattered electrons 

Since BSE gives information based upon average atomic numbers (𝑍) of the scanned compounds, it 

would not be able to adequately distinguish phases that have similar 𝑍 values, such as plagioclase 

and quartz. Based on the fact that BSE-imaging clearly distinguishes muscovite and biotite, which 

both appear black in CL-images, it was chosen to do BSE imaging of the two samples exhibiting well-

defined mica bands. The BSE imaging was carried out using an accelerating voltage of 20 kV, 100x 

magnification and a working distance of 8.2-8.7 mm. 
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Cathodoluminescence 

As there is only a little contrast between plagioclase and quartz in BSE images, CL-imaging of the 

samples was chosen as it clearly shows grain boundaries for most minerals within the sample. In 

addition, it provides information complementary to EDS and BSE.  CL-images were produced by the 

use of a variable pressure secondary electron (VPSE) detector in vacuum. A VPSE detector is designed 

to work in a gaseous environment. The detector picks up photons emitted from gas-molecules as 

they are hit by secondary electrons emitted from the sample when the sample itself interacts with 

the incident electron beam. Removing the gaseous environment results in the VPSE detector 

operating as a CL detector.  The CL-imaging was carried out with an accelerating voltage of 15 kV, 

100x magnification and a working distance within the range of 7.8 to 8.4 mm.  

Energy dispersive X-ray spectroscopy and mineral chemistry 

EDS gives essential information about sample chemistry, which allows for relatively easy phase 

identifications when used in combination with the light microscope. An 18-20 hour long automated 

analysis was set up for each of the predefined areas, keeping the step-size as small as the given time 

frame would allow.  As it is not possible to configure automated analysis with the table top 

microscope, single frame analysis was used for the type I orthogneiss. The single frame analysis was 

mainly used in areas where clear phase identifications could not be accomplished from previously 

acquired data.  

Mineral chemistries were measured for the granofels and granulite with an electron probe micro-

analyser with field emission gun (FEG) electron source JXA-8530F by Jeol. The analysis took place in 

the facilities of Charles University Faculty of Science. 

 

2.3 Redrawing Rock microstructure 

SEM images and maps that were obtained for each sample during the preliminary work of the thesis 

were arranged in layers and subsequently digitized using the open-source geographic information 

system QGIS. The layers are actually a collage of images that were stitched together using a flat-

scanned method, involving only resizing and repositioning in the panorama photo-sticher program, 

Hugin.  The layers were arranged in QGIS with the CL and BSE (if they were taken), images at the 

base, serving as the primary source of information as they portray the grain boundaries of the 

sample surface most accurately.  As the CL signal depends on several factors including crystal defects 

two distinct layers of photomicrograps were added in order to corroborate the information from CL 
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images. On top of the CL and BSE base layers EDS maps were mainly used to identify phases, while 

photomicrograph-layers taken in XPL and XPL + λ (XPL with the retardation plate inserted) images 

were used as an additional source of information. To ensure that the redrawing of grain boundaries 

and phase identification was as accurate as possible the polarizing microscope was used actively 

while drawing. The grain boundary digitization was achieved by turning the visibility of the layers on 

and off and gradually drawing the grain boundaries with maximum accuracy. The mineral phase of 

each grain was manually added by placing a point within each grain and assigning phase information 

to each particular point. Through the combination of a polygonal line file holding all drawn grain 

boundary data and a point file containing phase data, a complete digitized grain boundary map with 

phase identifications for each map was generated for each sample; see Figure 2.3-1 for general 

digitizing layer-arrangement. 

 

Figure 2.3-1 QGIS digitizing layer-arrangement with showing the different types of input images in the order that 
they were used (bottom left) and the two different types of output files (line and point data) along with a 
MATLAB-generated map combining the two output files (top right)  
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2.4 Statistical analysis using MATLABTM and PolyLX toolbox 

The main focus of the statistical analysis of the four microstructural types was to assess grain size 

and contact frequencies of K-feldspar, plagioclase and quartz. The statistical evaluation of the 

samples involved a substantial amount of programming in MATLABTM through a combination of built-

in functions and functions provided in the PolyLX MATLABTM toolbox (Lexa, n.d). In addition, the 

program STRIPSTAR and the image processing program Image J was used for parts of the grain size 

analysis (Heilbronner and Bruhn, 1998). 

Grain size 

Thin sections are two-dimensional cross-sections of objects in three-dimensional space, and as such 

the grain size distributions will generally differ from the true size distributions measured in 3D space. 

Two factors control the deviation from the true distribution; (1) a random cross-section of a grain can 

be smaller but never larger than the grain; and (2) there is a higher probability of larger grains being 

included in the random sectioning as they offer a larger intersection area when compared to smaller 

grains (Dalen and Koster, 2012). As a result, 2D sections will never accurately represent the true size 

of sampled grain.  

Equal diameter is a widely used measure of particle size and it could be expressed in two ways; (1) in 

2D, as the diameter of a circle having the same area as the assessed grain (equal area diameter or 

EAD, Figure 2.4-1 a) and; (2) in 3D, where it corresponds to the diameter of a sphere of equal volume 

(Figure 2.4-1 b). EAD of digitized grain cross-sections were calculated directly form grain map 

topologies through the equation; 

 

𝐸𝑞𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝐸𝐴𝐷) = 2 ∙ √(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑔𝑟𝑎𝑖𝑛 𝑎𝑟𝑒𝑎 𝜋)⁄  
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Volumetric grain size distributions were obtained through the STRIPSTAR program which generates 

results identical to the Schwartz-Saltykov method described in Underwood (1970) (Heilbronner et al., 

2010). The STRIPSTAR program calculates the parent distribution of spheres (Figure 2.4-1 b) from the 

grain size distribution of EAD (Figure 2.4-1 a). Size distributions calculated by STRIPSTAR can feature 

negative frequencies, a feature that allows the program to account for under-populated or empty 

bins and complete the calculation. It should be noted that a large number of grains have to be 

evaluated in order to achieve representative results, for example, 1000 grains have to be evaluated 

for a 20 bin histogram with a minimum average density of 50 counts per bin (Heilbronner et al., 

2010).   

As a final step of the grain size analysis, grain size maps for K-feldspar, plagioclase and quartz were 

constructed through the use of JAZY whatever map macro in Image J (Basel University, n.d). The Jazy 

grain size mapping colours the evaluated grains based on size or shape and for the purposes of this 

thesis the grains were colour coded based on their EAD. 

Grain contact frequency method  

The grain contact frequency method is adapted after Kretz (1969) and is used as a statistical tool to 

determine to what extent contact relations of certain minerals deviate from a random distribution. 

The method compares the number of observed contacts (O) shared by two phases with the number 

of contacts that would be expected (E) for a completely random spatial distribution of the two 

Figure 2.4-1 Equal diameter as a grain size measurement (a) in 2D, corresponding to the diameter of a circle of 
equal area (EAD) and (b) in 3D as the diameter of an equivalent sphere. 
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phases. The results are given in terms of ꭓ-values, where ꭓ is a measure of the deviation from a 

random spatial distribution, which is given by the equation: 

ꭓ =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠

√𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠
 

In the original paper by Kretz (1969), the grain contact frequencies were determined by the use of 

line intercepts, however in this thesis the determinations were obtained directly form grain map 

topologies using the PolyLX MATLABTM toolbox.  

2.5 Crystallographic analysis by electron backscatter diffraction (EBSD) 

Electron Backscatter Diffraction (EBSD) is a SEM-based technique for attaining crystallographic 

information for microstructures within crystalline material and is therefore a significant research tool 

within material science. 

2.5.1 Theory behind EBSD 

Principally, the EBSD analysis is conducted using a stationary, high-energy electron beam with a 

shallow angle of incidence on a sample surface in a scanning electron microscope to produce a cone 

of diffracted electrons, which fluoresces an impeding phosphor screen. This fluorescence produces 

diffraction patterns which are captured by a specialized camera situated behind the phosphor screen 

(Schwarzer et al., 2009). The diffraction patterns consist of intersecting Kikuchi bands, which are 

typical for particular crystalline solids. The diffraction patterns are computer-analysed to identify the 

phase, index the pattern and obtain orientation data for analysed spot (De Graef, 2003). The 

obtained orientation data is usually described in terms of Euler angles, which can be visualized in a 

number of ways, one of them is through a Euler map. In Euler maps, the orientation data of 

individual crystals are presented by plotting the three Euler angles of the crystals using an RGB 

scheme, these maps only give a rough understanding of the sample microstructure (Oxford 

Instruments Plc, 2015). More often, the orientation output is presented as pole figures, translating 

the obtained 3D orientation to a 2D plot. With pole figures, the arrangement of crystallographic 

planes is presented rather than the orientations of individual crystals as in Euler maps, the trends 

that might appear in pole figures allows us to infer sample fabrics.  

Thin sections subjected to EBSD analysis need to be carefully prepared before the analysis. The 

reason why the preparation is such an important factor is that electrons are diffracted from the very 

surface of the sample, usually no deeper than a couple of tens of nanometers, meaning that any 
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deformation or contamination of the surface likely will suppress the Kikuchi patterns and hence 

hamper results of the analysis (Oxford Instruments Plc, 2016-2017). To achieve optimum Kikuchi 

pattern intensity, the tilt angle of the sample should be 70 degrees form the horizontal and the 

distance between the electron gun and the sample (i.e. the working distance) should be 6-12 mm to 

ensure ideal analytical conditions.    

2.5.2 EBSD analysis conditions 

As with SEM-imaging, all samples were carbon-coated to reduce any surface charging, the sample 

was then mounted on an aluminium stage before applying strips of copper tape, functioning as an 

extra adhesive as well as helping charge-dissipation during subsequent analysis. The EBSD analyses 

were performed at the Faculty of Health Sciences at UiT the Arctic University of Norway using a Zeiss 

Merlin VP Compact with an accelerating voltage of 20 kV outfitted with an Oxford instruments HKL 

Nordlys EBSD detector. The magnification was set to x100 and the step-size was chosen as small as 

possible for each predefined sample-area while still allowing an overnight run-time of 18-20 hours. 

Overall, the step-sizes for the analysed samples ranged from 4-8 microns, with the exception of large 

quartz grains in type I orthogneiss which required a larger area of analysis and consequently a larger 

step-size of 12 microns. Finally, the output EBSD-data were analysed through Aztec and further post-

processed through Channel5, both programs provided by Oxford Instruments Plc. 
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3 Results 

In the following chapter, the results of this work are presented. The chapter will start with a 

description of the samples, both as they appear in hand specimen and in thin section, before 

presenting manually redrawn grain maps for each thin section. Then results of the statistical analysis 

are presented, including grains size statistics, grain boundary frequencies. Finally, results of CPO 

measurements are presented as pole figures.  

3.1 Sample description 

The upcoming subchapter concerns the description of four hand specimens and thin sections made 

of them. The samples were collected and cut by dr. Prokop Závada from the Geophysical Institute of 

the Czech Academy of Sciences in Prague. All samples were cut perpendicular to the observed (or 

inferred in the case of the granofels and granulite) foliation and parallel to mineral lineation. As it 

was described previously by Závada et al. (2007) and Konopásek et al. (2014), formation and 

subsequent crystallization of low amounts of melt is believed to be the main factor contributing to 

the change of the fabric and microstructure of the studied samples of metagranitoid rocks. Thus, 

special attention was paid to the description of grain shapes and nature of contacts among K-

feldspar, plagioclase and quartz, as well as an overall description of the microstructure in which 

these mineral phases appear.  

For macroscopic sample descriptions, hand specimens for type II migmatitic orthogneiss, type III 

granofels and type IV granulite were available for examination while hand specimen for type I 

orthogneiss were unfortunately not recovered. As an alternate solution, another hand sample of 

strongly banded orthogneiss equivalent to the type I orthogneiss taken form the same location, was 

used for macroscopic descriptions.  Thin sections are described using fabric nomenclatures form 

Passchier et al. (2005) and Vernon (2004).  

3.1.1 Type I : Orthogneiss 

Sample KL22A(B4) is a granitic orthogneiss from Zámecký park in Klasterec (N 50.3841376 E 

13.1768775). The sample is macroscopically characterized by a gneissic microstructure consisting of 

alternating 0.1-0.4 cm wide monomineralic bands of quartz, plagioclase and K-feldspar separated by 

0.1-0.2 cm intermittent mica-rich bands (Figure 3.1-1). Both the hand specimen and field outcrop 

show signs of folding.   
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Figure 3.1-1 Hand sample EC8Y,type I orthogneiss, corresponding to macroscopic appearance of sample KL22-A.  

 

The sample equilibrated under upper amphibolite facies  conditions (Konopásek et al., 2014) and has 

the mineral assemblage quartz (25-35%), K-feldspar (35-45%), plagioclase (20-30%), muscovite (1-

5%), biotite (1-5%), minor amounts of garnet (1-3%) and accessory amounts of rutile, apatite and 

zircon. Biotite has XFe = 0.54-0.55 while garnet has XFe = 0.83 and is compositionally (%) made up of 

Alm66, Py13, Grs13, Sps1. Plagioclase within this sample contained 2-14% of the An component and 0-

2% of the Kfs component while K-feldspar contains 3-14% of Ab and 0% An (mineral chemistry 

obtained from Konopásek et al. (2014)).  

Microscopically, the type I orthogneiss shows a completely recrystallized microstructure with 

alternating bands of feldspars and quartz without relict porphyroclasts. Quartz aggregates are made 

up of large grains with highly interlocking intraphase boundaries occasionally with individual grains 

exhibiting sweeping undulose extinction (Figure 3.1-2 a). The intraphase quartz boundaries are 

generally forms straight zig-zag degments upon close inspection (Figure 3.1-2 b). Smaller quartz 

grains are rounded to elongated and mostly situated within K-feldspar aggregates (Figure 3.1-2 c) 

and in association with mica rich domains. Feldspar bands are largely monomineralic, consisting of a 

mosaic of equidimensional grains with straight interphase boundaries and numerous 120° triple 

junctions, exhibiting typical foam microstructures (Figure 3.1-2 d and e). Plagioclase bands contains 

randomly oriented interstitial muscovite while K-feldspar bands contain both interstitial grains of 

quartz and plagioclase often forming thin elongated grains lining K-feldspar boundaries or occurring 

as isolated grain along boundaries and in triple junctions (Figure 3.1-2 c).    
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3.1.2 Type II : Migmatitic orthogneiss 

Sample EZ 22P from Krvava skala in Kadan (N 50.3731064 E 13.2762747E), is a migmatitic orthogneiss 

with 0.1-0.3 mm thick discontinuous, diffusely separated bands of felsic material with thin 0-0.1 mm 

d 

Figure 3.1-2 Details of BSE and photomicrographs for type I orthogneiss. a) Interlocking intraphase quartz 
boundaries (white arrows) in contrast to the relatively straight boundaries with adjacent Kfs aggregates. 
Quartz shows anomalous interference colours due to larger thickness of the thin section. (b) Close-up of 
quartz intraphase boundaries showing that quartz intraphase boundaries form angular zig-zag patterns 
(white arrows). (c) BSE images showing interstitial grains of plg (white arrow) and qtz (black arrow) within a 
thin Kfs band. (d) Polygonal microstructure exhibited by a (largely) monomineralic plagioclase band with 
subordinate amounts of interstitial muscovite (white arrows). (e) Photomicrograph of polygonal texture of K-
feldspar aggregates taken under cross polarized light with the retardation plate inserted. The image 
unfortunately has no scale but generally the diameter of individual K-feldspar grains within this sample lies 
between 0.1-0-4 mm 

e 
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mica-rich domains (Figure 3.1-3). Apart from a few relict quartz bands, the bands of quartz, 

plagioclase and K-feldspar in this sample are not strictly monomineralic as in the type I orthogneiss.  

Within the hand sample, crystalized melt is present in shear bands oblique to the foliation, which 

macroscopically indicates a certain degree of rock migmatization. The sample has the same mineral 

assemblage as type I orthogneiss, containing quartz (25-35%), K-feldspar (30-45%), plagioclase (20-

30%), muscovite (1-5%), biotite (1-5%) and accessory garnet, rutile, apatite and zircon. 

Unfortunately, there is no microprobe data for the migmatitic orthogneiss.  

Microscopically the type II migmatitic orthogneiss consists of alternating bands of felsic minerals 

dominated by either K-feldspar, plagioclase or quartz with thin bands consisting of biotite and 

muscovite. Quartz grains in relicts of aggregates have lobate interphase boundaries with K-feldspar 

and plagioclase (Figure 3.1-4 a), while their intraphase boundaries form more or less straight 

segments (Figure 3.1-4 b). Interstitial grains of quartz form rounded to elongated grains situated 

within K-feldspar- or plagioclase-rich domains. K-feldspar- and plagioclase-aggregates are built up of 

larger, irregularly shaped grains with gently curved intraphase boundaries.  Interstitial K-feldspar and 

plagioclase are round to elongate and sometimes exhibits cuspate shapes.  The interstitial grains of 

Figure 3.1-3 Hand sample EZ 22P, type II migmatitic orthogneiss. Image illustrates the macroscopic 
appearance of the migmatitic orthogneiss. Notice crystalized melt in shear bands obliquely crosscutting the 
gneissic foliation 
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quartz, plagioclase and K-feldspar is situated within domains dominated by the other felsic phases 

(i.e Plagioclase is found within K-feldspar and/or quartz dominated domains). Vermicular 

intergrowths of quartz in plagioclase (myrmekites) occur within this sample (Vernon, 2004). 

  

 

Figure 3.1-4 Details of BSE and photomicrograph for type II migmatitic orthogneiss. (a) BSE image showing 
microstructure on the border of a quartz dominated domain (middle) and a Kfs dominated domain (right) with 
interlobate qtz-Kfs (white arrows) and qtz-plg (black arrows) boundaries. (b) Quartz aggregate (center) with 
straight to gently curved nature of quartz intraphase boundaries (white arrows). 

a 

b 
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3.1.3 Type III : Granofels 

Sample EZ 22R from Krvava skala in Kadan (N 50.3731064 E 13.2762747E), is a granofels 

characterized by a diffuse macroscopic foliation defined by subparallel orientation of micas (Figure 

3.1-5). The sample largely exhibits a granoblastic microstructure and it is interpreted as an 

intermediate stage between the type II migmatitic orthogneiss and the granulite. The granofels has 

the mineral assemblage quartz (30-40%), K-feldspar (30-40%), plagioclase (20-30%), biotite (2-4%), 

muscovite (1-3%) along with accessory garnet, apatite, rutile and zircon in addition to very limited 

occurrences of kyanite.  

In the sample biotite has XFe = 0.54-0.57 while garnet has XFe= 0.87-0.91 and the composition (%) 

Alm72-78, Py8-11, Grs8-12, Sps1 (Table 3.1-1). Plagioclase (An12-14Kfs1-2) has sporadic albitic rims (An0-2Kfs0-

1) along contacts with K-feldspar (Ab10-14An0) (Table 3.1-1). Relicts of K-feldspar, plagioclase and 

quartz-aggregates are irregularly shaped with lobate interphase boundaries and generally curved to 

slightly lobate intraphase boundaries. Smaller grains of feldspars and quartz are commonly present 

as rounded and elongated grains within domains dominated by the other felsic phases (Figure 3.1-6 

a). As in the type II orthogneiss, myrmekites are present within this sample along with intergrowths 

of quartz in muscovite (Figure 3.1-6 a)  

 

 

 

Figure 3.1-5 Hand sample EZ 22R, type III granofels. Sample shows diffuse foliation defined by subparallel 
alignment of mica.   
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a 

b 

Figure 3.1-6 Details of-BSE image and photomicrograph for type III granofels. (a) BSE image showing typical 
microstructure of relict aggregates, in this case Kfs. Interstitial grains are still recognizable along grain 
boundaries within relict aggregates (black arrows) and intergrowths of quartz in muscovite (white arrow) are 
common occurrence within the microstructure. (b) Corroded plg grain with highly irregular interphase boundaries 
toward Kfs and qtz. The anomalous colours exhibited by minerals in the image are a consequence of the thickness 
of the thin section. 
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3.1.4 Type IV : Granulite 

In hand specimen, sample EZ 22S from Kadan (N 50.3731064 E 13.2762747E) appears to have a very 

faint gneissic foliation defined by alternating subparallel polymineralic layers and interstitial biotite 

(Figure 3.1-7). This faint banding locally disappears and the rock shows homogenous granoblastic 

areas from which the thin section of this sample was cut. The sample equilibrated at granulite facies 

conditions (Konopásek et al., 2014) and has the mineral assemble quartz (30-40%), K-feldspar (30-

40%), plagioclase (20-30%) garnet (2-5%), biotite (1-4%) and accessory rutile, apatite, kyanite and 

zircon and very limited occurrences of late muscovite.  

The granulite microstructure is characterized by dispersed felsic phases where larger grain relicts of 

aggregates are intermixed with smaller grains (Figure 3.1-8 a). A weak foliation which can be inferred 

from the sub-parallel orientations of interstitial biotite (XFe= 0.49-0.52) which often occurs as 

corroded grains (Figure 3.1-8 b). Garnets (XFe= 0.77-0.80) form isometric crystals with the following 

end-member ratios (%):  Alm65-78, Py13-20, Grs7-13, Sps1. Entirely dispersed K-feldspar (Ab11-14An0), 

plagioclase (An10-15Kfs1-2) and quartz generally form anhedral grains with lobate interphase 

boundaries and straight or gently curved intraphase boundaries (see Table 3.1-1 for mineral 

chemistry). Plagioclase exhibits sporadic albitic rims (An0-2Kfs0-1) along contacts with K-feldspar 

(Figure 3.1-8 c). Diffusely defined myrmekites sometimes occur within this sample. 

Figure 3.1-7 Hand sample EZ 22S, type IV granulite with a close to a granoblastic appearance. Notice faint 
foliation which can be inferred from the sub-parallel alignment of interstitial biotite and alternating polymineralic 
felsic layers. 
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Table 3.1-1 Results of microprobe analysis of minerals for type III granofels and type IV granulite. In calculation of 
molar proportions all Fe is taken as Fe+2, ignoring the possibility of Fe+3 presence 

  Type III : Granofels  Type IV : Granulite 
  Biotite  Garnet Garnet Plagioclase K-feldspar  Biotite  Garnet  Garnet  Plagioclase K-feldspar 

   core rim     core rim   

Weight percent                 
 SiO2 37.57 37.43 37.28 65.35 65.6  37.32 38.12 38.07 65.27 65.31 
 TiO2 3.56 0.03 0.04 0.01 0.01  3.18 0.04 0.03 0.00 0.01 
 Cr2O3 0.00 0.01 0.01 0.01 0.01  0.01 0.01 0.01 0.01 0.01 
 Al2O3 15.92 21.30 20.94 21.77 18.51  16.57 21.34 21.29 21.80 18.58 
 FeO 19.36 34.01 34.83 0.01 0.05  17.93 31.39 32.51 0.02 0.01 
 MnO 0.03 0.54 0.57 0.01 0.00  0.04 0.47 0.51 0.00 0.01 
 MgO 8.90 2.81 2.54 0.00 0.00  10.14 4.74 4.56 0.00 0.00 
 CaO 0.00 4.41 4.13 2.77 0.00  0.00 4.44 3.67 2.83 0.00 
 Na2O 0.07 0.04 0.04 9.78 1.32  0.05 0.03 0.02 9.69 1.38 
 K2O 9.85 0.00 0.00 0.27 14.89  9.76 0.00 0.00 0.26 14.81 
 F 2.80 - - - -  0.93 - - - - 
 Cl 0.14 - - - -  0.2 - - - - 
 Total 98.20 100.58 100.38 99.98 100.39  96.13 100.58 100.66 99.89 100.13 

             
Molar proportion                     
 Si 2.86 2.99 2.99 2.87 3.00  2.83 3.00 3.00 2.78 3.00 
 Ti 0.2 0.00 0.00 0.00 0.00  0.18 0.00 0.00 0.00 0.00 
 Cr 0 0.00 0.00 0.00 0.00  0.00 0.00 0.00 - - 
 Al 1.43 1.99 1.98 1.13 1.00  1.48 1.98 1.98 1.13 1.01 
 Fetot 1.23 2.28 2.37 0.00 0.00  1.14 2.07 2.14 0.00 0.00 
 Mn 0 0.04 0.04 0.00 0.00  0.00 0.03 0.03 0.00 0.00 
 Mg 1.01 0.34 0.29 0.00 0.00  1.15 0.56 0.54 0.00 0.00 
 Ca 0 0.38 0.34 0.13 0.00  0.00 0.37 0.31 0.13 0.00 
 Na 0.01 0.01 0.00 0.83 0.12  0.01 0.00 0.00 0.83 0.12 
 K 0.96 0.00 0.00 0.01 0.87  0.94 0.00 0.00 0.01 0.87 
 F 0.68 - - - -  0.03 - - - - 
 Cl 0.02 - - - -  0.22 - - - - 

             
Garnet Fe-Mg ratio                     
 XFe 0.55 0.87 0.89    0.50 0.79 0.80   

             

Feldspar composition                   
 An%    13 0     14 0 
 Kfs%    1 88     1 88 
 Ab%    85 12     85 12 

             

Figure 3.1-8 Details of BSE-image and photomicrograph for type IV granulite. (a) typical microstructure of type IV 
granulite, where irregular larger grain relicts are intermixed with smaller grains. Due to lack of feldspar twinning, 
the two phases can only rarely be distinguished based on microscopy alone. (b) Corroded biotite grain embayed 
with quartz. (c)  albitic rims (white arrows) lining a plagioclase aggregate along certain boundaries plg-Kfs 
boundaries. 
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3.2 Quantitative microstructural analysis 

Quantitative microstructural analysis of the four samples is based on statistical evaluation of digitized 

grain maps in terms of grain size and grain contact frequency. The results presented in this chapter 

were attained through the use of MATLABTM, PolyLX toolbox for MATLABTM (Lexa, n.d), Image J and 

the STRIPSTAR program (Heilbronner and Bruhn, 1998). 

3.2.1 Grain maps 

In this section, the microstructure of the four investigated samples is presented as manually redrawn 

grain maps. The main focus in the redrawing was to accurately portray the sample microstructure. 

Particular effort went into redrawing the nature and occurrence of quartz, K-feldspar and plagioclase 

grains. As these minerals crystalize from the partial melt, it enables analysis of how the 

microstructure changes through the evolutionary sequence of samples.  

The produced grain maps represent XZ sections of the four samples and these are presented with 

same the scale in Figure 3.2-1, for larger images of each individual grain map, see appendix A. The 

grain maps in Figure 3.2-1, reflect what has already been described in the preceding chapter, namely 

that there is a gradual disappearance of the compositional banding between the sample of 

anisotropic orthogneiss to the homogenous granulite.  

To achieve reliable results from the statistical analysis, approximately 2000 grains were digitized for 

each sample (for full overview see Table 3.2-1). The compositional banding in the type I and II 

orthogneisses poses challenges when it comes to digitizing, where the main difficulty lies in deciding 

which area within the thin section is the most representative for the sample and therefore 

appropriate to redraw. Because of the strong anisotropy in the orthogneisses, the modal proportions 

strongly depend on the analysed area (i.e. the relative proportions of redrawn Kfs, plg and qtz bands) 

and therefore it would require a much larger sampling pool than ~2000 grains to achieve a 

statistically representative number of grains. From the area percentages of K-feldspar, plagioclase 

and quartz in Table 3.2-1 it becomes clear that the digitized maps in the two orthogneisses (type I 

and type II microstructure) do not span a large enough area to accurately reflect the whole-rock 

mineral proportions. Even though the modal proportions of feldspars and quartz for the 

orthogneisses are somewhat invalid, the size of the redrawn area is believed to be valid for the 

statistical analysis of the changes in terms of the grain size, grain contact frequencies and other 

microstructural parameters. 
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 Table 3.2-1 Table showing the number of digitized grains and their area percentage within each of the samples 
subdivided by phase (Kfs, plg and qtz). Note that area percentages for the orthogneiss and migmatitic 
orthogneiss is in cursive as they do not fully represent the whole-rock relationship of the major phases. 

  
Number of digitized grains Area percentage 

 
 

Kfs Plg Qtz Total (includes all phases) Kfs Plg Qtz Other 

Orthogneiss  380 549 265 2038 16,5 15,2 63,6 4,7 

Migmatitic orthogneiss 515 620 475 2211 19,2 23,4 44,7 12,6 

Granofels 598 518 577 1996 32,1 21,6 38,1 8,2 

Granulite 597 590 623 2047 34,8 23,3 36,1 5,8 
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Figure 3.2-1 Digitized grain maps showing the microstructural character of XZ sections of the investigated 
samples. Type I orthogneiss (top) exhibits distinct monomineralic banding consisting of alternating polygonal 
mosaics of plg and Kfs and ribbons of quartz discreetly separated of bands of bt ± gt ±ms ± ru ± ap ± cor. Type II 
migmatitic orthogneiss (bottom left) consists of alternating qtz-, Kfs- and plg-rich domains, partly separated by bt 
± gt ±ms ± ru ± ap ± cor rich domains. Type III granofels (bottom middle) has diffuse alternations between qtz-, 
Kfs- and plg-rich domains with interstitial micas approaching a granoblastic texture. Type IV granulite (bottom 
right) consisting of intermixed qtz, Kfs and plg with minor amounts of bt ± gt ± ky ± ap. The grain maps are all 
represented with equal scale and are oriented so that the main foliation of the sample is horizontal.  
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3.2.2 Grain size   

Grain size distributions were evaluated for K-feldspar, plagioclase and quartz within the 

microstructural rock types of the studied quartzofeldspathic rocks. The mean grain size is expressed 

in terms of median EAD (Figure 2.4-1 a), which is the most widely used measure of particle size. The 

full range of the 2D distributions of grain sizes is illustrated by the grouped box plots in Figure 3.2-2 

where the “box” marks the limits of the interquartile range (IQR), containing 50% of the dataset 

entries while the horizontal line within the “box” marks the median. In 2D, the studied grains follow a 

right-skewed log-normal distribution where most of the grains are concentrated within the lower 

end of the grain size spectra, reflected by the right skewed median in Table 3.2-2 and in both Figure 

3.2-2 and Figure 3.2-3.  In order to fully investigate the evolution of grain sizes, volumetric grain size 

distributions (Figure 3.2-3)  expressed in terms of equal volume diameters (Figure 2.4-1 b) were 

calculated. These show the parent distribution of spheres that would show the measured cross-

sectional areas measured in 2D. The volumetric grain size distribution for K-feldspar, plagioclase and 

quartz were calculated from frequency weighted histograms of EAD measurements through the use 

of the STRIPSTAR program. Some outliers were omitted in the evaluation of the volumetric grain size 

distribution (Figure 3.2-3), for the full range of the dataset see Figure 3.2-2. The volumetric grain size 

distributions are presented together with the median EAD values to point out the difference in 

distribution from 2D to 3D.  The numerical median values presented or mentioned in this chapter 

corresponds to measured cross-sectional EAD, unless stated otherwise. The reason being that the 3D 

distributions and associated statistics calculated by STRIPSTAR is based on frequencies of binned 2D-

data and not the individual data entries.  

A visual representation of how the various grain sizes are distributed throughout the evaluated area 

was achieved through colour-coding of grains based on their EAD. The color-coding procedure was 

carried out in the image processing program Image J. Due to the quantity and large size of the 

resulting images, only grain size maps for quartz (Figure 3.2-4) are presented within the text of the 

thesis, whereas the grain size maps for K-feldspar and plagioclase are located in appendix B.  
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Table 3.2-2 EAD measurements of K-feldspar, plagioclase and quartz in millimetres in terms minimum, median 
and maximum values for grains within types I-IV. 

 

3.2.2.1 K-feldspar grain size analysis 

Evaluated K-feldspar grains within type I orthogneiss range in size from 0.023 to 0.551 mm with a 

median size of 0.137 mm and with few outliers (Table 3.2-2). Figure 3.2-2 shows a  slightly right 

skewed distribution of grains where the lower grain size fractions have a slightly higher frequencies 

resulting in a right-skewed median and box.  However, when looking at the volumetric grain size 

distribution (Figure 3.2-3 a-I) it becomes evident that the evaluated grains are in fact normally 

distributed. The slight skewness of the box plot (Figure 3.2-2) is caused by an “over population” of 

small cross-sectional areas compared to the true distribution, and is eliminated through the 

calculation of the parent distribution spheres. The observed normal distribution is in accordance with 

what can be visually observed in the colour-coded grain size map in appendix B, K-feldspar-I.  

From type I to type II the grain size range increases in both directions, resulting in a grain size interval 

between 0.005 and 0.76 mm with a median of 0.049 mm (Table 3.2-2). The volumetric grain size 

distribution shows that K-feldspar has more of a bimodal distribution caused by an increased 

proportion of grains with sizes of 0-0.1 mm and 0.375-0.5 mm and a decreased proportion of mid-

range sizes (Figure 3.2-3 a-I and a-II). The jaggedness of bins within parts of the size distribution is a 

result of the sample size being too small to adequately represent the grain size range. The larger 

grains often occur together with mid-sized grains, while the smaller fractions are mostly dispersed 

within plagioclase-rich and quartz-rich domains and only rarely occur adjacent to other K-feldspar 

grains (see appendix B, K-feldspar-II). 

In type III granofels, the grain size ranges from 0.010 mm to 0.77 mm with a median value of 0.058 

mm (Table 3.2-2). The volumetric grain size distribution shows a slightly increased proportion of 

grains of larger sizes from type II to type III, which is especially noticeable in the 0.4-0.5 mm 

population (Figure 3.2-3 a-II and a-III). The smallest population of grains (0-0.1 mm) decreases in 

  
EAD measurements, mm 

 
 

K-feldspar Plagioclase Quartz 

    min median max min median max min median max 

Orthogneiss (type I) 0,023 0,137 0,551 0,024 0,109 0,371 0,014 0,073 2,260 

Migmatitic orthogneiss (type II) 0,005 0,049 0,760 0,011 0,065 0,610 0,011 0,050 1,046 

Granofels (type III) 0,010 0,075 0,770 0,012 0,068 0,683 0,007 0,065 0,957 

Granulite (type IV) 0,008 0,058 0,543 0,009 0,058 0,512 0,006 0,058 0,835 
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proportion and there is a noticeable shift in the mid-range population toward larger sizes (Figure 

3.2-3 a-II and a-III). This shift toward larger grain sizes is also observed in the grouped boxplot (Figure 

3.2-2) where both the IQR and median shift upward compared to type II. Grain size map for K-

feldspar in type III Granofels (Appendix B, K-feldspar-III) shows that the largest grains are partly 

dispersed and tend to occur alongside clusters of grains of medium size. Mid-range grains usually 

appear as partly connected aggregates while the smaller grains still occur as interstitial grains in 

areas dominated by quartz and plagioclase.  

In type IV granulite, the K-feldspar grains range in size from 0.008 to 0.543 mm with a median value 

of 0.058 mm (Table 3.2-2). Outliers for K-feldspar grains within type IV are closely spaced (Figure 

3.2-2) and a relatively random volumetric distribution without any well-defined peaks can be 

recognized (Figure 3.2-3 a-IV). When comparing the volumetric distributions of microstructural types 

III and IV, it seems that there is a general tendency for bins showing higher volumes for certain grain 

sizes to become smaller from the granofels (type III) towards the granulite (type IV), whereas for 

empty or low-volume bins the opposite is true (Figure 3.2-3 a-III and a-IV). Grain size maps for K-

feldspar shows a progressive increase in grain separation, where only few isolated relict aggregates 

of large- and medium-sized grains are present (Appendix B, K-feldspar-I to K-feldspar-IV). As in types 

I-III, the smallest K-feldspar grains in type IV granulite occur as isolated interstitial grains in contact 

with grains of quartz and plagioclase, and only rarely occur in contact with other K-feldspar grains 

(Appendix B, K-feldspar-IV). 
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3.2.2.2 Plagioclase grain size analysis 

In type I orthogneiss, plagioclase grains have sizes ranging from 0.024 mm to 0.371 mm with a 

median of 0.109 and few outliers (Table 3.2-2). From the volumetric grain size distribution in Figure 

3.2-3 b-I, it is clear that the grains are normally distributed with high proportions of grains have equal 

diameters (3D) between 0.1 mm to 0.3 mm. In the type II migmatitic orthogneiss the grains have 

EADs between 0.011 mm and 0.61 mm with a right-skewed median value of 0.065 mm (Table 3.2-2 

and Figure 3.2-2). The volumetric grain size distribution suggest that the grain size follows a bimodal 

distribution with two peaks, one at 0.075-0.175 mm and another one at 0.325 mm and one 

intermediate peak, which is likely due to overlapping of tails from the main peaks (Figure 3.2-3 b-II). 

From type I to type II, the volumetric grain size range spreads out in both directions, with increasing 

proportions of 0-0.075 mm and 0.3-0.4 mm grains and a decreasing proportion of grains with 

intermediate size (Figure 3.2-3 b-I and b-II). Larger grains (purple) are associated with medium-sized 

grains making up the plagioclase-rich domains showing strong clustering tendencies, while the 

Figure 3.2-2 Grouped boxplot showing the grain size distribution in terms of equal area diameter (EAD) in mm of 
the data sets for phases within the four microstructural types. The box marks the interquartile range (IQR), the 
horizontal line within the box marks the median value, whiskers indicate the minimum and maximum values 
while the outliers are represented as asterisks. In the plot, datasets from orthogneiss are depicted in grey, 
migmatitic orthogneiss in red, granofels in blue and granulite in yellow. 
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smaller grain size fractions (yellow) are dispersed adjacent to K-feldspar grains in K-feldspar-rich 

domains and to quartz in quartz-rich domains, rarely occurring within plagioclase domains (Appendix 

B Plagioclase-II).  

Plagioclase within type III granofels has grain sizes ranging from 0.012 mm to 0.683 mm with a 

median value of 0.068 mm (Table 3.2-2). These values are similar to the grain size ranges measured 

in the type II orthogneiss. When compared with type II microstructural stage, the bimodal volumetric 

grain size distribution in type III granofels shows decreased proportion of 0-0.1 mm grains and a 

general increased proportion of grains with sizes of 0.3-0.4 mm (Figure 3.2-3 b-II and b-III). 

Plagioclase grains larger than 0.25 mm are rarely in contact and if they are, their contact surface is 

minimal. Grains of medium size either occur as; (1) largely isolated grains or groups of grains 

adjacent to K-feldspar in K-feldspar-rich domains and to quartz in quartz-rich domains; and (2) in 

connection with larger grain relicts in plagioclase-rich domains (Appendix B, Plagioclase-III).   

In the type IV granulite, the grain size ranges from 0.009 to 0.512 mm with a median value of 0.058 

mm (Table 3.2-2). The volumetric grain size distribution for the granulite shows an increased 

proportion of 0-0.075 mm grains and a decrease in larger sized 0.3-0.4 mm grains.  The same 

distribution also shows that grains larger than 0.35 mm have been eliminated from type III to type IV 

(Figure 3.2-3 Plagioclase b-III and b-IV). It is however evident from the box plot that there are several 

outliers above 0.4 mm (Figure 3.2-2). When compared with the type III granofels the plagioclase in 

type IV granulite shows a narrowing grain size range with the grain size approaching a normal 

distribution (Figure 3.2-3 Plagioclase b-III and Plagioclase-IV). The granulite grain size maps for 

plagioclase shows that the grains are largely dispersed where larger grains (purple) are only rarely in 

contact (Appendix B, Plagioclase-IV). 
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   (a) K-feldspar   (b) Plagioclase      (c)  Quartz 

 

 

Figure 3.2-3 Grain size distribution for Kfs, plg and qtz within all textural types (I-IV) where the histogram 
represents the volumetric distribution in terms of diameter of a sphere of equal volume. The grey vertical 
line represents the median diameter in 2D (i.e equal area diameter). The distributions for each phase are 
within the four textural types are arranged in columns, facilitating direct comparison between distributions 
within the textural types. All grain size distributions for each separate phase are presented with equal scales 
on both axes, but when comparing between phases note that the scales differ. Column a) sequential Kfs 
grain size distributions from type I (grey color) through type II (red color) and III (blue color) and type IV 
(yellow color). Column b) plg grain size distributions, presented in the same order as in column a. Column c) 
Qtz grain size distributions for the four textural types presented as in column a and b. 
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3.2.2.3 Quartz grain size analysis 

Quartz grain size in type I orthogneiss ranges from 0.014 mm to 2.26 mm including outliers with a 

median of 0.073 mm (Table 3.2-2). The 2D grain size data show a strongly right-skewed distribution 

of the EAD with a large number of outliers (Figure 3.2-2). Volumetrically, the grains can be 

interpreted to follow a bimodal distribution. A low-volume peak appears close to 0.175 mm and a 

peak could be inferred from 0.4-1 mm although there are both empty bins and bins with a large 

volume percentage within this range (Figure 3.2-3 c-I). This indicates that the dataset is not large 

enough to statistically cover the full range of quartz grain sizes within the sample (Figure 3.2-3 c-I).  

The bimodal grain size distribution can also be inferred from the grain size map in Figure 3.2-4a 

where there is a clear divide between grains larger than 0.4 mm occurring as aggregates and <0.25 

mm large grains appearing as isolated interstitial grains in mica-rich domains and within K-feldspar 

aggregates.  

In type II migmatitic orthogneiss, quartz ranges in size from 0.011 to 1.064 mm with a strongly right-

skewed median value of 0.050 mm (Table 3.2-2). The 3D volumetric distribution of data shows that 

there is a well-defined peak around 0.1 mm, while the grain sizes above 0.25 mm are rather 

randomly distributed showing both empty bins and a bin with an extreme value of ~40% (Figure 

3.2-3 c-II). Compared to type I, there is a significant reduction of the interquartile range and spread 

of outliers (Figure 3.2-2). Volumetrically there is an increase in proportion of grains with sizes of 0-0.2 

mm and a decreased proportion of grains larger than 0.6 mm compared to the preceding 

microstructural stage (Figure 3.2-3 c-I and c-II). The grain size maps in Figure 3.2-4 b show that large 

grains (purple) are considerably less connected and smaller grains (yellow) are more dispersed 

compared to the type I microstructure. Grains larger than 0.4 mm are generally in contact with other 

large grains while grains smaller than 0.3 mm mostly appear in mica-, K-feldspar- and plagioclase-

dominated domains and only rarely occur adjacent to larger quartz grains (Figure 3.2-4 b). 

In the granofels sample (type III) the grains range in size from 0.007 to 0.957 mm with a median grain 

size of 0.065 mm (Table 3.2-2). The volumetric grain size distribution for this sample suggest a 

bimodal distribution with peaks at 0.2-0.25 mm and 0.5-0.65 mm (Figure 3.2-3 c-IV). Compared to 

the 2D distribution in the type II migmatitic orthogneiss sample, the median value and the IQR in 

type III granofels is slightly shifted toward the larger grain sizes (Figure 3.2-2). Volumetrically, there is 

an increased proportion of grains with sizes of 0.2-0.5 mm and a decrease in proportion of grains 

larger than 0.5 mm (Figure 3.2-3 c-II and c-III). 
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In the type IV granulite, the grain size ranges from 0.06-0.835 mm with a relatively narrow 

interquartile range and a median grain size of 0.058 mm (Table 3.2-2). The narrow IQR suggest that 

the grain sizes are relatively closely spaced, at least within this range as it holds 50% of the sampled 

grains (Figure 3.2-2). This fact is reflected in both the volumetric size distribution where 0-0.6 mm 

grains are roughly normally distributed and in the grain size maps where the large proportion of mid-

sized grains (green to blue) can be directly observed (Figure 3.2-3 c-IV and Figure 3.2-4 d). Compared 

to the preceding evolutionary stage, the IQR and range of outliers both decrease (Figure 3.2-2). 

Volumetrically, the grains are normally distributed showing an increase in both small 0-0.1 mm and 

middle 0.1-0.5 mm grains while the frequency of grains larger than 0.5 decreases (Figure 3.2-3 c-III 

and c-IV).  

3.2.2.4 General trends in grain size evolution  

Feldspars 

Grain sizes in both feldspars change from a normal distribution in type I orthogneiss toward a 

bimodal distribution due to an increased frequency of smaller (0-0.075 mm) and larger (0.35-0.5 mm 

for Kfs and 0.3-0.4 mm for plg) grains relative to mid-sized grains in type II migmatitic orthogneiss 

(Figure 3.2-3 a-I and II, and b-I and II). As an effect of this change, the IQR and median is shifted 

toward smaller grain sizes and the IQR also shrinks substantially while the range of outliers increases 

(Figure 3.2-2). In the type III granofels, the data show an increase of the IQR and slightly higher 

median value especially in the case of K-feldspar, indicating a larger spread of grain sizes within the 

IQR compared to type II migmatitic orthogneiss sample (Figure 3.2-2). Volume distribution in the 

type II granofels shows a decreased proportion of smaller, 0-0.1 mm grains and a slight increase of 

large grains (0.35-0.5 mm for Kfs and 0.3-0.4 mm for plg) with respect to distributions observed for 

the stage II migmatitic orthogneiss (Figure 3.2-3 a-II and II, and b-II and III). As the evolution 

progresses toward the type IV granulite, the distribution of EAD changes again and shows a decrease 

in the IQR, in the range of outliers, as well as the decrease of the median value (Figure 3.2-2). Such a 

change is most prominent in K-feldspar. The volumetric grain size distribution shows that there is a 

slight decrease in the largest grain size fractions for both feldspars (most prominent in the data for 

plg) and the overall size distribution is close to random in the case of K-feldspar while for plagioclase 

the grain size approaches a normal distribution (Figure 3.2-3 a-IV and b-IV).  

Grain size maps for plagioclase in appendix B show an increased tendency toward crystallization of 

interstitial feldspar grains in domains dominated by the complementary phases. There is also a 

gradual dismemberment of monomineralic aggregates as the evolution progresses from 
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microstructural type I to type IV. It is worth noting that smaller grain rarely appears together with 

larger grains of the same phase and that the grain size range of interstitial grains steadily increases 

toward larger sizes between microstructural type I and type IV (Appendix B K-feldspar-I to IV and 

Plagioclase-I to IV).  

Quartz 

Quartz shows the greatest range in grain size and, unlike for the feldspar grains, the range of outliers 

continuously decreases from type I to type IV (Figure 3.2-2). The greatest change in grain size occurs 

between the type I and type II microstructures where the IQR decreases dramatically and the median 

value is shifted toward smaller grain sizes (Figure 3.2-2). Quartz in both type I and type II 

orthogneisses has bimodal volumetric grain size distribution, there is however a general grain size 

reduction visible as lower fractions of grains larger than 0.6 mm and an increase proportion of small, 

0-0.1 mm grains (Figure 3.2-3 c-I and c-II). Toward type III granofels, the range of IQR increases and it 

is slightly shifted toward larger grain sizes (Figure 3.2-2). Volumetrically, there is an increase in grains 

of medium size (0.2-0.5 mm) while there is a decrease in the proportion of large 0.5 mm grains from 

type II orthogneiss to type III granofels (Figure 3.2-3 C-II and c-III). Again, the grain size distribution 

changes in type IV granulite where the IQR decreases and the median is lowered (Figure 3.2-2). 

Compared to the grain size distribution of type III granofels, there is an increase in proportion of both 

small (0-0.1 mm) and middle sized (0.1-0.5 mm) grains while the proportion of grains larger than 0.5 

decreases (Figure 3.2-3 c-III and c-IV). The volumetric grain size distribution of quartz in type IV 

granulite approaches a normal distribution, at least from 0-0.55 mm (Figure 3.2-3 c-IV). The grains 

that are larger than 0.55 are considered as outliers and relict of the initial aggregates.  

Grain size maps for quartz (Figure 3.2-4) reveal an evolution similar to the feldspars. Quartz grains 

suffer from a major grain size reduction, increased proportion of interstitial grains within feldspar 

domains and a gradual break-up of the initial aggregate distribution throughout the microstructural 

evolution from type I to type IV (Figure 3.2-4 a-d).  As with the feldspars, the size-range of interstitial 

quartz grains increases to include progressively larger sizes.  
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Figure 3.2-4 Grain size maps for quartz within the four microstructural types based on EAD. Within the grain size 
maps, all grains larger than 0.5 mm are coloured purple and all grains smaller than 0.2 mm are depicted in 
yellow, the intermediate range is coloured in the accordance with the colour ramp in the legend. On the left 
hand side of (a)-(d) the grain size map is presented and on the right-hand side the grain size map of quartz is 
overlaid onto a grain map of the complementary felsic phases. Grain size maps for (a) type I orthogneiss, (b) 
type II migmatitic orthogneiss, (c) type III granulite and (d) type IV granulite. Note that the colour coding process 
considers inclusions as being part of the host grain, which might have led to a slight overestimation of EAD of 
certain grains 

c 

d 
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3.2.3 Contact frequency 

The grain contact frequency method established by Kretz (1969) is used to evaluate, to which extent 

the distribution of phases within the sample volume statistically deviates from a random distribution. 

In this work, grain contact frequencies for K-feldspar, plagioclase and quartz in all microstructural 

types were evaluated. The results of the evaluation are presented in Figure 3.2-6, where the ꭓ-value 

represent the deviation from a random distribution plotted against types of intraphase (like-like)  

and interphase (unlike) grain contacts. The phases can be randomly distributed (Figure 3.2-5 b) 

throughout the sample volume, resulting in a ꭓ-value between 1 and -1, or it can deviate in two ways, 

either; (1) toward an aggregate distribution (Figure 3.2-5 c) where intraphase contacts are 

predominate due to clustering of grains of the same phase or; (2) they can deviate toward a regular 

distribution (Figure 3.2-5 a) where interphase contact dominate as the phases occur in a chessboard-

like fashion. When it comes to the ꭓ-value, interphase and intraphase contacts mirror each other, 

meaning that a positive ꭓ-value implies a deviation towards an aggregate distribution for intraphase 

contacts while a negative ꭓ-value implies the same for interphase grain contacts. Since the contact 

frequency considers number of contacts and not their spatial orientations and length, it should be 

noted that interphase contacts in strongly anisotropic material can misleadingly point toward 

random distributions due to the large number of unlike phase contacts occurring along the borders 

of monomineralic bands.  

Type I microstructure represented by the orthogneiss is characterized by a large fraction of 

intraphase contacts compared to what is expected for a random distribution, hence indicating a 

strong aggregate distribution (Figure 3.2-6 a). The strongest maximum for interphase contacts is 

found in k-feldspar while the ꭓ-value is drastically lower for plagioclase and lowest for quartz. The 

larger ꭓ-value for K-feldspar, is attributed to that fact that K-feldspar appears as uninterrupted 

monomineralic aggregates, while both plagioclase and quartz exhibits slightly weaker aggregate 

Figure 3.2-5 Model of spatial distribution of 
phases. Three types of distribution of a 
two-phase system is shown without (top) 
and with (bottom) boundaries. (a) A 
perfectly ordered distribution of phases; (b) 
a random distribution of phases and (c) a 
perfect aggregate distribution. Adapted 
after Heilbronner et al. (2010) 
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distributions. The slightly weaker aggregate distribution of plagioclase and quartz in this 

microstructural type is due to interstitial plagioclase and quartz being present in K-feldspar domains, 

elongate biotite grains separating plagioclase grains in plagioclase domains and a large amount of 

interstitial quartz associated with mica bands. The interphase phase contacts also lean toward an 

aggregate distribution for the type I orthogneiss, but to a lesser extent compared to the interphase 

contacts. Especially the K-feldspar-plagioclase and plagioclase-quartz contacts show strong evidence 

for aggregate distributions while K-feldspar-quartz contacts have an apparent random distribution of 

contacts. As K-feldspar and quartz domains are in continuous contact and the section through their 

contact surface offers a large number of individual K-feldspar-quartz grain contacts, it results in the 

observed number of contacts not being too different from the expected value, hence falsely 

indicating a random distribution of their contacts.  

From the well-developed aggregate distribution in type I microstructure there is a dramatic change 

when moving toward the type II-IV microstructures as there is a clear evolutionary trend toward a 

regular distribution. Despite the strong macroscopic anisotropy in type II migmatitic orthogneiss, an 

aggregate distribution is not observed. On the contrary, the data reveal a random and weakly 

ordered distribution for K-feldspar and quartz intraphase contacts, respectively (Figure 3.2-6 b). The 

intraphase contacts of plagioclase still suggest a weaker aggregate distribution compared to K-

feldspar and quartz. The reduction in aggregate-type contact frequency from type I orthogneiss to 

type II migmatitic orthogneiss is attributed to the large number of small grains of plagioclase, K-

feldspar and quartz lining the outer boundaries of inherited aggregate domains as well as occurring 

as interstitial grains causing a separation of original K-feldspar and quartz intraphase contacts (Figure 

3.2-6 a and b).  From the type I orthogneiss to type IV granulite, the frequency of interphase contacts 

continually decreases while the frequency of interphase contacts generally increases.  K-feldspar and 

quartz have the strongest tendency to arrange in an ordered fashion in type III and type IV samples 

(Figure 3.2-6 c and d). Plagioclase exhibits a random distribution in type III and a weak ordered 

distribution in type IV microstructure (Figure 3.2-6 c and d).  
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Figure 3.2-6 Grain boundary contact 
frequencies for (a) orthogneiss (type I), (b) 
migmatitic orthogneiss (type II), (c) granofels 
(type III) and (d) granulite (type IV). Grain 
boundary statistics for the four textural types 
plotted as the deviation from a random spatial 
distribution of phases where a positive ꭓ points 
toward an aggregate arrangement for 
intraphase (like-like) contacts (opposite for 
interphase contacts) and a negative ꭓ indicates 
an ordered arrangement for intraphase 
contacts (opposite for interphase contacts).  

a) 

b) 

c) 

d) 
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3.3 Results of EBSD analysis  

Crystallographic-preferred orientation (CPO) measurements of K-feldspar, plagioclase and quartz 

were performed for the four microstructural types in order to determine if there is a relative change 

in fabric or fabric intensity. In this sub-chapter, results of EBSD-analysis of the four thin sections are 

presented in terms of point data opposed to grain data in order to enhance the existing fabric. 

Contoured pole figures shows the fabric intensity as multiples of uniform distribution (MUD) where 

the grey-levels of quartz and feldspars are set with respect to the global maxima of that specific 

phase. This was not done for biotite as one of the samples exhibits an extreme MUD value compared 

to biotite-data for the other samples.  

3.3.1 Biotite 

Within type I and II microstructure, a strong foliation is macroscopically defined by the parallel 

alignment of micas localized in narrow domains. For microstructural types III and IV the foliation is no 

longer macroscopically visible which complicates the procedure of making thin sections within equal 

reference planes. The thin sections used in this thesis represent XZ sections where both the foliation 

and lineation for type III granofels and type IV granulite have been inferred from their relation to 

banded gneisses within the outcrop. This method of deduction is however flawed if the outcrop is 

macroscopically or even microscopically folded. As a test of the accuracy of inferred orientations, 

CPO of biotite was measured as it is believed that biotite will define a relict foliation inherited from 

the banded gneisses in both the granofels and granulite.  

EBSD data for biotite are presented in terms of poles to the basal plane ({001}) and orientation of the 

a and b axis represented by poles to the {100} and {010} planes, respectively. Pole figures of biotite 

basal planes show a well-defined foliation for microstructural types II-IV and random orientations of 

the a and b axis within the foliation plane (Figure 3.3-1 b-d). There is however, a limited number of 

sample points due to limited occurrences of biotite in the granulite sample, which results in one 

extreme maximum in the resulting pole figure. In type I orthogneiss, the foliation is clearly visible 

macroscopically, however, biotite CPO implies that the foliation lies in the XZ plane (Figure 3.3-1a). 

Closer microscopic investigation revealed that in some instances the micas seem to have enveloped 

recrystallized quartz and feldspar aggregates resulting in a variety of orientations deviating from the 

expected orientation parallel to the XY-plane. Unfortunately, the EBSD analysis of this sample was 

carried out in such an area, which might explain the surprising CPO of biotite in type I orthogneiss 

(Figure 3.3-1 a).  
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As results of the EBSD analysis show that biotite does in fact have strong CPOs for types II-IV, it was 

decided to rotate both the pole figures for these microstructural types into an orientation based on 

biotite CPOs instead of their inferred orientations from field outcrops. Because of the orientation-

correction, the direction of the lineation in now unknown and is oriented in some direction within 

the XY plane. As the foliation in type I orthogneiss is clearly visible macro- and microscopically, the 

corresponding grain maps and pole figures were oriented with respect to the main microscopic 

orientation rather than biotite CPO data. 

a 

b 

c 

d 

Figure 3.3-1 Biotite CPO data for (a) type I orthogneiss (b) type II migmatitic orthogneiss (c) type III granofels and 
(d) type IV granulite. Pole figures are contoured as multiple of uniform distribution, lower hemisphere, equal area 
projections. Z designates the direction of poles to the foliation while the lineation is oriented in some unknown 
direction within the XY plane. 



   

50 

 

3.3.2 Quartz 

Quartz CPO is presented in terms of poles to the m-plane ({10-10}), r-plane ({10-11}) and orientation 

of the c-axis through poles to the basal plane ({0001}). Quartz in type I microstructure has a weakly 

defined clustered c-axis maximum which is indicative of a fabric (Figure 3.3-2a). For the 

microstructural types II-IV, quartz within the sampled area has a random CPO with scattered maxima 

of variable strength and orientations (Figure 3.3-2b-d). 

d 

c 

b 

a 

Figure 3.3-2 Quartz CPO data for (a) type I orthogneiss (b) type II migmatitic orthogneiss (c) type III 
granofels and (d) type IV granulite. The pole figures are contoured as multiple of uniform distribution, 
lower hemisphere, equal area projections coloured in accordance with observed global MUD maxima. 
Z designates the direction of poles to the foliation while the lineation is oriented in some unknown 
direction within the XY plane.  
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3.3.3 K-feldspar  

EBSD results for K-feldspar is given in terms of orientations of poles to the {001}, {100} and {010} 

crystallographic planes. CPO data for K-feldspar in type I orthogneiss shows a defined CPO where the 

measured crystallographic planes exhibits smooth population maxima (Figure 3.3-3a). For types II-IV 

there is no preferred orientation of the evaluated K-feldspar data points (Figure 3.3-3b-d). 

d 

c 

b 

a 

Figure 3.3-3 K-feldspar CPO data for (a) type I orthogneiss (b) type II migmatitic orthogneiss (c) type III 
granofels and (d) type IV granulite. Pole figures are contoured as multiple of uniform distribution, 
lower hemisphere, equal area projections colored in accordance with observed global MUD maxima. Z 
designates the direction of poles to the foliation while the lineation is oriented in some unknown 
direction within the XY plane. 
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3.3.4 Plagioclase 

EBSD results for plagioclase is presented orientations of poles to the {001}, {100} and {010} 

crystallographic planes. Plagioclase in the four samples has an oligoclase composition, and albite 

yielded better solutions in the indexing of Kikuchi patterns compared to anorthite. As a consequence, 

the CPO of plagioclase is given in terms of albite solutions. The resulting pole figures shows that 

plagioclase within microstructural types I-IV have random CPOs (Figure 3.3-4a-d). The strength and 

isolation of maximums within the pole figures suggest that the sample size was not large enough.  

 

d 

c 

a 
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Figure 3.3-4 Albite CPO data for (a) type I orthogneiss (b) type II migmatitic orthogneiss (c) type III 
granofels and (d) type IV granulite. Pole figures are contoured as multiple of uniform distribution, 
lower hemisphere, equal area projections colored in accordance with observed global MUD maxima. Z 
designates the direction of poles to the foliation while the lineation is oriented in some unknown 
direction within the XY plane. 
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4 Discussion  

Results of the quantitative microstructural analysis, supported by macroscopic and microscopic 

observations reveals an evolutionary trend from a strongly anisotropic orthogneiss (type I), 

migmatitic orthogneiss (type II) and granofels (type III) to the well-equilibrated granulite (type IV). In 

this chapter the interpretations of the results are discussed, starting with quantitative observations 

and previously established facts before interpretations of the quantitative results are given. Lastly, 

hypotheses concerning the microstructural evolution are discussed.  

4.1 Interpretation of qualitative observations 

4.1.1 Solid state deformation 

Peak metamorphic conditions were estimated at 9.5 kbar and 700 ± 20 °C for partially molten 

orthogneiss (Závada et al., 2007), ~750 to 770 °C and ~14-16 kbar for the granofels and ~820 to 860 

°C and ~14-16.5 kbar for the granulite (Konopásek et al., 2014). Peak metamorphic conditions are 

sufficient for dynamic recrystallization of quartz and both feldspars that represent the main mineral 

phases in the studied quartzofeldspathic.  Within this range of temperatures, feldspars and quartz 

dynamically recrystallize through different processes. Quartz tends to recrystallize through grain 

boundary migration and resulting the microstructure will show lobate intraphase boundaries and 

pinning structures. Feldspars will recrystallize through both bulging and subgrain rotation resulting in 

either core and mantle structures, or if deformed at higher strains, completely recrystallized 

aggregates (Passchier et al., 2005). Deformation induced myrmekites are also common within this 

temperature range (Simpson and Wintsch, 1989).  

Quartz in type I orthogneiss exhibits sweeping undulose extinction which is taken as evidence of intra 

crystalline plasticity, however this may be a later feature. Highly interlocking intraphase boundaries 

in quartz (Figure 3.1-2b) also suggest that dynamic recrystallization was active through high-

temperature grain boundary migration. Feldspars within this sample form polygonal fabric with 

straight grain boundaries, numerous 120° triple junctions and with individual grains showing little 

evidence of solid state deformation which suggest that recovery and annealing kept up with the 

deformation. In microstructural types II-IV, evidence of solid-state deformation is scarce and limited 

to few occurrences of sweeping undulose extinction in larger quartz grains. Type II-IV samples do 

contain myrmekite, but this feature is not diagnostic of solid state deformation as it can also directly 

result from melt crystallization or melt-solid reaction (Hibbard, 1979, Vernon, 1991).  
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4.1.2 Evidence of melting 

Konopásek et al. (2014) found that the orthogneisses of the Eger complex equilibrated within the 

melt stability field, but the amount of the melt phase did not exceed ~4 wt% at the metamorphic 

peak, which is consistent with the previous calculations by Závada et al. (2007). Toward the granulite, 

the melt fraction melt increases to ~5.5 to 8.5 wt%. Muscovite and biotite initially appear as 

euhedral grains in type I and becomes increasingly more corroded toward type IV granulite, where 

the muscovite is eliminated from the mineral assemblage. Intergrowths of quartz with muscovite 

(Figure 3.1-6 a) which is present type II to type III and increasingly corroded biotite grains from type II 

to type IV suggests dehydration melting of muscovite and later biotite. This is supported by the 

generalized melt-producing reactions proposed by Závada et al. (2007) (Bt + Ms + Plg + Qtz = Grt + 

Kfs + melt for the orthogneisses ) and Konopásek et al. (2014) (Ms + Bt + Plg + Ilm + Qtz = Grt +Kfs + 

Ky + Rt + melt for the transition from amphibolite to granulite facies). 

In this work K-feldspar, plagioclase and quartz occurring as elongated grains along grain boundaries 

and as cuspate interstitial grains is taken as microstructural evidence of the former existence of melt 

in types I and II (Figure 3.1-2a). Interstitial grains of K-feldspar, plagioclase and quartz are rarely 

present within aggregates dominated by the same phase (i.e interstitial K-feldspar in K-feldspar 

aggregate etc.), indicating that either; (1) such nucleation is unfavoured or; (2) that the crystallization 

of the particular phase is realized as an addition to existing grains. In types III and IV, inferring melt 

presence becomes more problematic as the phases are largely intermixed. Reactant minerals 

become progressively more corroded and embayed, probably as the melt fraction increases. 

Indentations and corrosion of relict grains (Figure 3.1-6 b and Figure 3.1-8) in microstructural types III 

and IV can be taken as evidence of former melt presence (Sawyer et al., 1999, Sawyer, 2001). It 

should be noted that the above mentioned microstructural evidence is indicative but not conclusive 

evidence of melt presence. Previous thermodynamic modelling of the studied microstructural types 

supports the argument of melt presence.  Macroscopic evidence of melt is limited to observations 

suggesting that melt has crystalized within shear bands. Both macroscopic and microscopic 

observations along with thermodynamic modelling suggest that all the microstructural types have 

equilibrated in the presence of melt, and the degree of interaction between the host rock and melt 

increases throughout the studied evolutionary set of samples. 

4.1.3 Static recrystallization 

Static recrystallization (or annealing) operates in the absence of deformation either after 

deformation has ceased or during passive heating of previously deformed material (i.e Passchier et 
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al., 2005).  The process is driven by reduction of surface energy and grain boundary area reduction is 

considered as the primary mechanism of this type of recrystallization. Static recrystallization is more 

effective when assisted by a fluid phase and generally leads to grain coarsening at high temperatures 

(Higgins, 2006). Evidence of extensive static recrystallization involving grain boundary area reduction 

includes the development of mosaics of polygonal grains and the presence of straight grain 

boundaries meeting in 120° triple junctions (Passchier et al., 2005). In rocks that are not completely 

recrystallized, straight and gently curved intraphase boundaries may be taken as an indicator of 

static recrystallizing activity.  

In type I orthogneiss, monomineralic bands of K-feldspar and plagioclase form polygonal mosaics of 

grains with very straight intraphase boundaries (Figure 3.1-2 d and e), which is taken as evidence that 

static recrystallization took place in the sample. Quartz boundaries have interlocking boundaries, 

which forms straight zig-zagging segments (Figure 3.1-2 b) considered as an annealed quartz fabric 

(Kruhl and Peternell, 2002).  

In microstructural types II-IV, intraphase boundaries of K-feldspar and plagioclase remain straight or 

gently curved, which might be a feature from the stage when the samples still had unmodified type I 

microstructure. The nature of quartz intraphase boundaries changes from interlocking boundaries to 

straight and gently curved from type I to types II-IV, suggesting that the samples may have been 

further statically recrystallized through grain boundary area reduction. Interphase boundaries are 

highly lobate which may be attributed to the presence of 2nd phase grains which may pin and block 

grain coarsening (Higgins, 2006). 

4.2 Interpretation of quantitative statistical results 

4.2.1 Interpretation of grain size 

Grain growth involves the uniform increase in average grain size and according to kinetic theory, 

grains smaller than the mean grain size will become smaller while grains larger than the mean size 

will grow larger (Kretz, 1994). The growth rate of grains is inversely proportional, meaning that grains 

just above the critical radius will have the fastest growth while an infinitely large grain will have a 

growth rate of zero. In monomineralic aggregates, this coarsening is driven by reduction of grain 

surface energy mainly through grain boundary mobility. In melt-bearing systems, material from 

grains smaller than the critical size may be transferred by diffusion (Higgins, 1998). Reduction of 

mean grain size is commonly associated with dynamic recrystalization, the same can be achieved 

through nucleation of mineral phases from melt.  
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The overall trend in the four investigated microstructural types involves a consistent oscillation of 

the median grain size for K-feldspar, plagioclase and quartz. From type I to type II the median grain 

size for these phases drops significantly while there is an overall increase in the median value toward 

the type III granofels, especially in the case of K-feldspar. In the type IV granulite, the median grain 

size is again lowered.  

In the type I microstructure, fast grain boundary migration resulted in a large grain size within quartz 

aggregates, which together with the presence of small interstitial grains of quartz within K-feldspar- 

and mica-rich domains leads to a large spread in grain size and a bimodal distribution. Partial 

dynamic recrystallization through bulging or subgrain rotation typically leads to bimodal distributions 

and as the grain sizes for the feldspars are unimodal, it suggests that the feldspars have been 

completely dynamically recrystallized. However, since the feldspars have clearly undergone static 

recrystallization in terms of grain boundary area reduction, it is not possible to make detailed 

interpretation of their syn-deformational grain size development.  

Inspection of volumetric grain size distributions shows that from type I to type II microstructure 

there is a change from normal to bimodal distribution in feldspars, while both microstructures show 

a bimodal distribution for quartz (Figure 3.2-3 I and II). Toward type II microstructure, the change in 

grain size distribution of both feldspars is caused by an increased proportion of smaller grains and 

reduced proportion of mid-ranged grains outweighing an increased proportion of larger grains. This 

suggest that the grain size development is dominated by nucleation, but that some grain growth was 

active too.  

In type III granofels the proportion of smaller grains decreases, while there is an increasing 

proportion of larger grains for both feldspars (Figure 3.2-3 a-II and a-III, and b-II and b-III). This 

suggest a pure ripening of the microstructure which is most prominent in K-feldspar and may be 

linked to the lack of dissolution of the existing K-feldspar during the melting reaction. In quartz, the 

mid-range grain sizes increases while the proportion of larger grains decreases for this 

microstructural type (Figure 3.2-3 c-II and c-III). As with the feldspars, the median value and the IQR 

of the EAD increases for quartz (Table 3.2-2 and Figure 3.2-2). This implies that the increased 

proportion of medium-range grain sizes out-power the effect of loss of large grains and increased 

proportion of smaller grains observed in the volumetric quartz size distribution (Figure 3.2-3 c-II and 

c-III). Together, the grain size statistics for feldspar and quartz points to a simultaneous interplay 

between nucleation and grain growth, where the growth is more effective for medium grain sizes.  
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Type IV granulite shows a consistent median grain size for all phases, and is otherwise characterized 

by increased proportion of smaller grains and a general decrease in the proportion of larger grain 

sizes (Table 3.2-2 and Figure 3.2-3 IV). In this microstructural type, the grain size ranges for both 

plagioclase and quartz decrease and while the plagioclase distribution is without any well-defined 

peaks it seems like quartz is approaching a perfect bell-shaped, i.e. normal grain size distribution. K-

feldspar however, does not exhibit narrowing of the grain size range and seems to show a random 

distribution (Figure 3.2-2 and Figure 3.2-3 a-IV). Throughout the microstructural evolution, the grain 

sizes of quartz and plagioclase have evolved through an interplay between melting, nucleation and 

growth. In type IV granulite, the evolution of the grain size suggests that there has been a re-

equilibration of the grain size which is now approaching a normal distribution for plagioclase and 

especially in the case of quartz (Figure 3.2-3 b-IV and c-IV). 

Grain size reductions are most often attributed to dynamic recrystallization in terms of bulging and 

subgrain rotation. In such a case, the grain size reduction is consistent in both feldspars and quartz, 

which recrystallize through different mechanism within the estimated temperature range and along 

with arguments made in section 4.1.1, mechanisms of dynamic recrystallization can be excluded as a 

source of the observed reductions in grain size. It has already been established that the investigated 

microstructural types equilibrated within the melt stability field, so the grain size reduction from type 

I orthogneiss to type II migmatitic orthogneiss is interpreted as being a result of melt crystallization 

along high-energy grain boundaries and triple junctions. From type II migmatitic orthogneiss to type 

III orthogneiss there is a coarsening of the feldspar grain size, where larger grains have grown at the 

expense of smaller grains. This process is often referred to as Oswald ripening when involving solid or 

liquid solution and in this case, high-energy small crystals are likely dissolved in partial-melt network 

along grain boundaries and subsequently re-precipitated as an addition to larger grains (McLellan, 

1983). The ripening process is most evident in K-feldspar, which is interpreted as an effect of the fact, 

that no pre-existing K-feldspar is consumed during the melt-producing reaction. In quartz, the grain 

size suggests that the processes of nucleation, growth and melting are competing, and an overall 

ripening cannot be inferred for quartz.  

4.2.2 Interpretation of spatial distribution of phases 

A random spatial distribution of minerals is considered as a result of random nucleation and growth 

from an isotropic medium (i.e melt or fluid) preserved through rapid cooling in the case of nucleation 

from melt (McLellan, 1983). Aggregate distribution on the other hand, develops through coalescence 

of like-phases under solid-state differentiation at high strains, where the solid state differentiation is 
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mostly associated with dynamic recrystallization (Schulmann et al., 1996, Kruse and Stünitz, 1999, 

Lexa et al., 2005). Flinn (1969) explained the regular distributions of minerals in granulites as a result 

of equilibration of the rock through minimization of interfacial energy, recording the disappearance 

of high-energy intraphase contacts and an increase in low-energy interphase contacts. More 

specifically he suggested that redistribution of grains, favouring insertion of interphase phases 

between like phases lowers the interfacial energy of the rock and causes the minerals to be 

distributed in an ordered fashion. Generally, an ordered distribution can be predicted for rocks that 

have undergone considerable solid-state annealing, i.e. most high grade metamorphic rocks 

(McLellan, 1983). 

Quantitative statistical analysis of spatial distribution of K-feldspar, plagioclase and quartz shows a 

progressive change from a strong aggregate distribution toward a regular distribution of phases, 

which is in agreement with an increasing degree of microstructural equilibrium between the host 

rock and the melt phase. Melt crystallization leads to new mineral growth along the high-energy 

interphase boundaries of pre-existing grains, resulting in an increasing frequency of interphase 

contacts as the crystallization process proceeds (Hasalová et al., 2008). The spatial evolution of 

feldspars and quartz from type I orthogneiss to type IV granulite is consistent with crystallization of a 

minor phase in triple junctions and along grain interphase boundaries. A feature that was 

documented by Dallain et al. (1999) who found that in polycrystalline aggregates, the predominance 

of interphase phase contacts was a result of grain boundary wetting by fluids or melts and 

subsequent precipitation of other phases along intraphase boundaries. Modern experiments within 

the field of material science also found that boundaries with a low misorientation angle within a 

single-phase aggregate are preserved during grain boundary wetting, while a second phase will tend 

to precipitate on boundaries with high misorientation angles. Thus continuously eliminating high 

energy boundaries from the inherited microstructure by infiltration of another phase (Kim and 

Rohrer, 2004, Lexa et al., 2005).  

The development of the spatial distribution from a strong aggregate arrangement exhibited by type I 

orthogneiss toward a regular distribution observed in the type IV granulite sample is driven by melt 

crystallization and solid-state annealing. A regular distribution is considered to be the energetically 

lowest state of this type of polymineralic material (Devore, 1959), and it is believed that melt 

crystallization will to some extent follow the principle of surface energy reduction through 

elimination of high-energy boundaries (commonly non-coherent intraphase contacts) as documented 

by Dallain et al. (1999) and Kim and Rohrer (2004). Even though melt crystallization is inferred as the 

primary mechanism for the continuous elimination of high energy boundaries from type I to type IV, 
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contribution from solid state annealing which is commonly active in high-grade rocks cannot be 

excluded. 

4.2.3 Interpretation of EBSD-results 

The isolated and sometimes extreme maxima in the CPO data suggest the sample area hasn’t been 

sufficiently large. Ideally one should have smooth population maxima like that of K-feldspar in Figure 

3.3-3 if there is a CPO present, and scattered low value maxima if the CPO is absent. The results of 

the CPO analysis do not allow for in-depth interpretations; however, some general assumptions can 

be made. 

Although both biotite and muscovite breaks down through the melt producing reaction, there is a 

much higher proportion of muscovite entering the melt relative to biotite. Compared to biotite there 

is limited solid solution in muscovite, resulting in a virtually univariant melting of muscovite while the 

biotite is more persistent throughout the evolution and hence retaining the orientation of a relict 

foliation (Gardien et al., 1995). As a result the CPO of biotite can be used to reconstruct the foliation 

of samples where the foliation is not macro- or microscopically visible (see also section 3.3.1).  

Quartz and K-feldspar exhibit a weak CPO in the type I orthogneiss, but such preferred orientation is 

lacking in microstructural types II-IV. The CPO of K-feldspar and quartz in type I microstructure along 

with sweeping undulose extinction in quartz indicates some degree of intracrystalline deformation. 

As the CPO is absent in types II-IV, it strongly suggests that a CPO-weakening mechanism or process 

has operated between the microstructural stage I and II. This lack of CPO in rock-types II-IV could 

reflect alteration of the deformation-related CPO as a result of static recrystallization post-dating the 

main deformation event (Green, 1967). Recent studies on quartz CPO patterns in naturally and 

experimetnally deformed rocks show that static recrystallization had little impact on CPO patterns 

even after extensive annealing (Heilbronner and Tullis, 2002, Otani and Wallis, 2006).   

Diffusion creep-accommodated grain boundary sliding is considered as a deformation mechanism 

that hinders the development of a CPO and possibly destroys pre-existing CPOs (Jiang et al., 2000). 

However, the lack or weak CPO in types II-IV cannot be considered as conclusive evidence of GBS nor 

can it be ruled out as a possible contributing mechanism in any of the microstructural types based on 

the available CPO data. As it has been already shown that the investigated microstructures in type II-

IV samples involve melt crystallization, it seems that the most plausible explanation for the observed 

CPO weakening is related to the increasing amount of new grains inferred to be melt crystallization 

products. In this respect, it is inferred that there are at least two distinct grain generations within the 



   

60 

 

types II-IV microstructures: (1) An older grain generation generally consisting of larger grains with 

inherited features resulting from high-temperature solid-state deformation; and (2) a younger 

generation of smaller grains devoid of intracrystalline deformation that have a random CPO 

consistent with melt crystallization. As the volume of newly crystalized grains increases, the inherited 

CPO of the older grain generation will be inferior resulting in a weakening of the observed CPO. The 

lack of development or enhancement of a pre-existing CPO suggest that the observed 

microstructural changes take place under static conditions. 

4.3 Interpretation of chemical changes in minerals 

Microprobe analysis of the minerals in the type III granofels and type IV granulite along with existing 

analyses of minerals in the type I orthogneiss have shown that the XFe-values of garnet and biotite 

increase slightly from type I to type III and that these values significantly decrease in the granulite. 

This effect is especially seen in garnet while the XFe of biotite is more stable. Plagioclase composition 

also seems to be relatively stable throughout the evolution with no real change in the anorthite 

component. Experimental studies and field observations suggest that in the case of partial melting, 

plagioclase composition tends to show increased proportions of the anorthite component and that 

the XFe-value of garnet and biotite would decrease (Breton and Thompson, 1988, Vielzeuf and 

Holloway, 1988, Dallain et al., 1999).  

Albite rims in plagioclase along certain contact surfaces with K-feldspar in granitic rocks have been 

the subject of many studies, and there are several explanations of their origin. The most probable 

explanation is un-mixing of the albite component from adjacent K-feldspar grain and its nucleation 

on adjacent plagioclase or in form perthithe (Ramberg, 1962). 

4.4 Origin of evolutionary sequence 

The investigated rock types represent a sequence of four microstructural stages from a banded 

orthogneiss to a granoblastic granulite. As suggested by Hasalová et al. (2008) the possible origin of 

similar sequences can be driven by; (1) an increasing degree of one-step in situ partial melting; (2) 

melt infiltration from an external source; or (3) the sequence can be comprised of genetically 

unrelated migmatitic rocks evolved from distinctly separate protoliths. Additionally, the possibility of; 

(4) melt infiltration form a local source will be discussed. 
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Independent evolution from distinct protoliths? 

Observations of field outcrops suggest that the microstructural sequence is intimately linked as the 

transitions from banded orthogneisses to granulites are continuous both in outcrop and hand 

specimen scale. Figure 1.1-1Error! Reference source not found. shows how this progressive 

transition takes place on a cm scale. Konopásek et al. (2014) showed that the whole rock chemistry 

and mineral chemistry is consistent throughout the microstructural types, the only exception being 

the granulite. Here one should keep in mind that the granulite equilibrated at considerably higher 

temperature compared to the orthogneisses and granofels. Both field observations and rock 

chemistry strongly suggest that the microstructural sequence did in fact evolve from the same 

protolith. It should be noted that before anatexis the gneisses underwent solid-state deformation at 

variable intensity which resulted in a gneiss variability from mylonites with perfectly parallel foliation 

planes to less deformed gneisses where the foliation is not as well defined (Závada et al., 2007). The 

difference between the CPO of biotite in type I orthogneiss and in microstructural types II to IV might 

be explained by such variability in gneissic protoliths. More specifically, it is possible that the gneissic 

protolith of types II-IV underwent strains than the type I orthogneiss as the biotite CPO is stronger in 

types II-IV. The mentioned interpretation is only one of several possibilities that might account for 

the opposing biotite CPOs. As a conclusion, the investigated samples evolved from the same 

protholith which may have had various intensity of solid-state deformation prior to the partial 

melting. 

Model of in situ one-step melting  

The mineral chemistry remains relatively stable for the microstructural types I and III. The significant 

drop in XFe of both garnet and biotite within the granulite sample is consistent with changes in 

mineral assemblage (i.e muscovite is absent and kyanite is present). This change in mineral 

assemblage must be associated with an increased proportion of melt compared to microstructural 

types I-III due the more intensive dehydration melting of biotite and especially muscovite. 

The thermodynamic modelling suggests the presence of ~0-4 wt% melt for the orthogneiss and 

granofels while ~5.5 to 8.5 wt% melt is present in the granulite (Závada et al., 2007, Konopásek et 

al., 2014). From type I to type II microstructure there is a relative increase in the smallest grain size 

fraction (0-0.1 mm for feldspars) which roughly amounts to 10 vol % in the case of K-feldspar and 

plagioclase (Figure 3.2-3 a-I to a-II and b-I to b-II ). The small grains responsible for the increase is 

interpreted as being newly crystalized from the melt. The relative increase of ~ 10 vol % only 

represents the crystalized silicate fraction of the melt that additionally must have contained a high 

proportion of water. The presented data suggest that the amount of newly nucleated grains is 
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incompatible with predicted proportion of ~0-4 wt% in-situ melt in the orthogneisses and granofels 

However, the thermodynamic modelling shows that some in-situ partial melting has occurred and 

likely contributed to the disintegration of the initial fabric. 

Melt infiltration model 

The thermodynamic modelling suggests a low melt fraction in the studied samples, which is 

insufficient to completely destruct the compositional banding and so the melt has to come from 

another source, either local or external. In this model, melt infiltrates the rock volume through pulses 

or pervasive percolation along grain boundaries effectively changing the macroscopic and 

microscopic appearance of the infiltrated rock. This process would progressively deconstruct relict 

aggregates as melt wets and eventually heterogeneously crystalize on high-energy intraphase 

boundaries. This model would also be accompanied by a grain size reduction due to the increased 

proportion of small, newly crystalized grains and a decreased CPO, all of which are consistent with 

what is macroscopically and microstructurally observed in the rock. 

A possible explanation for the evolutionary trends recognized in the quantitative analysis involves 

melt infiltration from an external source. If this is the case, then one would expect a progressive 

change in whole rock composition and mineral chemistry, but only if the source of the melt is 

sufficiently contrasting and the amount of infiltrating melt is large. If the infiltrating melt and the 

host rock are similar in composition, then the distinction between melt infiltration from an external 

and local source becomes problematic.  

When the melt infiltrates the rock from a local source, chemical changes are often negligible because 

the melt is in equilibrium with its source rock. In our case, the whole rock compositions and mineral 

chemistries remain constant, except for decreased XFe values for garnet and biotite in the granulite 

which relates to the metamorphic changes taking place.  As the melting occurred through 

dehydration melting of muscovite and biotite, the melting was largely confined to mica bands, which 

were the source of melt for a potential local melt infiltration scenario. The melt originating within the 

mica bands might have been redistributed on a local scale due to a variety of factors including melt 

overpressure, pressure gradients and buoyancy. As the melt flowed through the rock and crystalized, 

the released fluid could have facilitated new partial melting of the rock.  Such cyclic process of 

melting and melt crystallization could explain an apparently higher melt proportion than inferred 

from the thermodynamic modelling and could lead to the observed fabric disintegration. 
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The model of local melt infiltration might be appropriate model for the observed microstructural 

evolution as the mica rich domains in types I and II contain many interstitial grains, which are 

inferred to crystalize from melt. Based on the analysis presented in this thesis, the model of melt 

infiltration seems to be best explain the observed results. Melt infiltration from a compositionally 

different external source can be excluded based on the overall homogenous rock chemistry. As no 

clear distinction can be made between local infiltration and external infiltration of an 

indistinguishable source, neither local or external melt infiltration can be excluded as the primary 

contributor to the microstructural change. However, the model of cyclic melt infiltration from a local 

source is may be more plausible than cyclic melt infiltration from a compositionally similar, external 

source. 

4.5 Evolutionary model  

The original microstructure of the type I orthogneiss before anataxis and annealing is marked by a 

solid-state fabric consisting of alternating monomineralic bands of recrystallized K-feldspar, 

plagioclase and quartz discretely separated by layers rich in micas and garnet. Deformation 

microstructures in quartz, the presence of segregated monomineralic aggregates and CPO results for 

feldspar and quartz are consistent with high temperature deformation of a granite (Schulmann et al., 

1996). The initial fabric is progressively converted into a polymineralic granoblastic microstructure 

represented by the type IV granulite. The grain size decrease from type I orthogneiss to type II 

migmatitic orthogneiss, as well as the transition from a CPO to a randomized texture and the change 

from an aggregate distribution toward an ordered distribution, suggests that the evolution is 

dominantly driven by crystallization of new grains along high-energy contacts. Further, there is a 

ripening of the microstructure observed in type III granofels where grain coarsening is dominant.  

Grain size statistics for quartz in this microstructural stage suggests that some nucleation is also 

taking place, this is supported by the decreased contact frequencies of interphase boundaries. 

Together the available data for this microstructural stage point to an evolution dominated by 

annealing processes and some degree of continued melt crystallization. Quantitative grain size 

statistics for type IV granulite suggests nucleation of new grains, development of a regular spatial 

distribution and decreased XFe of biotite and garnet related to metamorphic changes and an 

increased melt proportion. The presented data suggest that, in the final microstructural stage the 

increase in temperature leads to increased melting. The increased melt proportion in the final 

microstructural stage contributes to an almost complete disintegration of relict aggregates and the 

formation of a new relatively homogenous and equidimensional mosaic of grains. 
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5 Conclusions 

Based on field and microstructural study, four microstructural stages are distinguished in 

metamorphosed quartzofeldspathic rocks in the Eger Complex: (1) Orthogneiss (type I) characterized 

by recrystallized monomineralic layers of K-feldspar, plagioclase and quartz discretely separated by 

layers rich in micas; (2) Migmatitic orthogneiss (type II) composed of K-feldspar-, plagioclase- and 

quartz-rich domains with diffuse boundaries and numerous small interstitial grains; (3) granofels 

(type III) comprised of intermixed domains, locally enriched in K-feldspar, plagioclase and quartz 

where the foliation is not visible microscopically; (4) Granulite (type IV) with a homogenous 

microstructure, with no relicts of the initial gneissic fabric. Detailed microstructural analysis of the 

microstructural sequence of samples demonstrates that the monomineralic banding produced 

through high temperature solid-state deformation of a granite is, with increasing temperature under 

static conditions, is progressively transformed into a polymineralic ordered microstructure of K-

feldspar, plagioclase and quartz.  In the early stage of the microstructural evolution, the median grain 

size generally decreases for all felsic phases due to nucleation of new grains from the melt, 

preferably along high-energy intraphase boundaries, which leads to the development of a regular 

spatial distribution of felsic phases. There is a considerable ripening of the microstructure before the 

final breakdown of muscovite at the granulite facies conditions, which again promotes nucleation 

and melt crystallization. In addition, previously developed solid-state crystallographic preferred 

orientation is destroyed from type I to type II microstructure. It is proposed that the progressive 

transformation is mainly driven by melt crystallization along high energy intraphase contacts and 

triple junctions, resulting in a progressive disruption of monomineralic aggregates. As it seems 

unlikely that the low melt proportion suggested by thermodynamic modelling is sufficient to 

completely re-equilibrate the rock fabric, a model of melt infiltration is proposed. The model involves 

a periodic influx of melt either from a local source or from an external source with the same 

composition. The melt infiltration would result in a stepwise disintegration and re-equilibration of 

the initial gneissic fabric which is now approaching a normal distribution, at least for quartz. 
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Appendix A 

Digitized grain maps 

In this appendix, digitized grain maps introduced in the main text of the thesis are presented in full 

size, allowing closer examination of their microstructure. The grain maps are presented in successive 

order starting with the anisotropic orthogneiss (type I), followed by migmatitic orthogneiss (type II) 

and granofels (type III) and lastly the granulite (type IV) grain map is presented. When comparing the 

individual grain maps, one should note that there is a difference in scale (see individual scale bars) 
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Orthogneiss (Sample KL22-A(B4)) 
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Migmatitic orthogneiss (EZ 22P) 
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Granofels (Sample EZ 22R) 
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Granulite (sample EZ 22S) 
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Appendix B 

Grain size mapping 

In this appendix, results of grain size maps of K-feldspar and plagioclase, which has not been 

published within the text of the thesis are presented for each of the investigated samples. The size 

mapping involves colour coding of grains according to certain grain size parameters, in this case the 

mapping has been done according to equal area diameter of grains. This allows for direct comparison 

with the previously presented box plot (Figure 3.2-2). The colour coding process considers inclusions 

as being part of the host grain, which might have led to a slight overestimation of EAD of certain 

grains. The colour coding only reflects the cross-sectional size of grains, so it is likely that some of the 

smaller grains are sections of a larger grains, still it provides a visual insight into the distribution of 

grain sizes within the samples. The grain size maps are presented phase by phase starting with K-

feldspar size maps for all samples in successive order from type I to type IV, followed by grain size 

maps for plagioclase. The grain size maps are presented in two ways, firstly as a standalone size map 

(left) and secondly as the grain size map overlaid onto grain maps (right) showing the relative 

distribution of grain sizes within the other complementary felsic phases. When looking at the size 

maps one should note that the physical scale is different for each of the samples. Also, for each 

phase, the thresholds for the colour coding are equal which allows for direct visual comparison, note 

however that the colour coding changes from phase to phase. Keep in mind that all grains falling 

below the minimum threshold (0.0075 mm in the case of K-feldspar) and above the maximum 

threshold (0.4 mm in the case of K-feldspar) are evaluated as a part of the minimum grain size 

fraction and maximum grain size fraction, respectively.  
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