
!

!
! !

Faculty of Science and Technology 

Department of Safety and Engineering 

A" Fuzzy" Logic,Possibilistic" Methodology" for" Risk,Based"
Inspection"(RBI)"Planning"of"Oil"and"Gas"Piping"Subjected"to"
Microbiologically"Influenced"Corrosion"(MIC) 

 
 
—"
Marshal Pokhrel 
TEK 3901-Master thesis in Technology and Safety in High North – June 2016 
 



 



i 

 

 

Abstract 

The oil and gas installations are associated with risk due to different degradation 

mechanisms. Microbial Influenced Corrosion, commonly known as MIC, is one of 

them. The failures caused by MIC may have significant impacts on health, safety and 

environment (HSE). Therefore, to avoid failures regular inspection of the assets and 

maintenance plans need to be executed. With this on mind, engineers try to develop 

efficient inspection plans, which could form a basis for saving the assets. The 

different models so far developed for the assessment of MIC still have shortfalls. This 

might be due to the complexity of corrosion mechanisms. A model containing all the 

influential parameters causing MIC is difficult to develop due to the complexity of 

process and lack of data. 

Aim of this project is to develop a simple yet flexible methodology to estimate the 

time for inspection. The methodology contains four sections: (a) estimation of 

possibility of MIC initiation and stable pit growth based on a simple flowchart; (b) 

estimation of rate of corrosion based on Fuzzy Logic; (c) estimation of possibility and 

necessity of failure in the event of MIC initiation and stable pit growth based on 

possibilistic framework; and (d) estimation of time for inspection based on matrix. 

It is expected that the developed methodology would aid engineers make efficient 

inspection programs based on the concepts of risk-based inspection (RBI). 

 

Keywords: MIC, Fuzzy Logic, failure, oil and gas pipes, possibilistic approach, 

reliability, structural integrity 
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Chapter 1 

Introduction 

1.1 Background 

Operating oil and gas installations are subjected to attacks by a number of degrading 

mechanisms. In order to detect the presence and location of the attacks installations 

need to be regularly inspection. Unfortunately, comprehensive inspection programs 

are quite expensive; hence, risk-based inspection (RBI) methodology is often adopted 

to develop effective and efficient inspection programs. In order to account for a 

particular degradation mechanism in RBI analysis, inspection engineers need to know 

its likelihood of taking place and its estimated rate of degradation.  

Unfortunately, the complex natures of various degradation mechanisms make accurate 

prediction of the rates of corrosion in an operating plant rather difficult. Luckily, for 

developing a risk-based inspection (RBI) program, it is not important to model a 

degradation process to be able to accurately estimate the degradation rate over a wide 

range of conditions. Instead the requirement is of a practical model which is simple to 

use, flexible enough to be modified according to the requirements of different sections 

of the plant, and able to incorporate field data. 

Microbiologically influenced corrosion (MIC) is one of the commonly encountered 

degradation mechanisms in an offshore or onshore oil and gas installation. As with 

any other corrosion process, the prediction of likelihood of its initiation and its 

associated rate of corrosion is difficult to accurately model. A model based on fuzzy 

logic framework and possibility approach may offer a simple yet flexible tool for 

engineers to develop their RBI programs. 
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1.2 Research Purpose 

The purpose of this work is to develop a methodology based on fuzzy logic-

possibilistic framework to estimate the inspection schedule based on risk based 

inspection methodology.  

1.3 Research Objectives 

The research objectives are: 

(a) Estimation of possibility of MIC initiation and stable pit growth based on a 

simple flowchart. 

(b) Estimation of rate of corrosion based on Fuzzy Logic. 

(c) Estimation of possibility and necessity of failure in the event of MIC initiation 

and stable pit growth based on possibilistic framework. 

(d) Estimation of time for inspection based on matrix. 

1.4 Research Questions 

To fulfill the research purpose and achieve the research objectives, the following 

research questions need to be answered: 

1. What are the factors that influence the MIC degradation process? 

2. How to decide whether corrosion pit initiation and stable pit growth will take 

place or not? 

3. How can the rate of degradation be estimated under an operating plant 

conditions? 

4. How to estimate the possibility and necessity of failure based on the concepts 

of reliability analysis? 

5. How to estimate the time for inspection given the possibility of corrosion 

initiation and possibility/necessity of failure? 
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1.4 Scope and Limitations 

The factors involved in the degradation mechanism are restricted to a limited number 

of parameters in this work whose values are known for the modeling procedure. 

The limitations are 

x The procedure is justified for internal corrosion  

x The estimation of MIC rate is limited to Sulfate-Reducing Prokaryotes (SRP) 

and methanogens. 

x The estimation of MIC rate is estimated only in the presence of limited 

parameters due to limited data. 

1.6 Structure of the Thesis 

The thesis consists of six chapters.  

Chapter 1 introduces the research, after giving a brief background, the chapter 

discusses research purpose, research objectives, research questions and limitations. 

Chapter 2 is an introduction to corrosion and its related phenomena focusing mainly 

on the MIC and related issues. It also highlights the importance of RBI and its 

concept. An introduction to expert systems and an outline view of integrating it in to a 

decision support system is shown. 

Chapter 3 describes the important parameters that effect rate of corrosion and their 

role in the development of predictive model. 

Chapter 4 describes the proposed methodology for estimating the time for inspection. 

It describes the four steps of the methodology: (a) estimation of possibility of MIC 

initiation and stable pit growth based on a simple flowchart; (b) estimation of rate of 

corrosion based on Fuzzy Logic; (c) estimation of possibility and necessity of failure 

in the event of MIC initiation and stable pit growth based on possibilistic framework; 

and (d) estimation of time for inspection based on matrix. 

Chapter 5 shows the results obtained by using the logic model developed for 

estimation of rate of corrosion. 
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Chapter 6 describes a proposed procedure for predicting corrosion rates based on 

Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference system 

(ANFIS). 

Chapter 7 gives conclusion for the whole work.  
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Chapter 2 

Introduction to Corrosion and RBI 

2.1 Introduction 

This chapter covers the definition of corrosion and its understanding with a focus on 

MIC. Introduction of RBI and concept of expert systems has also been discussed. 

2.2 Definition of Corrosion 

There are several definitions and approaches to define corrosion. In a simple terms, 

corrosion is the gradual destruction of metal by chemical or electrochemical reactions 

with its environment[1]. The surface disintegration of metals or alloys depends on the 

chemical constituents of such metals and the nature of ongoing electrochemical 

reactions. According to International Union of Pure and Applied Chemistry 

(IUPAC)[2], “Corrosion is an irreversible interfacial reaction of a material (metal, 

ceramic and polymer) with its environment which results in the consumption of the 

material or in dissolution into the material of the component of the environment”. 

Another definition by ISO 8044-1986 states “Physiochemical interaction between 

metal and its environment which results in changes in the properties of metal and 

which may often lead to impairment of the function of the metal, the environment, or 

the technical system of which these form a part”[3]. 

2.3 Microbial Influenced Corrosion (MIC) 

This section deals with the definition of MIC, types of bacteria and the process of 

biofilm formation.  

2.3.1 Definition of MIC 

MIC is an electrochemical process[4] where micro-organisms may be able to initiate, 

facilitate or accelerate corrosion reactions through the interaction of the three 
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components that make up this system: metal, solution and micro-organisms. Hence 

from the definition, micro-organisms are not causing corrosion, but are facilitating in 

the process either by accelerating or inhibiting the corrosion process [5]. 

2.3.2 Microbes 

Microbes can be distinguished on the basis of different features. There are certain 

conditions upon which these microbes are categorized. They are 

Shape 

1. Vibrio: comma shaped cells 

2. Bacillus: rod shaped cells 

3. Coccus: round shaped cells 

4. Myces for filamentous fungi like cells, and so on 

Temperature 

1. Mesophile: the bacteria that grows at 20-35 degree Celsius 

2. Thermophiles: the bacteria that are active above 40 degree Celsius 

Oxygen consumption 

1. Anaerobic: does not require oxygen to grow 

2. Aerobic: requires oxygen to grow 

3. Facultative: that have potential to grown in both conditions, either presence or 

absence of oxygen [4]. 
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FIGURE 1. Pitting caused due to MIC [6] 

The presence of bacteria alone does not trigger corrosion. The adhesion of bacteria 

into metal surfaces incorporated by the formation of bio-films producing the changes 

in the environment which is different in terms of pH, oxygen ingress, etc. from the 

bulk metal and hence leading to electrochemical reactions that determines the 

corrosion behavior. 

2.3.3 Biofilm 

Biofilm is a ubiquitous, substrate-attached microorganism community confined within 

a self-developed extracellular polymeric matrix, which is highly structured and 

resistant to environmental disturbance. 

Almost all microorganisms have potential to form biofilm with an ability of adherence 

to the surface. Understanding of such mechanisms could be helpful in mitigating the 

cases like corrosion [7, 8]. 

2.3.4 Role of Biofilm 

Biofilms are unwanted formation of deposits, which can affect the equipment in one 

way or the other. Microbial activity under such films can change the morphology of 

the materials and affects the redox reactions, thereby promoting or inhibiting 

corrosion. The characteristic of corrosion is determined by several factors that include 
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physio-chemical environment at the substratum due to change in the concentration of 

oxygen, salts, pH value, conductivity and potential. Presence of microorganisms 

actually affects these values and could make a suitable environment for bacterial 

growth leading to corrosion. For instance, a biofilm with a thickness of 100Pm can 

prevent the diffusion process of the nutrients to the base of the biofilm, while a 

thickness just of 12Pm can make a spot anaerobic enough for the growth of SRB 

activity in this region, hence promoting corrosion [9]. 

Hence, to understand the nature of such biofilms, a core understanding of their 

structure is necessary. In a biofilm, factors like pH, dissolved oxygen, etc. might be 

different resulting in different concentration gradient of the chemical species along 

the thickness of biofilm[10]. 

Broadly, bacteria involved in the MIC process can be divided in to three groups. 

According to Energy Institute, 2014, ISO, NACE and others, bacterial group can be 

categorized as follows 

x Aerobes 

9 Sulfur-oxidizing bacteria 

x Anaerobes 

9 Sulfate-reducing prokaryotes 

9 Methanogens 

9 Acid-producing 

9 Iron-reducing fungi 

x Facultative 

9 Iron-oxidizing prokaryotes 

9 Sulfur-reducing prokaryotes 

9 Acid-producing bacteria 

9 Metal-reducing bacteria 

9 Nitrate-reducing bacteria 

2.3.5 Sulfate Reducing Prokaryotes and Methanogens 

SRP, a collective name given to sulfate reducing archaea (SRA) and sulfate reducing 

bacteria (SRB), reduces sulfate ion, and methanogens that produce methane as their 
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metabolic activities. Previously, SRB were considered as the only the key factor that 

cause corrosion; however, recently SRA has also been found as a contributor in 

causing MIC. The role of methanogens is still not clear because of which its effect has 

often been neglected, but the recent findings show these microbes can also influence 

the rate of corrosion. More researches suggest a relation that exists between the 

presence of methanogens and degradation of iron [11, 12]. Hence on this research 

basis, this work has been oriented in determining the corrosion rates under the 

influence of SRB, SRA and methanogens.  

2.4 Risk Based Inspection (RBI) 

In the scenario where every industry is seeking for an optimized methodology for 

inspection and maintenance planning of its assets, risk based inspection methodology 

offers an interesting solution. Risk Based Inspection (RBI) is a methodology that 

visualizes risk and prioritizes the components to be inspected on three terms 

1. When to inspect 

2. How to inspect 

3. Where to inspect 

Any system susceptible to failure needs to be inspected in regular period of time or as 

scheduled based upon its functionality and criticality [13]. Once the inspections plan 

is formulated, monitoring techniques are used to detect the failures state and the 

nature of failure. During RBI, we need data to interpret different parameter of which 

one is estimating for probability of failure. 

Collection of data, interpreting or building logic to the data gives information. 

However, there is always an uncertainty in collecting data because of various 

reasons[14-16]. Degradation like corrosion and erosion can reduce the efficiency of 

the assets, which further brings a risk scenario that needs an eye to look upon. For 

this, different monitoring techniques and inspection provide the insight of the 

condition of the assets (like pipeline, pressure vessels, static and dynamic equipment) 

which is made by using sensors or other applicable methods like visual inspection, 

Non Destructive Testing (NDT), etc. But, there might be imperfection in data 

handling as a consequence of which we arrive at improper decision. Imperfection in 
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data will influence the decision making process and could led in degradation of the 

whole system if optimal steps are not taken in time. At any stage of RBI, the decision-

making is inevitable due to which proper decision making system is always a 

need[17]. 

2.5 Risk based Inspection Methodology 

2.5.1 Introduction 

It is a decision-making technique for inspection planning based on risk comprising the 

consequence of failure (CoF) and probability of failure (PoF) [13]. For RBI analysis, 

PoF and CoF are separately calculated and combined together to obtain the risk. RBI 

can be made either quantitative or qualitative. A model based approach where 

selecting suitable models are used to calculate the numerical values for building a risk 

picture in quantitative analysis whereas expert judgment based on opinions and 

experiences is used in qualitative analysis. 

 

 

FIGURE 2. RBI Methodology, DNV 
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2.5.2 Current Methods 

Basically RBI consists of 4 stages, which are 

x Screening 

x Risk assessment 

x Inspection interval assessment 

x Evaluation and updating 

The methodology of RBI is described in DNV-RP-G101 [13]. Here, we are interested 

in the detailed risk assessment part where data are collected and interpreted. Based 

upon the findings, a risk scenario is made which provides an insight to a risk picture 

for determining the inspection intervals. However, it is crucial to understand the 

nature of data which forms the basis for our decision making process. For the decision 

support to be effective, it is to be made sure that the data transformation be easily 

understood and would help in the decision making process for the users. 

In order to make an effective decision plan, understanding the nature of data, 

underlying information and relevant knowledge are needed to be very precise and 

accurate to formulate the decision structure. In case of RBI, planning of inspection 

plan is a crucial part of the process where in most of the cases a team of experts 

makes. A new methodology where computer systems called as Expert systems (ES) 

that facilitate in making decisions have a great potential if integrated in the existing 

process, which is discussed in the Section 2.10. 

2.6 Data – Information- Knowledge -Decision 

Collection of data is important to provide an overview for the prediction of the 

degradation mechanisms, potential failure modes of the assets (pipeline, pressure 

vessels, valves, etc.). The hierarchy of data, information and knowledge and its 

importance are discussed below. For more see [17]. 

Data: 

For any process, collection of simulated or real values is data, which in itself has no 

meaning. It is then processed to give some information. 
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FIGURE 3. Hierarchy of data, information, knowledge and decision support 

 

Information : 

Processed data either with some rules or logic gives information about the data. Rules 

can be either assigned by human or with help of computers. 

Knowledge: 

Reasoning the information, perception associated with the information or cognition 

gives knowledge. 

Decision support : 

After we have knowledge for any process, decision support tools are implemented 

which could be opinions from experts, decision trees, or some computer based tools to 

provide the decision with relevant knowledge. In this work, expert systems (ES) has 

been discussed as a part of decision support tool and recently these systems has 

proven its efficiency due to its limited domain for problem solving with limited rules 

and assertions. 

2.7 Uncertainty Assessment 

Starting from the collection of data in risk assessment, an uncertainty analysis is 

always recommended for proper decision-making. Uncertainty modeling in 

determining the probability of failure needs an advanced understanding of the systems 
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where in most of the cases are represented either qualitatively or quantitatively. For 

example, if the uncertainty is low, it means that the background knowledge is precise 

and accurate to high extent whereas a high uncertainty means a lot of flaws in 

understanding the process that might affect the probability calculations and hence the 

decision that is made might not be accurate. Calculating the probability P(Z≤ z) for 

any model is a part of the background knowledge which comes from the interpretation 

of data collected [18]. 

The information obtained from such uncertainty analysis helps to address the risk 

involved and weaknesses in the findings. The choice of models can be one of the 

reasons for the existence of such uncertainties. 

2.8 Risk and Uncertainty in Decision Support 

System 

Risk and uncertainty are inherent in any decision making process. A risk scenario 

developed without considering the uncertainty factors in the assessment process can 

lead to the chance of quantifying wrong risk picture. Basically risk is interpreted as a 

combination of probability of event and its consequence. The uncertainty factors 

involved have a potential to change the probabilities of event and consequences. 

Hence, a risk picture developed considering all the possible uncertainty factors will 

provide a better basis for decision-making process. In RBI, the decision for inspection 

time intervals is crucial. Periodical inspections imply expenses that directly affect the 

total operational costs. Hence, planning of inspection time could be important in RBI 

while considering all the possible uncertainty factors [19]. 

2.9 Decision Under the Uncertainty 

The decision making process under the influence of uncertainty factors is a tough task 

because there will be a range of options in decision process where we have to select 

the best alternative. It should always be in mind that whatever decision is taken, the 

best pay off option shall be chosen. For example, determining the inspection time 

interval in RBI for the same system can be different proposed by different experts 
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based on their knowledge and cognition where choosing the best alternative can be 

difficult. In such cases, one way to choose the best option is to build a parameter and 

compare this parameter to the different alternatives. For example, in RBI choosing 

among the different alternatives can be based upon the cost, which we call as 

representative value. 

Difficulties in decision making can be due to lack in information of a decision maker, 

hence more clear information can give more precise decision. In case of corrosion of 

pipelines, the exact process of degradation mechanisms if known, decision related to 

inspection or preventive maintenance would be more accurate. Relevant knowledge 

and information used to address the decision making task sharpens the probability and 

helps to shift our uncertainty towards the deterministic zone. In some cases, decision 

making can be under pure uncertainty which means that the decision makers has no 

idea about the consequences and the decision is taken under cognitive bias or with 

experience.  

The corrosion model shown here in this work might not be precise enough. It would 

not be enough to say that the metal susceptible to MIC corrosions is only due to 

favorable range of temperature, pH and flow velocity as proposed in this model. 

There could be so many other factors that might effect the corrosion activity. Without 

considering these factors, the model so built might not be robust enough to show the 

real world behavior of corrosion. Hence, the limited data brings uncertainty. 

2.10 Expert Decision Support Systems 

With an understanding that the decision makers face difficulties while dealing with 

huge amount of data and information, a need was felt to facilitate the decision makers 

take more informed decisions. In other words, expert decision support systems can be 

regarded as a computer version of an expert person. For instance in RBI, such expert 

systems could help the decision makers by formalizing expert knowledge so that it 

can be used in any mechanized systems to plan for inspection time. Expert systems 

can be regarded as outgrowth of Artificial Intelligence oriented system helping in 

making decisions. In real world, experts while taking decisions could be biased while 
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taking decisions, so to avoid such incidents to a certain extent, the necessity of such 

expert systems is felt [20]. 

2.10.1 Definition of Expert System 

It can be defined as a problem-solving program that enhances the performance in the 

particular periphery that needs knowledge and skill to deal with. It can be assumed as 

an analogy to an expert human being. 

The knowledge area of an ES is narrowed down with a proper database of knowledge 

with certain boundary conditions. The results and decisions made by an ES is based 

on rules and facts rather than the human intuition and reasoning. ES generally use 

three kinds of information, which are task-specific, domain-specific and control. Task 

specific is data relevant needed for ES analysis. Domain-specific is the knowledge 

base and the rules for solving the problem while control is the inference engine that 

applies the knowledge for reaching at a solution of any problem [21]. Use of fuzzy 

logic system is an example of such expert system, which has been discussed in the 

Section 4.6 of Chapter 4. 

2.10.2 Need for Expert Decision Support 

Expert systems have been extending its perimeter in various fields such as medical 

diagnosis, exploration and so on. Using Artificial Intelligence technology for practical 

use has grown its demand in industries, government and science areas[22]. It’s a 

challenge to integrate such ES in to existing decision support systems which in fact 

can give us more effective and convenient way of making decisions[23]. 

Decision support systems (DSS) functions as a support system for making decisions 

whereas, ES is a singular performing system which provides expert decision in the 

fixed problem domain. Integration of DSS and ES can provide some huge advantages 

in making our managerial tasks more efficient. ES can actually replicate a human 

expert and can even make its own recommendations where required. ES is considered 

more effective due to its narrow domain for problem solving with relevant facts and 

rules and for its explaining capability where it lacks in case for DSS. 
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Some contributions of ES systems are improvement in database and management 

systems, improving model management, user friendly interface, acts as a self tutor 

providing a dynamic approach to problem solving methods and includes 

computerization of decision making process. In the whole decision making process, 

ES can be added to any sections not only at the end to make the decision analysis 

more effective and reliable. 

2.11  Expert System as a Part of Decision Support 

System 

A DSS consists of four parts, which are database, model, interface and a user. 

Integrating ES and AI technologies in to DSS can be viewed as a part of DSS where 

the output of ES is a part of DSS in building an interface[22]. 

 

 

FIGURE 4. Integration of Expert System in Decision Support System  

To simply understand, the user of DSS introduce ES at a point where a need is felt in 

strategy formulation and hence ES can be considered as an expert human who carries 

a narrow domain of information and relevant background knowledge required for that 

particular scenario. 

On the other hand, some issues might come upon integrating these two systems. For 

instance, the compatibility of hardware and software could be different which means 
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the programming language might be different which creates difficulty in bringing 

both in to the same compatible zone. 

To facilitate the user in efficient decision-making, integration of ES system in to the 

conventional DSS can bring a lot of improvements. Cognition bias as in DSS is no 

more in the system using ES.  
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Chapter 3  

Identification of Important Factors Affecting 

Microbiologically Influenced Corrosion (MIC) 

3.1 Introduction 

This chapter highlights the important factors controlling MIC rates. There are number 

of factors that control MIC. For the proper design and better maintenance plans of an 

operating plant, it is important to prioritize the factors that could have more potential 

effects in causing corrosion. A model that includes possible important factors could 

be more robust and useful for making inspection plans and to avoid unnecessary 

inspections leading to shutdowns, which thereby increases the cost. 

Corrosion takes place as a result of different factors behaving in a complex 

environment[15]. A whole system is made up of different sub components and the 

corrosion behavior might be different at different stages of time for these components. 

But a model that addresses all the factors that results in corrosion might be difficult to 

propose efficiently because of the limited information about the relationship between 

the parameters itself. Hence, it brings limitations in defining our model. For example, 

a comparative study of different models carried out in Institute of Energy Technology 

(IFE) using the data provided by the participating oil companies gives different 

predictions for the same field case. So in such case, it is recommended to choose a 

model based upon the requirements of the plant operating conditions[24, 25]. 

The next chapter will propose a model that will include certain factors that will show 

the behavior of corrosion rates at different values of the parameters included in the 

model for this work. 

3.2 Parameters 

The environment plays a crucial role in bio-corrosion[26]. By environment, one 

means suitable range of temperature, pH, oxygen ingress, salinity, and settlement 
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potential that could be some of the factors that can accelerate or inhibit the corrosion 

process. One should define the boundary conditions under which the system has been 

defined. This work proposes a corrosion rate model with available data for certain 

parameters (Section 4.5). The important factors involved in MIC are briefly discussed 

below. 

x Temperature : Different literature surveys on microbes focusing on its 

growth rate associated with temperature range is found different. This creates 

difficulty in establishing a proper relation between temperature and MIC. 

From the literature surveys, it has been assumed that SRB grows in a range 

from 0-65oC, with optimal growth in the range of 25-40 oC [27]. Similarly, 

SRA grows in a range of 60-95 oC, with an optimal growth between 70-85 oC. 

Temperature range for methanogens activity is suggested in the range of 4-110 

oC [28] with an optimal growth around 35 oC which requires furthermore 

investigation. Thus it has been assumed that methanogens grows in range of 

10-90 oC with optimal growth between 30-70 oC. The temperature range for 

each microbe in divided in to three linguistic terms as High, Average and 

Low. The model in this work is flexible enough which can be modified in the 

presence of more precise information about the temperature range for these 

microbes.  

x MIC Mitigation Techniques: MIC mitigation techniques broadly involve two 

different ways, which can be either direct or indirect. Direct techniques 

include cleaning, chemical injection and water jetting. While indirect 

techniques involve some design features and sulfate removal units. In cases 

where the mitigation technique is effective, the possibility of MIC initiation is 

low whereas if these techniques are ineffective, then the possibility of MIC 

initiation is high.  

x Settlement Potential: The effects of settlement on corrosion rate are indicated 

by the measure of settlement potential. The ability of microbes to grow, 

establish a biofilm and to cause under deposit corrosion can be due to various 

factors like dead legs, geometry of the system and flow velocity. Time when 

the operation was halted creates suitable environment for biofilm to grow. 

Factors that bring such corrosion issues are difficult to look over, hence a 
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subjective knowledge from experts is taken. 

x pH: Defining the range of pH where these microbes are active is again 

difficult due to the limited information. NACE suggests a pH range from 6-12 

for SRB growth whereas Pots and Energy Institute suggests a range between 

5-9.5 for SRB with an optimal growth between 5.5 and 6.5 for SRP. On the 

other hand, methane-producing microbes was found active in a range from 5.4 

to 7.4. Based on these literature surveys, it is assumed that the pH range for 

both SRP and methanogens is in the range between 3.5 to 12 with optimal 

growth between 4.5 to 6.5. The pH range for these microbes has been 

classified in linguistic terms as Acidic, Medium and Basic. Triangular or 

Trapezoidal shapes are determined for their membership functions in the 

model.  

x Flow Velocity: The rate of flow of the process fluid affects the growth of 

MIC. Issues with design where the settlement is high (e.g., dead legs), the 

growth of MIC can be affected by the flow rate of the process fluid. In the 

model, the flow rate has been classified in to three terms as High, Average and 

Low with triangular of trapezoid membership functions.  

x Oxygen Ingress: Though anaerobic microbes are unaffected by the presence 

of oxygen, there are evidence which shows the presence of oxygen can 

increase the growth of MIC affected by sulfate reduction by 2.5 to 3.5 times 

higher. According to Beech and Gaylarde [29], the activity of methanogens 

increases with oxygen ingress. Hence, regardless of the type of microbes being 

anaerobic, oxygen ingress is believed to have negative impacts on MIC 

growth. Two linguistic terms, “Yes” or “No” are considered for this 

parameter. 

x Material: All metals and metal alloys can be susceptible to MIC. According 

to ISO, 2010, MIC normally occurs in carbon steel, which is also due to its 

high use in construction. Different studies has shown it occurrence even in 

stainless steel and duplex stainless steel. More information on material being 

more sensible to MIC is required before including this parameter into 

modeling.  

x Availability of Nutrients: Microbes need suitable environment for its growth. 
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However, it is still not clear about the specific contribution from each 

nutritional group that supports these microbes in its growth. Apparently, SRA 

and SRB have similar metabolic processes, which therefore can be influenced 

by the same nutritional group. While the rate of methane production is 

dependent on the amount of CO2.  The uncertainty of suitable nutritional 

group for different microbes makes it difficult to integrate in the model and 

hence has not been considered.  

x Water Breakthrough: The water injected into the injection well breaks 

through to one or more production wells that can significantly increase the 

possibility of MIC. Since, the effect of water in the multiphase (oil-water-gas) 

system is difficult to quantify, only two linguistic terms - “Yes”, and “No” are 

considered.  

 
Parameter 
(Linguistic 
Variable) 

Linguistic Terms  
(Fuzzy Variable) 

Shape of 
Membership 

Functions 
Usage 

1 MIC Mitigation 
Effectiveness Effective Ineffective Singleton 

Possib. of 
initiation & 

stable pit 
growth 

2 Water 
Breakthrough Yes No Singleton 

Possib. of 
initiation & 

stable pit 
growth 

3 Settlement 
Potential Low High Singleton 

Possib. of 
initiation & 

stable pit 
growth 

4 Temperature Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion rate 

5 pH Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion rate 

6 Flow Velocity Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion rate 

7 Oxygen Ingress Yes No Singleton Calc. 
corrosion rate 

8 Material of 
Construction Not accounted 

9 Availability of 
Nutrients Not accounted 

TABLE 1. List of parameters in the development of MIC rate model  
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Chapter 4  

Proposed Procedures and Methodology Used for 

Assessing MIC Rates 

4.1 Introduction 

The methods and procedures used in the analysis of data for prediction of corrosion 

rates are discussed in this chapter. The data has been extracted from the previous 

research papers[4]. The prediction of corrosion behavior can be unpredictable and is 

difficult to figure out which environment is suitable for its growth. Here the analysis 

has been focused in determining the corrosion rate for a system in the presence of 

SRA, SRB and methanogens.  

The calculations of corrosion rate in this work show the influence of different 

parameters considered (temperature, pH, flow velocity and oxygen ingress) to trigger 

corrosion behavior of the system. The behavior of microorganisms is unpredictable 

and it is still a matter of interest among scientists, to find out the favorable conditions 

required for such microbes to grow and enhance the corrosion of the metallic 

substratum. The simplicity of the model is based upon the idea of adding any other 

input variables in to a system, once the data is available. 

4.2 Overview of the procedure 

The procedure begins with identifying a problem. What causes a problem and what 

can be done to mitigate it is the major concern. When it comes to detecting corrosion 

rates because of microorganisms, one should not forget the complexity of the 

environment that corrodes. Keeping all these in mind, this thesis work has tried to 

justify in finding the corrosion rates in the availability of some parameters whose 

information is somehow well documented to include in a model[30]. To find the 

corrosion rates, as discussed in the literature in previous chapters, the effect of 

temperature, pH and flow velocity has been considered. Amongst many models, rule-
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based model applying fuzzy logic has been implemented which is discussed in detail 

in the coming sections.  

The work here proposes a methodology with an integration of fuzzy based model to 

develop an inspection plan. To start with, first the possibility of MIC initiation is 

discussed followed by the estimation of rate of corrosion using fuzzy logic systems. 

Estimation of possibility and necessity of failure due to MIC growth is carried out and 

finally an inspection plan is prepared.  

4.3 Estimation of Possibility of MIC Initiation  

The efficiency of MIC mitigation techniques has to be well observed for the 

inspection program to be carried out. Once it is found that the mitigation techniques 

are effective, it can be concluded that the possibility of MIC growth is low or else 

high based on expert judgments and opinions. However, if the effect of mitigation 

procedure is unknown, the process is extended where other influential factors like 

water breakthrough and settlement potential are taken in to consideration in 

determining the possibility of MIC growth as shown in Figure 5. Again, it is hard to 

understand the complex relationship between the parameters that triggers MIC growth 

due to which it has been assumed that the model proposed in this work is affected 

only by certain input parameters which is a limitation for this work here.  

 
FIGURE 5. Flow chart to show the initiation of MIC 



25 

 

The estimation of possibility of MIC initiation is now followed by finding out the 

corrosion rates, which is discussed in following sections below. 

4.4 Fuzzy Logic Systems 

Fuzzy logic (FL) is a logical system, which is an extension of multivalued logic. The 

logic systems relate the classes of objects with unsharp boundaries where we define 

the membership degree. In simple understanding, fuzzy logic is a logic system that is 

capable of handling both numerical data and linguistic knowledge in making a better 

decision support system. The knowledge base fed by humans have chances of being 

imprecise with a lot of uncertainties because of which we implement FL as a 

framework for the management of such uncertainty in expert systems and make it 

possible to consider a number of issues that cannot be made with conventional 

techniques. The rules database is based on and/or which gives an output consequence 

in a way like 

If X is A then Y is B;  

where the antecedent, X is A and the consequence Y is B [31, 32] . 

4.5 Included Parameters in modeling 

The corrosion of the system can be associated with different parameters like 

temperature, settlement potential, material, pH, and oxygen ingress. Considering all 

these parameters in to a system can make our work bulky and the correlation between 

these parameters can be difficult to observe at once. Hence, we have defined our 

operating system in a certain range of temperature, pH and flow velocity on the basis 

of which corrosion is predicted using fuzzy logic. Below is the brief description of the 

parameters taken under considerations. For more details, look in to [33, 34]. 

1) Temperature: We have defined our system which operates between 0-100oC 

meaning that we have both Mesophiles and thermophiles bacteria active 

within this given range. A Mesophile is an organism that grows best in 

moderate temperature typically between 20-45oC whereas a thermophile is an 

organism that grows best between a range of 40-122oC and typically called as 
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Archaea. Methanogens growth has been documented between a range of 4 to 

110 degree Celsius with an optimal temperature around 35 degree Celsius. 

Hence, with a range of 0-100oC we have covered almost both SRA, SRB and 

methanogens [30]. 

2) pH: Optimum growth of SRP has been suggested in between 4.5-6.5 which is 

almost around neutral range. Hence, it is assumed that the corrosion would be 

high in this range and low else. 

3) Flow velocity: We have assumed that the system has dead legs and the section 

is horizontal where the flow velocities lower than 1m/s would facilitate the 

growth of bacteria and hence causing high corrosion. 

4) Oxygen Ingress: As discussed in Section 3.2, the effect of oxygen is crucial to 

enhance the rate of MIC. The estimation of corrosion rates in the absence and 

presence of oxygen is shown and compared. 

Using these parameters, the model has been prepared to predict the corrosion rate 

under different values of temperature, pH and flow velocity 

4.6 Development of MIC rate model based on fuzzy 

logic 

In this work, a fuzzy expert system has been implemented that uses a collection of 

fuzzy membership functions and rules in contrast to Boolean logic system, which has 

only two outcomes. The rules in a fuzzy logic system is similar to something like 

If A is high and B is low and C is high, then D is 

medium. 

Where A, B and C are input variables whereas D is output variable. 

Use of fuzzy logic allows the system to have different conclusions and the set of rules 

in a fuzzy expert system is generally knows as knowledge database. Generally, the 

fuzzy system proceeds as follows. 

1. Fuzzification: Here the membership functions defined on the input variables 

are applied to their actual values in order to determine the degree of truth for 

each rule premise. Of all the input variables, the most important are selected 
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which can be based on the availability of data based on previous literatures.  

Each variable can be classified as “High”, “Average” and “Low”. The 

accuracy of the model increases while including more input variables but on 

the same hand, the complexity increases because the relationship between 

each variables is difficult to judge, thereby increasing the level of difficulty in 

establishing the rule base. 

2. Inference: The truth value for the premise of each rule is calculated and is 

applied to the conclusion part of each rule that results in one fuzzy subset to be 

assigned to each output variable for each rule. 

3. Composition: All of the fuzzy subsets assigned to each output variable are 

combined together to form a single fuzzy subset for each output variable. 

4. Defuzzification: It is used to convert the fuzzy output to a numerical value or 

we can to quantify the fuzzy output. In this work Centre of Gravity (COG) 

method has been implemented for defuzzification. 

To build a fuzzy inference system, the three input variables are defined and has been 

assigned its membership function as stated above. A membership function for a fuzzy 

set is defined as µ:X -> [0 ,1], where each element of X is mapped to a value between 

0 and 1. This value is called degree of membership and quantifies the grade of 

membership function in X to a given fuzzy set. 

Membership function helps to graphically represent a fuzzy set. The x axis (abscissa) 

represents the range whereas y axis (ordinate) assigns the degree of membership in 

the interval of [0 1]. 

Figure 6 illustrates the Mamdani inference system where 3 input variables are fed to 

give an output. As mentioned already, temperature, pH and flow velocity are the input 

variables with corrosion rate as an output. 
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FIGURE 6. A Mamdani inference system 

4.7 Membership functions 

Connecting the value of input to the degree of truth is determined by the membership 

function. The range of input variable between which it fluctuates should be well 

understood to prepare more accurate membership function. In most of the case, this 

information can be taken from previous researches or expert judgment if necessary. 

The membership function of the variable can be designed in a number of shapes like 

triangular, trapezoidal, Gaussian, etc. In this thesis work, often triangular and 

trapezoidal shapes have been used because of their simplicity. In availability of more 

precise data and information, other shapes could be used if one could give more 

justification. 
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4.7.1  Triangular MFs 

A triangular MF is characterized by three parameters [a b c] as follows : 

Triangle (x; a,b,c) = 

{
 
 

 
 0, 𝑥 ≤ 𝑎
𝑥−𝑎
𝑏−𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐−𝑥
𝑐−𝑏

, 𝑏 ≤ 𝑥 ≤ 𝑐
0, 𝑐 ≤ 𝑥

 

The parameters [a b c] determine the x coordinate of the three corners of the 

underlying triangular MF. 

 

FIGURE 7. A triangular membership function 

4.7.2 Trapezoidal MFs 

A trapezoidal MF is specified by the four parameters [a b c d] as follows 

Trapezoid (x; a,b,c,d) = 

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥−𝑎
𝑏−𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏
1, 𝑏 ≤ 𝑥 ≤ 𝑐

𝑑−𝑥
𝑑−𝑐

, 𝑐 ≤ 𝑥 ≤ 𝑑
0, 𝑑 ≤ 𝑥
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FIGURE 8. A trapezoid membership function 

 

Figure 7 shows the triangular MF with values corresponding to [a b c] as [3 6 8] 

whereas Figure 8 shows an example of trapezoidal MF with values [a b c d] as [3 5 6 

8]. 

Any sets of continuous probability distribution functions can be used as a specialized 

MF, provided the set of parameters describing the distribution is provided. 

Figure 9 shows the membership functions of the parameters used in the model. It 

should be noted that the membership functions for pH and flow velocity for SRB, 

SRA and methanogens remains same.  
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FIGURE 9. Modeling of membership functions 

4.8 Rule data base 

Generally, the rules are formed based on the previous knowledge about the inter-

relation between input variable and output consequence. The rules have been 

developed using IF-THEN relation between the input and output variables. In this 

work, since we have included 3 input variables namely temperature, pH and flow 

velocity, hence it has been assumed, it would give a high corrosion in the favorable 

condition. However, we have considered an average corrosion where 2 of any 3 

variables is favorable for the growth of MIC or low in other cases  

Proposed modeling of MIC rates in this work has been based upon interaction of three 

input variables to give an output corrosion rate as mentioned earlier. The range of 
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these input variables has been categorized in to three sub divisions as shown in Table 

2. 

 

Temperature pH Flow rate Oxygen ingress 

Low Acidic Low 
Yes 

 

No 

Average Medium Average 

High Basic High 

TABLE 2. Linguistic terms for the input parameters 

The range of input variables has been set in such a way that the favorable condition 

for the growth of SRP and methanogens causing high corrosion is under average 

temperature range, medium pH and low flow velocity in the absence of oxygen. The 

effect of oxygen is accounted in the rule base by assuming that the conditions of 

temperature, pH and flow rate that gives low corrosion now gives Average corrosion. 

Similarly, the conditions of temperature, pH and flow rate that gives average 

corrosion will give high corrosion with oxygen ingress.  

Before building a model in fuzzy logic, we require a set of rules where we can feed 

our knowledge in linguistic based rule to predict the rate of corrosion. Here, it has 

been assumed that the corrosion would be “High” under favorable conditions where 

the temperature is “Average”, pH is “Medium” and flow is “Low” for SRB with 

“NO” Oxygen Ingress. Similarly, the temperature range where SRA and methanogens 

are active is made average in the rule base while the range for pH and flow rate where 

these microbes grow remains same. Accordingly, the rules are fed to the system to 

calculate the output results. It is considered, under any two favorable inputs, the 

corrosion would be average or else low. The rules for modeling are as follows: 
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1.If (Temperature is Low) and (pH is Acidic) and (flow is Low) then (corrosion is Low)  

2. If (Temperature is Low) and (pH is Acidic) and (flow is Average) then (corrosion is Low) 

3. If (Temperature is Low) and (pH is Acidic) and (flow is High) then (corrosion is Low) 

4. If (Temperature is Low) and (pH is Medium) and (flow is Low) then (corrosion is average) 

5. If (Temperature is Low) and (pH is Medium) and (flow is Average) then (corrosion is Low) 

6. If (Temperature is Low) and (pH is Medium) and (flow is High) then (corrosion is Low) 

7. If (Temperature is Low) and (pH is basic) and (flow is Low) then (corrosion is Low) 

8. If (Temperature is Low) and (pH is basic) and (flow is Average) then (corrosion is Low) 

9. If (Temperature is Low) and (pH is basic) and (flow is High) then (corrosion is Low) 

10. If (Temperature is Average) and (pH is Acidic) and (flow is Low) then (corrosion is average) 

11. If (Temperature is Average) and (pH is Acidic) and (flow is Average) then (corrosion is Low) 

12. If (Temperature is Average) and (pH is Acidic) and (flow is High) then (corrosion is Low) 

13. If (Temperature is Average) and (pH is Medium) and (flow is Low) then (corrosion is high) 

14. If (Temperature is Average) and (pH is Medium) and (flow is Average) then (corrosion is 
average) 

15. If (Temperature is Average) and (pH is Medium) and (flow is High) then (corrosion is average) 

16. If (Temperature is Average) and (pH is basic) and (flow is Low) then (corrosion is average) 

17. If (Temperature is Average) and (pH is basic) and (flow is Average) then (corrosion is Low) 

18. If (Temperature is Average) and (pH is basic) and (flow is High) then (corrosion is Low) 

19. If (Temperature is High) and (pH is Acidic) and (flow is Low) then (corrosion is Low) 

20. If (Temperature is High) and (pH is Acidic) and (flow is Average) then (corrosion is Low) 

21. If (Temperature is High) and (pH is Acidic) and (flow is High) then (corrosion is Low) 

22. If (Temperature is High) and (pH is Medium) and (flow is Low) then (corrosion is average) 

23. If (Temperature is High) and (pH is Medium) and (flow is Average) then (corrosion is Low) 

24. If (Temperature is High) and (pH is Medium) and (flow is High) then (corrosion is Low) 

25. If (Temperature is High) and (pH is basic) and (flow is Low) then (corrosion is Low) 

26. If (Temperature is High) and (pH is basic) and (flow is Average) then (corrosion is Low) 

27. If (Temperature is High) and (pH is basic) and (flow is High) then (corrosion is Low) 

TABLE 3. Rule base (“NO” oxygen ingress) 
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IF temperature is average and pH is medium and flow 

velocity is High and oxygen ingress is No THEN the 

corrosion is High THEN corrosion is Average 

IF temperature is average and pH is medium and flow 

velocity is High and oxygen ingress is Yes THEN  

corrosion is High 

 

As stated before, oxygen ingress increases the corrosion rate. Thus, the rule base  

(with NO Oxygen ingress) is changed such that low corrosion becomes average and 

average becomes high. 

It is to be mentioned that the fuzzy system in this work is valid only when all the three 

input variables comes in to action since AND logic gate has been used in building the 

rule base. The modeling is always associated with uncertainties due to the imprecise 

information regarding input and output data in this work. However, an approach to 

predict the corrosion rate in a scenario where the three mentioned input variables 

comes in to play has been shown as Graphics user Interface (GUI) in Mat lab. 

4.9 Estimation of Possibility and Necessity of Failure 

4.9.1 Fuzzy Arithmetic 

Fuzzy membership function can be treated analogous to probability density function 

and can be interpreted as the possibility distribution function in the possibilistic 

approach.  The α cut for a fuzzy set X abbreviated as X α can be defined as a crisp set 

that contains all the elements of X that have membership value greater than or equal to 

α. Mathematically, 
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 FIGURE 10. Alpha cuts 

Each α cut gives a range represented by Xα containing the values whose likelihood is 

α. With an increase in likelihood, the interval between which the values lie decreases 

and the certainty that the values would lie within this interval also decreases.  

The fuzzy operation between the  of two fuzzy sets  and , donated by 

 and , follows the concept of the interval analysis. The basics 

of this can be given as[35]: 
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For this operation, a value of is selected at first. For this value of , the  of 

each fuzzy number is determined. Considering all the values located in the  

for every fuzzy number, the minimum and maximum values of the output function are 

calculated. This step is repeated for all  for . The results of all 

 are combined to build the fuzzy membership function of the output function.  

4.9.2 Calculation of reliability 

The limit state function (z) can be calculated using[36]  

 𝑧 =  𝑑 𝑠 –  𝑑 𝑝, --------------------------(Equation 4.1) 

where ds and dp are maximum allowed corrosion and predicted corrosion depth 

respectively. 

From the calculated MIC rate, predicted corrosion depth can be calculated by simply 

multiplying the corrosion rate with time to obtain the values of dp. The maximum 

allowed corrosion can be found from the equipment specification for a particular 

component. In this work, it is assumed that the maximum allowed corrosion depth 

 is 1.5mm. Along with time, the corrosion depth increases until it exceeds the 

maximum allowed corrosion giving rise to the failure event. 
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4.9.3 Calculation of Possibility and Necessity Measures of 

Failure 

In the possibilistic framework, the fuzzy membership function 𝜇(𝑥) of a variable 𝑋 

can be interpreted as the possibility distribution function .The possibility theory uses 

two different measures – possibility measure and necessity measure – for calculating 

the limit state function. The possibility and necessity measures describing the truth of 

the proposition  are given by Guyonnet [37]: 

 

 

The maximum allowed corrosion can be found from the equipment specification for a 

particular component. In this work, it is assumed where the maximum allowed 

corrosion depth  is already assumed, for example 1.5mm, is discussed. The 

membership function of allowed corrosion depth  can be expressed as: 

 
 

As time progresses the depth of corrosion, characterized by the spread and center of 

gravity (CoG) of distribution, increases with corresponding increase in the possibility 

and necessity of failure. 
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FIGURE 11. The illustration of possibility distribution of the predicted corrosion 

depth after different time period and of possibility and necessity measures 

At X years : Possibility = 0; Necessity = 0 

At Y years: Possibility= a; Necessity= 1-a 

At Z years: Possibility= a; Necessity= a-b 

4.10  Estimation of Inspection time 

Proper planning of inspection time of the assets integrity directly influences the 

operational availability of the integrity. The objective of Risk Based Inspection 

methodology is to ensure and maintain the required availability of the system. Further, 

it is important to develop a detailed knowledge about the past, present and future 

operating conditions of pipelines under different environments that could influence 

the preparation of inspection schedule. For the time dependent degradation models, a 

periodic inspection plan can be made based on their failure rate. However, in most of 

the cases the degradation mechanisms uses semi-probabilistic reliability tools for this 

purpose. In this work, RBI uses a combination of estimation of MIC and possibility-

necessity measure of failure to propose a time of inspection. The possibility measure 

is less conservative than the necessity measure, hence, the inspection time based on 

possibility measure is more than the other. In cases, where the zero tolerance is 

acquired, the possibility-measure based inspection schedule can be used. While, for 
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the case where the failure event is not so crucial with low consequence, the necessity-

measure based inspection plan can be executed.  

 

Possibility of 
failure in the 
event of MIC 
initiation (%) 

High 10-
100 4 years 2 years 1 year 

Medium 1-10 4 years 2 years 2 years 

Low <1 4 years 4 years 4 years 

 
Low Medium High 

Possibility of MIC initiation 

FIGURE 12 Illustration of inspection time for possibility measure of failure 

Necessity 
measure of 

failure in the 
event of MIC 
initiation (%) 

High 10-
100 1 year 6 months 3 months 

Medium 1-10 1 year 6 months 6 months 

Low <1 1year 1 year 1 year 

 
Low Medium High 

Possibility of MIC initiation 

FIGURE 13. Illustration of inspection time for necessity measure of failure 

 

From the Figures 12 and 13, it can be understood that the inspection time with high 

possibility of MIC initiation and high possibility-necessity of MIC requires more 

often inspection compared to rest, which is a high risk zone.   
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Chapter 5  

Results and Discussion 

5.1 Overview of the results 

The data extracted from the previous work has been used to build a fuzzy model in 

this work. Limited data and information is always an obstacle to build a model, which 

could precisely reflect the real world behavior of corrosion. With more data, one can 

propose a model better than this work, which is a part of further research. 

Basically, here the model depicts the corrosion rate of a system under the influence of 

different changing parameters namely temperature, pH, flow velocity and oxygen 

ingress. The model is able to show the changes in the corrosion of the system with 

changing values of these input parameters. Computation of data has been facilitated 

using Matlab fuzzy logic toolbox. 

The results obtained for estimation of corrosion rate due to SRB, SRA and 

methanogens in the absence of oxygen has been shown in the Figures 14-22. Figure 

23 shows the comparative results of corrosion rate due to SRB with oxygen ingress 

and without oxygen ingress. 

Oxygen ingress : NO Oxygen Ingress : YES 

Temperature(oC) 63 45 25 63 45 25 

pH 6 4.5 5 6 4.5 5 

Flow rate 1 0.5 1 1 0.5 1 

Corrosion 
rate(mm/yr) 0.0483 0.1353 0.1 0.1004 0.1661 0.1673 

TABLE 4. Values or corrosion rate due to SRB with and without Oxygen Ingress 
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5.2 Discussion of the results 

The fuzzy based model in this work helps to understand the corrosion behavior under 

the influence of input variables fed to the system. The complexity of corroding 

environment makes it difficult to precisely address the nature of corrosion. With the 

help of fuzzy logic, we can build a model for the estimation of corrosion rate. A fuzzy 

based model can help in the consequence modeling analysis considering both the 

available data and expert opinions for those systems, which do not have proper 

quantitative model. Further, the output from this model can be further extended to 

make a risk analysis and facilitate the decision makers to identify the major risks and 

hence give an idea of the understanding of the relative risks associated. 

The model formulated in this work has its flexibility to show the corrosion rates with 

different values of input variables.  

The rules database has been formulated according to the knowledge and information 

provided to predict the corrosion rates. Due to the limited information about the input 

variables, modeling of their membership functions is made linear to make the work 

simpler. More precise shapes for their membership functions could have made the 

results more accurate.  

The Chapter 6 will show the proposed procedure for the prediction of corrosion using 

Artificial Neural Network and Adaptive Fuzzy Inference system. With more data, 

these models could be an efficient way for predicting corrosion rates.  
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Chapter 6  

 Artificial Neural Network (ANN) and Adaptive 

Neuro Fuzzy modeling (ANFIS) approach in 

corrosion prediction 

6.1 Artificial Neural Network 

6.1.1 Introduction 

Artificial neural network (ANN) can be defined as a model equivalent of reasoning 

based on human brain. Human brain consists of numerous interconnected set of 

processing units for the given information called as neurons where the information is 

stored. In ANN such information are processed simultaneously rather than at specific 

locations. ANN are actually reliable method in which it uses experience to improve 

the performance output. The neurons are connected by the links, which has got its 

own weight associated with them. Weights are assigned to measure the importance of 

the connection and ANN learn through repeated adjustments through these 

weights[38]. 

There are certain problems that might not be solved by predefined algorithms. Such 

problems might be dependent on subtle factors, which could be complex to formulate 

in the absence of such algorithms. In our case, while detecting corrosion rates, one 

may not be able to formulate explicit equations that could relate the input variables to 

give an output. Given a problem, human mind is capable of encoding and solving 

problems based on their learning. So the question is, how we make computers to learn 

so that it could function in a similar way as human brain. 
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6.1.2 Computational method for ANN 

The computational methodology of ANN is inspired from the biological structure of 

neurons and its way of solving and encoding problems. ANN can be divided into two 

groups: feed forward and feed backwards. In the feed forward, no loops are formed in 

the network connections. The network signals are processed from a layer of inputs 

units to an output unit. On the other hand, in feedback networks, the connections are 

multi-directional to other units. 

 

FIGURE 24. a) Feed forward b) Feedback[39] 

 

6.1.3 Multilayer preceptor (MLP) 

One of the common feed forward networks used is MLP. Figure 25 shows a typical 

MLP where we have three layers: an input layer, an output layer and a hidden layer. 

The input signals from the input layer are transferred in the hidden layer. Again each 

neuron j from the hidden layer sums up its value and after weighting with the 

respective connection wji and gives its output yj as a function f of the sum. Here the 

function f can be sigmoidal, hyperbolic tangent or radial basis function. 

Mathematically, 

y j = f (∑  𝑤𝑗𝑖  𝑥𝑖𝑛
𝑖=1 )------------------------(Equation 6.1) 



55 

 

 

FIGURE 25. A MLP network [40] 

6.1.4 ANN model for prediction of corrosion due to MIC 

In this work, a proposed methodology has been given to predict the corrosion rate 

based on ANN. Generally, ANN is trained using real world data to learn the hidden 

algorithm, which sometimes cannot be described by explicit equations.  

Input data in the matrix form of the order 3×n and a output data of the order 1×n is 

taken, where n is the number of sample points. 

 

Temperature x y z ………n 

pH p q r ………n 

Flow velocity l m n ……….n 

Output corrosion a b c ……….n 

TABLE 5. Matrix form of input data 
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Data collection: From the inspection results, a set on input-output data set is 

obtained. Generally, these data sets are arranged in a matrix of order 3×n for input and 

1× n for output, which is further used in training.  

Building a network: Using input data and the target data (desired output) a network 

is built. 

 

FIGURE 26. Neural network configurations 

Training the network: The network is trained using available algorithms. Here, 

Levenberg Marquardt training algorithms [41]can be been used as a default training 

algorithm. This algorithm typically requires more memory but less time. Training 

automatically stops when generalization stops improving, as indicated by an increase 

in the mean square error (MSE) of the validation samples. Mean Squared Error is the 

average squared difference between outputs and targets. Lower values are better. Zero 

means no error. Training multiple times will generate different results due to different 

initial conditions and samplings. 

Test performance: When the training in neural network is complete, we can check 

the network performance and determine if any changes need to be made to the 

training process, the network architecture, or the data sets. 

Once the network has been trained, it can be tested against the input data. A sample 

data is taken out from the data set and is simulated to see the output results.  
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6.2 Adaptive Neuro Fuzzy Inference System 

(ANFIS) 

6.2.1 Introduction 

ANFIS is architecture and a learning procedure, which is a fuzzy inference system, 

implemented in the framework of adaptive networks. ANFIS is capable of 

reproducing input-output mapping using fuzzy (if-then) rules. ANFIS is employed to 

model the nonlinear functions in a control system, to identify the nonlinearity and 

predict the output with promising results. 

6.2.2 Computational methodology 

The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. 

Using a given input/output data set, the toolbox function anfis in matlab constructs a 

fuzzy inference system (FIS) whose membership function parameters are tuned 

(adjusted) using either a back propagation algorithm alone or in combination with a 

least squares type of method. This adjustment allows your fuzzy systems to learn 

from the data they are modeling. 

In this work, a fuzzy based model has been proposed to predict the corrosion rates as 

described in previous chapters. Specified membership functions has been used to 

model the input parameters which is then combined with a set of rules to give an 

output. There might be cases, where the shape of membership functions cannot be 

implemented by just looking the pattern of data. Hence, rather than choosing the 

membership functions arbitrarily, the membership functions can be tuned so as to give 

less error in data modeling of the system. 

Generally, the input-output data is divided in to three categories: training, testing and 

checking data. However, if the training data represents the whole feature of the data 

presented to the model would be enough for the model to work but the case might be 

where training data might be embedded with noise, which hence could not represent 

the whole feature of the data. In such scenario, model validation is required. Model 

validation is the process by which the input vectors from input/output data sets on 
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which the FIS was not trained, are presented to the trained FIS model, to see how well 

the FIS model predicts the corresponding data set output values. 

 

FIGURE 27. ANFIS architecture 

The fuzzy model is vague in itself whose results might not be reliable enough to rely 

upon to make decisions. ANN and ANFIS propose a better methodology for the 

prediction of MIC facilitating in making more robust decision strategy. Use of either 

ANN or ANFIS might depend upon the user choice. However, since ANFIS uses a set 

of rules based on prior knowledge of experts, hence ANFIS might be more reliable 

method in this process.  
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Chapter 7  

Conclusions 

Preparing an inspection schedule is an important step of an effective RBI program. 

Unfortunately, the unpredictable nature of MIC corrosion makes precise calculation 

for time to inspect rather difficult, hence, traditionally, the inspection program for 

MIC has been mostly developed using expert judgement. This thesis presents a 

methodology for estimating the time for inspection based on the concepts of Fuzzy 

Logic and possibilistic approach.  

The proposed methodology has four steps. In the first step the possibility of MIC 

initiation and stable pit growth is estimated using a simple flow chart taking into 

account parameters like water breakthrough and settlement potential. In the second 

step, the rate of corrosion, in the event of MIC initiation and stable pit growth, is 

estimated based on the concepts of fuzzy logic. In the third step, the fuzzy 

membership function of corrosion rate is used to estimate the possibility and necessity 

of failure as a function of time. Finally, the possibility of MIC initiation and stable pit 

growth and possibility/necessity of failure are combined using subjectively developed 

decision matrix to estimate the time for inspection.  

As a part of future work, this thesis proposes extending the work using the concepts 

of ANN and ANFIS.  

It is expected that the methodology would help engineers to develop more efficient 

inspection programs for installations suspected of having MIC. 
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Appendix 1 
 
A Fuzzy Logic-Possibilistic Methodology for Risk-Based 
Inspection (RBI) Planning of Oil and Gas Piping Subjected to 
Microbiologically Influenced Corrosion (MIC) 

Maneesh Singh and Marshal Pokhrel 
University of Tromsø, 9019 Tromsø, Norway 

Abstract 
Operating oil and gas installations are subjected to attacks by a number of 
degrading mechanisms. In order to detect the presence and location of the attacks 
installations need to be regularly inspection. Unfortunately, comprehensive 
inspection programs are quite expensive; hence, risk-based inspection (RBI) 
methodology is often adopted to develop effective and efficient inspection 
programs. In order to account for a particular degradation mechanism in RBI 
analysis, inspection engineers need to know its likelihood of taking place and its 
estimated rate of degradation.  
Unfortunately, the complex natures of various degradation mechanisms make 
accurate prediction of the rates of corrosion in an operating plant rather difficult. 
Luckily, for developing a risk-based inspection (RBI) program, it is not important 
to model a degradation process to be able to accurately estimate the degradation 
rate over a wide range of conditions. Instead the requirement is of a practical 
model which is simple to use, flexible enough to be modified according to the 
requirements of different sections of the plant, and able to incorporate field data. 
Microbiologically influenced corrosion (MIC) is one of the commonly encountered 
degradation mechanisms in an offshore or onshore oil and gas installation. As with 
any other corrosion process, the prediction of likelihood of its initiation and its 
associated rate of corrosion is difficult to accurately model. A model based on 
fuzzy logic framework and possibility approach may offer a simple yet flexible tool 
for engineers to develop their RBI programs. 
This paper presents a proposed methodology, based on fuzzy logic framework, for 
estimating the rate of MIC corrosion in carbon steel static equipment, pipes and 
pressure vessels. The paper also presents a procedure based on possibility 
approach to calculate the possibility and necessity of failure. Finally the paper 
presents a methodology to decide time for inspection. 
 
Keywords: MIC, Fuzzy Logic, failure, oil and gas pipes, possibilistic approach, 
reliability, structural integrity 
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1 Introduction 
Various components that make up an onshore or offshore oil and gas installation 
are subjected to a number of degrading mechanisms, like corrosion, erosion, 
fatigue and impacts. As a result, over a period of time, they may lose their 
structural integrity resulting in leakages, bursts and ruptures. These failures can 
result not only in economic losses to operators in terms of clean-up operations, 
reduced production, etc., but more importantly pose significant health, 
environment and safety (HSE) hazards. Hence, in order to mitigate the problems 
associated with failures, these components are subjected to regular inspections 
and maintenance. Since, an installation is made up of thousands of individual 
components, or tags, the associated costs of inspection and maintenance may be 
quite high.  
An effective asset integrity management (AIM) program intends to maximize the 
availability of resources at minimum cost without compromising on the safety and 
legislative standards. One of the ways of developing such asset integrity program 
is to use the concepts of “risk management”. In this case, “risk” is defined as a 
combination of the probability of failure and its consequence; and “risk 
management” can be considered as the architecture, including, philosophy, 
principles, procedures and frameworks, that are used to identify, assess and 
control risk of accidents in a chemical process installation. Risk management 
allows the operators to judiciously divide their resources among different assets 
based on the perceived risk of failure so as to minimize the risks posed by the 
possibilities of accidents (ISO 31000, 2009; ISO 31004, 2013; ISO Guide 73, 2009; 
NORSOK Z-008, 2011). 
The risk analysis can be carried out qualitatively or quantitatively. In a qualitative 
risk analysis experts’ opinions of individual sections are considered and a 
subjective score is given to the various factors that are assumed to cause the 
damage to a pipeline. Based on simple calculations and expert opinion risk 
associated with various failure modes is estimated. This methodology is very 
subjective and, hence, inaccurate. In the quantitative risk analysis methods, the 
probability of leakage and its consequences are calculated based on rigorous 
inspection and modelling results. These methods often give much more reliable 
results. Unfortunately, the quantitative calculation of risk is a daunting task 
because of the difficulties involved in calculating the probability of failure and the 
effect of the consequence of failure. Thus, a combination of the two is often a good 
balance between precision and practicality (ABS, 2003; API 580, 2002; DNV-RP-
G101, 2010, ISO 17776, 2000). 
One of the components in the development of the risk based asset integrity 
management program is the establishment of a risk based inspection (RBI) plan. 
RBI has been defined in the following manner in different recommended practices 
(ABS, 2003; API 580, 2002; DNV-RP-G101, 2010; NORSOK Z-008, 2011): 

x ABS: Risk-based inspection is a risk assessment and management process that 
is focused on failure modes initiated by material deterioration, and controlled 
primarily through equipment and structure inspection. 

x NORSOK Standard Z008: risk assessment and management process that is 
focused on loss of containment of pressurized equipment in processing 
facilities, due to material deterioration 
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x API 580: A risk assessment and management process that is focused on loss 
of containment of pressurized equipment in processing facilities, due to 
material deterioration. These risks are managed primarily through equipment 
inspection. 

x DNV-RP-G101: A decision making technique for inspection planning based on 
risk – comprising the probability of failure and consequence of failure. 

A closer look into the definitions and the scope highlights the following points: the 
All of these definitions have the following in common: 
1. RBI’s purpose is to manage risk, primarily through the inspection of 

equipment. 
2. The RBI is based on risk assessment technique that comprises of 

assessment of probability of failure, consequence of failure and their 
combination. 

3. The RBI is primarily geared towards the static pressurized process 
equipment. 

4. The main failure mode is the loss of containment. 
5. The main failure cause is the material deterioration. 
One of the common causes of failure due to material deterioration is the damage 
to components caused by the internal corrosion which can take place due to a 
number of factors like the presence of CO2, humidity, H2S, microbes, chlorides and 
sulfates. In order to predict the rate of corrosion due to these factors a number of 
models have been developed. These models adopt different approaches to account 
for different components of the complete model. The traditional modelling 
approaches – semi-empirical and mechanistic – require understanding of the 
nature and behavior of the corrosion phenomenon. Unfortunately the complex 
nature of the corrosion process does not make it amenable to modelling. As a 
result, most of the models have been successful in making accurate predictions 
only to a limited degree. Luckily, for developing a risk-based inspection program, 
it is not important to accurately model the whole corrosion process which would 
be able to predict the rate of corrosion over a wide range of conditions. Instead 
the requirement is of a practical model which is simple to use, flexible enough to 
be modified according to the requirements of different sections of the plant, and 
able to incorporate field data (Singh and Markeset, 2009; Singh et al. 2014). 
One of the commonly encountered degradation mechanism in an offshore or 
onshore oil and gas installation is the microbiologically influenced corrosion 
(MIC). In order to prevent the corrosion extensive amount of research has gone 
into understanding the fundamental principles behind it. Unfortunately, the 
complex nature of the phenomenon, caused by a wide range of microbes that 
operate over a wide range of conditions, makes understanding and mitigation of 
the problem rather difficult.  
In order to predict the rate of corrosion due to MIC a number of models have been 
developed (Allison et al., 2008; Maxwell, 2006; Maxwell and Campbell, 2006; 
Sørensen et al., 2012; Taxèn et al., 2012). These models adopt different 
approaches to account for different variable parameters and components of the 
complete model. Unfortunately, the complex nature of the corrosion process 
makes it unamenable to modeling. As a result, most of the models have been 
successful in making accurate predictions only to a limited degree. Different 
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models give different predictions for the same case and no particular model is 
expected to outperform others under all conditions. Hence, the selection of model 
should depend upon the empirically found correlations between the predicted 
and actual results. 
An important feature of plant operation is the availability of a considerable 
amount of information regarding the corrosion of pipelines as a qualitative and 
imprecise knowledge. This subjective expert knowledge cannot be easily used by 
the traditional mathematics based on differential and algebraic equations. Hence, 
there is a requirement for a technique that can incorporate the subjective 
knowledge along with the objective information to develop a practical model 
which is simple to use, flexible enough to be modified according to the 
requirements of different sections of the plant, and able to incorporate field data 
(Singh and Markeset, 2009). 
Fuzzy logic is a mathematical tool suitable for handling imprecise information in 
the real world. The benefit of this approach lies in its ability to include personal 
experiences along with acceptable deterministic models in the calculation. The 
structure of the model also allows easy calibration of the model to suit a particular 
condition. This approach can thus help to reduce the dependence upon the precise 
data, allow modelling even when a phenomenon is incompletely understood, and 
reduce the difficulties arising due to the complex computation required by more 
traditional methods (Singh and Markeset, 2009). 
The fuzzy logic approach is an attractive option when (a) the available data is not 
precise enough to allow conventional methods of computing; (b) there is a 
significant tolerance to the imprecision, allowing the development of a simple and 
robust model; (c) the available information is too incomplete to allow the 
development of a proper model; and (d) the model is too difficult to allow easy 
computation (Zadeh 2002; Ross 2009). 
In an ongoing research project, a methodology based on fuzzy logic is being 
developed for establishing a risk-based inspection schedule for oil and gas pipes. 
It is hoped that the methodology will allow the maintenance or inspection 
engineers to develop an optimal inspection plan considering various sources of 
information like the recommended models, standards and their own experience 
of the plant.  
This paper presents a proposed semi-Q (semi-quantitative or semi-qualitative) 
methodology based upon the concepts of fuzzy logic for developing inspection 
schedule for static equipment subjected to possible MIC attack. The methodology 
contains four sections: 

1. Estimation of possibility of MIC initiation and stable pit growth 
2. Estimation of rate of corrosion 
3. Estimation of possibility and necessity of failure in the event of MIC 

initiation and stable pit growth 
4. Estimation of time for inspection. 
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2 Description of Input Variables 
Microbiologically influenced corrosion (MIC) can be caused by different types of 
microbes. These microbes are characterized based on their biological features. 
The significant groups among the microbes are the (a) prokaryotes, which 
includes bacteria and archea; and (b) eukaryotes, which includes algae, fungi and 
protozoa.  
Microbes can also be divided according to the environment they live in. Aerobic 
microbes can survive and grow only in the environment containing oxygen; 
whereas anaerobic microbes do not require oxygen for growth. A facultative 
microbe can survive and grow in both conditions, presence or absence of oxygen. 
MIC takes place due to the metabolic activities of various types of microbes. Due 
to the unpredictable nature of microbes there is no unanimity regarding which 
type of microbes cause MIC, but there is a broad consensus that MIC is mostly 
caused by anaerobic microbes. Among the anaerobic microbes, eukaryotes seem 
to cause almost negligible MIC (Schlegel and Jannasch, 2006). Anaerobic microbes 
that are most commonly encountered can be categorized as: 

x sulfate reducing prokaryotes (SRP),  
x methanogens, 
x iron reducing fungi, and  
x acid reducing fungi falls 

Out of these microbial groups, SRP and methanogens are considered to be the 
primary contributors to the MIC (Larsen et al., 2008, Mitchell et al., 2012). SRP is 
a collective name given to sulfate reducing archaea (SRA) and sulfate reducing 
bacteria (SRB). As a result of their metabolic process SRP reduces sulfate (SO4 2-) 
resulting in the generation of H2S. The H2S released by the microbes reacts with 
the component iron to form iron sulfide (FeS), resulting in degradation of the 
component (Maxwell, 2006, Maxwell and Campbell, 2006; NACE, 2012, Sørensen 
et al., 2012, Rodrigues and Akid, 2014; Skovhus and Whitby, 2011). 
While developing a model, selecting the most important input parameters and 
understanding of the complex relationship between these parameters is of vital 
importance. This listing helps to optimize between the accuracy and complexity 
of the system by incorporating the important variables and leaving out the less 
important ones. Too many variables increase the complexity of the model, hence, 
add to the noise in the calculated results; and too few variables result in erroneous 
results due to the disregard of important parameters. The selection of the 
variables can be based on the sensitivity analysis backed by the laboratory and 
plant data (IEC-1131 1997; Singh and Markeset, 2009; Singh et al. 2014).  
While developing the model a number of parameters that may affect the rate of 
corrosion have been considered, some of these are operating temperature, 
settlement potential, material of construction, pH, and oxygen ingress. Out of all 
these variables, more important variables have been judiciously selected and 
described as linguistic variables (IEC-1131, 1997; Ross, 2004; Singh and Markeset, 
2009). 
Each of the linguistic variables (example “Temperature”, “pH”, “Flow Velocity”, 
“MIC Mitigation Effectiveness”, “Settlement Potential”, etc.) has a number of 
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linguistic terms or fuzzy variables (example “High”, “Medium”, “Low”, etc.). The 
collection of all the fuzzy variables of a linguistic variable constitute the term set. 
The decision regarding the number of fuzzy variables in each linguistic variable is 
quite important. As the number of fuzzy variable in a linguistic variable increases, 
the accuracy of the model also increases but so does the complexity of the model 
because it entails increase in the number of rules in the rule base. On the other 
hand, too few terms will make the model coarse. The determination of the number 
of fuzzy variables in a linguistic variable has been carried out by first conducting 
the sensitivity analysis of the linguistic variable. The number of fuzzy variables in 
a linguistic variable increases with the increase in the sensitivity of the linguistic 
variable (IEC-1131, 1997; Ross, 2004; Singh and Markeset, 2009). 
In the fuzzy logic framework, a fuzzy variable X  can be described by its 
membership function � �xD . The membership function � �xD  connects the value of 
input to the degree of compatibility or truth. While developing the membership 
functions, a number of factors are taken into account, like the extreme values 
between which the values oscillate the expert opinion of the maintenance 
engineers, etc. The accuracy of prediction of a model falls with increase in the 
range of input variables. Hence, it is advantageous to model individual 
components with the variables within the range it is expected to operate in. The 
membership functions of the variables can be adapted to a number of shapes, like 
sigmoidal, Gaussian, bell, etc., but the shape should be justified by the available 
information. In this work, the triangular and trapezoidal fuzzy sets have been 
mostly used because they were the most common, easy to use and adequately 
reflect most of the processes. At this conception stage there is no justification for 
using any other more complex functions, but in future if the need arises then these 
functions can be adapted to reflect the available information (IEC-1131, 1997; 
Ross, 2004; Singh and Markeset, 2009). 
Thus, first the number and shapes of each fuzzy variable (also called linguistic 
terms) in a linguistic variable are determined. Then the variable input value is 
fuzzified by determining the membership of each fuzzy variable of the 
corresponding linguistic variable. 
Brief description of these parameters is given below. 
1. MIC Mitigation Effectiveness. In an oil and gas installation, a number of MIC 

mitigation techniques are implemented. These techniques can be preventive, 
like injection of biocides, or corrective, like cleaning and water jetting. Based 
on the experience, plant engineers can subjectively decide if these techniques 
have been effective or not. For this parameter two linguistic terms – 
“Effective”, and “Ineffective” are considered. The shape of membership 
functions for this parameter is Singleton. 

2. Water Breakthrough. In the early life of a field the gas pressure pumps out 
oil from the well, but in the later stage large volumes of water are injected into 
the well to displace the remaining oil in the reservoir. Often the water injected 
into the injection well breaks through to one or more production wells. The 
introduction of water into the production can significantly increase the 
possibility of MIC. Since, the effect of water in the multiphase (oil-water-gas) 
system is difficult to quantify, only two linguistic terms – “Yes”, and “No” are 
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considered. The shape of membership functions for this parameter is 
Singleton. 

3. Settlement Potential. Settlement potential indicates the ability of microbes 
to adhere to the walls and grow. This is dependent upon a number of factors 
like, periods of low activities due to downtime, presence of dead legs, 
unfavorable geometries (out of service sections, upstream/downstream 
sections near a closed valve, U sections, bends, T joints, blocked pipe segments, 
etc.) and low velocities. Since it is difficult to quantify the effect of these 
parameters, subjective evaluation by experts taking into account the 
operational history may be a good approach. For this parameter two linguistic 
terms – “High” and “Low” are considered. The shape of membership functions 
for this parameter is Singleton. 

4. Temperature. While there is considerable uncertainty regarding the 
temperature range at which MIC takes place, fuzzy logic offers an easy way of 
customizing the model based on the actual plant data. Hence, to initialize the 
model it has been assumed that SRB, grows in moderate temperature range of 
0-65oC, with optimal growth in the range 25-40oC. Similarly it is assumed that 
SRA, grows best in the temperature range 60-95oC, with optimal growth in the 
range 70-85oC. For methanogens, the assumption is that they grow in the range 
10-90oC, with the optimum in the range 30-70oC (Andersen 2014). For this 
parameter three linguistic terms – “High”, “Medium”, and “Low” for each type 
of microbe (SRA, SRB and methanogens) are considered. The shape of 
membership functions for this parameter is Triangular or Trapezoidal (Figure 
1).  

5. pH. Due to the conflicting reports regarding the effect of pH on MIC it is difficult 
to establish the pH range in which MIC takes place. Based on survey, it is 
assumed that the MIC can take place in the pH range 3.5-12, with an optimal 
range of 4.5-6.5 (Andersen, 2014). For this parameter three linguistic terms – 
“High”, “Medium”, and “Low” have been considered and the shape of 
membership functions for this parameter is Triangular or Trapezoidal (Figure 
1). 

6. Flow Velocity. Once microbe colony has developed on the surface of a pipe or 
equipment it cannot be flushed out just by the flow of the process fluid, but the 
flow velocity of process fluid can affect the rate of growth of MIC. The effect of 
velocity on the rate of growth depends also upon the geometry of the plant, 
hence, the effect has to be studied on the plant to plant basis. In the proposed 
model three linguistic terms – “High”, “Medium”, and “Low” have been 
considered and the shape of membership functions for this parameter is 
Triangular or Trapezoidal (Figure 1). The shape of the membership functions 
has been guessed but can be easily modified on availability of more data. 

7. Oxygen Ingress. While MIC causing microbes are mostly anaerobic in nature, 
plant observations have shown a significant increase in MIC in the sections 
that have experienced oxygen ingress in the system. While in a well designed 
and operated plant oxygen is not expected in the system, there may be a 
possibility of ingress due to leakages from imperfectly sealed parts, like valves, 
flanges, pumps, and compressors. The increase in MIC due to the presence of 
oxygen may be due to existence of both aerobic and anaerobic microbes in 
biofilms. The aerobic microbes generate conditions that are conducive to MIC 
attacks by anaerobic microbes (Andersen 2014). Since it is difficult to relate 
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degree of oxygen ingress on the rate of corrosion, hence, for this parameter 
only two linguistic terms – “Yes”, and “No” are considered. The shape of 
membership functions for this parameter is Singleton. The effect is accounted 
for in the rule base by stepping up the corrosion rate to the next linguistic term. 
Hence, for conditions of temperature, pH and flow velocity if the expected rate 
of corrosion without oxygen ingress is “Low” then with oxygen ingress it will 
be “Medium”. Similarly, for the conditions of temperature, pH and flow velocity 
if the expected rate of corrosion without oxygen ingress is “Medium” then with 
oxygen ingress it will be “High”. 

8. Material of Construction. Most of the metals are susceptible to MIC attacks. 
MIC has been observed in equipment made of different types of carbon steels, 
stainless steels, aluminum, etc. (Andersen 2014). Unfortunate, the current 
knowledge of the role of material on MIC attacks is rather limited, hence, this 
model has been developed taking into account only the information for carbon 
steel system. 

9. Availability of Nutrients. Like any other living organism, microbes require 
nutrients to survive and grow. Due to the diversity in the types of microbes 
what constitutes as nutrient is difficult to list, hence, the parameter is not 
considered in the model and it is assumed that sufficient nutrients are 
available for them to grow.  

Table 1 summarizes list of various parameters that have been considered in the 
development of the model. 
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FIGURE 1. Membership functions of inputs and output for the calculation of the 
corrosion rates. 
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TABLE 1. List of parameters considered for the development of the MIC 
corrosion rate model. 

 Parameter 
(Linguistic 
Variable)  

Linguistic Terms  
(Fuzzy Variable) 

Shape of 
Membership 

Functions 

Usage 

1 MIC 
Mitigation 

Effectiveness 

Effective Ineffective Singleton Possib. of 
initiation 
& stable 

pit growth 

2 Water 
Breakthrough 

Yes No Singleton Possib. of 
initiation 
& stable 

pit growth 

3 Settlement 
Potential 

Low High Singleton Possib. of 
initiation 
& stable 

pit growth 

4 Temperature Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion 

rate 

5 pH Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion 

rate 

6 Flow Velocity Low Medium High Triangular / 
Trapezoidal 

Calc. 
corrosion 

rate 

7 Oxygen 
Ingress 

Yes No Singleton Calc. 
corrosion 

rate 

8 Material of 
Construction 

Not accounted 

9 Availability of 
Nutrients 

Not accounted 
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3 Estimation of Possibility of MIC Initiation and Stable Pit 
Growth 
Initiation of corrosion pit may take place soon after the first exposure to corroding 
environment; but not all the initiated pits will grow or continue to grow. Some of 
the initiated pits will not grow at all or others will cease to grow after some time. 
The pits that either do not grow or cease to grow after some time are called 
“metastable” pits. These metastable pits may meet pit “death” or may re-activate 
to become stable pits at later stage. It is difficult to identify the pits that would be 
the stable pits and continue to grow (Melchers, 2005). 
While early identification of stable pit may be desirable, it may not be possible to 
do so. In the proposed model for developing an inspection program, first step is to 
estimate the possibility of MIC initiation and stable pit growth. Since, it is difficult 
to develop a reliable quantitative model for the task, hence, a qualitative flow chart 
based model has been proposed (Figure 2).  
If the regular monitoring-inspection-testing (MIT) activities do not identify 
presence of MIC and the operator is confident regarding the effectiveness of MIC 
mitigating actions that have been taken then the possibility of MIC initiation and 
stable pit growth is assumed to be “Low”. On the other hand, if the inspection 
monitoring-inspection-testing (MIT) activities identify the ineffectiveness of MIC 
mitigating actions then the possibility is considered as “High”. For doubtful or 
unknown cases, the possibility is decided according to the flowchart based on the 
factors like water breakthrough and settlement potential. More factors may be 
included in the decision-making flowchart based on the specific installation design 
and operating conditions. 
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FIGURE 2. Flow chart showing the decision making process for estimation of 
possibility of stable MIC pit growth. 
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4 Estimation of Rate of Corrosion 

4.1 Development of Rule Base  

Linguistic rule base contains the empirical knowledge used by a model. It 
comprises of a set of linguistic IF-THEN rules. In this work, the rule base is a MISO 
(Multiple Input Single Output) system consisting of a number of rules linking 
many inputs with a single output (IEC-1131, 1997; Ross, 2004).  
A linguistic rule comprises of linguistic statements connected by AND  and a 
conclusion. A linguistic statement consists of a simple basic structure “Linguistic 
variable – Symbol of Comparison – Linguistic term”. An example of a linguistic 
statement is etemperaturlowisetemperatur _ . A rule is thus of the form (IEC-1131, 
1997; Ross, 2004): 

Rule Ri : IF (linguistic statement or antecedent proposition Pi1) AND 
(linguistic statement or antecedent proposition Pi2) THEN (conclusion or 
consequent proposition Ci); 
For example: 
RULE 1 : IF temperature is medium_temperature 

AND pH IS medium_pH 
AND flow_velocity is high_flow_velocity 
AND oxygen_ingress is no_oxygen_ingress 
THEN corrosion is medium_corrosion; 

RULE 2 : IF temperature is medium_temperature 
AND pH IS medium_pH 
AND flow_velocity is high_flow_velocity 
AND oxygen_ingress is yes_oxygen_ingress 
THEN corrosion is high_corrosion; 

The truth value of a linguistic statement (a real number between 0 and 1) depends 
upon the degree of match between the linguistic variable � �etemperatur  and the 
linguistic term � �etemperaturmedium_  (IEC-1131, 1997; Ross, 2004).  

Having decided the structure of the rules, the next step is to generate the rules. 
The number of rules depends upon the number of linguistic variables and the 
number of linguistic terms in each variable.  
In order to develop the rules for a fuzzy model, information can be collected in two 
ways: (a) expert opinion of the responsible persons; and (b) measured data. In the 
first case, the expert knowledge is expressed as a set of linguistic IF-THEN rules. 
These rules are then fine-tuned using the available input-output data. In the 
second case, the rules are formulated by clustering the input-output data by 
dividing the data into the required number of fuzzy partitions and then fine-tuning 
using the expert knowledge.  
Based on the information collected from literature, discussed in Section 2, and 
opinion of experts a set of rules were developed to correlate the rate of corrosion 
with the variables – temperature, pH, and flow velocity. 
  



14 
 

4.2 Design of an Inference Engine 

The inference engine relates the consequences of the linguistic rule base with 
membership function values to deduce the output for the corresponding input 
values. Depending upon the type of operator used in the individual step, different 
inference engines can be obtained. This model works on the commonly used 
Mamdani inferencing scheme and uses the MaxMin Inference engine, which uses 
maximum (MAX) for accumulation and minimum (MIN) for activation. The 
inference engine consists of three sub-functions (IEC-1131, 1997; Ross, 2004).  
Aggregation 

In this step, if a rule consists of only one condition (antecedent) then the condition 
is identical to the rule, however, if the rule consists of a combination of several 
conditions (antecedents), then all the conditions are aggregated using AND fuzzy 
logic operator to determine the final degree of accomplishment. 
Activation 

In this work the first-infer-then-aggregate (FITA) scheme has been adopted, in 
which the inferences are first made from individual rules, and then these 
inferences are aggregated together. The degree of membership value of each rule 
is determined on the basis of the degree of accomplishment of the rule, and then 
the minimum (MIN) of each element of the Cartesian product of the input and 
output sets is taken.  
Accumulation 

The results of all the rules are accumulated (combined) to give the overall result 
using the maximum (MAX) algorithm.  

4.3 Selection of Appropriate Defuzzification Process 

In the defuzzification process a representation of the information contained in the 
output fuzzy set is obtained in the form of a crisp value. While there are a number 
of techniques for defuzzification, in this model the Centre of Gravity centroid 
method has been used for calculating the crisp output value from the accumulated 
membership functions.  

4.4 Results of Calculations for Predicting the Rate of MIC Corrosion 

Figure 3 shows an example of results of calculation carried out to estimate the 
rate of corrosion. The input parameters for the calculation were: temperature = 
63oC, pH = 6, flow velocity = 1m/s, oxygen ingress = “No”. The three curves are the 
results obtained after accumulation of membership rules that have been satisfied 
by the input parameters. 
Figures 4-6 show the effects of temperature, pH and flow velocity on the 
estimated MIC corrosion rate for “No” oxygen ingress condition. The MIC 
corrosion rates were estimated by taking the Centre of Gravity of the accumulated 
membership functions for different input parameters. The results shown in the 
figures reflect the intention of the model regarding the effect of the operating 
conditions on the estimated MIC corrosion rate.  
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As desired, Figure 4 shows that the optimum temperatures for MIC corrosion due 
to SRA, SRB and methanogens depends upon the operating temperature. For SRA 
the optimum temperature is in the range 70-85oC, for SRB it is 25-40oC and for 
methanogens it is 30-70oC. 
Figure 5 shows that, as modelled, the MIC corrosion rate is high at low flow 
velocities; and beyond 0.5m/s the corrosion rate decreases with increase in the 
flow velocity. 
Reflecting the intentions of the model, Figure 6 shows that the optimum range of 
pH for MIC corrosion to take place is 4.5-6.5; beyond this range on the either side 
the rate of corrosion decreases. 
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FIGURE 3. Example of results of calculation carried out to predict the rate of 
corrosion due to SRA, SRB and methanogens for “No” oxygen ingress condition. 
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FIGURE 4. Effect of operating temperature and pH on the calculated MIC 
corrosion rate due to SRA, SRB and methanogens at flow velocity = 0.4m/s and 
oxygen ingress = “No”. 
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FIGURE 5. Effect of operating temperature and flow velocity on the calculated 
MIC corrosion rate due to SRB at pH = 6 and oxygen ingress = “No”. 
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FIGURE 6. Effect of pH and flow velocity on the calculated MIC corrosion rate 
due to SRB at temperature = 40oC and oxygen ingress = “No”. 
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5 Estimation of Possibility and Necessity of Failure 

5.1 Fuzzy Arithmetic 

In the possibilistic approach the fuzzy membership function can be interpreted as 
the possibility distribution function. The cut-D  of a fuzzy set X , donated by DX , 
is a crisp set that consists of all elements of X  having membership value greater 
than or equal to D  (Ayyub and Klir, 2006; Ross, 2004). 

The cut-D  for a fuzzy set can be represented by (Ayyub and Klir, 2006): 

> @ ^ `
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intervaltheofvaluenumberrealLowestx

Where
xxxXxxxX

 

(1) 

The value of D  can be in the range > @1,0 . The set of all cuts-D  of a fuzzy set always 
forms a nested family of sets and can be formed by incrementally changing the 
value of D . This cut-D  representation of fuzzy sets allows extension of the 
various properties of crisp sets into fuzzy sets. The properties of the crisp sets that 
can be extended to the fuzzy sets are called cutworthy properties (Ayyub and Klir, 
2006). 
In other words, according to the possibilistic interpretation, cut-D  of the 
membership function can be considered to be the fuzzy interval > @xx, , containing 
the values whose likelihood is D . Thus, as the likelihood increases, the interval 
between which the values lie decreases, but the certainty that the values will lie 
within this interval also decreases. Thus, according to Figure 3 the expected MIC 
corrosion rate due to SRB certainly lies in the range 0-0.2 mm/year. When the 
value of D  is 0.92, the expected MIC corrosion rate due to SRB lies in the range 
0.09-0.11 mm/year, which is the most likely range but is also the least certain 
range.  
The fuzzy operation between the cut-D  of two fuzzy sets A  and B , donated by 

> @DD aaA ,  and > @DD bbB , , follows the concept of the interval analysis. The basics 
of this can be given as [Ayyub and Klir, 2006; Ayyub and Chao, 1998]: 
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To apply these concepts of interval analysis, first a value of D  is selected. For this 
value of D  the cut-D  of each fuzzy number is determined. Considering all the 
values located in the cuts-D  for every fuzzy number, the minimum and maximum 
values of the output function are calculated. This step is repeated for all cuts-D  
for > @1,0�D . The results of all cuts-D  are combined to build the fuzzy 
membership function of the output function (Ayyub and Klir, 2006). 
It is relatively easy to apply these rules in the current example. Having found the 
MIC corrosion rate according to the methodology describes in the previous section 
(Section 4), estimated depth of corrosion can be found by multiplying the 
corrosion rate with time. Instead of taking the Center of Gravity (CoG), it is the 
complete interval that is considered for the calculation according to the Equation 
4. The results of the calculations are shown in Figure 7. 

5.2 Calculation of Reliability 

In the structural reliability analysis, first of all the limit state function ( z ) is 
calculated using (Melchers, 2001): 

mmdepth,corrosionMeasuredd
mmdepth,corrosionallowedMaximumd

Where
ddz
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As the corrosion takes place, the corrosion depth increases; and finally, the failure 
event � �iF  occurs when the predicted corrosion depth exceeds the maximum 
allowed corrosion depth � �SP dd t . Thus, to calculate the limit state function, two 
values are needed: (a) the maximum allowed extent of corrosion � �Sd ; and (b) the 
predicted extent of corrosion � �Pd . Having decided upon the correlations for Sd  
and Pd , an appropriate approach for calculating the limit state function is selected.  

In this study, the possibility distribution functions of the predicted extent of 
corrosion � �Pd  after different time periods can be obtained according to the MIC 
rate model described in the Section 4 and an example of which is shown in Figure 
3. The maximum allowed extent of depth � �Sd  can be obtained from the piping or 
equipment specification sheet, under the section on maximum allowed corrosion 
depth, or calculated using the models like those recommended in ASME B31G and 
DNV RP-F101. In this paper, a simple case wherein the maximum allowed 
corrosion depth � �sd  is already provided, example 1.5mm, is discussed.  

5.3 Calculation of the Possibility and Necessity of Failure 

In the possibilistic framework, the fuzzy membership function 𝛼(𝑥) of a variable 
𝑋 can be interpreted as the possibility distribution function (Figure 2).  
The possibility theory use two different measures – possibility measure and 
necessity measure – for calculating the limit state function (Equation 1). The 
possibility and necessity measures describing the truth of the proposition 
� �PS dd d  are given by (Guyonnet et al., 1999): 
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The membership function of allowed corrosion depth � �Sd  can be expressed as: 
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The concept is illustrated in Figure 7. As time progresses the depth of corrosion, 
characterized by the spread and Center of Gravity (CoG) of distribution, increases 
with corresponding increase in the possibility and necessity of failure. 

After 1 year : Possibility = 0; Necessity = 0. 
After 5 years : Possibility = 0; Necessity = 0. 
After 10 years : Possibility = 0.5; Necessity = 0. 
After 15 years : Possibility = 0.92; Necessity = 0.08. 
After 20 years : Possibility = 0.92; Necessity = 0.25. 
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Time 5years  : Possibility = 0; Necessity = 0. 
Time 10years : Possibility = E; Necessity = 0. 
Time 20years : Possibility = 0.92; Necessity = (1-G�� 

FIGURE 7. The illustration of possibility distribution of the predicted corrosion 
depth after different time periods and of possibility and necessity measures. 
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6 Estimation of Time for Inspection 
Having estimated the possibility of MIC initiation (Section 4) and the possibility-
necessity of failure due to MIC (Section 5), the two need to be combined to obtain 
time for inspection. Since the two parameters are difficult to combine using any 
mathematical operator, hence, a system based on matrices has been proposed. 
Figure 8 illustrates examples of proposed decision matrices. The values shown in 
each box can be changed depending upon the operator company’s philosophy 
taking into account the criticality of the equipment. Since, the possibility measure 
is less conservative than the necessity measure, hence, the matrix based on 
possibility measure gives more time for inspection.  
After modifying the values for time for inspection, the two matrices can also be 
used separately for different types of systems. For example, possibility measure 
may be a useful tool for implementing the philosophy of zero-tolerance of 
accidents, where any possibility of failure has to be eliminated. This would be 
more suitable for hydrocarbon systems. On the other hand, the necessity measure 
may be used when the failure of the equipment does not have any significant 
consequence, for example in case of open drain system. 
 

  

FIGURE 8. Examples of decision matrices for combining estimation of 
possibility of MIC initiation and stable pit growth (Section 4) with estimation 
of possibility and necessity of failure due to MIC (Section 5) for estimating time 
for inspection. 
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7 Conclusions  
Preparing an inspection schedule is an important step of an effective RBI program. 
Unfortunately, the unpredictable nature of MIC corrosion makes precise 
calculation for time to inspect rather difficult, hence, traditionally, the inspection 
program for MIC has been mostly developed using expert judgement. This paper 
presents a methodology for estimating the time for inspection based on the 
concepts of Fuzzy Logic and possibilistic approach.  
The proposed methodology has four steps. In the first step the possibility of MIC 
initiation and stable pit growth is estimated using a simple flow chart taking into 
account parameters like water breakthrough and settlement potential. In the 
second step, the rate of corrosion, in the event of MIC initiation and stable pit 
growth, is estimated based on the concepts of fuzzy logic. In the third step, the 
fuzzy membership function of corrosion rate is used to estimate the possibility 
and necessity of failure as a function of time. Finally, in the fourth step possibility 
of MIC initiation and stable pit growth and possibility/necessity of failure are 
combined using subjectively developed decision matrix to estimate the time for 
inspection.  
It is expected that the methodology would help engineers to develop more 
efficient inspection programs for installations suspected of having MIC. 
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