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Abstract 
 

Identifying the food resources for a species is one of the basic steps towards understanding 

population dynamics. The arctic fox is the only terrestrial carnivore on Iceland, and the 

population had been increasing until recently. Therefore, it is of great importance to know what 

factors regulate the population growth and which resources support it to understand why the 

population fluctuates. In this study, stable isotope analysis of arctic fox collagen from Iceland 

was performed, which revealed what arctic foxes were consuming in their first year of life. The 

samples used were from 1979 to 2011, period of steady increase of the population. The isotopic 

signatures were separated between three periods of time (1979-1989, 1990-1999, 2000-2011), 

two habitats (coastal and inland) and sexes (female and male). The results showed that the diet of 

young arctic foxes had changed over the study period, as well as a difference in use of resources 

within and between foxes utilizing different habitats. The results suggested that the main prey 

items for foxes living in coastal habitats were marine resources while rock ptarmigan was a main 

resource for inland foxes, even though foxes in both habitats displayed a varied diet. It could be 

noted that coastal foxes displayed more isotopic changes between periods than inland foxes, and 

that males living at the coast had more variation on isotopic signatures in comparison with 

females. From this, it could be suggested that coastal habitats have more availability of different 

resources and that probably males disperse more than females. These results show how a 

generalist predator shifts use of resources over the time.    
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1. Introduction 
 

High latitude environments are dynamic entities where populations of many species vary 

over time (Pálsson et al. 2015), due to temporal variability in their resources, and at present 

changes associated with climate warming (Post et al. 2009). One of the most important 

environmental factor influencing reproduction in mammals and hence fluctuation in population 

is food availability (Bronson 1989; Elmhagen et al. 2000).  The relationship between food 

availability and population growth is crucial for predator population dynamics (Angerbjörn et al. 

2004b). To understand what causes animal populations to fluctuate is of great importance to 

applied ecology, such as conservation, management and resource use (Unnsteinsdottir et al. 

2016), since changes in resources could destabilize predator-prey dynamics (and the food web) 

and impact populations even to the extreme point of extinction (Huxel and McCann 1998; Roth 

2003).  

 

The arctic fox, Vulpes lagopus,  is a medium sized canid with a circumpolar distribution in 

the northern hemisphere (Dalerum et al. 2012). It is one of the smallest member of the family 

Canidae and has developed many morphological adaptations to cope with the harsh 

environmental conditions of the Arctic tundra, an area in which it is endemic (Blix 2005).  Arctic 

foxes have shown two main life-history strategies, in most of its range they operate as specialist 

predators towards lemmings (Lemmus and Dicrostonyx spp.) and voles (Myodes and Microtus 

spp.), and as a generalist predator in areas where these small rodents are absent (Eide et al. 2012; 

Angerbjörn et al. 2004b). Lemming populations fluctuate dramatically between years, resulting 

in large inter-annual changes in food availability (Stenseth and Ims 1993; Tannerfeldt and 

Angerbjörn 1998; Angerbjörn et al. 1999; Strand et al. 1999). Such large inter-annual fluctuation 

in lemming populations also causes variation in the recruitment of fox cubs each year 

(Angerbjörn et al. 2004b). However, arctic foxes also live in areas without lemmings or voles 

such as High Arctic Svalbard and Iceland. There, they act as opportunistic generalist predators 

and scavengers (Eide et al. 2012; Eide et al. 2005). In these areas, arctic foxes have access to 

both inland and coastal habitats and resources, resulting in a stable annual food availability 
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(Angerbjörn et al. 2004a; Hersteinsson and Macdonald 1996). Therefore, leading to small litter 

sizes and regular breeding (Braestrup 1941; Hersteinsson 1984; Dalerum et al. 2012). 

 

The sizes of the artic fox population is presently regarded as large and stable (Angerbjörn 

and Tannerfeldt 2014), with the exception of Mednyi Island (Russia) and Fennoscandia (Fuglei 

and Ims 2008). Nevertheless, the arctic fox is a climate change flagship species, and is retracting 

and/or decreasing in the southern part of its range in relation with regional warming (Mclaughlin 

2009). Climate change is likely to affect arctic fox populations in at least the following ways: 

Habitat loss, rapidly decreasing sea ice, human expansion, increased competition with southern 

species and changes in prey abundance (Mclaughlin 2009). Due to all these different threats it is 

believed that arctic islands may be the safest refuge for arctic fauna in the future (Fuglei and Ims 

2008), because of less connectivity to invasive southern species (fauna and flora).     

 

In Iceland, the arctic fox maintains large and highly viable population along the constantly 

ice-free coasts (Fuglei and Ims 2008), even though numbers have been decreasing  during the 

last past few years (Unnsteinsdóttir 2014). Here the arctic fox is regarded as a vermin, based on 

supposed killing of sheep (Ovis aries) and damage to eider duck (Somateria mollissima) 

colonies. Fox hunting has been encouraged and legislated for since the thirteenth century, and is 

still coordinated and subsidized by the Wildlife Management Institute (Hersteinsson et al. 1989; 

Kühn 2015). The hunting data suggest a sharp fall in the arctic fox population all over Iceland 

from the 1950s into the 1970s attributed to a decrease in rock ptarmigan (Lagopus muta) 

numbers and to excessive hunting (there was an extermination campaign set in 1950’s) 

(Angerbjörn et al. 2004a; Hersteinsson 1987; Hersteinsson et al. 1989; Pálsson et al. 2016). Since 

the 1970’s, however, there was a steady increase in the population for thirty years with a decline 

from 2008 (Fig. 1). Therefore, it is unlikely that fox hunting is the primary cause of the variation 

in population size over the last decades (Unnsteinsdóttir et al. 2016), since the fox hunting law 

was changed and regulated in the 1990’s (Angerbjörn et al. 2004a). Furthermore, unlike many 

other areas, where arctic foxes occur, there are no cyclic rodents on Iceland (Hersteinsson 1992), 

which could cause short term changes in fox abundance. Changes in arctic fox population size in 

Iceland are thought to be due to the combined impact of changes in carrying capacity 
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(determined by food resources), climate and hunting; the latter being the main cause of fox 

mortality (Pálsson et al. 2015; Unnsteinsdóttir et al. 2016). 

 

  

Fig 1. Estimated minimum size of the Icelandic arctic fox population at autumn each year. Vertical 

lines show 95% confidence interval (Unnsteinsdottir 2014).  

 

The arctic fox is the only indigenous terrestrial carnivore mammal on Iceland (Mellows et al. 

2012), and it is important to know why the population increased over such a long period and 

what factors were sustaining the growth. Moreover, for management of populations it is 

important to understand which are the main factors regulating population growth. Following the 

assumption of Pálsson et al. (2015) that ptarmigan is an important species for foxes in inland 

areas, persistent population size fluctuations in this species could lead to repercussions in the 

arctic fox population and its resilience. If on the other hand, seabirds are the main prey for arctic 

foxes living on the coast (Unnsteinsdottir et al. 2016) and sustaining the increment of abundance, 

this increase can lead to feedback effects on the seabird abundance. Following decreases in 

seabird population size could reduce the primary productivity that these contribute in the 

ecosystem by fertilization of the soil, and later affecting the landscape. Based on prey remains at 
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dens, Pálsson et al. (2016) conclude that the increase of the fox population was, to a large extent, 

due to an increasing geese and wader populations. Therefore, in case that the main prey is 

migrating birds (Unnsteinsdottir et al. 2016 describe them as important for inland foxes), such as 

waders and geese, whose populations have been increasing due to climate change and subsidies 

by agricultural fields, the arctic fox may be important to maintain a sustainable stability by top-

down effects. Or if the main factors are due to new resources benefiting from climate warming 

(Pálsson et al. 2015, Unnsteinsdottir et al. 2016), it could be advantageous to know what these 

resources are and how they could affect the dynamics of the food web.  

 

In order to understand the importance of the different resources to arctic fox population is the 

diet and how it changes in time and space. There are many ways to study the diet of arctic foxes, 

such as direct observations, stomach dissection, feces composition, description of food remains 

(Angerbjörn et al. 1994), fatty acid analysis and stable isotope analysis (Ben-David and Flaherty 

2012; Ehrich et al. 2015; Kelly 2000).  The latter has become more important for ecological 

studies (Ben-David and Flaherty 2012) because it allows to trace resources within and between 

animals, plants and microbes, at scales ranging from the individual to the community level 

(Newsome et al. 2012). Whereas direct methods such as stomach contents or feces dissection 

provide snapshot information about diet on a specific day, the stable isotope ratios of predator 

tissues, reflect the resources assimilated over a certain period (Inger and Bearhop 2008; Ben-

David and Flaherty 2012; Layman et al. 2012). 

 

Stable isotope analysis is useful to assess the foraging ecology and habitat preferences of 

living and extinct species because stable isotope ratios in animal tissues vary with diet, habitat, 

and environmental conditions (West et al. 2006; Crowley et al. 2010). The isotopic composition 

of carbon (13C relative to 12C) and nitrogen (15N relative to 14N) is typically determined in 

samples from consumers and resources to make inferences about the diet (Ben-David and 

Flaherty 2012; Phillips 2012).  The diet of individuals or populations can be inferred based on 

the principle that ‘you are what you eat’, meaning that the isotopic ratios in the consumer’s 

tissues reflect the mixture of the isotopic ratios present in the different food items consumed 

(DeNiro and Epstein 1978, 1981) with a slight enrichment (Kelly 2000). Carbon and nitrogen 
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isotopes are well suited to distinguish between terrestrial and marine protein intake (Chisholm et 

al. 1983; Angerbjörn et al. 1994; Kelly 2000). Purely marine-based consumers are enriched in 

13C compared to strictly terrestrial consumers, while the organisms with mixed diets have 

intermediate signatures (Chisholm eta al. 1982; Schoeninger and DeNiro 1984; Roth 2002). The 

same tendency is displayed by nitrogen isotopes, showing higher N15 values for marine resources 

(Kelly 2000).      

 

In this study, stable isotope data from bone collagen were used to determine whether and 

how the diet of the arctic fox in Iceland changed over a period of 30 years that included the 

population’s strong increase since 1980 (Fig. 1). Dietary changes could give an understanding of 

which main resources were supporting the population growth. It was also investigated if there 

were any differences between foxes living in coastal areas and inland areas as been shown in 

many studies (e.g. Angerbjörn et al. 1994; Dalerum et al. 2012; Hersteinsson and MacDonald 

1996; Pálsson et al. 2016) and if signatures differed between females and males. Finally, the 

main food resources in this study were compared to the ones Pálsson et al. (2015) instated as 

important resources during the population increase based on prey item remains on dens.  
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2. Materials and Methods 
 

Study area 

 

Iceland is an island in the North Atlantic Ocean, close to the Arctic circle (63o20-66o30N; 

13o30’-24o30’W), with a total area of 103,000km2. The climate is highly variable due to its 

position in the middle of the North Atlantic, at a point where contrasting cold and mild ocean and 

air currents meet.  The island is influenced climatically by a branch of the Gulf Stream, with 

average July temperatures of 10.6oC and average January temperatures just below freezing 

(Halldorsson 2003; Ogilvie 2012).    

 

Most of the interior of the country is not inhabited and consists of sandy deserts, mountains 

and glaciers (Ogilvie 2012). Western Iceland has a higher proportion of productive seashores 

than northern, eastern and southern Iceland combined (Hersteinsson et al. 2009). Thus, for arctic 

foxes, Iceland can be divided into two main habitats, coastal (western Iceland) and inland (the 

rest of the country, termed eastern Iceland), according to available resources (Hersteinsson et al. 

2009; Pálsson et al. 2015) (Fig. 2). As the coast is ice-free all year round (Dalerum et al. 2012), 

arctic foxes in coastal habitats have a more stable availability of food resources from season to 

season. In contrast, inland habitats experience substantial fluctuations in food resources 

(Dalerum et al. 2012). The resources available to foxes living in coastal areas can be carcasses of 

marine mammals and birds, crustaceans and other invertebrates, fish, waders, eider duck. Areas 

close to sea bird cliffs, can provide plenty of resources during summer, which is the breeding 

season (Hersteinsson 1984; Hersteinsson and Macdonald 1996; Hersteinsson, Yom-Tov, and 

Geffen 2009). Inland foxes depend mostly on migrating birds (geese, waders and passerines) or 

resident birds such as Ptarmigan (Hersteinsson 1984; Angerbjörn et al. 1994; Hersteinsson and 

Macdonald 1996; Hersteinsson et al. 2009). Foxes, both inland and coastal, feed on sheep 

(Hersteinsson and Macdonald 1996), cattle (Bos taurus), reindeer (Rangifer tarandus) or horse 

(Equus ferus caballus) carcasses (some left behind by the foxhunters, who use them as bait). In 

winter, both types of foxes can depend on ptarmigan (mainly inland), cache items (Hersteinsson 
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et al. 1989) and a small proportion of rodents (Helgason 2008), while foxes close to the coast 

still have marine resources available.  

 

 

  

Fig 2. Map of Iceland displaying the division between West and East Iceland. For the purpose of this 

study West is considered as coastal habitat and east as inland habitat, since more foxes derive their food 

directly and indirectly from marine resources in western Iceland than in eastern Iceland (Pálsson et al. 

2015). 

 

 

Arctic fox sample collection and preparation for stable isotopes analysis 

 

Fox hunting is allowed in Iceland due to the damage that foxes cause on Eider duck farms 

and to the presumed killing of sheep. The collection of bones used in this study was obtained 

from carcasses voluntarily donated by foxhunters from all over Iceland (Fig. 3) and kept by the 

Icelandic Institute of Natural History in Reykjavik. The collection consists of skulls and lower 

jaws of adult arctic foxes (one-year-old or more) from 1979 to present day, and a database 

containing year and location the fox was culled (West-coast, East-inland (Fig. 2)), sex and age. 
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Age was determined by counting annual cementum lines of canine tooth roots (Allen and Melfi 

1985; Unnsteinsdottir et al. 2016) at the Icelandic Institute of Natural History in Reykjavik.      

 

Foxes culled in three different time periods were selected (1980-1989, 1990-1999 and 2000-

2010), covering the time of population increase (Fig. 1). From each time period, 11 adult males 

and 11 adult females were chosen randomly, from coastal and inland areas, resulting in 44 lower 

jaws in total per period (Appendix A).     

 

Fig 3. Bone Collection at The Icelandic Institute of Natural History. 

 

Bone collagen, which is a metabolically inactive tissue, does not resorb or turnover after the 

animal is fully grown, so its stable isotope ratio reflects the diet of the individuals during the 

limited period of growth (Roth 2002), which means around the first year of life for the arctic fox.  
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To do stable isotope analysis 1 to 1.2mg of collagen needs to be extracted from the bones. 

Collagen extraction was done following the standard method based on Brown et al. (1998) and 

modified in Richards and Hedges (1999), by drilling four holes in the jaws using a 3.5mm drill 

bit. The bone powder obtained was kept in glass test tubes previously labelled with the sample 

number (Fig. 4). The powder was decalcified by adding 0.25M hydrochloric acid (HCl) to the 

tubes and properly mixed using a stirring rod. The tubes were left at room temperature for three 

days covered by tin foil. The samples were shaken daily using a cap to cover the tubes. On the 

third day, because the samples were still producing bubbles when stirred, the acid was pipetted 

away and replaced with new 0.25M HCl and mixed properly using the cap. The tubes were 

covered with tin foil and left at room temperature for two more days. After this period, making 

use of a vacuum pump and disposable fiber glass filters, the acid was filtered away and the 

samples were rinsed with distilled water. The solid left behind was placed in Eppendorf tubes 

and left to dry in an oven at 60oC for 24 hours with the lid open.   

 

Fig 4. Labelled tubes for samples of bone powder from Icelandic arctic foxes.  

 

After that, a carbide bead was placed inside each vial and the samples were pulverized using 

a grinding machine (TissueLyser II-QIAGEN) for 2 minutes at a frequency of 20 per second.  

 

Fat was extracted by adding a 2:1 chloroform and methanol solution to the vials inside the 

fume hood. The samples were left in the solution for 15 minutes, shaking them a couple of times. 

Afterwards, the samples were centrifuged for 5 minutes at the speed of 13rpm (revolutions per 
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minute) employing the Centrifuge 5415D (Eppendorf). Finally, the supernatant was discarded 

and the fat extraction procedure was repeated. The samples were left to dry inside the fume hood 

for 24 hours.  

 

The collagen was dissolved by adding 0.01M HCl to the vials and leaving them at 57oC for 

24 hours while shaking them a couple of times. The fluid was pipetted away and placed in new 

Eppendorf tubes, then left to freeze at -80oC for two hours. After that, the tubes were opened and 

covered by parafilm which was perforated four times by a thin needle. The frozen collagen was 

placed in a freeze drier and left for around 18 hours. The collagen obtained (Fig. 5) was weighed 

(1-1.2mg), packed in small tin foil cups, placed in a 96-well sample tray and sent to SINLAB-

Stable Isotopes in Nature Laboratory at the Canadian Rivers Institute for the stable isotopes 

analysis of carbon and nitrogen.   

Fig 5. Collagen isolated from jaws of Icelandic arctic foxes (top left), illustration of samples weighing 

(right) and packing for stable isotope analysis (bottom left). 
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Prey sample preparation for stable isotopes analysis 

 

Muscle from prey samples preserved in ethanol was obtained from The Icelandic Institute of 

Natural History in Reykjavik, Iceland.  Three samples from each of the following were obtained: 

Eider Duck, Wood Mouse (Apodemus sylvaticus), Greylag goose (Anser anser), Golden Plover 

(Pluvialis apricaria), Whimbrel (Numenius phaeopus), Sheep, Horse, Cattle and Kittiwake 

(Rissa tridactyla).  

 

A small amount from the muscle was cut up in tiny pieces and placed in Eppendorf tubes 

previously labelled. These samples were left to dry in the oven at 60oC for 48 hours with the lid 

open. Afterwards, for obtaining a homogenized powder, the samples were pulverized in the 

grinding machine for 3 minutes at a frequency of 20 per second, with a carbide bead inside. 1 to 

1.2mg of the powder obtained was weighed, packed in tin foil cups, placed in a sample tray and 

sent to the laboratory for the stable isotopes analysis.   

 

The isotopic measurements were performed at SINLAB-Stable Isotopes in Nature Laboratory 

at the Canadian Rivers Institute. The stable isotope ratios are expressed using δ values (in ‰), 

with the international reference being V-PDB (Vienna Peedee Belemnite) for δ13C values and 

atmospheric nitrogen (AIR) for δ15N values (Jürgensen et al. 2017). 

 

 

Statistical analysis  

 

All statistical analysis was performed using the software R 3.3.2 for Windows (R Core Team 

2016). The isotopic signatures of organisms reflect the ratios of heavy to light isotopes of the 

resources they consume, modified by a discrimination factor, which reflects the physiological 

processes (i.e., enzymatic reactions) they employ in assimilating these resources and discarding 

their products (Ben-David and Flaherty 2012). The δ13C and δ15N values, obtained from the 
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stable isotope analysis, were corrected for discrimination. Signatures are dependent on the 

species, ecology and age, assimilation ability and even the tissue that is sampled (Ben-David and 

Flaherty 2012; Lecomte et al. 2011) which have different fractionation processes (Dalerum and 

Angerbjörn 2005). Because there is no study which determined the specific discrimination for 

arctic fox bone collagen, the arctic fox discrimination for fur (δ13Chair 2.18±0.44 and δ15Nhair 

3.34±0.69) and for muscle (δ13Cmuscle 0.37±0.76 and δ15Nmuscle 1.79±0.41) (Lecomte et al. 2011) 

were employed. These values were adjusted to collagen using a correlation factor determined for 

the wolf (δ13Ccollagen-keratin 0.4 and δ15Ncollagen-keratin 0.3, δ13Ccollagen-muscle 1.5 and δ15Ncollagen-muscle -

0.5) (Crowley et al. 2010) with the formula (the same used for δ15N and for muscle): 

 

δ13Ccollagen = δ13Chair + δ13Ccollagen-keratin correction 

(Bocherens et al. 2014). 

In the following, the discrimination factors based on the muscle and the fur estimates are referred 

as muscle and fur discrimination respectively.  

 

The isotopic signatures of δ13C and δ15N of arctic fox collagen and prey muscle were 

compared graphically. The prey muscle signatures were corrected previously for lipid content 

using the normalization equation of (Ehrich et al. 2011), due that lipid is depleted in 13C relative 

to other tissues and muscle can be a lipid-rich tissue (Kelly 2000). Additional prey signatures 

were given by Rannveig Magnusdottir (unpublished data) and the rock ptarmigan signatures 

values where from Varanger Peninsula, Norway (Ehrich et al. 2015). Finally, the isotopic 

signatures of arctic fox were graphically compared between the two habitats and sexes through 

the years.  

 

The uncorrected isotopic values were analyzed using the function lm in R, to estimate the 

changes over the study period and to examine whether the habitat (coastal or inland) and the sex 

of the foxes had an influence on the stable isotope signature. The response variables used in the 

models were the δ13C and δ15N, while period when each fox was born (1979-1989, 1990-1999, 
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2000-2011), the year of birth, habitat and sex were used as fixed effects. The year of birth of 

every fox was obtained by subtracting the age of each individual fox from the year in which it 

was hunted (information provided with the samples). To see which model fitted the best, AICc 

(Akaike Information Criterion corrected for small sample sizes) was employed. AICc was used 

to determine whether it was better to employ the periods as a factor variable or continuous time 

using the arctic foxes year of birth (compared models can be seen in Table 1 together their 

respective AICc). The fit of the selected model was assessed graphically by looking at the 

distribution of the residuals. Finally, the parameters from the selected models were estimated 

including and excluding some influential values to see if this created a noticeable change. 

 

Bayesian stable isotope mixing models, implemented in the package MixSIAR (Francis et al. 

2011; Moore and Semmens 2008; Stock and Semmens 2013), were used to estimate the 

proportions of the contribution of the different prey to the arctic fox diet. MixSIAR allows 

including fixed and random effects in the estimation of dietary proportion. The model was ran 

separately for coastal females, coastal males, inland females and inland males using first the 

continuous time and second the period as fixed effects to see how the diet changed over time. 

Both muscle and fur discriminations were used separately for comparison. The potential prey 

items were grouped depending on the similarity of their isotopic signature, to facilitate the 

interpretation of results. Five groups were created: Marine (starfish, eider duck, whimbrel, 

kittiwake, black guillemot), Farm (horse, sheep), Waders (red-shank, common snipe, golden 

plover), Greylag goose and Ptarmigan. Even though whimbrel is a wader, it was placed as 

marine source because its signature was closer to the marine resources. It has to be considered 

that there were only three prey sample for whimbrel, which could misrepresent the isotopic 

signature of the whole whimbrel population. Cattle was excluded because the signature was far 

away from the other farm animals, so it was better to reduce errors. The sculpin was not included 

because there was no literature supporting it as an important prey for Icelandic arctic foxes. The 

arctic char was not accounted for because as Hersteinsson and Macdonald (1996) explain, it is 

just an occasional resource. Finally, the wood mouse was excluded because the signature was 

overlapping with the wader signature, which would make it impossible to tell which one was 

been eaten. Furthermore, the rodents are seen as a tiny proportion in the arctic fox diet (Helgason 
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2008), while the waders are believed to be an important prey in the last decades (Pálsson et al. 

2016). 

 

MixSiar was employed according to the recommendations of the manual by Stock and 

Semmens (2013). The Gelman-Rubin diagnostic is displayed as a result in for every run, to see if 

the model converged. The models were ran between “long” (300,00 iterations) and “extreme” 

(3,000,000 iterations) length of chains to finally get accurate estimates for the posterior 

distribution (convergence of the diagnostic).  
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3. Results 
 

Graphical analysis of stable isotopes signatures 

 

The mean values of δ13C and δ15N for female coastal foxes were -19.99 and 7.86‰ 

(SD=2.29, SD=2.50) and for male coastal foxes -19.96 and 7.92‰ (SD=2.63, SD=3.40), 

respectively. The mean value of δ13C and δ15N for female inland foxes were -22.84 and 3.60‰ 

(SD=1.61, SD=2.73) and for male inland foxes -22.31 and 3.90‰ (SD=2.11, SD=3.16), 

correspondingly (Appendix B). There was no difference between the mean values of males and 

females. The inland foxes tended to display lower isotopic signatures both for δ13C and δ15N, 

even though there were some foxes which exhibited a different pattern (Fig. 6).  Moreover, it can 

be noticed that at the end of the study period the female coastal foxes showed slightly higher 

isotopic signatures than the male coastal foxes (more apparent in δ15N). Additionally, the 

isotopic signatures of coastal foxes and inland foxes were different during the study period (Fig. 

6).   

 

The isotope signatures of the foxes were compared graphically with the signatures of the 

possible prey with their respective standard deviation (Fig. 7 using muscle discrimination, for fur 

discrimination see Appendix C).  From the visual comparison it seems that coastal foxes 

consumed a mixture of marine and terrestrial food, while the inland foxes were slightly closer to 

terrestrial prey. It can be seen that the isotopic signatures of the foxes do not fall exactly into the 

polygon delimited by the signatures of the possible prey used in this study. The visual overview 

also indicates that one of the main resources for inland foxes is the rock ptarmigan, and for the 

coastal foxes the eider duck.  
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Fig 6. Graphical view of the isotopic signatures of male and female arctic fox in the different habitats 

during the study period (Year of birth of each fox). Where (a) displays the δ13C signatures (‰) and (b) δ15N 

signatures (‰) of the Icelandic arctic foxes.   
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Fig 7. Graphical view of the isotopic signatures (‰) of the possible prey for Icelandic arctic foxes 

corrected for trophic discrimination using the factor estimated from muscle and their respective standard 

deviation. (a) Coastal and (b) Inland fox signatures. Female (F Fox) and Male (M Fox) arctic foxes are 

displayed by different symbols in each of the graphs. 

 

 



 18 
 

Linear models 

 

 

While comparing the different models, the one with the lowest AICc for both isotopes, 

included an interaction between period*habitat*sex (Table 1), where period referred to the three 

discrete time periods (1979-1989, 1990-1999, 2000-2011) and not to time as continuous variable. 

It has to be noticed that for δ13C, the model to be chosen was an interaction between 

period*habitat, because when ΔAICc is lower than two, the simpler model should be chosen (Hu 

2007). But in order to compare between carbon and nitrogen values, the three-way model 

interaction was chosen. Still, both models show the same changes in diet over the study period 

(Table 2, Appendix D).  The changes of the arctic fox signatures over the study periods can be 

seen in Fig. 8, where can be noticed an isotopic variation between habitats in both δ13C and δ15N.   

 

The coastal females had a significant increase of 2.24‰ (SE=0.82, p=0.01) in δ13C and 

2.62‰ (SE=1.10, p=0.05) in δ15N between the second period and the intercept (first period), and 

3.03‰ (SE=0.94, p=0.01) in δ13C and 4.34‰ (SE=1.27, p=0.001) in δ15N between the third 

period and the first. For the coastal males there was a significant interaction of -4.21‰ 

(SE=1.27, p=0.01) in δ13C and -7.07‰ (SE=1.70, p=0.001) in δ15N on the third period, in 

relation to the third period of coastal females (Table 2). This showed that coastal males in the 

end of the study period shifted towards less marine preys while the coastal females in the 

opposite direction. The coastal males relied more on marine resources in the second period, but 

the difference between coastal female and coastal males in the second period was not significant 

(p=>0.1).  

 

A significant interaction was displayed between the inland and coastal females during the 

second and third period, respectively. In the second period the inland females had a decrease of -

2.98‰ (SE=1.18, p=0.05) in δ13C and -3.97‰ (SE=1.58, p=0.05) in δ15N in relation to the 

second period of coastal females, and -2.87‰ (SE=1.29, p=0.05) in δ13C and -4.72‰ (SE=1.73, 

p=0.01) in δ15N decrease in the third period in relation with the third period of the coastal 
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females. Inland males had less pronounced changes (Table 2), and showed no great significant 

difference with inland females between the periods.  

 

Table 1. Model selection for the δ13C and δ15N responses. Time effects were fitted both as a 

continuous predictor (“Year”), and as a factor (“Period”) with three levels in separate models. Other 

explanatory variables were “habitat” (coastal or inland) and sex. + indicates additive effects and * 

indicates and interaction. For each model the number of parameters (K), AICc and the difference in AICc 

to the best model (ΔAICc) are presented. The selected models (i.e. the one with the lowest AICc) are 

shown in bold. The models which differed by less than 2 in ΔAICc to the best model are shown in italics.  

 

  Model K AICc       ΔAICc  

δ13C         

 

Period * Habitat 7 573.01 0.46 

 

Period * Sex 7 617.61 45.06 

 
Period * Habitat * Sex 13 572.55 0.00 

 

Period * Habitat + Sex 8 574.27 1.72 

 

Year * Habitat 5 577.75 5.20 

 

Year * Sex 5 615.59 43.04 

 

Year * Habitat * Sex 9 577.69 5.14 

 

Year * Habitat + Sex 6 579.40 6.85 

δ15N  

    

 

Period * Habitat 7 654.69 6.15 

 

Period * Sex 7 708.64 60.10 

 
Period * Habitat * Sex 13 648.54 0.00 

 

Period * Habitat + Sex 8 656.66 8.12 

 

Year * Habitat 5 657.26 8.72 

 

Year * Sex 5 706.10 57.56 

 

Year * Habitat * Sex 9 650.97 2.43 

  Year * Habitat + Sex 6 659.35 10.81 
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 Table 2. Results from linear models on the effects of period (1979-1989, 1990-1999, 2000-2011), habitat 

(inland or coastal) and sex (female or male) on (a) carbon isotope (δ13C), (b) nitrogen isotope (δ15N) in 

Icelandic arctic foxes. The intercept is the first period (1979-1989), coastal habitat and female, effect 

sizes are shown as contrasts to the intercept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Value Std. Error t value P 

 
(a) δ13C Fixed effect         

 
Intercept -19.03 0.59 -32.10 <2e-16 *** 

Period 2 2.24 0.82 2.72 0.007 ** 

Period 3 3.03 0.94 3.23 0.002 ** 

Habitat Inland -1.03 0.82 -1.25 0.213 

 
SexM 1.60 0.84 1.90 0.059 . 

Period 2:Habitat Inland -2.98 1.18 -2.53 0.013 * 

Period 3:Habitat Inland -2.87 1.29 -2.22 0.028 * 

Period 2:SexM -0.43 1.25 -0.35 0.731 

 
Period 3:SexM -4.21 1.27 -3.31 0.001 ** 

Habitat Inland:SexM -0.85 1.16 -0.73 0.466 

 
Period 2:Habitat Inland:SexM 0.35 1.73 0.20 0.842 

 
Period 3:Habitat Inland:SexM 3.50 1.78 1.97 0.051 . 

      
(b) δ15N Fixed effect 

     
Intercept 9.42 0.79 11.86 <2e-16 *** 

Period 2 2.62 1.10 2.38 0.019 * 

Period 3 4.34 1.26 3.46 0.001 *** 

Habitat Inland -1.63 1.10 -1.48 0.142 

 
SexM 2.69 1.12 2.39 0.018 * 

Period 2:Habitat Inland -3.97 1.58 -2.52 0.013 * 

Period 3:Habitat Inland -4.72 1.73 -2.72 0.007 ** 

Period 2:SexM -0.99 1.67 -0.59 0.554 

 
Period 3:SexM -7.07 1.70 -4.15 6.24E-05 *** 

Habitat Inland:SexM -2.23 1.56 -1.43 0.155 

 
Period 2:Habitat Inland:SexM 1.27 2.32 0.55 0.585 

 
Period 3:Habitat Inland:SexM 6.17 2.38 2.59 0.011 * 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Fig 8. Predictions of (a) δ13C and (b) δ15N isotopic signature (‰) with 95% confidence intervals from 

the best linear models (Table 3).  
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Mixing models 

 

The main intention for using stable isotope mixing model (MixSIAR), was to get the 

composition of the young arctic fox diet in respect with period (1979-1989, 1990-1999, 2000-

2011) and continuous time as fixed factors. But for the latter, no matter how long the models 

were run, the diagnostic showed that runs did not converge. Therefore, these models were not 

included in the results (Appendix E). The MixSIAR estimates based on the two different 

discrimination factors (muscle and fur), both showed similar overall tendencies in diet 

(Appendix F), but it was decided to use the muscle discrimination as main results since the 

signatures fell closer to the prey groups (Fig. 7). Furthermore, because the proportion of marine 

and rock ptarmigan were more distinct estimates based on the muscle discrimination and there is 

more important contribution from waders (Mean=0.05-0.13) (Appendix F). 

 

The results based on the muscle discrimination obtained from the mixing models showed that 

marine and rock ptarmigan were the two main prey groups contributing the overall variation in 

the diet (Fig. 9). Furthermore, these models supported the results from the linear models (Table 

2, Fig. 8). That is, the coastal females had more marine contribution to their diet in the end of the 

study period (Credible Intervals (CI)=0.79-0.97, Mean=0.89) than in the beginning (CI=0.45-

0.67, Mean=0.56), while coastal males had a slight decrease in marine resources from the first 

period (CI=0.58-0.84, Mean=0.72) to the third (CI=0.45-0.80, Mean=0.63). Moreover, the 

inferred dietary changes for the inland foxes were less pronounced than for the coastal foxes 

(Fig. 9, Appendix F).  

 

Waders displayed a constant contribution to the diet of female and male foxes living inland 

from the first period (CI=0.01-0.32, Mean=0.12; CI=0.01-0.31, Mean=0.11, respectively) to the 

last (CI=0.00-0.62, Mean=0.13; CI=0.003-0.302, Mean=0.09). At the same time, for female 

foxes living in coastal areas, waders did not represent a big proportion of the diet, decreasing 

from the first period (CI=0.00-0.29, Mean=0.09) to the third (CI=0.00-0.11, Mean=0.03). For 

coastal males, wader’s contribution increased from the initial period (CI=0.01-0.25, Mean=0.09) 
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to the last (CI=0.00-0.39, Mean=0.10) (Fig. 9, Appendix F). All the other prey groups (graylag 

goose and farm), displayed mean proportions lower than 0.1 (Fig. 9).  

Fig 9. MixSIAR (Stable isotope mixing model) results showing the scaled posterior probability density 

of the proportion of the prey groups in the diet of the four categories (coastal female, coastal male, inland 

female and inland male) of Artic foxes. The marine, rock ptarmigan and waders are the ones with 

proportions higher that 0.1 (Appendix F).  
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4. Discussion  
 

The present study is based on stable isotope analysis of arctic fox collagen and of the 

potential food resources for arctic foxes, over a period of steady increase of the fox population. 

This gave an opportunity to discern whether the prey used by young foxes changed over time and 

if diet varied between sexes and between foxes using different habitats. The results showed that 

there was a change in isotopic signature over the study period as well as a difference in resources 

within and between foxes utilizing different habitats over the time. Furthermore, the mixing 

model suggested the marine resources are main prey item for coastal foxes and rock ptarmigan 

for inland foxes in Iceland.  

 

The stable isotope signatures of the Icelandic arctic foxes varied over the period of 

population increase. The variation over time was not linear for all the foxes, these years of 

constant increase on the population were employed as three discrete time periods (1979-1989, 

1990-1999, 2000-2011) and not as continuous effect. Changes were stronger in foxes living in 

coastal areas and not as pronounced amongst the ones living inland. In accordance with the 

findings of Dalerum et al. (2012), coastal habitats are generally more heterogeneous than the 

inland, with access to seabird colonies and productive coastlines, resulting in more variation in 

isotopic signatures. Besides, the definition of coastal and inland territories in this study is as 

described by Pálsson et al. (2016), were all of western Iceland is considered coastal and all 

eastern Iceland as inland. Therefore, it could be assumed that both inland and coastal foxes, have 

a possibility to obtain marine and terrestrial resources, and this is in accordance to the results 

which displayed a mixture of terrestrial and marine prey. Still, they indicated a stronger 

contribution of rock ptarmigan to the diet of inland foxes and of marine resources to the diet of 

coastal foxes. This could be explained because western Iceland has more productive seashores 

than eastern Iceland (Unnsteinsdottir et al. 2016). It also confirms the result that coastal foxes 

exhibited stronger shifts in diet between periods than inland ones, due to easier access to both 

types of resources. Another explanation for the mixture of prey resources in different habitats is 

that foxes are quite mobile and they disperse between 10-30km (some individuals can disperse 

further (Pamperin et al. 2008; Tarroux et al. 2010)) from their natal ground after a few months 

(Angerbjörn et al. 2004a; Angerbjörn et al. 2004b), which could create the heterogeneity in the 
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signature values of their resources. Moreover, it has been suggested in red foxes (Vulpes vulpes) 

that younglings have a higher variation in isotopic signatures than adult foxes, due to juvenile 

dispersal (Killengreen et al. 2011). This could mean that arctic foxes shot in one habitat did not 

necessarily were born there, which could explain the mixture of isotopic signatures in arctic 

foxes culled at both habitats (Fig. 6, Fig. 7).  

 

The linear model showed that inland foxes of both sexes had similar signatures during the 

time periods and the mixing model suggested the rock ptarmigan as main prey, followed by 

marine resources and a smaller but steady contribution of waders. As Pálsson et al. (2016) 

describes, the ptarmigan population decreased around the 1950s, and since the 1980's the 

ptarmigan population still fluctuates but with lower amplitude than before.  The low ptarmigan 

population at the start of the study, could explain the contribution of marine resources to the diet 

of foxes living inland, due to their need for an alternative prey. The constant contribution of 

waders to the diet over the periods implied that this type of prey is a reliable part of the diet to 

the foxes living inland. 

 

The differences expressed between male and female coastal foxes in the linear model was 

larger than for the inland ones. Variability in resources is higher in coastal territories, which 

could explain the differences between the foxes in this habitat (Fig. 6). The observed differences 

between the sexes is uncertain, although it could be related to sex-specific life history strategies. 

Food availability, intraspecific competition and dominance relations are the factors for why and 

when adults and pups leave the dens (Frafjord 1992). It could be that males tend to wander faster 

and further away from the territory, due to the tension of having a dominant male already in the 

area. Furthermore, it is known that the common trend among fox species is for juvenile males to 

disperse to avoid inbreeding (Kamler et al. 2004; Kitchen et al. 2005). While juvenile females 

tend to remain philopatric (Angerbjörn et al. 2004b; Kamler et al 2004; Kitchen et al. 2005), 

because it avoids the high costs of dispersal, and it could help to acquire experience in raising the 

young, increase fitness and inherit a portion of natal territory (Kamler et al. 2004). Therefore, the 

stronger changes of males in isotopic signatures could be due to higher dispersal which would 

lead to availability of different resources. However, if the dispersal is the explanatory reason for 

coastal males having higher temporal variability of diet, the same pattern would be expected for 



 26 
 

males living inland. The lack of big changes in the signatures of inland males could be due that 

eastern Iceland is a much larger area (Fig. 2) and with less productive shores (Unnsteinsdottir et 

al. 2016), which could reduce the opportunities to shift so often to different resources.  

 

The strong significant difference displayed in the third period between males and females 

living at the coast, could be related to the carrying capacity of the habitat. In the third period the 

population has increased steadily for over two decades (Fig. 1), which could place pressure on 

the males to disperse further away from their territories in search for females, territories and food 

resources. It can be that male foxes killed in the coast came from inland habitats (less productive 

area (Hersteinsson et al. 2009)), which could explain the less marine isotopic signatures of 

coastal males in the last period.  

 

Pálsson et al. (2016) suggested that the recent decline of the arctic fox population in Iceland 

was mainly due to a reduction of ptarmigan, and that the increase in geese numbers, use of 

marine resources and probably waders caused the slow rise of the fox population over the 

decades after 1980. The results in this study showed no sign of geese as main prey, while waders 

were present in the arctic fox diet in a small proportion. Still, the main contributors to the 

signatures of the arctic fox were the ptarmigan and marine resources. It could be that geese are a 

preferred prey for adult foxes and because this study only showed the isotopic signature of foxes 

when young, it could reflect that in this stage of their life foxes do not use geese as a resource. It 

has to be taken into consideration that geese overwinter outside Iceland, and maybe geese as 

resource is not available when young foxes are developing. Furthermore, eggs of geese were not 

included in this study, leaving the possibility that these could still be a resource for young foxes. 

Approximate values Giroux et al. (2012) and Ehrich et al. (2015) show an isotopic signature of 

goose eggs closer to the signatures of the arctic foxes than the graylag goose. This supports, the 

possibility of goose eggs as a resource for young arctic foxes. Besides, it can be that adult foxes 

choose eggs as food for themselves and not as resource to take back to the den. As Dalerum et al. 

(2012) suggested by their results, adult foxes adopted different strategies for selecting resources 

to consume compared to resources to bring back to feed their offspring.  
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Male arctic foxes have been shown to be significantly heavier and to have longer mandibles 

than females (Hersteinsson et al. 2009), which could explain some of the difference in isotopic 

signatures between sexes. Meaning, that the development of the bone collagen could differ 

between males and females, and therefore creating a slight variation of isotopic signatures.  

 

Helgason (2008) studied the winter diet of Icelandic arctic foxes through analyses of scats 

and stomach contents and showed that foxes consumed a large proportions of big mammals. 

Large mammals were thus, expected to be present in the diet of the arctic foxes (used as bait by 

foxhunters and farm animals dying on the field). However, the isotopic signatures in this study 

did not show any big contribution of this prey group to the diet of arctic foxes, which could be 

related to age preference in diet.  

 

Another factor to be considered, is the changes in the climate over the last decades. 

Temperature rise could be beneficial to arctic foxes living in Iceland, since they lack competitors 

and it means longer breeding and growing periods of their resources (Pálsson et al. 2016). 

Moreover, as Herteinsson and Macdonald (1996) mention, arctic foxes also use crowberries, 

seaweed and insects as food resource, which could be found more often with less harsh climatic 

conditions. If these resources were to be added to the possible prey isotopic signatures, it could 

explain further the shifts in diet over the time, even though the importance of these resources for 

young foxes is not known.  

 

It has to be noticed that the signatures of the foxes do not exactly fit with the prey 

signatures, which could be because the discrimination used was just an approximation from the 

arctic fox discrimination factor and the difference between discrimination in muscle and collagen 

determined for wolves, due to the lack of information about the true discrimination on collagen 

for the arctic fox. This could create a biased overview of the prey resources on the diet of the 

arctic foxes in this study. Still, the main distinction between marine and terrestrial resources is 

not affected. Furthermore, it has to be taken into account that the rock ptarmigan signatures were 

taken from another area (Varanger) and not from Iceland. But previous studies have shown that 

there is not a big difference between the signatures of resources in different areas (Ehrich et al. 

2015).  
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5. Conclusion 
 

 

In Iceland, arctic foxes act as generalist predators, where coastal foxes show more variation 

in diet over time probably due to more availability of resources in the area. The main resources 

for foxes in this study were ptarmigan and marine resources, which could give an idea for further 

studies of the reason the population is decreasing over the last years.  

  

This study gives an indication of the prey items that foxes have utilized in the last decades, 

but is recommended to do further investigations to get a wider idea of the population dynamics. 

For instance, would be suggested to perform diet studies using different methods, as direct 

observations. Moreover, it would be needed behavioral studies to understand why males and 

females have different diets. In addition, the use of telemetry to obtain information about the 

dispersal of the young or migrations of the adults could give a better understanding of the 

dynamics of the arctic fox population in Iceland.  

 

It would also be important to elongate the study to periods were the population of arctic foxes 

was in decline (before 1980’s or after 2009), to be able to infer whether the changes in the diet 

affect the population. Furthermore, would be beneficial to add more prey items, as geese eggs, to 

further comparison with other studies.  
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7. Appendix 
 

Appendix A 
Table A. Samples of arctic fox jaws taken from The Icelandic Institute of Natural History 

collection. 

 
 

 

 

 

 

 

 

 

Sample No. ID Iceland period sex habitat Sample No. ID Iceland period sex habitat Sample No. ID Iceland period sex habitat

1 368 1980-1989 female inland 28 4323 1990-1999 female inland 43 5980 2000-2009 female inland

2 480 1980-1989 female inland 29 4926 1990-1999 female inland 44 6267 2000-2009 female inland

3 610 1980-1989 female inland 30 5111 1990-1999 female inland 45 6731 2000-2009 female inland

4 696 1980-1989 female inland 31 6306 1990-1999 female inland 100 6504 2000-2009 female inland

5 956 1980-1989 female inland 71 2578 1990-1999 female inland 101 6632 2000-2009 female inland

6 1103 1980-1989 female inland 72 2938 1990-1999 female inland 102 7057 2000-2009 female inland

7 2444 1980-1989 female inland 73 3145 1990-1999 female inland 103 8261 2000-2009 female inland

8 2509 1980-1989 female inland 74 3867 1990-1999 female inland 104 8518 2000-2009 female inland

54 1120 1980-1989 female inland 75 4282 1990-1999 female inland 105 8641 2000-2009 female inland

55 1122 1980-1989 female inland 76 5678 1990-1999 female inland 106 8783 2000-2009 female inland

56 1494 1980-1989 female inland 77 5793 1990-1999 female inland 107 9150 2000-2009 female inland

9 478 1980-1989 male inland 32 4842 1990-1999 male inland 46 6262 2000-2009 male inland

10 562 1980-1989 male inland 33 5112 1990-1999 male inland 47 6482 2000-2009 male inland

11 698 1980-1989 male inland 78 3118 1990-1999 male inland 108 6502 2000-2009 male inland

12 875 1980-1989 male inland 79 3614 1990-1999 male inland 109 6720 2000-2009 male inland

13 1051 1980-1989 male inland 80 3831 1990-1999 male inland 110 6735 2000-2009 male inland

14 1213 1980-1989 male inland 81 4279 1990-1999 male inland 111 6798 2000-2009 male inland

15 1410 1980-1989 male inland 82 4723 1990-1999 male inland 112 7026 2000-2009 male inland

16 2491 1980-1989 male inland 83 4835 1990-1999 male inland 113 8519 2000-2009 male inland

57 1493 1980-1989 male inland 84 4960 1990-1999 male inland 114 8620 2000-2009 male inland

58 1502 1980-1989 male inland 85 4961 1990-1999 male inland 115 8757 2000-2009 male inland

59 1722 1980-1989 male inland 86 5097 1990-1999 male inland 116 8850 2000-2009 male inland

17 443 1980-1989 female coastal 34 4356 1990-1999 female coastal 48 6113 2000-2009 female coastal

18 878 1980-1989 female coastal 35 4652 1990-1999 female coastal 49 6251 2000-2009 female coastal

19 1007 1980-1989 female coastal 36 5010 1990-1999 female coastal 50 6614 2000-2009 female coastal

20 1265 1980-1989 female coastal 37 5290 1990-1999 female coastal 51 6751 2000-2009 female coastal

21 2468 1980-1989 female coastal 38 5626 1990-1999 female coastal 117 6977 2000-2009 female coastal

60 652 1980-1989 female coastal 39 6120 1990-1999 female coastal 118 7100 2000-2009 female coastal

61 1871 1980-1989 female coastal 87 2882 1990-1999 female coastal 119 7102 2000-2009 female coastal

62 1893 1980-1989 female coastal 88 3179 1990-1999 female coastal 120 7322 2000-2009 female coastal

63 2094 1980-1989 female coastal 89 3680 1990-1999 female coastal 121 7843 2000-2009 female coastal

64 2102 1980-1989 female coastal 90 4054 1990-1999 female coastal 122 8461 2000-2009 female coastal

65 2189 1980-1989 female coastal 91 5136 1990-1999 female coastal 123 9643 2000-2009 female coastal

22 435 1980-1989 male coastal 40 4358 1990-1999 male coastal 52 6464 2000-2009 male coastal

23 660 1980-1989 male coastal 41 4518 1990-1999 male coastal 53 6704 2000-2009 male coastal

24 1002 1980-1989 male coastal 42 4831 1990-1999 male coastal 124 6825 2000-2009 male coastal

25 1173 1980-1989 male coastal 92 3019 1990-1999 male coastal 125 6949 2000-2009 male coastal

26 1334 1980-1989 male coastal 93 3334 1990-1999 male coastal 126 6956 2000-2009 male coastal

27 2095 1980-1989 male coastal 94 3664 1990-1999 male coastal 127 6974 2000-2009 male coastal

66 815 1980-1989 male coastal 95 4072 1990-1999 male coastal 128 6982 2000-2009 male coastal

67 1275 1980-1989 male coastal 96 5262 1990-1999 male coastal 129 7038 2000-2009 male coastal

68 1276 1980-1989 male coastal 97 5318 1990-1999 male coastal 130 8305 2000-2009 male coastal

69 1631 1980-1989 male coastal 98 5378 1990-1999 male coastal 131 8552 2000-2009 male coastal

70 2512 1980-1989 male coastal 99 5429 1990-1999 male coastal 132 9139 2000-2009 male coastal
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Appendix B 

 

Table B. Mean values of δ13C and δ15N (‰) for Icelandic arctic fox bones. 

 

 Zone   Sex  Mean C  SD C Mean N SD N 

Coastal Female -19.99 ±2.29 7.86 ±2.50 

Coastal Male -19.96 ±2.63 7.92 ±3.40 

Inland Female -22.84 ±1.61 3.60 ±2.74 

Inland Male -22.31 ±2.11 3.90 ±3.16 
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Appendix C 

Fig C. Graphical view of the isotopic signatures (‰) of the possible prey for Icelandic arctic foxes 

corrected for trophic discrimination using the factor estimated from fur and their respective standard 

deviation. (a) Coastal and (b) Inland fox signatures. Female (F Fox) and Male (M Fox) arctic foxes are 

displayed separately in each of the graphs. 
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Appendix D 

 

 

Table D. Results from linear models on the effects of period (1979-1989, 1990-1999, 2000-2011), habitat 

(inland or coastal) on (a) carbon isotope (δ13C), (b) nitrogen isotope (δ15N) in Icelandic arctic foxes. The 

intercept is the first period (1979-1989), coastal habitat. 

 

      

  Value 

Std. 

Error t value P 

 
δ13C Fixed effect         

 
Intercept -18.23 0.43 -42.14 <2e-16 *** 

Period 2 1.89 0.63 2.98 0.004 ** 

Period 3 0.72 0.65 1.10 0.273 

 
Habitat Inland -1.46 0.60 -2.43 0.017 * 

Period 2:Habitat Inland -2.68 0.89 -3.02 0.003 ** 

Period 3:Habitat Inland -0.92 0.91 -1.00 0.318 . 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43 
 

Appendix F 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


