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Abstract 
Long-term studies of bird communities in Arctic regions are rare in comparison to studies 

performed in temperate regions, particularly studies that takes detectability into consideration. 

Finding a suitable and robust method for long-term monitoring of bird populations in the low 

Arctic which includes a correction of imperfect detection, can contribute to increased 

ecological understanding and easier identification of changes over time. During two field 

seasons (June-July) in 2015 and 2016, the bird population on Erkuta tundra monitoring site, 

Yamal, Russia, was surveyed using the three different methods: distance sampling on line 

transects, repeated point counts and double observer point counts. The comparison between 

the methods was done by estimating abundances and densities of the three most common 

species in the area, i.e. Lapland bunting (Calcarius lapponicus), Red-throated pipit (Anthus 

cervinus) and Wood sandpiper (Tringa glareola). I found that the most plausible density 

estimates of the common target species were provided by the line transect distance sampling. 

Although all assumptions were difficult to completely fulfil in the field, the method could be 

improved by more exact distance measurements in the field, since the degree of 

overestimation is limited to the extent of which the assumptions are violated. In addition, the 

line transect distance sampling method have the least impact of “floaters” (non-breeders), 

which also makes this method more robust. Repeated point counts heavily overestimated the 

densities, and the models fitted poorly for Red-throated pipit. The overestimation was likely 

due to violation of the assumption of closed population, and could be reduced by using a 

model allowing for temporary emigration. Also, too short distance between points, and thus a 

risk of double counting, could have contributed to the overestimation. However, the double 

observer point counts offer an alternative approach for long-term monitoring, where the slight 

overestimation also can be decreased with increased distance between points. In addition, the 

double observer method requires less effort than the other two methods. 

 
 
Keywords: survey method, distance sampling, point count, double observer, line transect, 
detectability, low Arctic, Lapland bunting, Red-throated pipit, Wood sandpiper
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1 Introduction 
Monitoring programs are central to ecology and for assessing the impact of environmental 

change on ecosystems. Biological monitoring has a long tradition worldwide, and is the 

process of field-based empirical collecting of data about a system, e.g. communities or 

populations, at different times to assess the state and draw inferences about changes over 

time. The purpose of this is scientific by learning and developing an understanding of the 

system, and providing information for management purposes that can help to make well-

founded and appropriate management decisions (Yoccoz et al., 2001; Lindenmayer and 

Likens, 2010). Recognition of the importance of long-term ecological research and 

monitoring has developed as a result of an acknowledgement of long-term studies as a main 

approach to understand ecological patterns and processes (Ims et al., 2013b). Effective 

management of bird populations depends heavily upon accurate estimates of trends in bird 

abundance (Taylor and Pollard, 2008). This allows one to identify changes and implement 

appropriate conservation measures if necessary. Developing suitable standardized surveys or 

counts with predefined method design and protocol, will contribute to better monitoring with 

more precise and reliable abundance and density estimates.  

 

Bird communities need to be monitored to identify and understand trends in avian ecology 

and in addition they function as useful indicators of the state of environment in relation to 

environmental factors or direct threats (Bibby, 2000). Birds are important indicators, due to 

their occurrence high in the food chain, their sensitivity to both natural and anthropogenic 

change, and their abundance and mobility which causes them to inhabit most habitats – both 

terrestrial and marine. As they are relatively easy and inexpensive to monitor and identify, 

and have long been the focus of interest of many naturalists, long-term series exist which 

allow for historical perspective and trend analysis. (Gregory and van Strien, 2010).  

 

The Arctic is currently influenced by both climate change, which is more rapid than in other 

parts of the world, and increased human activity such as oil and gas exploitation (Forbes et 

al., 2009; Liebezeit et al., 2009; Meltofte et al., 2013). Northern latitudes are expected to be 

particularly strongly influenced by climate change (Houghton et al., 2001). This includes 

Arctic and boreal species that are predicted to be affected by huge range reductions, providing 

a demand for protection of prone areas (Virkkala et al., 2008). Due to the rapidity of climate 

change and the anthropogenic threats to wildlife, it is especially important to monitor trends 
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in bird communities in the Arctic. A small proportional decline in abundance of common 

species might lead to large absolute losses of individuals and biomass which can disturb 

ecosystem structure and function (Gregory and van Strien, 2010). In particular, long-term 

studies of bird communities in Arctic regions are rare in comparison to studies performed in 

temperate regions. 

 

This study is performed on the Erkuta tundra monitoring site on the southern part of the 

Yamal Peninsula, Russia. What makes the study site particularly interesting for research, is its 

location in the low Arctic, which is one of the first parts of Arctic to experience the 

consequences of climate change (Ims et al., 2013a). With southern species extending their 

ranges northwards, the proximity to the sub-Arctic (or forest tundra) entails possible threats 

like gradual homogenization of biodiversity, change of community composition and invasive 

species. Sokolov (2012) monitored bird communities on Erkuta to analyze bird habitat 

relationships and quantify habitat specialization. By using spot mapping and nest searching 

for abundant species, the implementation of the method is highly observer dependent and 

time consuming, thus difficult to apply for long-term monitoring. 

 

Many different counting methods and approaches exists to produce abundance and density 

estimates, such as distance sampling, line transects, point counts, double-observer counts, 

migration counts, playback surveys, spot mapping, nest monitoring and capture-mark-

recapture. Capture and marking of birds can be difficult to implement over large areas and can 

be invasive to the birds. Observational approaches like point counts and line transects are 

common methods to estimate population size, and is in addition minimally invasive and 

requires less resources to implement (Henry and Anderson, 2016). Different methods can help 

determine the abundance of birds in different ways depending on varying factors such as 

observer, study area, habitat, time, weather and behavior of the birds. To be able to choose the 

most appropriate survey method, several different methods need to be compared in the same 

area. This will make it possible to recognize weaknesses and strengths of the different 

methods, and to determine differences in accuracy and precision of the density estimates. The 

execution of the methods will also make it possible to compare the time and resources spent 

between the methods to increase efficiency and optimize survey methods in the future. A 

traditional single-observer count does not consider the birds that are present, but not detected. 

The assumption that captured or observed animals form the selected community can lead to 

missing out on an important aspect - i.e. the differences amongst individuals in the probability 
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of detection (Buckland et al., 2011). Individuals in a population are heterogeneously 

distributed in space, and behavior, camouflage, weather, habitat characteristics and proximity 

to observer will affect their detectability. If ignored, imperfect detection can introduce 

measurement error which lead to imprecise population estimates. Therefore, survey methods 

which includes a correction of imperfect detection, are recommended (Diefenbach et al., 

2003). Specialized survey methods like repeated point counts, site occupancy sampling, 

distance sampling, removal sampling and double observer sampling have been developed to 

handle with imperfect detection. (Freckleton et al., 2006; Fiske and Chandler, 2011). This 

study will take a closer look at three of the methods which take these undetected birds into 

account, namely; distance sampling (Buckland et al., 2001), repeated point counts (Royle, 

2004a) and double-observer point count (Nichols et al., 2000). 

 

In distance sampling, the key sample data are the distances from registered individuals to a 

transect line or to a point. Also, the effort, that is transect length or visits to points, is recorded 

(Buckland et. al 2001). Collected distances are used to estimate a detection function, which is 

the probability that an animal is detected as a function of distance to the line (Buckland et al., 

2011). The detection function compensates for the decreasing detectability with increasing 

distance from the observer, and make it possible to estimate density that is adjusted with 

respect to nondetection bias (Rosenstock et al., 2002; Royle et al., 2004b). An adequate 

number and random placement of transect lines allows to estimate density within the whole 

study area (Buckland et al., 2011). Repeated point counts, as proposed by Royle (2004a), is a 

method that allows for estimating of population size, corrected for imperfect detection, from 

temporally separated replications. The hierarchical structure of these models has been 

developed to separate modeling of abundance and detection probability in an attempt to 

reduce measurement error. Estimation of site-specific abundance is not always of specific 

interest since there is little ecological information to obtain from small local populations. But 

an estimate of average abundance over multiple locations within a region can form a basis for 

evaluation of change over time (Royle, 2004a; Fiske and Chandler, 2011). The double –

observer method is an approach which uses two observers that permits estimation of detection 

probability and abundance from point counts (Nichols et al., 2000). The method has two 

different approaches; the dependent-observer and the independent-observer. This study uses 

the dependent-observer approach, where there is some communication between the observers, 

because it has been shown to result in higher observer-specific, species-specific and joint 
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detection probabilities, and lower standard errors of detection probability (Forcey et al., 

2006). 

 

The aim of this study is to compare and assess the three survey methods carried out on the 

Erkuta tundra monitoring site; distance sampling on line transects, repeated point counts and 

double observer point counts. Finding a suitable and robust method for long-term monitoring 

of bird populations in the low Arctic can contribute to increased ecological understanding. 

In this thesis, I present an evaluation of the three different survey methods with focus on 

estimates, accuracy and precision. In particular, I will:  

 

1) Compare and assess differences in detectability, abundance and density estimates 

between years for three common species, and evaluate the differences between the 

methods. 

2) See if, and how, covariates as habitat, wind, time, and Julian day effects 

detectability 

3) Discuss which method may be best suited for monitoring the abundance of 

common bird species in low Arctic tundra, taking the required field effort into 

account. 
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2 Methods 

2.1 Study area 
The Yamal Peninsula is located in the north-western part of Siberia, Russia (Figure 1A), 

surrounded by the Kara Sea. It is underlain by continuous permafrost, and stretches over 700 

km with a total land area of 122 000 km2 (Pika and Bogoyavlensky, 1995). Due to rich 

deposits of oil and gas, this area is undergoing a massive industrial development for 

utilization of these resources. The region also has many semi-domestic reindeer herds, owned 

and managed by the indigenous nomads –the Nenets.  

 

The study was carried out in the southwestern part of the Yamal Peninsula in the Erkuta 

tundra monitoring site (N68°13' E69°09') around 30 km from the coast (Figure 1B). This area 

consists of flat tundra combined with sandy hills (rising up to 40 m high). A network of lakes, 

rivers and wetlands divide the tundra landscape, and many low-laying areas are flooded in 

spring. Sandy cliffs are created along the rivers banks and around lakes. There are numerous 

patches of willow thickets, occasionally interspersed with areas of alder (Alnus fruticosa) 

(Ehrich et al., 2012).  Long term mean temperature in the area is −24.1˚C in January and 

11.4˚C in July, and mean annual precipitation is about 335 mm (averages for the period 1950 

– 2000; downloaded from www.worldclim.org, accessed 28-04-2017). But during the last 10 

years, mean temperature has increased somewhat to -20.5˚C in January and 13.6 ˚C in July 

(Data from the ERA-interim reanalysis model; http://apps.ecmwf.int/datasets/, accessed 28-

04-2017). There is a stable snow cover from early October until early June (Sokolov et al., 

2012). 
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Figure 1: A) Map showing the location of the study area in southern Yamal. The colors represent the different 
bioclimatic subzones of the Arctic (A-E) as used by the Circumpolar Arctic Vegetation Map (Walker et al., 
2005). B) Map of the study area with surveys carried out in 2 study units (K and R) separated by approximately 
7 km. Map data: Google Earth. 
 
 
According to the Circumpolar Arctic vegetation map (Walker et al., 2005), four of the five 

bioclimatic subzones are present on the Yamal Peninsula. Erkuta is located in subzone E 

(Figure 1A), which is the largest (36% of the Arctic), warmest and most vegetated subzone. It 

is characterized by an 80-100% plant cover of vascular plants, 2-3 moss layers where each 

layer is 5-10 cm thick, herbaceous/dwarf shrub layer 20-50 cm tall, and sometimes with low-

shrub layer up to 80 cm. The study area is at the border between two vegetation zones: erect 

dwarf-shrub and the more common low-shrub tundra.  

2.2 Fieldwork and sampling design 
The study was conducted during two field seasons in 2015 (15th of June - 19th of July) and 

2016 (3rd of June - 17th of July). All surveys were done in different habitats to get a better 

view of the overall community composition. Sokolov et al. (2012) used five specific habitat 

types for his study, but for this study I chose to use three main habitats which correspond to 

the three distinct species assemblages identified – willow thicket edges, upland tundra, and 

lowland shrub tundra and marshes. These habitats cover all the different structural elements, 

resources availabilities and breeding grounds, and represent the main landscape elements 
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present in the study area. The willow thicket habitat consists of dense willow thickets growing 

along rivers, flooded areas or in slopes (Figure 2A). The upland tundra habitat is characterized 

by flat open tundra on dry higher ground (Figure 2B). The lowland shrub tundra and marshes 

habitat is found on moist lower ground which can be flooded in spring (Figure 2C). The two 

open habitats, upland tundra and lowland shrub tundra and marshes, are by far the most 

common habitats in the area. However, due to the productivity and species richness in the 

rarer willow thickets, this is included to give an overall perspective of the community. 

 

 

For all three survey methods, passerines and waders were the main groups of birds targeted. 

However, other species were also registered. Recording of individuals was done by visual 

and/or aural detection. Date (Julian day), habitat, time, wind speed (using an anemometer in 

2016, only estimating in 2015) was noted for every count (Table 1). I also noted whether the 

bird was territorial, and if possible, the sex. Counts were conducted at different times of the 

day in suitable weather without rain and wind speed not exceeding 6.0 m/s. Time of day was 

in the analyses divided into three categories: morning (01:30-10:00), daytime (10:00-18:00) 

A B 

C 

Figure 2: Photographs of the three different habitat types. A) Willow thicket edges, B) Upland tundra 
and C) Lowland shrub tundra and marshes. 
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and evening (18:00-00:00). The wind was also divided into three categories: weak (0-2 m/s), 

medium (2-4 m/s), and strong (4-6 m/s). A GPS (Garmin Etrex Vista HCx) was used to 

record routes and points. A binocular was used on all counts, and a laser rangefinder (Nikon 

Forestry Pro) was used to give an accurate distance to each bird. No distance limits were used 

in the field to allow more opportunities for data analysis.  

 
Table 1: For each covariate, it is given a description, the data type, the level (site or observation) and for which 
survey method it is included in.  

Covariate Description Data type Covariate level Survey type 

Habitat 

Willow thicket edges, upland 

tundra, lowland shrub tundra 

and marshes 

Categorical Site-level 
Distance sampling 

Repeated point counts 

Wind 
Weak (0-2 m/s), medium (2-4 

m/s), strong (4-6 m/s) 
Categorical Observation-level 

Distance sampling 

Repeated point counts 

Time 

Morning (01:30-10:00), 

daytime (10:00-18:00), evening 

(18:00-00:00) 

Categorical Observation-level 
Distance sampling 

Repeated point counts 

Julian Day Julian day of count Continuous Observation-level 
Distance sampling 

Repeated point counts 

 

 

The study design comprised two areas (R and K) separated by approximately 7 km, called 

units in the following (Figure 1 and Figure 3). In each habitat in both study units, it was 

chosen two transect lines for the line transect distance sampling, resulting in 12 transects in 

total. The length of the transects ranged from 0.886 km to 1.4 km depending on the 

availability of suitable habitat. The location of the transects was a priori determined on a 

map, and a route was made on the GPS the first time. This route was used as a path for later 

repetitions. In open habitat, the lines were made straight, but some lines had to take lakes and 

hills into consideration. For the willow thickets, the lines followed the thicket edge. The 

observer followed the transect line and recorded all birds seen and heard, and measured the 

perpendicular distance from the line to the bird (Buckland et al., 2001).  

 

On each of the transect lines, I randomly chose three points at least 200 m apart from each 

other, and more than 50 m from the border of another habitat, resulting in 36 points in total. A 

GPS point was made on each point the first time, and later used for repetitions. After arrival 
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to the point, the observer waited 2-3 minutes before recording. The observer then recorded all 

birds seen and heard, including the distance to the bird, within 10 minutes on each point.  

 

The same points were used for the double observer method. It was carried out as described by 

Nichols et al. (2000). On each of the point, two observers were present. One was assigned the 

role of ‘primary observer’, and the other was the ‘secondary observer’. After arrival to the 

point, the observers waited 2-3 minutes before recording. The primary observer identified all 

birds seen and heard within 10 minutes, and told these, including direction and distance to the 

bird, to the secondary observer. The secondary observer noted what the primary observer 

registered, but also surveyed and noted own registrations of the area. The two observers 

alternated on being primary and secondary observer throughout the survey. As a result, the 

data will include the numbers of bird of each species detected by the primary observer, and 

numbers of birds missed by the primary observer but detected by the secondary observer for 

each point (Nichols et al., 2000). Double observer counts were carried out one time per year, 

and were in both years conducted together with experienced ornithologists. The placement of 

line transects and points on the two study units is showed in Figure 3. A summary of the 

sampling effort associated with the different survey methods is presented in Table 2. 

 

Figure 3: Detailed map of the two study units K (A) and R (B) with placement of transects (lines) and points 
(dots). Line color represents type of habitat; willow thicket edges (green), upland tundra (brown), and lowland 
shrub tundra and marshes (blue). Map data: Russian topographic maps GGC (downloaded from: loadmap.net, 
accessed 15-04-2017). 
 

 

 

 

A B 
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Survey type Parameter 2015 2016 

Line transect No. of transects  12 12 

 Repetitions 2 5* 

 Cumulative distance covered 25.77 km 60.93 km 

 Transect length (range) 0.886-1.4 km  0.886-1.4 km   

Repeated point counts No. of points 36 36 

 Repetitions 3 5* 

 Cumulative survey time 18 h 27.5 h 

Double observer point counts No. of points 30** 33** 

 Repetitions 1 1 

 Cumulative survey time 5.0 h 5.5 h 
*with a few exceptions, due to flooded lakes 
**missed some points due to flooded lakes 

 

2.3 Statistical analysis 
The data sets from both years and all three methods were inspected to find species with 

sufficient detections across all habitats that provided a good sample size for analyses of 

abundance. Buckland (2001) recommends having at least 60-80 observations to be able to fit 

distance sampling models. Based on this, the target species became Lapland bunting 

(Calcarius lapponicus), Red-throated pipit (Anthus cervinus) and Wood sandpiper (Tringa 

glareola). All three target species were analysed in the same manner to compare detectability, 

abundance, and density estimates between the survey methods. 

2.3.1 Distance sampling 

Distance sampling analysis was used to compute abundance and density estimates according 

to Buckland et al. (2001) using the package Distance (Miller, 2015) in the R software (version 

3.1.2)(R Core Team, 2016). Distance offers a selection of candidate functions to describe the 

probability of detection as a function of distance, and estimates the related parameters using 

maximum likelihood estimation. It also allows for incorporation of covariates into the 

detection function. In distance sampling line transect surveys, there are three key assumptions 

that are important to achieve precise and reliable density estimates. The assumptions are: (1) 

birds on the transect line are detected with certainty, (2) birds are detected at their initial 

location prior to evasive movement, (3) the perpendicular measurements from the line to the 

bird are exact. One or more of these can be relaxed under certain circumstances (Buckland et 

al., 2001).  

Table 2: Presents sampling effort for each survey method per year. 
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Histograms of the distance data were plotted with many intervals to investigate whether they 

violated some of the assumptions. The plots revealed clear heaping in the data (example in 

appendix A), which indicates violation of the third assumption. When identifying birds 

through vocalization, it can be difficult to acquire precise distance information, which often 

leads to grouping into discrete intervals. The perpendicular distance from the line, x, was 

often rounded to the nearest 10m, and is a common data issue when aural detection is used 

(Buckland et al., 2015). The effect of heaping was reduced by grouping the data into intervals, 

as recommended by Buckland (2001). The cutpoints were chosen at distances that avoided 

favored distances, such as 0, 12.5, 22.5, 32.5, 42.5 etc. Truncation distance, w, were set to 

truncate observations with distances over 110 m for Lapland bunting and Red-throated pipit, 

and to 180 m for Wood Sandpiper which was considered easier to detect at longer distances 

due to size and sound recognition. Some truncation of the data gives a more robust analysis, 

and allows for deletion of a few outliers that make fitting of detection function more difficult 

(Buckland et al., 2011; Buckland et al., 2015). Transect length, L, was used to define the area 

covered by the survey, a= 2wL. When the detection probability for an individual within this 

area is Pa, then the estimated probability (!a) for detecting an individual at distance x from the 

line can be modelled by a detection function g(x). In accordance with the first key 

assumption, probability of detection Pa at zero distance should be 1 (i.e. g (0) =1), while the 

detection probability is expected to decrease with increasing distance from the line. n is the 

number of individuals within the surveyed area. The effective strip half-width, µ, is distance 

from the line at which the expected number of animals detected beyond µ (but within w) 

equals the expected number of animals missed within a distance µ of the line. This parameter 

is calculated by integrating g(x). The relative frequencies of observed detection distances can 

be modelled by fitting a probability density function, given as f(x)=g(x)/ µ. This leads to 

density, ", being estimated by 

"	 =
%
2'( = 	

%)(0)
2( 															(-.. 1) 

 

Distance offers the three recommended models of detection functions; half-normal, hazard-

rate and uniform to fit the distance data, and Akaike’s Information Criterion (AIC) was used 

to choose the most suitable model (Buckland et al., 2001). The covariates habitat, wind, time 

and Julian day were then added one at a time, and in combination with each other, to the 

selected detection function to build candidate models to see if they affected the relation 
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between distance and detectability. Models with DAIC £ 2 relative to the best model in the 

candidate set, are considered strongly plausible, and the simplest of the models having DAIC 

£ 2 was chosen (Burnham and Anderson, 2003). This process was done for all the model 

selections in this study, and the ranking of the models with and without covariates is found in 

Appendix B. These models were created with grouped distance data, but to compare the 

differences in the abundance estimates without grouped data, the continuous distance data 

was tried to fit the half-normal detection function. The half-normal key-function is not as 

sensitive to change in the shape of the detection function, only in how quickly probability of 

detection falls with distance from the line (Buckland et al., 2015). This was done to quantify 

the effect grouping of data and inclusion of covariates have on detectability, abundance and 

density estimates. For the comparison to the other survey methods, the estimates derived from 

the models with covariates are used since they are more complex and can identify important 

variables affecting detectability. 

 

The AIC of the models only indicate the relative fit, so a chi-square goodness-of-fit that 

measures the discrepancy between observed and expected data was used to see if the model 

had an adequate fit to the data. When the p-value was larger than 0.05, I did not have 

evidence for a discrepancy between the frequency distribution observed in the sample and the 

one derived from the modelling assumptions, and I concluded that the model fit was adequate 

(Buckland et al., 2001; Thomas et al., 2010; Buckland et al., 2015). If the model with the 

lowest AIC proved to have a poor fit to the data, then the model with the second-best AIC 

was tested and so on, until I found a model with an adequate fit. The Goodness-of-fit test 

rejected models with continuous distance due to heaping in the data, but showed a better fit 

for the grouped distance data. 

2.3.2 Repeated point counts 

I used, for analyses of the point count data, an N-mixture model implemented in the pcount 

function of the package unmarked (Royle, 2004a; Fiske and Chandler, 2011) in R, to fit 

separate models for each year. From replicated points counts, this function allows for 

calculation of detection probability and abundance. Pcount is used to survey populations 

assumed to be closed, that is, there is no recruitment, mortality or movement of individuals 

between the visits within a single study season. This is a reasonable assumption when 

breeding birds have established territories (Royle, 2004a). To obtain abundance information, 

M sites are visited J times, with recording of unique individuals observed at each site. It is 



Methods 

13 

assumed that the abundance at a site remains constant throughout the same season, and 

repeated visits at a site are independent. Pcount implements the two-level hierarchical model 

for repeated point counts by Royle (2004a), where the key is to view site-specific population 

sizes, N, as an independent random variable that is modeled by Poisson distribution for 

abundance and by binomial distribution for detectability. Here, Ni is the unobserved total 

number of individuals at site i, and Cij is the counted number of individuals at site i during 

survey j. This makes,  

	

1i	~Poisson	(8i)	for	;	=	1,2,	…,	M	

Cij	|1i	~	B;%CD;EF	(1i,	G)	for	H	=	1,	2,	…,	Ii,	

 
 
where 8i	is the expected abundance at site i, and p is the per-individual detection probability. 

Covariates can be included in the models for both abundance and detection probability for the 

repeated point counts. For the abundance model, covariates are included by:  

 
log	(8i)	=	L0	+	L1	*	xi		

 

where xi is a site-level covariate vector, and L is a vector of their effect parameter. For the 

detection probability model, covariates are included by:  

 

logit	pij	=	R0	+	R1	*	vij					
	

where vij is an observation-level covariate vector, and R is a vector of their effect parameter.  

The predict function in unmarked gives an estimate of expected abundance per site (8i), and 

thus the density is calculated using the following equation: 

 

"	 =
TUD	(λW)
EX-E ∗ 	; 												(-.. 2) 

 

Model selection was made based on AIC-values. Covariates were added one at a time and in 

combination with each other in the same manner as for distance sampling. Habitat was the 

only site covariate tested for, and the observational covariates was wind, time, and Julian day. 

Julian day was scaled to ease convergence of the models (Fiske and Chandler, 2011). The 

same truncation distance used for distance sampling was used as radius for the repeated point 

counts. Goodness-of-fit was determined using parametric bootstrapping (function parboot in 
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unmarked) which simulates, refits and creates a sampling distribution for fit-statistics used for 

my models. This sampling distribution is then compared to the observed statistics and 

evaluated using chi square goodness-of-fit test (Royle, 2004a; Fiske and Chandler, 2011; 

Kéry and Royle, 2015).  

2.3.3 Double observer 

Double observer analysis was used to estimate detection probabilities for point counts in 

accordance with Nichols et al. (2000) in using the program DOBSERV (Hines, 2000). The 

data input for the program consists of counts of species, individuals observed by both 

observers, and individuals observed by the secondary observer which were not observed by 

the primary observer. The same truncation distance used for distance sampling and repeated 

point counts were used as fixed-radius, as recommended by Nichols et al. (2000). Inclusion of 

covariates is not possible in DOBSERV. One assumption for the double observer method is 

that the probability of detection for all individuals of the same species is equal. Also, it is 

assumed that the observer’s detection probability is the same whether the person is primary or 

secondary observer, and that detection of birds is independent between the two observers 

(Nichols et al., 2000; Taylor and Pollard, 2008). When starting the analysis, I specified that 

my data should be analyzed according to the dependent-observer approach. For the analysis, 

observer, bird species and species groups were possible sources of variation. DOBSERV 

summarizes the data, and creates an input code for another program SURVIV (White, 1983) 

that produce the estimates for detection probability (p) in six different models: 

• P (.,.) - detection probability (p) is the same for all species and both observers. 

• P (s,.) - detection probability (p) is different for each species, but equal among 

observers. 

• P (.,i) - detection probability (p) is equal among species but different between 

observers. 

• P (s,i) - detection probability (p) is different for each species and different between 

observers. 
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The different models were presented in ascending order according to AIC-values. The best 

model with the lowest AIC value was selected for the target species. Estimates of population 

size (N) at site i, can be written as: 

 

1Z = 	
[W
GZ

 

 

where Ci denotes the count (birds seen by either of the observers), and pi is the estimated 

detection probability. To acquire the standard error of the population size (SE(N)), DOBSERV 

recreates the SURVIV input file with redefined parameters, which uses overall detection 

probability of both observer (p´), and detection probability of the primary observer (p1´), 

instead of the detection probability of the primary (p1´) and secondary (p2´) observer. The 

final output produces total observations (x), detection probability (p), standard error of 

detection probability (SE(p)), estimation of population size (N), standard error of population 

size (SE(N)), and a 95 % confidence interval for the population size.  
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3 Results 

3.1 Observations and species composition 
Throughout the course of this study during all survey methods both years, 60 different species 

were recorded in total (full species list in Appendix F). The most common species were for 

both years Lapland bunting, Red-throated pipit, Wood sandpiper, Willow warbler 

(Phylloscopus trochilus) and Yellow wagtail (Motacilla flava). The upland tundra and 

lowland shrub tundra and marshes were dominated by Lapland bunting, Red-throated pipit 

and Wood sandpiper, and the willow thicket edges were characterized by Willow warbler, 

Yellow wagtail and Wood sandpiper. In both years, the highest number of species were 

recorded during repeated point counts, and the lowest during double observer point counts. A 

summary of observations and species counts is found in Table 3. 

 
Table 3: Total number of observations, and number of different species for each survey type and year. 

 

3.2 Population density estimates 

3.2.1 Distance sampling 

The hazard-rate key function offered the best model of detection function to the Lapland 

bunting data from 2015 and 2016, and to the Red-throated pipit data from 2015. The half-

normal key function provided the best fit for Red-throated pipit data in 2016, and for Wood 

sandpiper from both 2015 and 2016. When adding the covariates to the related key function, 

wind provided the best model for Lapland bunting in 2015. Detection probability (average 

0.45) declined with weak wind, and increased with strong wind. In 2016, time offered the best 

model, where the detection probability (average 0.52), was highest in the morning. For Red-

throated pipit, habitat provided the best model for the data from both 2015 and 2016, where 

detection probabilities (average 0.46 in 2015 and 0.40 in 2016) were highest in lowland shrub 

tundra and marshes. Julian day provided the best model for Wood sandpiper in 2015, and the 

Survey type Parameter 2015 2016 
Line transect No. of observations  456 1602 

 No. of species 41 49 
Repeated point counts No. of observations  913 1785 

 No. of species 43 50 
Double observer point counts No. of observations  283 703 
 No. of species 31 44 
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detection probability (average 0.44) was highest on the first count of the season. In 2016, time 

offered the best model, with the detection probability (average 0.80) being highest in the 

morning. All the fitted detection functions with inclusion of covariates are presented in Figure 

4.   

Figure 4: Fitted detection probability functions (line and dots) with covariates of distance sampling data. 
The histograms represent empirical distribution of the distance data. A) Hazard-rate detection function for 
Lapland bunting 2015 w/wind, B) Hazard-rate detection function for Lapland bunting 2016 w/time, C) 
Hazard-rate detection function for Red-throated pipit 2015 w/habitat, D) Half-normal detection function for 
Red-throated pipit 2016 w/habitat, E) Half-normal detection function for Wood sandpiper 2015 w/Julian day 
and F) Half-normal detection function for Wood sandpiper 2016 w/time. 
 

B 

C D 

E F 

A 
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The models which received most support from AIC, and that had a reasonable fit according to 

the goodness-of-fit test, were used to calculate abundance of individuals within the covered 

region. The hazard-rate model, used on Lapland bunting both years and on Wood sandpiper 

only in 2015, is flexible, and tries to fit the observation peak at distance zero. It is important 

to emphasize that the covered area differed between the years due to increased survey effort 

in 2016. The differences between the three estimates of N within the same species and year, 

ranged from 2.7 - 148.1 individuals and 0.1 - 11 ind/km2 (Table 4), with the largest difference 

for Lapland bunting. The density estimates show an increase for the Lapland bunting from 

2015 to 2016, and a decrease in density of both Red-throated pipit and Wood sandpiper. All 

abundances (N) in the covered region, densities (ind/km2), together best key function and 

covered area, are listed in Table 4. Ranking of candidate models, chi-square goodness-of-fit 

test results and R-output from the selected model can be found in Appendix B. 

 

 
Table 4: For each target species per year, it is presented the covered area (km2), best key function, best 
covariate. In addition, the associated abundance (± SE) and density (bold) estimates with; best covariate (N1), 
best covariate and half-normal key function without grouping of distances (N2) and without covariates (N3).  

Species Year 
Covered 

area 
(km2) 

 
Key 

function 

Best 
covariate 

Abundance 
(N1) and 
density 

w/covariates 

Abundance (N2) 
and density 

w/covariates and 
half-normal key 

function w/o 
grouping 

Abundance 
(N3) and 

density w/o 
covariates 

Lapland 
bunting 

2015 5.67 Hazard-
rate Wind 280.6 (± 31.0) 

49.5 
290.9 (± 27.0) 

51.3 
258.2 (± 26.7) 

45.5 

2016 13.4 Hazard-
rate Time 763.0 (± 38.0) 

56.9 
906.1 (± 50.9) 

67.6 
758.0 (± 38.1) 

56.5 

Red-
throated 

pipit 

2015 5.67 Hazard-
rate Habitat 98.7 (± 17.3) 

17.4 
116.1 (± 19.9) 

20.5 
108.9 (± 24.9) 

19.2 

2016 13.4 Half-
normal Habitat 112.2 (± 19.8) 

8.4 
116.1 (± 19.9) 

8.7 
125.8 (± 25.0) 

9.4 

Wood 
Sandpiper 

2015 9.28 Half-
normal Julian day 102.2 (± 18.5) 

11.0 
106.4 (± 19.5) 

11.5 
87.5 (± 14.2) 

9.4 

2016 21.93 Half-
normal Time 146.9 (± 26.7) 

6.7 
149.6 (± 26.1) 

6.8 
147.8 (± 14.8) 

6.7 
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3.2.2 Repeated point counts 

For Lapland bunting in 2015, the best AIC pcount-model for estimating detection contained 

wind as covariate. The mean detection probability was 0.51 (± SE 0.13) in weak wind, 0.35 (± 

0.09) in medium wind, and 0.49 (± 0.12) in strong wind. The predicted abundance (8) for the 

covered area was 156.3 individuals (± 42.7), and by using equation 2, the estimated density 

for the covered area was 114.2 ind/km2. In 2016, the best model for estimating detection 

probability was without any covariates, with a mean detection probability of 0.48 (± 0.07), a 

predicted abundance of 172.6 individuals (± 35.6), and a density of 126.10 ind/km2.  

 

For Red-throated pipit, the best model in 2015 included wind, time and Julian day. Time and 

Julian day were chosen for the data from 2016. However, the goodness-of-fit test show that 

all models both years had an inadequate fit to the data (test statistics in appendix C).  

 

For Wood sandpiper in 2015, the best model for estimating detection included wind, time and 

Julian day as covariates. In the model for Wood sandpiper from 2015, the Julian day 

represents the detection probability on the median Julian day. I used the detection probability 

on the mean Julian day in combination with wind and time. Abundance was predicted to 

199.1 individuals (± 168.8) within the covered area, and a density of 54.3 ind/km2. Of the data 

from 2016, the best model was without covariates, and had a mean detection probability of 

0.18 (± 0.07). Predicted abundance was 225.6 individuals (± 88.7) and the density was 61.6 

ind/km2. All detection probabilities, abundance estimates (provided on normal scale) and 

densities are listed in Table 5. Ranking of candidate models, chi-square goodness-of-fit test 

results and R-output from the selected model can be found in Appendix C. 
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Table 5: Overview of best models of pcount per species and year including mean detection probability with 
standard errors (± SE), predicted abundance (8) and estimated density.  

Species Year Best model Predicted detection probability (p) 
Predicted 

abundance (8) 
Estimated 

density 

Lapland 
bunting 

 
 
 

2015 Wind 

Weak 0.51 
(± 0.13)  

114.2 Medium 0.35 
(± 0.09) 156.3 (± 42.7) 

Strong 0.49 
(± 0.12) 

 
 

2016 No covariates 0.48 (± 0.07) 172.6 (± 35.6) 126.6 

Red-
throated 

pipit 
 

2015 Wind + Time + 
Julian day NA NA NA 

2016 Julian day + 
Time NA NA NA 

Wood 
sandpiper 

 
 
 

2015 
 
 

Wind + Time + 
Julian day 

 
 

* Weak Medium Strong 

 
199.6 (± 168.8) 

 

54.5 
 

Morning 

0.30 
(± 

0.17) 
 

0.10 
(± 0.06) 

 

0.06 
(± 0.05) 

 

Daytime 

0.68 
(± 

0.23) 
 

0.34 
(± 0.20) 

 

NA 
 

Evening NA 
 

0.11 
(± 0.08) 

 

0.07 
(± 0.06) 

 
2016 No covariates 0.18 (± 0.07) 225.6 (± 88.7) 61.6 

*predicted detection probability was calculated with 
the median of Julian day 176.5. 

 

3.2.3 Double observer 

The model P(.,.) stating that detection probability is the same for all species and both 

observers, was most suitable for the data from both years, and showed an adequate fit 

according to the goodness-of-fit test. Ranking of candidate models and goodness-of-fit test 

results are presented in appendix D. All species-specific joint detection probability exceeded 

0.98, and Lapland bunting and Wood sandpiper show an increase in density from 2015 to 

2016. The density of Red-throated pipit was exactly the same in the two contrasting years. All 

detection probabilities, abundances and density estimates per species and year are listed in 

Table 6. Complete SURVIV-output from the analysis can be found in appendix E.  
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Table 6: Best model, joint detection probability (p) and abundance (N) with standard errors (±SE) each year for 
double observer analysis from SURVIV.  

Species Year Best model Detection probability (p) Abundance (N) 
Density 

(ind/km2) 

Lapland bunting 2015 P(.,.) 0.9895 73.8 (± 0.99) 64.7 

  2016 P(.,.) 0.9984 115.2 (± 0.45) 91.8 

Red-throated pipit 2015 P(.,.) 0.9895 37.4 (± 0.67) 32.8 

  2016 P(.,.) 0.9984 41.1 (± 0.26) 32.8 

Wood sandpiper 2015 P(.,.) 0.9895 30.3 (±0.60) 9.9 

  2016 P(.,.) 0.9984 53.1 (± 0.30) 15.8 

 

3.2.4 Overview of obtained estimates  

To make the comparison of the methods easier, I put the obtained abundance and density 

estimates from the survey methods in Table 7, where they can be seen in conjunction to each 

other. The covered area differed between years and methods, thus the abundance (N) with 

standard error is included to display the precision. The density (ind/km2) is included to show 

the difference between the methods, and can be used to assess difference between years. In 

the discussion part, I will evaluate the density estimates in relation to other studies performed 

in low Arctic to say something about the plausibility of the results. 

 
Table 7: Overview of estimated abundance (± SE) in covered area and density (ind/km2) provided by the three 
survey methods. Estimates from distance sampling are provided from the best model with covariates. No model 
fitted for repeated point counts for Red-throated pipit. It is important to emphasize that the covered area differed 
between the years due to increased survey effort in 2016. 

 Lapland bunting Red-throated pipit Wood sandpiper 

Survey 
method Year Abundance 

estimate (±SE) 

Density 
estimate 

(ind/km2) 

Abundance 
estimate (±SE) 

Density 
estimate 

Abundance 
estimate(±SE) 

Density 
estimate 

Line transect  
distance 
sampling 

2015 280.6 (± 31.0) 49.5 98.7 (± 17.3) 17.4 102.2 (± 18.5) 11.0 

2016 763.0 (± 38.0) 56.9 112.2 (± 19.8) 8.4 146.9 (± 26.7) 6.7 

Repeated 
point 

counts 

2015 156.3 (± 42.7) 114.2 NA NA 199.1 (± 168.8) 54.3 

2016 172.6 (± 35.6) 126.6 NA NA 225.6 (± 88.7) 61.6 

Double 
observer 

point count 

2015 73.8 (± 0.99) 64.7 37.4 (± 0.67) 32.8 30.3 (±0.60) 9.9 

2016 115.2 (± 0.45) 91.8 41.1 (± 0.26) 32.8 53.1 (± 0.30) 15.8 
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4 Discussion 
The aim of this study was to compare and assess different survey methods for monitoring of 

common bird species in the low Arctic tundra. This comparison was done by estimating 

abundances of the three most common species in the Erkuta tundra monitoring site through 

two breeding seasons using the methods; distance sampling on line transects, repeated point 

counts, and double observer point counts. Differences in estimates between the methods may 

help to identify strengths, weaknesses, suitability and feasibility of the survey methods 

performed. Precision, accuracy, effort, and how easy it is to get field data to meet the 

assumptions of the methods, can be decisive for which method is preferred. I found that line 

transect distance sampling provided the most plausible density estimates for all target species, 

with estimates closest to the expected value and to each other. Repeated point counts probably 

overestimated the densities to a large extent, likely due to violation of the assumption of 

pcount that the surveyed population is closed. In addition, there were not any candidate 

models that fitted the data for Red-throated pipit neither of the years. Inclusion of covariates 

improved all model fits for distance sampling, and half of the models able to fit for repeated 

point counts. Further, the double observer point count seemingly overestimated the densities 

for all species, but not to the same extent as the repeated point counts. In the following, I will 

first compare the obtained density estimates with other studies to assess whether they are 

plausible, and then discuss each method separately. 

 
The density estimates obtained in this study can be seen in relation to other studies performed 

in low Arctic to say something about the plausibility of the results. However, it is important to 

emphasize that the density estimates from this study are from certain habitats chosen 

according the work of Sokolov (2012), and are not representative for the distribution of 

habitats in the landscape. The obtained estimates are thus best suited for comparison between 

years since they are carried out on the same transects/points. Also, the density estimates can 

be difficult to compare with each other due to spatial variation between transects and points. 

Further, the implementation and habitat characteristics of the compared studies differ to some 

degree, and can only be used as a pointer of densities for the target species. First out is the 

Lapland bunting. Using the spot mapping method, Sokolov (2012) found an overall density of 

10.1 pairs/km2 in the same study area as my surveys were conducted in. On the Ungava 

peninsula, Canada, in the bioclimatic subzone E, Andres (2006) used plot sampling to 

estimate an overall density of 30.7 ind/km2. In a study area in northern Norway, on the border 

area to subzone E, Järvinen (1978) used the line transect method to estimate habitat-specific 
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densities, which ranged from 2.1 to 63.9 pairs/km2. Latour (2005) used plot mapping for two 

areas in Creswell Bay in Nunavut, Canada, albeit in subzone C, and found overall densities of 

12.8 ind/km2 and 10.5 ind/km2. Although the unit of density varies between pairs/km2 and 

ind/km2, they can serve as an indicator of plausibility. The density estimates obtained in this 

study for all habitats for Lapland bunting with line transect distance sampling (49.5 ind/km2 

(2015) and 56.9 ind/km2 (2016)), seem reasonable in comparison with these studies. The 

double observer point count density estimates (64.7 ind/km2 (2015) and 91.8 ind/km2 (2016)) 

were slightly higher, and may seemingly have overestimated the density. The repeated points 

count density estimates (114.2 ind/km2 (2015) and 126.6 ind/km2 (2016)) appear clearly 

overestimated.  

 

Red-throated pipit has a far smaller distribution area than the Lapland bunting, and thus less 

studies have estimated their densities. However, Sokolov (2012) and Järvinen (1978) have 

results that show, respectively, overall Red-throated pipit densities of 18.3 pair/km2 and 

habitat-specific densities ranging from 0.2 to 9.1 pairs/km2. Density estimates derived from 

line transect distance sampling in this study (17.4 ind/km2 (2015) and 8.4 ind/km2 (2016)) 

appear to be plausible. The double observer point count estimates (32.8 ind/km2 (2015) and 

32.8 ind/km2 (2016)), as for the Lapland bunting, seemed somewhat overestimated. No 

estimates were produced for repeated point counts. 

 

Wood sandpiper, like the Red-throated pipit, also has less distribution area than the Lapland 

bunting, with subsequent less studies and comparable density estimates. Sokolov (2012) 

estimated 4.2 pairs/km2 for all habitats, and Järvinen (1978) had a habitat-specific density 

ranging from 2.9 to 6.9 pairs/km2. Line transect distance sampling estimates (11.0 ind/km2 

(2015) and 6.7 ind/km2 (2016)) seem plausible also with these results. As do the estimates 

from the double observer point counts (9.9 ind/km2 (2015) and 15.8 ind/km2 (2016)). The 

repeated points count density estimates (54.3 ind/km2 (2015) and 61.6 ind/km2 (2016)) 

appeared, as for Lapland bunting, clearly overestimated.  
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4.1 Distance sampling 
The main problem with distance sampling was that my data showed rounding of distances 

(heaping), which conflicts the third assumption that perpendicular distances from the bird to 

the line are exact. When recording individuals of passerines and waders with aural detection 

in a tundra landscape like Erkuta, the birds camouflage and surroundings with tussocks or 

thickets, sometimes made it difficult to measure exact distances. Measurement error can have 

a considerable impact on the accuracy and precision of the distance sampling estimators. To 

reduce the effect of heaping, I grouped my data into intervals. It is shown that, compared with 

estimates from continuous distances, little precision is lost, and the impact of this on 

estimation is small. Still, some information is lost to evaluate whether the assumptions hold, 

and to assess the fit of the detection function (Royle et al., 2004b; Buckland et al., 2015). 

Ekblom (2010) showed in a simulation study that even distance data collected in two groups 

(close and far away) provided reasonable densities of birds. The measurement error could be 

reduced by, in addition to recording distance, recording the angle between the line and the 

bird from the observation point. By using trigonometry, one can then calculate an accurate 

perpendicular distance from the bird to the transect line (Ekblom, 2010). This would probably 

reduce some of the heaping, but still it would be difficult to estimate exact distances to birds 

only recognized by aural cues. If exact distance data is difficult to collect with a reasonable 

accuracy, then collecting distances into discrete groups is recommended. Another possible 

solution could be accounting for measurement error and incorporate this into the models 

(Borchers et al., 2010). The truncation distance has a small effect on the population estimates, 

so most care should be taken on distances recorded close to the transect (Ekblom, 2010). 

 

A good model for the detection function should possess a shoulder, which means detection 

close to the transect line is close to one, i.e. detection of all individuals. The probability of 

detection should then fall away at larger distances. This is called the shape criterion, and 

violation of this will decrease estimation precision. The detection function for Lapland 

bunting 2015 (Figure 4A), Lapland bunting 2016 (Figure 4B) and Red-throated pipit 2015 

(Figure 4C), used the hazard-rate key function and produced a shoulder. The detection 

function for Red-throated pipit 2016 (Figure 4D), Wood sandpiper 2015 (Figure 4E) and 

Wood sandpiper 2016 (Figure 4F) used a half-normal key function, and possessed a narrow 

shoulder, which decreases estimation precision. All the detection functions filled the criterion 

that a detection function should have a non-increasing function of distance from the line, 
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which means that the probability of detection at a given distance should not be larger than the 

probability of detection at a smaller distance (Buckland et al., 2001). However, for Wood 

sandpiper 2016 (Figure 4F), the detection function was not ideal with very high detection 

probabilities at most distances (average 0.80), and a slow decrease of detection probability 

with increasing distances.  

For all species and years, the models were improved with inclusion of covariates. Bird 

detections are usually inversely correlated to wind speed (Robbins, 1981a), but the Lapland 

bunting in 2015 had higher detectability in strong wind than in weak wind, which 

contradicted both expectation and theory. This may be due to a small sample size in strong 

wind, or possibly a consequence of running many models. The detection probabilities from 

Wood sandpiper in 2015 was highest on the first day of counting, which may argue for 

registration in early breeding season. In 2016, the detection probabilities peaked in the 

morning which corresponds to the fact that most bird species have their activity peak in the 

morning hours during the breeding season (Robbins, 1981b).  

 

For the Red-throated pipit, the estimate with covariates (N1) gave the lowest abundance and 

density in both 2015 and 2016. The estimate with covariates and half-normal key function 

(N2) without grouping of distances, provided the highest abundance for all models in 

comparison to the estimates with and without covariates. The overestimation was highest on 

the models that had the best fit with the hazard-rate key function. The abundance estimates 

without covariates (N3), were for both years lower for Lapland bunting and Wood sandpiper, 

and gave the middle estimate for the Red-throated pipit. The standard error show that the 

precision of the estimates was rather consistent between the three estimates of abundance (N), 

with a difference ranging from ± 0.5–12.9 individuals. According to Ekblom (2010), standard 

errors are generally larger when using grouped distance data, than for exact measurements. 

All standard error was also higher for the estimates of 2016, which was not expected due to 

bigger sample sizes this year. Some of the uncertainness can arise from both variability in 

encounter rate between the transects, and from uncertainty in the detection function 

(Buckland et al., 2015). As presented earlier, the overall density estimates appeared to be 

slightly overestimated, perhaps as a result of violation of some assumptions. An 

overestimation of birds detected on the transect line, an underestimation of distances, and 

birds undetected prior to evasive movement, causes overestimation (Ekblom, 2010). 

However, the degree of overestimation is limited to the extent of which the assumptions are 

violated.  
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4.2 Repeated point counts 
The first key assumption when modeling repeated point count data with pcount in unmarked, 

is that abundance at a site remains constant throughout the same season. To meet this 

assumption, the data was collected during the breeding season and limited to 18 days in 2015 

and 27 days in 2016. In this period, the breeding birds are assumed to have established 

territories so that observed birds are primarily local breeders (Royle, 2004a). When using 

pcount to estimate the detection probability for Lapland bunting in 2015, the highest detection 

probability was during weak wind. It was lower in medium wind, but then showed an increase 

again in strong wind. This may, as for the distance sampling results, be due to a small sample 

size in strong wind, or a consequence of running many models. For Wood sandpiper, the 

highest detection probability in 2015 was in weak wind at daytime. The lowest detection 

probabilities were in strong wind, which may suggest that the detectability of the Wood 

sandpiper is sensitive to wind. In 2016, the detection probabilities for Lapland bunting and 

Wood sandpiper was independent of any of the covariates. The precision in the detection 

probability estimates ranged from ± 0.05 - 0.23, where both the highest and lowest were 

generated in the model from Wood sandpiper 2015 with all covariates included. The 

goodness-of-fit test show that no model had an adequate fit for the Red-throated pipit data. 

The reason for this is not clear, but it may indicate that the assumptions underlying the model 

can be inappropriate for abundance estimation of Red-throated pipit.  

 

The predicted abundance estimates seem to be overestimated both years with high standard 

errors. The low precision appears for example in the 2015 data for Wood sandpiper, where the 

standard error it selves is almost as high as the abundance estimate. The calculated density 

estimates are for some more than doubled relative to the estimates from distance sampling and 

double observer point counts. The first reason for this is likely a violation of the assumption 

that the surveyed population is closed, which the other two methods do not assume. A second 

possible reason is too short distance (minimum 200m) between the points, and therefore a risk 

of a double counting of the same individual on two different points and on separate visits. The 

placement and extent of the bird territories is uncertain, and some of the points have probably 

been within the same territory, also increasing the risk for double counting. An alternative 

approach for the repeated point counts that would reduce the effect of these two possible 

sources of error, could be to increase the distance between the points, and to use the function 
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gpcount in unmarked that allows for temporary emigration, i.e. not all individuals are present 

for detection at every visit (Chandler et al., 2011). 

4.3 Double observer 
The double observer point counts were only conducted one time per point each year, and 

consequently had the smallest sample size of the three methods. It is important to emphasize 

that this method only estimates the detection probability on the current day, and do not 

consider repeated visits like the other methods. In line transect distance sampling and repeated 

point counts with a single observer, a varying proportion of birds present in the area is 

missed. The results from the double observer method show a high overall joint detection 

probability for the two observers (> 0.98), which provides basis for precise estimates. The 

method is preferable to use when detection probabilities are assumed to be 1, and not 

recommended to use when detection probabilities are below 0.40 (Nichols et al., 2000).  

The assumption that the probability of detection for all individuals of the same species is 

equal, is not always true in field situations. For example, individuals close to the observers 

will be more likely to be detected than those further away. Differences in distances at which 

observers detect birds is also a source of bias, where some individuals at large distances in 

reality only can be detected by one of the observers. This variation is reduced by using fixed-

radius. However, a simulation study by Taylor and Pollard (2008) showed that varying 

detection probabilities among individuals gave population estimates close to the estimates 

provided with equal detection probabilities for all individuals of the same species. Based on 

this, the likely violation of this assumption in the field does not have a big impact on the 

population estimates. The assumption that the observer role does not have an impact on 

detection probability were perceived to be held in the field. The last assumption about 

independent detection of birds between the observers was most likely not entirely fulfilled. 

Although the secondary observer always stood behind the primary observer, some provision 

of cues, like writing or looking in a certain direction, was still given away by the secondary 

observer when the primary observer was scanning the area. This likely violation increases the 

joint detectability, and can be a possible explanation for the slight overestimation of densities. 

 

The selected model was, for both years and all species, the model where the estimates of 

detection probability were equal among species and observers (P(,.,)). The counting’s were 

done with a different ornithologist each year, and the detection probabilities show a slight 
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increase in 2016. The density estimates, in accordance with the other methods, show an 

increase in density of Lapland bunting from 2015 to 2016. What separates these results from 

the other two methods, is that they show an increase in density of Wood sandpiper and an 

identical density of Red-throated pipit from 2015 to 2016. The estimates might, as for the 

repeated point counts, have been affected by the short distance between the points and the 

accompanying risk of double counting of individuals. The joint detection probabilities 

obtained with the double observer method were very high, and resulted in precise abundance 

estimates with low standard error ranging from 0.26 to 0.99. Approximate equally high 

detection probabilities, and thus low standard errors, were also estimated by Nichols et al. 

(2000) in his field trials.  
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5 Conclusions and Recommendations 
Before going into the field and conducting a survey on a chosen bird community, it is 

essential to recognize the characteristics of both the survey method and the bird community. 

The detectability and abundance of the species, the characteristics of the terrain, and resources 

available are variables that needs to be taken into consideration when deciding which survey 

type is better for the selected study area (Joseph et al., 2006). As mentioned earlier, studies on 

bird communities performed in the Arctic are not as numerous as for temperate regions, and 

thus is this study a step towards a broader knowledge and development of robust survey 

methods for such communities. Based on this study, it is possible to draw some conclusions 

about which survey method is best suited for long-term monitoring of the bird community on 

the Erkuta tundra monitoring site and in similar areas in the low Arctic. The most plausible 

density estimates of the common target species were provided by the line transect distance 

sampling. Although all assumptions are difficult to completely fulfil in the field, the method 

could be improved by more exact distance measurements in the field, since the degree of 

overestimation is limited to the extent of which the assumptions are violated. Repeated point 

counts heavily overestimated the densities and the models fitted poorly for Red-throated pipit. 

This could probably be reduced by using a model allowing for temporary emigration and 

increasing distance between points. However, double observer point counts offer an 

alternative approach for long-term monitoring, where the slight overestimation can be 

decreased with increased distance between points. In addition, the double observer method 

requires less effort than the other two methods. 

 

This study, in accordance with for example the studies performed by Latour (2005) and 

Andres (2006), estimates all individuals present throughout the breeding season. This 

approach includes the non-breeders (i.e. non-territory holders) in the area during the breeding 

season, the so-called “floaters” (Penteriani et al., 2011). The extent and impact from 

“floaters” on density estimation of the target species and in my study area is difficult to 

assess. However, Nur et al. (2000) studied demographic processes in passerine birds and 

found out that “floaters” (classified by a single capture throughout breeding season), 

amounted more than half of the adult Song sparrows (Melospiza melodia) caught. This could 

argue for a possible approach to focus the surveys only on territorial males, and extrapolate 

the density estimate to get an estimation of number of breeding pairs. “Floaters” will to a 

large extent be ruled out of the counts, and this will in addition give less measurement error of 
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distance, since territorial males naturally have a higher aural and visual detectability. The 

double observer point count method only entail one visit to each point per season, which 

makes this method especially susceptible to influence from “floaters” in abundance estimates. 

The line transect distance sampling method have the least impact from “floaters”, which also 

can speak in favor of this method. 

The target species chosen from the analysis in this study were numerous in most habitats and 

transects/points. A possible extension of the study could be to look further into how the 

methods apply on species that are not as numerous, as for example the Shore lark 

(Eremophila alpestris), or species that were particularly habitat-bound, such as the Willow 

warbler. The study could be extended to surveying a bird community by choosing one 

preferred method and use this to estimate abundance and density for several species.  
 

When performing surveys in the Arctic, it is of great significance to consider the effort 

associated with different survey methods both when it comes to funding and available people. 

The breeding season is shorter than in temperate zones (Baker, 1939), and accommodation 

and travel expenses for personnel is often high. This should lead to the cumulative distance 

covered, time spent recording, and number of visits to be included in the assessment of 

method selection. The 12 transects of distance sampling analysis were repeated two to five 

times during a breeding season, and due to differences in transect length and encounter rate, 

the time spent on each transect varied. The 36 repeated point counts were visited 3-5 times, 

and had a cumulative registration effort of 18 h in 2015 and 27.5 h in 2016. In contrast, the 

double observer point count was only conducted one time per season (though with two 

people), with a least time-consuming cumulative survey time of 5 h in 2015 and 5.5 h in 

2016. Although effort is a variable that should be considered, it is of course the accuracy, 

precision and plausibility of the estimates that should be the primary reason for choice of 

method.  
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Appendix 

Appendix A 

Histogram showing an example of heaping in distance data (Figure B.1) and the reduced 

´spikes´ in the data when grouping the distance data (Figure B.2).  

 

 
Figure B.1: Lapland bunting distance data from 2016 without grouping of distances. 

 
Figure B.2: Lapland bunting distance data from 2016 with grouping of distances. Note that the y-axis is plotted 
with probability density rather than count frequency, due to varying interval width. 
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Appendix B 
This appendix contains: 

- Model selection tables for the line transect distance sampling analysis with inclusion 

of covariates. Candidate model in bold gives an adequate fit to data, and best AIC.  

- Chi-square goodness-of-fit test results from the selected model. 

- R output for the selected model. 

 
Table A.1: Comparison of different candidate models of line transect distance sampling evaluated for estimating 
abundance for Lapland bunting 2015 with hazard-rate detection function.  

Covariates AIC Δ AIC 

Time + Wind 485.28 0 
Wind 485.66 0.38 
Julian day + Time + Wind 487.16 1.88 
Julian day 487.80 2.52 
Time 489.75 4.48 
Julian day + Time 490.69 5.41 
Julian day + Wind 490.96 5.68 
No covariates 492.17 6.89 
Habitat 495.80 10.52 

 
Chi-square goodness-of-fit test results for [Wind] object: 

Chi-square value = 3.09 

P =0.54239 

 

> summary(LB15_wind) 
 
Summary for distance analysis  
Number of observations :  125  
Distance range         :  0  -  110  
 
Model : Hazard-rate key function  
AIC   : 485.6598  
 
Detection function parameters 
Scale Coefficients:   
               estimate   se 
(Intercept)     3.8762671  0.1817068 
WindcatStrong   0.3583770  0.3702791 
WindcatWeak    -0.4111832  0.1995215 
 
Shape parameters:   
              estimate    se 
(Intercept)    1.130598  0.2022396 
 
                      Estimate       SE       CV 
Average p             0.4454086  0.0386467  0.08676686 
N in covered region 280.6412211  30.9591128  0.11031563 
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Table A.2: Comparison of different candidate models of line transect distance sampling 
evaluated for estimating abundance for Lapland bunting 2016 with hazard-rate detection 
function. 

Covariates AIC Δ AIC 
Time + Wind 1571.44 0 
Habitat + Time 1571.69 0.24 
Time 1575.95 4.51 
Habitat 1578.93 7.49 
Habitat + Wind 1579.68 8.24 
Wind 1580.62 9.18 
No covariates 1581.22 9.77 
Julian day 1590.14 18.70 

 

Chi-square goodness-of-fit test results for [Time] object: 

Chi-square value = 7.43 

P =0.11458 

 
> summary(LB16_time) 
 
Summary for distance analysis  
Number of observations :  402  
Distance range         :  0  -  110  
 
Model : Hazard-rate key function  
AIC   : 1575.948  
 
Detection function parameters 
Scale Coefficients:   
                 estimate   se 
(Intercept)    3.99549706  0.05784177 
TimecatDay      -0.06753968  0.08187329 
TimecatEvening   -0.24472716  0.08330365 
 
Shape parameters:   
            estimate   se 
(Intercept)     1.58586   0.1245079 
 
                      Estimate       SE          CV 
Average p             0.5268698   0.01890061  0.03587339 
N in covered region  762.9967989  37.96585023  0.04975886 
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Table A.3: Comparison of different candidate models of line transect distance sampling 
evaluated for estimating abundance for Red-throated pipit 2015 with hazard-rate detection 
function. 

Covariates AIC Δ AIC 
Habitat + Wind 171.99 0 
Habitat 172.98 0.98 
Habitat + Time 173.83 1.83 
Habitat + Time + Wind 174.54 2.55 
Time + Wind 176.34 4.34 
Wind 178.02 6.02 
Time 178.83 6.84 
No covariates 179.86 7.86 
Julian day 180.56 8.56 

 

Chi-square goodness-of-fit test results for [Habitat] object: 

Chi-square value = 4.48  

P = 0.34535 

 

> summary(RTP15_habitat) 
 
Summary for distance analysis  
Number of observations :  45  
Distance range         :  0  -  110  
 
Model : Hazard-rate key function  
AIC   : 172.9763  
 
Detection function parameters 
Scale Coefficients:   
               estimate   se 
(Intercept)      3.4157546  0.2332194 
HabitatUpland    0.1509885  0.3506890 
HabitatWetland   1.0631858  0.3031993 
 
Shape parameters:   
            estimate        se 
(Intercept) 1.460822 0.3085312 
 
                   Estimate     SE         CV 
Average p             0.4558094   0.05850621  0.1283568 
N in covered region 98.7254804  17.29931378  0.1752264 
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Table A.4: Comparison of different candidate models of line transect distance sampling 
evaluated for estimating abundance for Red-throated pipit 2016 with half-normal detection 
function. 

Covariates AIC Δ AIC 
Habitat + Time 170.68 0 
Habitat 172.18 1.51 
Julian day + Habitat 172.52 1.85 
Time 176.31 5.63 
Julian day 176.33 5.65 
Wind 178.03 7.35 
No covariates 181.25 10.58 

 

Chi-square goodness-of-fit test results for [Habitat] object: 

Chi-square value = 3.84 

P = 0.57289 

 
> summary(RTP16_habitat) 
 
Summary for distance analysis  
Number of observations :  45  
Distance range         :  0  -  110  
 
Model : Half-normal key function  
AIC   : 172.1844  
 
Detection function parameters 
Scale Coefficients:   
              estimate     se 
(Intercept)      3.3608662  0.1253808 
HabitatUpland    -0.1894198  0.3364531 
HabitatWetland   0.9809140  0.4377774 
 
                      Estimate      SE        CV 
Average p              0.4010044  0.05061198  0.126213 
N in covered region  112.2182295  19.77464345  0.176216 
 

Table A.5: Comparison of different candidate models of line transect distance sampling 
evaluated for estimating abundance for Wood sandpiper 2015 with half-normal detection 
function. 

Covariates AIC Δ AIC 

Julian day 171.98 0 
Julian day + Habitat 173.29 1.31 
Habitat 173.65 1.66 
No covariates 174.22 2.23 
Habitat + Time 175.29 3.31 
Time 175.44 3.46 
Wind 176.11 4.13 
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Chi-square goodness-of-fit test results for [Julian day] object: 

Chi-square value = 2.56 

P = 0.46497 

 

> summary(WS15_day) 
 
Summary for distance analysis  
Number of observations :  45  
Distance range         :  0  -  180  
 
Model : Half-normal key function  
AIC   : 171.9822  
 
Detection function parameters 
Scale Coefficients:   
               estimate   se 
(Intercept)     4.7287597  0.8905441 
Julian.day174   -0.2360972  1.3586564 
Julian.day175   -1.3059913  0.9109562 
Julian.day179   -0.3291349  0.9124262 
 
                      Estimate     SE         CV 
Average p              0.4401211   0.06013723  0.1366379 
N in covered region  102.2445949  18.48422820  0.1807844 
 

Table A.6: Comparison of different candidate models of line transect distance sampling 
evaluated for estimating abundance for Wood sandpiper 2016 with half-normal detection 
function. 

Covariates AIC Δ AIC 

Julian day 571.23 0 
Julian day + Habitat 572.68 1.45 
Time 575.48 4.25 
Habitat + Time 576.27 5.04 
Habitat 576.35 5.12 
No covariates 578.25 7.02 
Wind 580.38 9.14 

 
Chi-square goodness-of-fit test results for [Time] object: 

Chi-square value = 9.10 

P = 0.33478 
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> summary(WS16_time) 
 
Summary for distance analysis  
Number of observations :  118  
Distance range         :  0  -  180  
 
Model : Half-normal key function  
AIC   : 575.4842  
 
Detection function parameters 
Scale Coefficients:   
             estimate   se 
(Intercept)     12.490191  171.8435 
TimecatDay     -7.942311  172.2671 
TimecatEvening   -7.897720  172.2685 
 
                   Estimate     SE       CV 
Average p             0.8034056   0.1416746  0.1763426 
N in covered region  146.8747599  26.7314299  0.1820015 
 

Appendix C 
This appendix contains: 

- Model selection tables for repeated point counts with inclusion of covariates. 

Candidate model in bold gives an adequate fit to data and, best AIC.  

- Chi-square goodness-of-fit test results with parametric bootstrapping from the selected 

model. 

- R output for the selected model. 
 

Table B.1: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Lapland bunting 2015. 

Covariates AIC  Δ AIC  
Wind           316.33 0 
Julian day + Wind      317.69 1.36 
Time + Wind      317.91 1.58 
Julian day + Time + Wind           318.11 1.78 
No covariates           321.6 5.28 
Julian day 323.5 7.17 
Time       325.28 8.95 
Julian day + Time      327.08 10.76 

 
Chi-square goodness-of-fit test results with parametric bootstrapping for [Wind] object: 

Chi-square value = 99.8 

P = 0.465 
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> pcount(~Wind ~Habitat, umf) 
 
Call: 
pcount(formula = ~Wind ~ Habitat, data = umf) 
 
Abundance: 
                Estimate   SE      z   P(>|z|) 
(Intercept)      0.0709  0.380  0.187  8.52e-01 
HabitatUpland    1.8485  0.356 5.199  2.00e-07 
HabitatWetland   1.5657  0.362  4.322  1.54e-05 
 
Detection: 
              Estimate     SE      z  P(>|z|) 
(Intercept)     -0.640  0.394  -1.62  0.1045 
WindStrong       0.613  0.328   1.87   0.0619 
WindWeak         0.668  0.274   2.44   0.0148 
 
AIC: 316.3274 
 

Table B.2: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Lapland bunting 2016. 

Covariates AIC Δ AIC 
No covariates 499.95 0.00 
Time 501.12 1.17 
Julian day 501.54 1.59 
Julian day + Time 501.95 2.00 
Wind 503.59 3.64 
Time + Wind 504.48 4.53 
Julian day + Wind 505.35 5.40 
Julian day + Time + Wind           505.72 5.77 

 
Chi-square goodness-of-fit test results with parametric bootstrapping for [No covariates] object: 

Chi-square value = 104.1 

P = 0.990 

 
> pcount(~1 ~Habitat, umf) 
 
Call: 
pcount(formula = ~1 ~ Habitat, data = umf) 
 
Abundance: 
               Estimate    SE    z  P(>|z|) 
(Intercept)       0.589 0.246 2.39 1.68e-02 
HabitatUpland     1.318 0.267 4.94 7.89e-07 
HabitatWetland    1.176 0.278 4.22 2.40e-05 
 
Detection: 
 Estimate SE  z  P(>|z|) 
 -0.0691  0.285  -0.243  0.808 
 
AIC: 499.9484 
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Table B.3: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Red-throated pipit 2015. No model selected due to poor goodness-of-fit. 

Covariates AIC Δ AIC 
Julian day + Time + Wind 292.48 0.00 
Julian day + Wind 296.39 3.91 
Julian day + Time 297.94 5.47 
Julian day 301.55 9.07 
Time + Wind 308.76 16.28 
Time 309.70 17.22 
Wind 318.19 25.72 
No covariates 318.63 26.16 

 
All models gave very low P-values from the goodness-of-fit test with parametric bootstrapping, that rejects the 

null hypothesis. Thus, no model provides an adequate fit to the data. For example, the chi-square goodness-of-fit 

test results with parametric bootstrapping for [All covariates] object: 

Chi-square value = 177.1 

P = 0.000 

 
No models provided adequate data fit 

 
Table B.4: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Red-throated pipit 2016. No model selected due to poor goodness-of-fit. 

Covariates AIC Δ AIC 
Julian day + Time 377.61 0.00 
Julian day + Time + Wind           378.82 1.21 
Time 381.47 3.87 
Time + Wind 383.02 5.41 
Julian day + Wind 403.04 25.44 

Julian day 403.70 26.09 
Wind 404.20 26.59 
No covariates 405.34 27.73 

 
All models gave very low P-values from the goodness-of-fit test with parametric bootstrapping, that rejects the 

null hypothesis. Thus, no model provides an adequate fit to the data. For example, the chi-square goodness-of-fit 

test results with parametric bootstrapping for [Day + Time] object: 

Chi-square value = 205.8 

P = 0.000 

 

No models provided adequate data fit 
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Table B.5: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Wood sandpiper 2015. 

Covariates AIC Δ AIC 
Julian day + Time + Wind           242.97 0.00 
Julian day + Wind 254.65 11.67 
Time + Wind 255.50 12.53 
Julian day + Time 260.08 17.10 
Julian day 264.06 21.09 
Wind 264.12 21.15 
No covariates 277.41 34.44 
Time 277.76 34.79 

 
Chi-square goodness-of-fit test results with parametric bootstrapping for [All covariates] object: 

Chi-square value = 102.5 

P = 0.426 

 
> pcount(~Wind+Timecat+scale(Julian.day) ~Habitat, umf) 
 
Call: 
pcount(formula = ~Wind + Timecat + scale(Julian.day) ~ Habitat,  
    data = umf) 
 
Abundance: 
              Estimate     SE   z  P(>|z|) 
(Intercept)      1.9390  0.875   2.217  0.02663 
HabitatUpland   -1.0825  0.355  -3.051 0.00228 
HabitatWetland   0.0527  0.252  0.209 0.83456 
 
Detection: 
               Estimate SE  z   P(>|z|) 
(Intercept)         -2.5760  0.924  -2.787  5.32e-03 
WindStrong          -0.4396  0.437  -1.006  3.14e-01 
WindWeak             1.3640   0.350  3.900  9.61e-05 
TimecatEvening       1.5154   0.467  3.245  1.18e-03 
TimecatMorning       0.0803   0.336  0.239  8.11e-01 
scale(Julian.day)    0.5866   0.180  3.261  1.11e-03 
 
AIC: 242.9727 
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Table B.6: Comparison of different candidate models of pcount evaluated for estimating abundance 
 for Wood sandpiper 2016. 

Covariates AIC Δ AIC 

No covariates 443.67 0.00 
Julian day 445.72 2.05 
Time 446.56 2.90 
Wind 447.12 3.46 
Julian day + Time 448.55 4.89 
Julian day + Wind 449.13 5.47 
Time + Wind 449.95 6.28 
Julian day + Time + Wind           451.98 8.31 

 
Chi-square goodness-of-fit test results with parametric bootstrapping for [No covariates] object: 

Chi-square value = 163.9 

P = 0.4554 

 

> pcount(~1 ~Habitat, umf) 
 
Call: 
pcount(formula = ~1 ~ Habitat, data = umf) 
 
Abundance: 
              Estimate     SE   z   P(>|z|) 
(Intercept)      1.806  0.411  4.4  1.09e-05 
HabitatUpland    -0.497  0.261 -1.9  5.74e-02 
HabitatWetland   0.392  0.218 1.8  7.22e-02 
 
Detection: 
 Estimate  SE  z P(>|z|) 
 -1.5  0.467  -3.22  0.00127 
 
AIC: 443.6689 
 

Appendix D 
This appendix contains: 

- Model selection tables for double observer point counts. Candidate model in bold 

gives an adequate fit to data and best AIC. 

- Goodness-of-fit test results from the selected model. 

 

 

 



 

XII 

Table C.1: Comparison of different candidate models of double observer evaluated for estimating abundance in 
2015. 

Model AIC Δ AIC 
P(.,.) 24.210 0 
P(G,.) 24.210 0 
P(S,.) 24.708 0.498 
P(S,I) 24.708 0.498 
P(.,I) 26.116 1.906 
P(G,I) 26.116 1.906 

 
Goodness-of-fit p-value of selected model computed in SURVIV = 0.2185. 

 
Table C.2: Comparison of different candidate models of double observer evaluated for estimating abundance in 
2016. 

Model AIC Δ AIC 
P(.,.) 19.521 0 
P(G,.) 19.521 0 
P(S,.) 20.318 0.797 
P(G,I) 21.519 1.998 
P(,I) 21.519 1.998 
P(S,I) 24.903 5.382 

 
Goodness-of-fit p-value of selected model computed in SURVIV= 0.7065. 

Appendix E 
Output from SURVIV analysis in DOBSERV program.  

 
Table E.1: SURVIV output from best model P(.,.) from 2015 double observer data. 

       CHAO 95% CONF. INT. 
SPECIES X. P SE(P) N SE(N) LOWER   UPPER 

Lapland Bunting 73 0.9895 0.0061 73.77 0.99 73.11 - 78.36 
Red-throated pipit 37 0.9895 0.0061 37.39 0.67 37.04 - 40.88 
Wood Sandpiper 30 0.9895 0.0061 30.32 0.60 30.03 - 33.53 

 
 
Table E.2: SURVIV output from best model P(.,.) from 2016 double observer data. 

 
       CHAO 95% CONF. INT. 

SPECIES X. P SE(P) N SE(N) LOWER   UPPER 
Lapland Bunting 115 0.9984 0.0012 115.18 0.45 115.01 - 117.82 
Wood Sandpiper 53 0.9984 0.0012 53.08 0.30 53.00 - 54.98 
Red-throated pipit 41 0.9984 0.0012 41.07 0.26 41.00 - 42.76 
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Appendix F 
 
Complete list of bird species observed by the research team on Erkuta during the field seasons 

of 2015 and 2016. Their status is compared with registrations from 1999-2009 by V. Sokolov. 

Species with a change in their status have the updated status behind the slash. 

 
B: breeder; b*: occasional or rare breeder; b: possible breeder; M: common or abundant 
migrant; +: transient or rare to uncommon migrant, -: new species. 
 

Species Status Species Status 
Red-throated diver  
Gavia stellata 

 
B 

Hen harrier  
Circus cyaneus 

 
b 

Black-throated diver  
Gavia arctica 

 
B 

Pallid harrier  
Circus macrourus 

 
b 

Red-breasted goose 
Branta ruficollis 

 
 b* 

Rough-legged Buzzard 
Buteo lagopus 

 
B 

White-fronted goose   
Anser albifrons 

 
B 

White-tailed Eagle 
Haliaeetus albicilla 

 
M 

Lesser white-fronted 
goose Anser erythropus   

 
b* 

Gyrfalcon  
Falco rusticolus 

 
b* 

Bean goose   
Anser fabalis  

 
 b* 

Peregrine falcon  
Falco peregrinus  

 
B 

Bewick's swan  
Cygnus bewickii  

 
b* 

Merlin  
Falco columbarius 

 
b* 

Teal  
Anas crecca 

 
B 

Short-eared owl 
Asio flammeus 

 
b* 

Wigeon 
Anas penelope 

 
B 

Sand martin 
Riparia riparia  

 
B 

Pintail  
Anas acuta 

 
B 

Barn swallow  
Hirundo rustica 

 
+ 

Shoveler  
Anas clypeata 

 
+ 

Shore (horned) lark  
Eremophila alpestris 

 
B 

Tufted duck  
Aythya fuligula 

 
+ 

Pechora pipit  
Anthus gustavi 

 
B/b 

Scaup  
Aythya marila  

 
B 

Meadow pipit 
Anthus pratensis 

 
B 

Long-tailed duck  
Clangula hyemalis 

 
B 

Red-throated pipit  
Anthus cervinus 

 
B 

Goldeneye  
Bucephala clangula 

 
b 

Yellow wagtail  
Motacilla flava  

 
b*/B 

King eider  
Somateria spectabilis 

 
  B/b* 

Citrine wagtail 
Motacilla citreola 

 
B 

Common Scoter  
Melanitta nigra 

 
B 

Pied wagtail 
Motacilla alba 

 
B 

Velvet scoter  
Melanitta fusca 

 
+/b* 

Magpie  
Pica pica 

 
+ 
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Smew 
Mergus albellus 

 
M 

Hooded crow  
Corvus cornix 

 
b/b* 

Red-breasted merganser 
Mergus serrator 

 
B 

Raven  
Corvus corax 

 
B 

Waxwing  
Bombycilla garrulus 

 
+ 

Black-headed gull 
Larus ridibundus 

 
+ 

Siberian accentor                    
Prunella montanella 

 
b*/+ 

Heuglin's (siberian) gull  
Larus heuglini 

 
M 

Willow grouse  
Lagopus lagopus 

 
B 

Glaucous gull  
Larus hyperboreus 

 
M 

Grey plover 
Pluvialis squatarola 

 
b* 

Arctic tern  
Sterna paradisaea 

 
B 

Golden plover   
Pluvialis apricaria 

 
B 

Sedge warbler  
Acrocephalus schoenobaenus 

 
B 

Ringed plover  
Charadrius hiaticula  

 
B 

Willow warbler  
Phylloscopus trochilus  

 
B 

Dotterel  
Eudromias morinellus   

 
+ 

Chiffchaff  
Phylloscopus collybita 

 
B 

Wood sandpiper 
Tringa glareola  

 
B 

Arctic warbler  
Phylloscopus borealis 

 
b* 

Spotted redshank 
Tringa erythropus 

 
+ 

Yellow-browed warbler  
Phylloscopus inornatus 

 
-/+ 

Terek sandpiper 
Xenus cinereus 

 
b 

Northern wheatear  
Oenanthe oenanthe 

 
B 

Red-necked phalarope  
Phalaropus lobatus 

 
B 

Bluethroat  
Luscinia svecica  

 
B 

Ruff  
Philomachus pugnax 

 
B 

Fieldfare  
Turdus pilaris  

 
b*/B 

Little stint   
Calidris minuta 

 
b* 

Redwing  
Turdus iliacus 

 
 B 

Temminck's stint  
Calidris temminckii 

 
B 

Tree sparrow         
Passer montanus 

 
-/+ 

Dunlin  
Calidris alpina 

 
b* 

Bramling  
Fringilla montifringilla 

 
b/+ 

Jack snipe  
Lymnocryptes minimus 

 
b* 

Redpoll  
Acanthis flammea 

 
B 

Common snipe  
Gallinago gallinago 

 
B 

Reed bunting  
Emberiza schoeniclus 

 
B 

Pintail snipe 
Gallinago stenura 

 
b 

Little bunting  
Emberiza pusilla 

 
B 

Arctic skua 
Stercorarius parasiticus 

 
B 

Lapland bunting 
Calcarius lapponicus 

 
B 

Long-tailed skua 
Stercorarius longicaudus 

 
B 

  

 


