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Abstract 

This study is a part of the Barents Sea drill cuttings research initiative (BARCUT), 

investigating the inflow of Atlantic water to the southwestern Barents Sea during the Late 

Glacial and Holocene as well as providing data for future references. 

Five cores, HH12-903-mc, HH12-902-mc, HH12-897-mc, HH12-893-mc and IG15-993-mc, 

from the southwestern Barents Sea were used to investigate the inflow of Atlantic water to the 

southwestern Barents Sea through Bjørnøyrenna. The main method used is analyzing benthic 

foraminifera and the faunal composition, but total organic carbon (TOC), sortable silt mean 

grain size and grain size distribution are used as supporting data.  

The samples were sieved using mesh sizes of 1mm, 100mµ and 63mµ, but only the 100mµ-

1mm fraction was used for the foraminiferal analysis. Samples from the top and bottom of the 

cores were sent to 
14

C dating to establish a timeframe. For the purpose of this thesis, four time 

intervals are selected for investigation, representing the Late Glacial (15 500-14 900yr BP), 

early Holocene (10 900-7300yr BP), mid Holocene (7300-2500yr BP) and late Holocene 

(2500-400yr BP).  

Signs of inflowing Atlantic water are first observed in the Late Glacial. However, it is 

possible that the core covering this time is partly reworked and thus care should be taken 

when interpreting the core. Atlantic water is present in the southwestern Barents Sea during 

the Holocene with varying inflowing strength and influence. The general warming and higher 

current strength throughout the early Holocene is due to increased inflow of Atlantic water. 

The currents calms and the Atlantic water flowing in to Bjørnøyrenna are cooler during the 

mid Holocene compared to the early Holocene. In the beginning of the late Holocene, a 

marginal ice zone (MIZ) is likely present in the studied area and a more vigorous environment 

occurs. During the late Holocene, the vigorous environment calms and by the end of the 

period only a weak current flows over the area, possibly influenced by a seasonal sea ice 

cover.        
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1 Introduction 

Warm Atlantic water flowing north, entering the Arctic, is an important source of heat in 

Arctic region. The variation in the inflow of Atlantic water transported north by the North 

Atlantic Current (NAC) is believed to affect the climate on land, as it is a part of the 

thermohaline circulation (Figure 1) (Rahmstorf, 2006; Slubowska-Woldengen, et al., 2008). 

The Atlantic water brings organic material and contributes to an increase in nutrients to the 

Arctic, contributing to increased productivity in benthic foraminifera living on the seafloor.  

The purpose of this thesis is to investigate the variability of Atlantic water inflow into the 

southwestern Barents Sea during the Holocene and part of the Late Glacial. Five core sites 

along the southeastern slope of Bjørnøyrenna are investigated (Figure 1). Using the benthic 

foraminiferal faunal assemblages, grainsize distribution and the total organic carbon (TOC) 

concentration, a model illustrating the variability in Atlantic water inflow can be made. 

The Barents Sea is an area in the Arctic of special interest due to the economic importance 

related to potential petroleum activities and fisheries (Saher, et al., 2012). In the later years, a 

general shift towards temperature tolerant and warm water species is observed in the 

southwestern Barents Sea (Saher, et al., 2012). The shift towards a warmer climate, regardless 

of source, is in need of more attention, especially with respect to effects on ecosystems 

(Saher, et al., 2012). There are relatively few studies from high latitude areas, thus the 

knowledge of pre-impact conditions are limited (Dijkstra, et al., 2013; Dijkstra, et al., 2015) 

and this study contributes to increasing our understanding of these conditions.   

The climate in southwestern Barents Sea and surrounding areas are sensitive to changes in the 

inflow of Atlantic water, including temperature change in the ocean, the atmosphere and sea 

ice conditions (Risebrobakken, et al., 2010). This study will contribute to increased 

understanding of natural variability and change in transportation patterns of seafloor 

sediments and foraminiferal response to variations in Atlantic water inflow. This may 

contribute to an increased knowledge of previous environmental changes and thus contribute 

to increasing the understanding of the ongoing climate change. 

This study is connected to the Barents Sea drill cuttings research initiative (BARCUT) 

project, and carried out by the Arctic University of Norway in Tromsø (UiT) 
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The BARCUT project aims to identify environmental impacts of drill cuttings released in to 

the ocean at the drill sites. BARCUT focus on long-term research and monitoring of 

petroleum related activities in the Barents Sea region. Eni Norge fully finances the BARCUT 

project.  

This study will provide data on the environmental and climatic conditions of the southwestern 

Barents Sea during the Late Glacial and Holocene. These data may be used as reference 

conditions in future studies on impacts of anthropogenic influences in the area as well as 

providing a model for the variation in Atlantic water inflow during the Late Glacial and 

Holocene, which may be used in studies constructing models predicting future variations in 

Atlantic water inflow. In addition, this study can contribute to an improved understanding of 

the natural environmental variability in the southwestern Barents Sea.           
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2 Background 

2.1 Study area 

The area investigated is located in the southwestern Barents Sea, off the north Norwegian 

coast, at the southeastern edge of Bjørnøyrenna (Figure 1).  This is an important area of 

Atlantic water inflow to the Barents Sea (Loeng, 1991). As the core sites are located at the 

southeastern edge of Bjørnøyrenna, they are believed to be influenced by the inflow of 

Atlantic water.    

Bjørnøyrenna is one of the largest known submarine troughs along glaciated continental 

margins. Bjørnøyrenna is influenced by warm Atlantic water flowing north along the 

continental slope of Norway (NAC) and colder Arctic water flowing south (Figure 1).  

There are shallower bank areas on both sides of Bjørnøyrenna. A bank area with depths 

shallower than 100m is located north of Bjørnøyrenna and a series of troughs and banks are 

located south of Bjørnøyrenna (Figure 1). Bjørnøyrenna ends in the western part where the 

continental shelf abruptly ends and the continental slope down to the abyssal plain begins.          

 

 
Figure 1: A) An overview of the study area. ESC = East Spitsbergen Current, BIC = Bear Island Current, NCaC = North 

Cape Current, NCC = Norwegian Coastal current and NAC = North Atlantic Current. B) Close up of study area. The core 

locations are indicated with red dots. Figure modified from Dijkstra et al. (2016). 
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Figure 2: Bathymetric map of the Barents and Kara Seas (Byrd 

polar research Center, 2001). 

The Barents Sea is an epicontinental sea, covering one of the widest continental shelfs on the 

planet (Figure 2). It is estimated to cover an area of about 1.4 million km
2
 (Smedsrud, et al., 

2013). The topography of the Barents Sea is relatively uneven with several banks and plateaus 

separated by troughs. This diverse bottom topography strongly influences the currents. This is 

especially true for the currents going over some of the bank areas (Loeng, 1991). As the 

currents are the main transport agent of sediments, the seafloor topography indirectly affects 

the deposition and transportation of sediments. The Barents Sea is characterized by salinities 

of 34.3-34.8ppt (parts per thousand) and temperatures below 0°C and is seasonally covered by 

sea ice (Loeng, 1991). 

The vast parts of the Barents Sea are areas of intense heat exchange between the ocean and 

the atmosphere, mainly driven by the Atlantic water inflow (Risebrobakken, et al., 2010; 

Smedsrud, et al., 2013). This is especially true during sea ice formation, when a lot of latent 

heat is released to the atmosphere.     

Due to the seafloor topography, the NAC splits into 

two branches at about 72°N (Figure 3) (Loeng, 

1991). One branch continues to follow the Barents 

Sea slope northwards along the western Svalbard 

margin into the Arctic Ocean as the West 

Spitsbergen Current (WSC). The other branch flows 

into the south Barents Sea as the North Cape Current 

(NCaC).  

The WSC splits into two new branches west of the 

northern part of Svalbard (Figure 3). One branch 

continues north around Svalbard as a subsurface current while the other branch turns west and 

eventually south “recycling” the Atlantic water (Figure 3).  The NCaC splits further in to two 

branches inside Bjørnøyrenna (Figure 3).    

The large submarine troughs, separated by shallow bank areas, in the southwestern Barents 

Sea are a result of several glacial erosion episodes (e.g. Elverhøi et al. (1998)). Bjørnøyrenna 

and Storfjordrenna are two examples of such large submarine troughs extending in to the 

southwest Barents Sea continental shelf break. The deepest part of Bjørnøyrenna is found in 

the western part at depth of approximately 500m. This is also the deepest part of the Barents 
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Sea, which have an average depth of 230m (Loeng, 1991). The shallow bank areas have a 

strong impact on currents and act as sediment sources for the deeper parts of the southwestern 

Barents Sea (Junttila, et al., 2014; Loeng, 1991). Some of the most important banks in the 

study area are Tromsøflaket, Nordkappbanken, and Sentralbanken. 

Three main water masses, Atlantic water, Arctic water and Coastal water, dominate the 

Barents Sea. Five locally formed water masses are present in addition to the three main water 

masses defined by their specific properties (Table 1) (Loeng, 1991). Figure 3 illustrates the 

current patterns in the Barents Sea as they are today.  

 

Table 1: Characteristics of the main and local water masses in the Barents Sea, T=temperature in °C, S=salinity. Table from 

Loeng (1991). 

The Arctic Front, illustrated with a blue line in Figure 3, is where the Atlantic and Arctic 

water interact and the Atlantic water is submerged under the Arctic water. The seasonal sea 

ice edge or marginal ice zone (MIZ) usually follows and defines the Arctic Front during 

winter and early spring (Loeng, 1991; Hald & Steinsund, 1996; Jennings, et al., 2004).   
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Figure 3: Ocean currents in the Barents Sea today. WSC=West Spitsbergen Current, NCaC= North Cape Current, 

NCC=Norwegian Coastal Current. Figure modified from Kartverket.   

2.2 Sediment transport processes 

Several sedimentation processes are and have been active during the Holocene and Late 

Glacial in the southwestern Barents Sea. All sediment deposited on the sea floor originates 

from land-based sources and are transported to the deposition area by a variety of processes. 

Rivers and glaciers erode much of the sediment from mountain areas and transport the 

material to the ocean. Aeolian processes can transport fine particles out to the oceans. Figure 

4 illustrate which grain sizes different transportation mechanisms are able to transport. 

Sediments can be reworked after deposition, for example by events like mass movement 

processes or strong bottom currents (Junttila, et al., 2014; Hass, 2002). 

NCaC 

WSC 

NCC 

 
Arctic Front 
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2.2.1 Suspension 

Small grainsizes such as clay and silt can be transported long distances in suspension (Figure 

4) (Junttila, et al., 2014). As long as the currents maintain a velocity high enough for the 

particles to remain in suspension, they will not settle. Bottom currents can carry sediment in 

suspension for long distances. This allows the current strength to be estimated by 

investigating the sorting of silt grains, called sortable silt. Clay particles tend to flocculate, 

forming aggregates, not readily interpreted (Hass, 2002).  

2.2.2 Ice rafted debris 

Ice rafted debris (IRD) occurs in areas with sea ice or icebergs. Sediments trapped in the ice 

are released and sinks to the seafloor when the ice melts. Icebergs can contain any grain size, 

from very fine clay particles to large boulders (Figure 4). Larger grains, sand and coarser, are 

usually assumed to be of ice rafted origin. Icebergs can transport sediments long distances 

before completely melting away (Gilbert, 1990).   

2.2.3 Mass movement processes 

Underwater slides and slope failures transport sediment from the shelf to the deep seas. 

Slopes like the ones on the sides of Bjørnøyrenna may fail, causing reworking of the 

sediments. Mass movement processes usually occur in areas with high sedimentation rates. 

Mass movement transport mechanisms are not suppling new sediment to the seafloor, but 

reworks sediments already present (Ercilla & Casas, 2012). The only exception from this is if 

the material originates on land and slide in to the ocean by mass movement processes, such as 

a slope failure in a fjord or at the coast.   
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Figure 4: Illustration of transport mechanisms and the grain size they are able to transport to the seafloor. Figure from Gilbert 

(1990) 

 

2.3 Deglaciation and the Holocene in southwestern Barents 
Sea 

2.3.1 Deglaciation 

Grounded ice has at several occasions, covered the Barents Sea throughout the late Cenozoic 

era (Vorren, et al., 1988a). These glaciations eroded and shaped the Barents Sea bathymetry 

to what is present today. About 20 000 years before present (1950) (yr BP) the Barents 

Svalbard Ice Sheet (BSIS) was at its greatest extent in the late Weichselian ice age, commonly 

known as the last glacial maximum (LGM). At this time, the grounded ice covered a large 

area including the Barents Sea, Fennoscandia and south to the present Great Britain (Figure 

5). 

The deglaciation after the LGM in the southwestern Barents Sea occurred stepwise and began 

about 15 000yr BP (Landvik, et al., 1998). A minimum and maximum age for the onset of the 

deglaciation is estimated to be 13 700yr BP and 16 200yr BP respectively (Vorren, et al., 

1988b) 
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Figure 5: The extent of the last glacial maximum (LGM) about 20 000yr BP. Sea level is lowered by 120m everywhere. Ice-

dammed lakes are shown inside the LGM limit (Mangerud, et al., 2004). 

Slubowska-Woldengen et al. (2008) suggest that the earliest signs of subsurface inflow of 

Atlantic water after the last glacial maximum (LGM) can be observed in foraminiferal 

assemblages on the northern Iceland shelf about 16 000yr BP. The strong Atlantic water 

signal could be due to the location of Iceland, far from the mainland ice sheets, making it less 

affected by meltwater (Slubowska-Woldengen, et al., 2008). Junttila et al. (2010) observed 

indications of Atlantic water inflow to the southwestern Barents Sea 18 700yr BP.   

The period 16 000-15 000yr BP is characterized by the presence of benthic foraminifera 

species associated with cold, low salinity water along the continental margins of the Nordic 

and Barents Seas (Slubowska-Woldengen, et al., 2008). High content of ice rafted debris 

(IRD) observed in the northern parts of the North Sea by Klitgaard-Kristensen, et al. (2001), 

indicating presence of icebergs. Signs indicating the start of the deglaciation close to the north 

Norwegian mainland are dated to ~15 000yr BP (Junttila, et al., 2010).    

The Fennoscandian, Iceland and Greenland ice sheets retreated rapidly from the shelf into the 

fjords during the Bølling-Allerød interstadials (14 500-13 500yr BP) (Slubowska-Woldengen, 

et al., 2008; Aagaard-Sørensen, et al., 2010). At the same time, the Svalbard-Barents Sea ice 

sheet was only present on the Svalbard archipelago, the northwestern Barents Sea basin, 

Franz Josef Land and Novaya Zemlya (Lambeck, 1996). Slubowska-Woldengen, et al. (2008) 

found indications of Arctic conditions and proximity of sea ice in the southeastern Barents 

Sea during this time.   
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During the Bølling-Allerød interstadials, inflow of saline and chilled Atlantic water on the 

southwestern and western Svalbard shelf caused the conditions to change from Arctic to 

Subarctic conditions (Slubowska-Woldengen, et al., 2008). Indications of Arctic conditions, 

with lower salinity and decreased influence of Atlantic water are observed around Iceland. It 

is likely an oceanic front, approaching from northwest were in the near proximity of Iceland 

at the time (Slubowska-Woldengen, et al., 2008). Aagaard-Sørensen, et al. (2010) observed a 

continuous influence of Atlantic water in Ingøydjupet, off the northern Norwegian coast, in 

the period 14 200-12 700yr BP.    

In the Norwegian Channel and northwards along the southern Norwegian margin, sea surface 

temperatures (SST) of 7-9°C are recorded (Klitgaard-Kristensen, et al., 2001). This show a 

significant warming of the SST compared to the previous times, and only slightly lower than   

temperatures measured today (Slubowska-Woldengen, et al., 2008). Atlantic water did not 

reach the southern Barents Sea, between Norway and Novaya Zemlya, where sea ice and 

Arctic conditions dominated during the Bølling-Allerød interstadials (Slubowska-Woldengen, 

et al., 2008). 

About 12 500-11 500yr BP a near glacial period called Younger Dryas occurred. In the 

northern North Sea, along the Svalbard shelf and in the southeastern Barents Sea the 

foraminiferal faunal composition indicates freshening and cooling of the shelf bottom waters, 

indicating a return of Arctic conditions (Slubowska-Woldengen, et al., 2008). High IRD 

content in the northern North Sea indicates the presence of melting icebergs and/or sea ice 

(Klitgaard-Kristensen, et al., 2001).         

There are indications of subsurface inflow of Atlantic water north of Iceland during the 

Younger Dryas (Slubowska-Woldengen, et al., 2008). Indications of the proximity of an 

oceanographic front are observed on the Svalbard shelf, moving north from Iceland since the 

Bølling-Allerød interstadials (Slubowska-Woldengen, et al., 2008). 

2.3.2 The Holocene 

The Holocene is the interglacial time-period from about 11 700yr BP to recent. 

In the period 11 000-9800yr BP Risebrobakken et al. (2010) suggests a strong stratification of 

the surface/subsurface and bottom water masses in the southwestern Barents Sea. From 

10 900yr BP to 9300yr BP indications of a common origin of the water masses consisting of 
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Atlantic water are present in Ingøydjupet (Aagaard-Sørensen, et al., 2010). Indications of a 

warming of the bottom water flowing north, to the southwestern Barents Sea, are recorded at 

the same time (Risebrobakken, et al., 2010; Groot, et al., 2014). In the period 9800-7500yr BP 

indications of enhanced winter mixing of the water masses, with strong influence of Atlantic 

water (Aagaard-Sørensen, et al., 2010), and a strengthened air-sea interaction are observed 

(Risebrobakken, et al., 2010).  

In the late early Holocene (9500-7500yr BP), a strong inflow of warm and saline Atlantic 

water entered the Nordic, and Barents Seas. As the Atlantic water flowed north, the 

temperature dropped and indications of a strong influence of chilled and saline Atlantic water 

along the western and northern Svalbard shelf and northern Barents Sea shelf reaching into St. 

Anna Trough is present (Slubowska-Woldengen, et al., 2008). Slubowska-Woldengen, et al. 

(2008) suggests this as indications of strengthening of the West Spitsbergen Current (WSC).  

In the southeast Barents Sea indications of enhanced inflow of warm Atlantic water through 

the NCaC is observed in foraminiferal assemblages (Slubowska-Woldengen, et al., 2008). On 

the northern Iceland shelf, foraminifera indicate strong influence of Atlantic water 

(Slubowska-Woldengen, et al., 2008). Klitgaard-Kristensen, et al. (2001) suggests a strong 

increase of bottom water temperatures in the North Sea during the late early Holocene (9500-

7500yr BP). The Arctic Front is suggested to be located close to the southwestern Barents Sea 

margin (Risebrobakken, et al., 2010) and in the proximity of the northern and western 

Svalbard shelf respectively during the late early Holocene (Slubowska-Woldengen, et al., 

2008) .  

During the mid Holocene (7500-2500yr BP) the sea surface temperature (SST) is believed to 

be above the present day temperatures. However, a cooling trend from the early Holocene 

maximum SST to the late Holocene (2500-0yr BP) minimum SST is observed 

(Risebrobakken, et al., 2010). Atlantic water inflow to the southwestern Barents Sea increase 

during the mid Holocene compared to the early Holocene (Risebrobakken, et al., 2010). 

Risebrobakken, et al. (2010) suggests that the present day oceanographic patterns in the area 

were established during the mid Holocene. The water column in the southwestern Barents Sea 

was well ventilated during the mid Holocene (Risebrobakken, et al., 2010).          

In the late mid Holocene (4000-2000yr BP), there are indications of Arctic conditions 

returning along the Svalbard margin and northern Barents Sea shelf with a reduction in the 
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influence of Atlantic water compared to the early Holocene (Slubowska-Woldengen, et al., 

2008). There is not much change on the Iceland shelf during late Holocene compared to the 

early Holocene. However, there are some indications of mixing Arctic water masses with 

Atlantic derived waters on the northern Iceland shelf (Slubowska-Woldengen, et al., 2008).       

In the late Holocene (2500-0yr BP) conditions varied with several low salinity episodes, 

indicating a shift of the transitional zone between Atlantic and Coastal water (Risebrobakken, 

et al., 2010). During the recent part of the late Holocene there has been one major warming 

period, the Medieval Warm Period (MWP), lasting from 900AD to 1300AD, followed by a 

cold period called the little ice age (LIA) lasting from 1300AD to about 1900AD. The MWP 

is preceded by a cold period called the dark ages cold period (DACP) lasting 400 years, from 

400AD to 800AD (e.g. Wilson et al. (2011) and Eiriksson et al. (2000)).   

2.4 Benthic foraminifera 

Benthic foraminifera are microorganisms living on the seafloor and in the top cm of the 

sediments. Foraminifera are diverse, with thousands of different species thriving under 

different temperature, salinity, sedimentary and other conditions. There are two main types of 

preferred habitats of benthic foraminifera species. They are infaunal species living within the 

top centimeters of the sediment and epifaunal species living on top of the sediments. This 

study does not differ between infaunal and epifaunal species.  

Foraminifera respond rapidly to changes in their environment, like changes in nutrient supply 

or temperature and salinity changes. The calcareous foraminifera shell, commonly referred to 

as the test, are normally frequent and well preserved in sediments, making them ideal for use 

as biomarkers. Atlantic water has a higher concentration of organic material, and species that 

prefer a habitat enriched with organic material can be used as an indication of Atlantic water 

inflow (Knies & Martinez, 2009).  

The foraminifera test can be either agglutinated, meaning the organism constructs the test 

from sediment particles glued together, or calcareous, where the test is constructed of calcium 

carbonate. In Arctic areas, benthic foraminifera produce smaller test than similar species in 

temperate areas (Schröder, et al., 1987).  
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High content of organic carbon is often observed together with a high content of fine particles 

(e.g. Junttila et al. (2014) and Dijkstra et al. (2013)). As the Atlantic water flows north as a 

surface current, the organic material begins to sink while being transported northward, 

eventually reaching the seafloor and become available for benthic foraminifera.   

The calcareous tests cannot be found below the carbonate compensation depth (CCD), where 

all carbonate is completely dissolved in the seawater. The CCD varies in depth throughout the 

oceans, but it is usually located below 4500m depth on average (Allaby, 2013). 

Because benthic foraminifera are sensitive to change they are ideal for use in climatic studies 

and studies considering changes in the seafloor environment. By comparing a decrease for 

some species and simultaneously an increase in other species preferring different 

environmental conditions, it is possible to identify and suggest possible reasons for the 

change.   

2.5 Ecological preferences  

For further information on some of the species, see chapter 3.4.1 Taxonomy notes. 

2.5.1 Cribrostomoides spp. (Cushman, 1910) 

Cribrostomoides spp. is an epifaunal, agglutinated species scavenging the sediment surface 

for nutrients (Linke & Lutze, 1993). Cribrostomoides spp. reacts rapidly and utilizes large 

amounts of organic material from planktonic bloom events (Linke & Lutze, 1993; Struck, 

1995). Today Cribrostomoides spp. can be found in calm environments with low 

sedimentation rates (Linke & Lutze, 1993; Khusid & Korsum, 1996).   

2.5.2 Reophax spp. (Montfort, 1808) 

Reophax spp. is an infaunal, agglutinated species. Reophax spp. has a long geological history, 

ranging from the Ordovician to recent (Gutschick, 1986). They are tolerant to poor trophic 

conditions and are well adapted to low amounts and poor quality organic material 

(Dessandier, et al., 2015).  

Reophax spp. correlates positively with TOC and have a negative correlation with 

temperature (Hald & Steinsund, 1992).  
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2.5.3 Buccella spp. (Andersen, 1952) 

Buccella spp. is suggested to have an association with the submerged inflow of nutrient rich 

Atlantic water and long ice-free seasons (Jennings, et al., 2011; Slobuwska-Woldengen, et al., 

2007).  

The association with Atlantic water is not clearly demonstrated in all studies. Polyak and 

Solheim (1994) found a connection between B. frigida and seasonal sea ice cover and 

moderately to high seasonal productivity. This connection is supported by Hald and Steinsund 

(1996), which also found that Buccella spp. have a fairly wide salinity, temperature and 

substrate preferences, but generally prefer relatively low temperatures and slightly reduced 

salinities. They tend to be numerous in areas of high biological activity as they feed on fresh 

phytodetritus associated with proximity to a seasonal sea ice edge of oceanic front 

(Slubowska, et al., 2005). Buccella spp. can survive in low salinity environments and is 

commonly found in a sandy substrate (Hald & Steinsund, 1996; Lagoe, et al., 1994).   

2.5.4 Cribroelphidium excavatum (Terquem, 1875)  

Cribroelphidium excavatum, originally identified as Polystomella excavata by Terquem 

(1875) is a species thriving in cold water, often found in glaciomarine sediments (Mackensen, 

et al., 1985) and in near glacial environments (Hald, et al., 1994). This species is generally 

known as an Arctic species (Polyak & Solheim, 1994; Austin & Sejrup, 1994). Several 

subspecies of C. excavatum have been proven (Feyling-Hanssen, 1972) and it is worth noting 

the widespread occurrence of the cold water thriving sub species C. excavatum f. clavata 

(Cushman, 1944) found in shallow Arctic water (Hald & Vorren, 1987).  

C. excavatum is known to be a tolerant eurytopic species (Conradsen, et al., 1994; Austin & 

Sejrup, 1994). The appearance of C. excavatum has a positive reaction to variation in salinity, 

temperature and in turbulent waters (Conradsen, et al., 1994; Hald, et al., 1994).  

It is a very opportunistic species, capable of surviving in shifting environments with 

prevailing low salinities and/or temperatures and high turbidity (Hald & Steinsund, 1996). 

Linke and Lutze (1993) considered C. excavatum a highly adaptable species, adapting 

according to changes in nutrient supply and other environmental factors.   
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Cribroelphidium incertum, often referred to as Elphidium incertum, is considered a good 

indicator for brackish water and is often mentioned in connection to river proximal settings 

and brackish environments (Hald & Steinsund, 1996; Polyak, et al., 2002).  

2.5.5 Cassidulina laevigata (d’Orbigny, 1826) 

Living Cassidulina laevigata is reported from latitudes ranging from 50°N up to 73°N 

(Sejrup, et al., 2004). It prefers habitats with incoming water of oceanic (i.e. Atlantic) origin 

and avoids areas with fine grained sediments (Klitgaard-Kristensen, et al., 2002; Mackensen 

& Hald, 1988). C. laevigata prefers turbulent and well-oxygenated water and avoids areas 

with low oxygen content (Klitgaard-Kristensen, et al., 2002). Warm and high salinity bottom 

water of Atlantic origin and a sandy substrate is considered favorable conditions for C. 

laevigata (Mackensen & Hald, 1988). C. laevigata is morphologically similar to its northerly 

relative C. neoteretis (Mackensen & Hald, 1988).  

2.5.6 Cassidulina neoteretis (Seidenkrantz, 1995) 

Cassidulina neoteretis were first identified as Cassidulina teretis by Tappan (1951). Using a 

light microscope and images taken by a scanning electron microscope (SEM) the two species 

were identified separately (Seidenkrantz, 1995). C. teretis (Tappan, 1951) is considered 

extinct in the north Atlantic since about 0.7 million years ago (Seidenkrantz, 1995). 

C. neoteretis is associated with fine grained, organic rich sediments often with terrigenous 

mud (Mackensen & Hald, 1988). C. neoteretis have been found to prefer chilled Atlantic 

intermediate water with relatively low salinity and low turbidity (Mackensen & Hald, 1988; 

Hald & Steinsund, 1996; Slubowska, et al., 2005). Temperatures above 5°C are believed to 

restrain the distribution (Hald & Steinsund, 1996). It is often found together with high 

concentrations of planktic foraminifera, suggesting they pursue phytoplanktic blooms 

(Slubowska, et al., 2005).   

It thrives in cold water conditions and it can be used as an indication of glaciomarine 

paleoenvironments (Mackensen & Hald, 1988).  

2.5.7 Cassidulina reniforme (Nørvang, 1945) 

Cassidulina reniforme is a shallow infaunal opportunistic species found in glaciomarine 

environments (Elverhøi & Bomstad, 1980; Mackensen, et al., 1985). It prefers cold water 

temperatures and a muddy substrate. C. reniforme tolerates periods of oxygen depletion 
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(Mackensen, et al., 1985; Mudie, et al., 1984; Sejrup, et al., 1981; Hald & Vorren, 1987; 

Polyak, et al., 2002) and is often found together with C. excavatum as it is associated with 

Arctic areas (Hald, et al., 1994; Khusid & Korsum, 1996).   

Due to its small size, it is susceptible to downslope redeposition in sandy muds (Mudie, et al., 

1984). C. reniforme is thriving in areas with rapid sedimentation of terrigenous material 

(>1cm/ka) (Sejrup, et al., 1981; Khusid & Korsum, 1996).   

2.5.8 Islandiella norcrossi (Cushman, 1933) 

Islandiella norcrossi is associated with cold Arctic water, distal glaciomarine sediments 

enriched in IRD and marine mud (Korsun & Hald, 1998; Eiriksson, et al., 2011). This Arctic 

species is associated with a seasonal sea ice cover, often proximal to a sea ice edge, and with 

relatively high and stable bottom water salinities (Polyak & Solheim, 1994; Korsun & Hald, 

1998). 

2.5.9 Eilohedra nipponica (Kuwano, 1962)  

Eilohedra nipponica is an epifaunal species, living on top of the sediments (Wollenburg & 

Mackensen, 1998). In literature, the species is commonly referred to as Epistominella 

nipponica.  

It is a small and round, generally <150µm, seasonally opportunistic species (Usami, et al., 

2013). Due to their small and round size, they are easily transported by high bottom current 

speeds and are considered a fragile species (Murray, et al., 1982; Hald & Steinsund, 1992; 

Saher, et al., 2012). E. nipponica is considered a warm species, preferring saline waters with 

temperatures >4°C, common found in soft mud enriched with organic material (Hald & 

Steinsund, 1996; Saher, et al., 2012).      

2.5.10 Lobatula lobatula (Walker & Jacob, 1798) 

Lobatula lobatula, often mentioned by its synonym Cibicides lobatulus, is considered an 

epifaunal species, found in coarse-grained sediments with an organic carbon content of 1-

3mg/g dry sediment (Klitgaard-Kristensen, et al., 2002). Being a suspension-filter feeder it 

prefers coarse grained, high-energy environments where it can cling to gravel, crustaceous 

shells and similar to filter the water (Hald & Steinsund, 1996; Conradsen, et al., 1994; 

Mackensen, et al., 1985).  
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The occurrence of L. lobatula is restricted by low salinities, but not by temperature (Hald & 

Steinsund, 1996). L. lobatula is primarily useful for indicating strong bottom currents.           

2.5.11 Melonis barleeanus (Williamson, 1858) 

Melonis barleeanus are associated with fine-grained sediments, typically rich in organic 

material and nutrients (Polyak & Solheim, 1994; Jennings, et al., 2011; Hald & Steinsund, 

1996). Its occurrence is tied to Atlantic derived waters (Mudie, et al., 1984). It prefers partly 

degraded organic matter, commonly originating from redeposition from shallow areas, as a 

source to nutrients (Caralp, 1989) .    

Hald and Steinsund (1996) found that temperature does not seem to significantly affect the 

distribution of M. barleeanus, however low salinities were found to be a restrictive parameter.  

Occurrence of the infaunal species, M. barleeanus, can indicate increased marine productivity 

and burial of nutrients (Jennings, et al., 2011).  

2.5.12 Nonionella spp. (Dawson, 1860) 

Nonionella spp. are grouped together to avoid taxonomic uncertainties, see section 3.4.1. 

Taxonomy notes.  

Nonionella labradorica is a deep infaunal species, associated with fine-grained sediments 

enriched in organic material (Conradsen, et al., 1994; Corliss, 1991). Conradsen et al. (1994) 

found that N. labradorica prefers salinities between 30‰ and 35‰. N. labradorica feeds on 

fresh phytodetritus and its presence may reflect high primary productivity as a result of the 

retreating summer sea ice margin or Arctic Front (Jennings, et al., 2011). N. labradorica and 

N. auricula both prefer colder bottom water with temperatures less than 2°C (Wilson, et al., 

2011).    

N. turgida, originally named Rotalina turgida by Williamson (1858), is associated with long 

ice-free seasons and submerged inflow of nutrient rich Atlantic water (Jennings, et al., 2011; 

Polyak & Mikhailov, 1996). It is a deep infaunal species, living 4cm and deeper in the 

sediment (Corliss, 1991).     
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3 Material and methods 

This section cover materials and methods used to obtain data and information from the cores. 

All the cores were sampled at 1cm intervals except the two lowest samples in core 993 that 

were sampled at 1.5cm intervals (appendix 2). In total 100 samples were investigated. Only 

the bottom parts of the cores (Table 2) are used for the purpose of this study. The top halves 

of the cores are studied by Dijkstra et al. (2016).      

For practical and simplifying reasons, the cores are referred to as the number in the core name 

in the text (Table 2), e.g. core HH12-903-MC will be referred to as core 903. 

Table 2: Core information gathered from the cruise reports.   

3.1 Sampling 

The cores were retrieved using a multicorer on cruises with RV Helmer Hanssen, operated by 

UiT, in 2012 and 2015 (Table 2).  

The multicorer retrieves several cores in one coring, which is one of the advantages with the 

multicorer. Because several cores are retrieved at the same time, the chance of at least one 

successful core increase. The core length possible to achieve with a multicorer is limited, 

usually to less than one meter per core.  

3.2 Freeze drying 

The cores were sampled in plastic bags, at one cm intervals, with the exception of the two 

lowest intervals in core 993, which were sampled at 1.5cm intervals (appendix 2). All the 

samples were weighed to gain the wet weight to be used in later calculations. The samples 

Core name Date Location Latitude (N) 

Longitude (E) 

Water depth 

(m) 

Sample interval 

(cm) 

HH12-903-MC 14.07.2012 Sentralbanken 

south 

74°04.961757N 

034°30.091517E 

323 20-45 

HH12-902-MC 13.07.2012 Sentralbanken 

south 

73°57.844N 

033°48.926E 

333 20-44 

HH12-897-MC 12.07.2012 Sentralbanken 

south 

73º18.983N 

030º15.714E 

361 20-40 

HH12-893-MC 11.07.2012 Bjørnøyrenna 

south 

72º51.441129N 

24º18.658116E 

435 20-41 

IG15-993-MC 20.06.2015 Bjørnøyrenna 

West 

7220.144125N 

01809.412879E 

380 20-31 
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were placed in a freezer until completely frozen. The frozen samples were then placed in a 

freeze-dryer for about 24 hours. 

The freeze-dried samples were weighed using a certified two decimal scale, Sartorius AG 

ED2202S-CW, in order to calculate the water content in the samples. The freeze dryer used is 

a CHRIST ALPHA 1-4 LSC plus freeze dryer.  

Freeze-drying works by vaporizing the ice in the frozen sample without turning it to liquid 

water. Freeze-drying is preferable to oven drying as it removes the water without altering the 

structure of the sediments. Foraminifera tests are better preserved using freeze-drying because 

contraction of the sediments during drying is avoided. In addition, sediments containing clay 

are easier to handle after freeze-drying as they become and stay friable. 

3.3 Sieving 

Before sieving the samples, each sample was subsampled three times. The subsamples were 

2-3g, and were used for the grain size analysis, TOC analysis and one reference sample in 

case something should go wrong when handling the other samples, and for future references.    

Sieving is a method used for separating the different size fractions. The process can be done 

by dry sieving or wet sieving the samples. Wet sieving is used for the purpose of this study.   

The remaining material, after the subsampling, was sieved using sieves with mesh sizes of 

1mm, 100µm and 63µm. any material smaller than 63µm were not retained. When the 

samples appeared sufficiently clean, they were transferred from the sieves to a labelled special 

filter paper for excess water to run off.  

The sieves were cleaned between the samples using an ultrasound bath followed by high 

water pressure to remove any possible particles stuck in the mesh.  

The sieved samples were dried overnight in a dry-cabinet at 40°C, before being transferred to 

glass vials. The glass vials were weighed using the same two decimal scale used in the freeze-

drying process, before and after the sample were transferred to the vials. This was done to 

retrieve the dry weight of the samples of the different fractions.  

Using this preparation method can introduce error margins. One such error margin can be 

using too high water pressure, which can destroy the tests. Another possible error margin is 

not properly cleaned sieves or small holes in the sieves.        
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3.4 Foraminiferal analysis 

To get a representative species assemblage of benthic foraminifera the mesh size of 100µm 

was used for sieving (Knudsen & Ausin, 1996). The >100µm size fraction is the most used 

size fraction when it comes to identifying foraminifera in Arctic regions, hence the 100µm to  

1mm fraction is used for identifying foraminifera to allow a direct comparison with previous 

studies in the area.  

A minimum of 300 specimens per sample were picked and identified in order to determine the 

relative abundance of the species in the foraminiferal assemblage. The relative abundances 

are based on the calcareous taxa only, unless otherwise stated in the text. At least 300 counted 

specimens are considered to provide sufficient accuracy for scientific quantitative 

examinations (Patterson & Fishbein, 1989). For samples with fewer than 300 specimens in 

total, the whole sample volume was picked. A sample splitter was used to measure the 

amount of the sample used for picking and identifying foraminifera in order to calculate the 

total amount of foraminifera in the sample. The splitter splits the sample in a credible 50/50 

split. The calculated total amount of foraminifera is used to calculate the flux. The 

foraminiferal absolute abundance (total number foraminifera per gram dry sediment) for both 

calcareous and agglutinated species was calculated. The dry bulk densities (g/cm3) were 

calculated from the weight measurements.  

Foraminifera flux (number/cm
2
*ka) = absolute abundance (#/g)*dry bulk density 

(g/cm
3
)*sedimentation rate (cm/ka)  

The flux gives an indication of the presence of a given species, not relative to the other 

species, which differs from the abundance, that consider species relative to one another. 

The picking itself was done by using a needle with a hair from a paintbrush attached. The hair 

was dipped in water to improve the surface tension in order to make the foraminifera test stick 

to the hair. The known sample split was evenly distributed on a picking tray before the 

foraminifera tests were identified and placed in a microslide for future storage. The 

microscope used for identifying foraminifera was a binocular microscope, LEICA MZ 12.5. 

The entire picking tray was counted for all the samples. The sample splitter was used to 

reduce the amount of material on the tray.                        
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Both calcareous and agglutinated species were picked and identified according to the World 

Register of Marine Species (WoRMS) and foramnifera.eu webpages, which are based on 

identifications by Ellis & Messina (1940-1978) and Loeblich & Tappan (1987). The 

foraminifera were identified down to species level, with the exception of species belonging to 

Reophax, Buccella and Cribrostomoides. Those species were identified to genus level and 

grouped together as Reophax spp., Buccella spp. and Cribrostomoides spp. respectively. 

Many of the agglutinated species tests were broken, in which case three identifiable pieces 

were considered equal to one theorized foraminifera test. One of the pieces should preferable 

show the aperture.   

Error margins can occur using the sample splitter, as there is a slight chance the sample might 

not be split in exactly 50/50. Also small amounts of the sample can attach to the splitter itself 

due to static electricity. There is also a small chance of overlooking some foraminifera while 

picking.   

3.4.1 Taxonomy notes 

The Reophax spp. is identified to genus level to avoid mixing of the species given that most 

of the tests were broken. 

Buccella spp. is identified to genus level because of their similar ecological preferences and to 

eliminate the potential error in the identification and mixing of the species (e.g. Slubowska et 

al. (2005)). It is assumed a predominance of Buccella frigida Cushman (1952). 

C. excavatum is grouped together with C. incertum to avoid taxonomic uncertainties. The 

subspecies have been overlooked and simply classified as C. excavatum for the simplicity of 

this thesis. 

The I. norcrossi group includes I. norcrossi and I. helenae. They are grouped together to 

avoid taxonomical uncertainties due to their transitional morphology making them difficult to 

distinguish. It is common to count these two species together as one species (e.g. Korsun & 

Hald, 1998). 

It should be noted that E. nipponica is almost morphologically identical to the temperature 

tolerant species Alabaminella weddellensis, usually found in deeper waters (Saher, et al., 

2012; Jennings, et al., 2011).  
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Nonionella spp. consist of N. labradorica grouped together with N. turgida and N. auricula to 

avoid taxonomic uncertainties and allow better comparison with previous studies where 

combining these species is common (e.g. Saher et al. (2009), Hald & Steinsund (1996) and  

Wilson et al. (2011)). N. labradorica is the most abundant species of the three, thus having 

the most impact on the observed signal.  

3.5 Dating 

Foraminifera tests from the top and bottom of all the core sections were sent to Poznan 

Radiocarbon Laboratory, located in Poznan, Poland, for Accelerator Mass Spectrometry 

(AMS) 
14

C Dating. Only the calcareous tests were sent for dating.  

The minimum amount of calcareous material possible to date, according to the Poznan 

laboratory, is 2mg. The samples consisted of various calcareous species collected from a 

range interval (Table 4). 

The principle behind AMS 
14

C dating is measuring 
14

C atoms relative to 
12

C and 
13

C. 
14

C is 

the only unstable, radioactive, isotope of the carbon atom, with a half-life of 5700 ± 30yr 

(Goddard, et al., 2016). It is possible to date 50 000-60 000yr, in some cases with sufficient 

material and the best available equipment it is theoretically possible to date as far as 75 000yr 

using AMS 
14

C dating.   

AMS 
14

C works by accelerating electrically charged particles to high velocities and exposing 

them to a strong magnetic field. The electrically charged particles are deflected as they pass 

the magnetic field. The heavy particles (
14

C) deflect less than light particles (
12

C and 
13

C), 

enabling the spectrometers to detect the number of atoms based on the angle of deflection 

(Purser & Litherland, 1990).  

CALIB 7.1.0 was used to calibrate the 
14

C ages into years BP (before present, 1950AD). 

Using the MARINE13 radiocarbon calibration curve the calibrations are limited to 50 000yr. 

CALIB 7.1.0 uses a modeled ocean with a global reservoir correction age of about 400yr and 

to accommodate the local effects (Delta R) in the study area a delta R value of 67±34yr was 

used (Mangerud & Gulliksen, 1975). This delta R age was retrieved from CALIBs own 

database for local reservoir correction ages.  
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When calibrating radiocarbon datings 1950 AD is considered the start of the present. This is 

because of all the excess 
14

C that entered the atmosphere originating from nuclear explosions 

and accidents in the years after 1950 AD. 

Some complications with the calibration are the fact that the atmospheric production of 
14

C is 

inconsistent through time. This influence the length of 
14

C years, making them differ from 

calendar years. As water masses of different 
14

C ages are circulating in the oceans, a 

correction is needed for a given area. This correction is called the reservoir effect and is 

defined as the difference between 
14

C ages in the oceans and atmosphere at any given time 

(Stuvier, et al., 1986). The 
14

C relationship between the ocean and the atmosphere interface is 

relatively constant, while the amount of 
14

C available can vary. Marine organisms incorporate 

14
C from the surrounding water and upwelling of old deep water cause a dilution in the area of 

upwelling causing organisms to reflect a younger age (Mangerud, et al., 2006; Stuvier, et al., 

1986). Due to these processes and the possibility of the sediments being reworked, the 

calibrated ages should always be considered as minimum ages.   

3.6 Organic Carbon 

Before measuring the total organic carbon (TOC) the samples had to be prepared. 

3.6.1 Sample treatment 

The samples were crushed to a fine powder using a Retsch GmbH - Mortar Grinder RM-100. 

About 0.45g of each sample were weighed and placed in crucibles for chemical treatment to 

remove any inorganic carbon. 

The samples were covered with 10% hydrochloric acid (HCl), to remove the inorganic 

carbon, and placed in a fume hood where they were left over night for the acid to work. The 

samples were then washed eight times using distilled water to remove any remaining acid, 

which fumes can disturb and possibly destroy the sensors in the LECO analyzer.  

3.6.2 LECO Analysis 

The total organic carbon (TOC) was measured using a LECO CS 744 combustion analyzer, at 

the geology laboratory at the University of Tromsø. The LECO CS 744 incinerates the sample 

and analyzes the fumes. Both carbon and sulfide content are measured, but only the carbon 

results are of interest to this study.  
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A minor amount of iron and LECOCEL accelerator were added to the crucibles to act as 

accelerators during the incineration. The samples were, one after one, placed in the furnace 

and incinerated to obtain the TOC concentrations. The analysis was preformed two times. 

One time using chemically treated samples to obtain the TOC values, and one time, without 

any chemical treatment, to obtain total carbon (TC) values. 0.45g of sample material was used 

for the TOC analysis and 0.23g for the TC analysis. 

3.7 Particle size analysis 

The particle size analysis (PSA) was executed in the geology laboratory at UiT using a 

Beckman Coulter LS 13320 Particle Size Analyzer. This particle size analyzer use laser 

diffraction to count individual grains between 0.04µm and 2mm. 

3.7.1 Sample treatment 

About 2g of all the samples were weighed and placed in individually marked plastic tubes for 

chemical treatment to remove calcium carbonate (CaCO3) and organic material. The particle 

size analyzer does not differ between the grains, calcium carbonate particles and the organic 

material particles. By removing calcium carbonate and organic material an accurate 

measurement of the grainsizes present in the samples can be obtained.   

All samples were treated chemically using HCl and hydrogen peroxide (H2O2) to remove 

calcium carbonate and organic material respectively.  

The samples were covered with 20% HCl and put under a fume hood for 24 hours to remove 

calcium carbonate from the samples. After 24 hours, when the calcium carbonate was 

removed, the samples were centrifuged for four minutes at 4000rpm, and all excess acid were 

properly disposed of. The tubes were filled with distilled water and centrifuged again to wash 

the samples. All samples were washed twice to make sure any leftover HCl were removed.  

After removing the calcium carbonate, the samples were covered with 20% hydrogen 

peroxide to remove organic material. The tubes containing the samples covered with 

hydrogen peroxide were covered with aluminum foil and placed in water at 80°C to speed the 

chemical reaction. The samples were left in the water for two hours, until the reactions had 

stopped. Figure 6 shows the tubes containing the samples, reacting with hydrogen peroxide.  

To avoid cracking of the tubes during the centrifuging and washing process, the tubes were 

cooled to approximate room temperature. The washing process is the same as for the HCl 
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treatment, centrifuging for four minutes at 4000rpm and washing with distilled water two 

times.  

 

Figure 6: The tubes with sample material reacting with hydrogen peroxide, removing organic material. 

After the acid treatments, the samples were transferred to plastic cups and stored in a freezer 

to prepare the samples for freeze-drying. The samples were freeze-dried in order to dissolve 

the samples readily in water. 0.5mg of the sample material were transferred to a new plastic 

cup and 20cl water was added. The plastic cups were placed in an Edmund Bühler GmbH 

SM-30 universal shaker over night to keep the material in suspension and avoid flocculation 

of the particles. Before analyzing the samples, two drops of a calgon solution were added to 

remove the surface tension of clay particles.       

3.7.2 Sample analysis 

The chemically treated samples were put in an ultrasound bath for five minutes before being 

poured, one at the time, through a 2mm sieve, in to the particle size analyzer. Each sample 

was analyzed three times to get a representative measurement of the entire sample. The 

average result of the three measurements was used for calculating statistics on the grainsize.      

All grainsizes are referred to as they are classified after the Udden-Wentworth scale 

classification scheme (Figure 7). The grainsize fraction smaller than 63µm may be referred to 

as mud.  
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Figure 7: The Udden-Wentworth size scale. Figure retrieved from GRADISTAT 8.0.  

Possible error margins can be flocculated particles and leftovers of organic material or 

calcium carbonate, which can influence the measured result.  

3.8 Data processing 

The results from the PSA were used to retrieve statistical data using a macro-activated excel 

spreadsheet, developed by Dr. Simon J. Blott, called GRADISTAT 8.0 (Blott, 2010). 

Statistics regarding mean grainsize, sorting, skewness, kurtosis, percentage of each grainsize 

between 0.04µm and 2mm and percentage of the descriptive term, after the Udden-

Wentworth classification scheme (Figure 7), are obtained.  

For the purpose of this study, the geometric methods of moments statistics were used. The 

statistical formulas used to calculate the statistics are given in Table 3. 
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Table 3: Statistical formulas used by GRADISTAT 8.0 to calculate the geometric methods of moments. f=frequency in 

percent, m=mid-point of interval in metric or phi intervals. Table from GRADISTAT 8.0 

All graphs presented in this thesis are produced using the Grapher 9 software.   

3.8.1 Sortable silt 

GRADISTAT v8.0 was also used to get statistics on sortable silt (𝑆𝑆̅̅ ̅). To obtain information 

on the sortable silt, the silt fraction from the analysis were treated separately statistically. The 

silt fraction is the grainsizes from 2µm to 63µm (Figure 7).  

The smallest grainsizes like clay and fine silt particles are known to flocculate, creating 

aggregates. These aggregated may not behave in an interpretable way, and sortable silt is 

therefore defined as the silt fraction between 10µm and 63µm (Hass, 2002). Any grains larger 

than 63µm are considered too heavy for the deep-sea currents to transport in suspension over 

long distances, and can be assumed ice rafted (Hass, 2002).    

The mean sortable silt grain size (𝑆𝑆̅̅ ̅) exclusively depends on bottom current strength, and the 

difference in sediment input can be ignored (Hass, 2002). Large 𝑆𝑆̅̅ ̅ sizes show stronger 

bottom currents than small 𝑆𝑆̅̅ ̅ sizes.  

In cases with a high ice rafted debris (IRD) content, the 𝑆𝑆̅̅ ̅ needs to be corrected for ice rafted 

silt influence. This is done by correlating the 𝑆𝑆̅̅ ̅ and sand (%). If 𝑆𝑆̅̅ ̅ and sand (%) is 

correlatable it suggest a similar mode of transportation (Hass, 2002). Creating a regression 

function, showing 𝑆𝑆̅̅ ̅ primary influenced by ice rafting, from the correlation curve allows the 

potential 𝑆𝑆̅̅ ̅ (𝑆𝑆̅̅ ̅
𝑝𝑜𝑡) to be calculated. 𝑆𝑆̅̅ ̅

𝑝𝑜𝑡 describes how the  𝑆𝑆̅̅ ̅ would appear if there were 

no fluctuations in the current strength. The difference between 𝑆𝑆̅̅ ̅ and 𝑆𝑆̅̅ ̅
𝑝𝑜𝑡, in the coarser or 

finer direction, give an indication if the current were stronger or weaker than the calculated 

values respectively. The difference is called Δ𝑆𝑆̅̅ ̅ and shows the relative current speed 

fluctuations, corrected for IRD influence.  

ΔSS̅̅ ̅ = SS̅̅ ̅ - SS̅̅ ̅
pot      
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Δ𝑆𝑆̅̅ ̅ is the 𝑆𝑆̅̅ ̅ component modified by current speed, SS̅̅ ̅
pot is the 𝑆𝑆̅̅ ̅ of sediment primarily 

from ice rafting and  𝑆𝑆̅̅ ̅ is the measured sortable silt mean (Hass, 2002).  
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Figure 8: Core age, in cal yr BP, and average sedimentation rate (cm/ka) plotted against the southwest-northeast 

position of the cores. The top and bottom depth of the cores are given in the figure.  

4 Results 

The various results obtained during processing of all five cores are presented in this section.    

4.1 Radiocarbon dating 

Ten samples were radiocarbon dated to obtain the age of the bottom and top part of the core 

sections. The dating results and the calibrated ages, both 1σ and 2σ results, are presented in 

Table 4. The calibrated median probability age are assumed to be the age of the sample 

interval closest to the core, meaning where several intervals were used for dating, the interval 

closest to the rest of the core is assumed to be the median probability age. The ages are 

extrapolated from the median probability age to get an age for the sample intervals used in the 

dating.   

Figure 8 shows the age of the cores, in calibrated years before present, and the average 

sedimentation rate in cm per thousand year (cm/ka) relative to the core sites southwest-

northeast position. The sedimentation rates are calculated from the calibrated ages of the cores 

and are assumed constant throughout the cores.  
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Core 
Dated sample 

interval (cm) 
ΔR (year) 

Uncalibrated 
14

C age 

Cal age 

1σ 

Cal age  

2σ 

Cal age  

median 

probability 

Extrapolated 

age 

HH12-903-MC 
19-20 67 ± 34 1290 ± 30 702 - 816 674 - 881 766 766 

44-45 67 ± 34 2490 ± 35 1988 - 2124 1916 - 2215 2061 2061 

HH12-902-MC 
20-22 67 ± 34 1135 ± 30 597 - 675 541 - 706 634 615 

41-44 67 ± 34 1520 ± 30 942 - 1048 907 - 1123 1001 1038 

HH12-897-MC 
20-24 67 ± 34 1495 ± 35 922 - 1030 879 - 1113 978 406 

35-40 67 ± 34 3470 ± 80 3157 - 3372 3021 - 3472 3264 4026 

HH12-893-MC 
20-24 67 ± 34 4600 ± 40 4675 - 4817 4567 - 4845 4731 3646 

39-41 67 ± 34 9700 ± 120 10 349 - 10 670 10 205 - 10 835 10 513 10 875 

IG15-993-MC 
20-21 67 ± 34 13 070 ± 120 14 652 - 15 189 14 263 - 15 289 14 877 14 877 

29.5-31 67 ± 34 13 400 ± 70 15 300 - 15 588 15 200 - 15 731 15 453 15 453 

Table 4: Results from the AMS 14C dating. Cal age = Calibrated age in years before present (yr BP). The 1σ results show the interval in which the true 

age is 68.3% likely to lie. The 2σ results show the interval in which the true age is 95.4% likely to lie. The extrapolated ages are based on the median 

probability age. 
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4.2 TOC 

In general, the highest TOC values are found in core 903, with no values lower than 1.7%, 

closely followed by core 902, which have the lowest value of 1.4%. Both core 902 and 903 

show a similar curve where the values increase with ~0.2% from 39cm to 37cm. The TOC 

value shows a relatively steady increase from 37cm to the top of both cores (Figure 12).  

Core 897 shows a TOC value of around 0.87% varying between a low value 0.83% and high 

value 0.89 at 28.5cm and 34.5cm respectively. The lowest values appear in the top section of 

the core and the highest values are located in the lower half of core 897 (Figure 12). 

The TOC values in core 893 shows a relative steady decrease towards the top of the core 

being ~1% in the bottom ending on ~0.9% at the top (Figure 12). 

The most southern core, core 993, has a relative stable TOC value of ~0.7% from the bottom 

to of the core to 25cm, where the TOC value begins to decrease, ending on 0.4% at 23.5cm. 

The TOC value remains around that value to 21.5cm where it increases to 0.8% at the top of 

the core (Figure 12).  

4.3 Grain size and sortable silt  

This section provides a description of the relative grain size distribution and the sortable silt 

mean grain size. The cores are described starting at the bottom, moving towards the top of the 

cores. 

 
Figure 9: Amount of material >1mm found when sieving. For cores 902 and 903 it mostly consists of organic material.  
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4.3.1 HH12-903-mc 

The percentage of sand in core 903 fluctuates around 7% with two peaks, both over 10%, at 

40-41cm and 24-25cm (Figure 12).   

The silt content is fluctuating around 75% with the highest values at the top and middle of 

core 903, just above 78% (Figure 12). Whenever the silt content show a decrease, the clay 

content show an opposing trend with increasing values.  

Clay is fluctuating around 18% with the highest values concentrated between the bottom of 

the core to 41cm and 25-33cm (Figure 12). 

Sortable silt generally fluctuates around 26.3µm throughout the core. A peak at 40-41cm core 

depth has a sortable silt size of 28.9µm (Figure 12). The highest sortable silt size in core 903 

is 29.4µm and found as a peak at 34-35cm. A period of lower sortable silt size is observed 

between 25cm and 32cm.  

The amount of material larger than 1mm (Figure 9) found when sieving was mostly organic 

material. 

4.3.2 HH12-902-mc 

The sand content in core 902 starts, from the bottom to the top, with a peak at 42-43cm with a 

value of 13.7%. The sand content drops to 9.7%, at 39cm, before a relatively steady increase 

towards the core top. The increase stops at 25cm with a sand content of 13.4% before a drop 

to 11.4% at the top of the core (Figure 12). 

The silt content fluctuates between 66% and 72% from the bottom to 35cm where a general 

decrease in silt, from about 71.5% to about 68.5%, is observed towards the top of the core 

(Figure 12). 

The clay content shows an increase from the bottom to 42cm where the clay content begins to 

fluctuate around fluctuate around 21% before the clay content drop to 18% at 35cm and 

continue to fluctuate around that value to the top of the core (Figure 12). 

The sortable silt fluctuates between 25.5µm and 27µm throughout the core with high peaks at 

the bottom, 32cm and 24cm and low peaks at 40cm and 37cm (Figure 12). 
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The amount of material larger than 1mm (Figure 9) found when sieving was mostly organic 

material.  

4.3.3 HH12-897-mc 

The content of sand in core 897 is fluctuating between 6% and 16% with three distinct high 

peaks of about 16% at 37-38cm, 33-34cm and 24-25cm. A period of low sand content is 

observed in the middle of the core, corresponding to a period with high silt content (Figure 

12).     

A general increase in the silt content from the bottom to 32cm, 74% to 78.5% respectively is 

observed, with a high peak of 80% at 36cm. From 32cm the silt content shows a general 

decrease up core to about 73% at 22-23cm depth. The silt content shows an increase to 78.5% 

at the top of core 897 (Figure 12).  

The general pattern of the clay content is a decrease towards the top. The clay content shows 

low values around 10% from the bottom up to about 34cm where the clay content reaches just 

above 18%. From 34cm the clay content shows a decrease towards the top, ending on just 

over 10% (Figure 12). 

The sortable silt fluctuates between 26µm and 31µm throughout the core with a decreasing 

trend from about 33cm to the top of the core. There is a high peak worth taking note of at 

37cm with a sortable silt size of 31µm (Figure 12). 

A minor amount (0.03g) of IRD was found at 24.5cm core depth (Figure 9). 

4.3.4 HH12-893-mc 

The sand content fluctuates around 7% throughout the core, with the exception of a high peak 

of 27.7% at 37-38cm (Figure 12). 

The silt content shows a general increase from 70% at the bottom to just below 76% at the 

top. A low peak is present at 37-38cm at 61.3%, the same depth a high peak in observed in 

the sand content (Figure 12). 

The lowest clay content, in general, is located in the lower half of the core, with the exception 

of a high peak of 25% at the bottom. In general, the highest clay content is observed in the top 

half of the core (Figure 12). 
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The general trend of the sortable silt in core 893 is a decrease in sortable silt size from the 

bottom to the top. At the bottom there is a low peak of 22.5µm, immediately increasing to 

30µm at 39cm before the general decrease begins (Figure 12). 

A minor amount (0.5g) of IRD was found at 30.5cm core depth (Figure 9). 

4.3.5 IG15-993-mc 

The sand content in core 993 shows a general increase from the bottom to the top of the core, 

starting at 9%, ending on about 20% (Figure 12). In addition, a significant amount of IRD (2-

8g) were found during sieving (Figure 9).  

The general pattern for the silt content shows a steady decrease from the bottom to 26cm. 

From 26cm, the silt content fluctuates between 60% and 66% to the top of the core (Figure 

12).    

The content of clay is highest at the bottom and middle part of the core, fluctuating around 

20%. From 24cm to 22cm, the clay content drop to 15% before increasing to 18% at the top 

of the core (Figure 12). 

Because of the Late Glacial age, the amount of IRD (Figure 9), and the poor correlation 

between sand and sortable silt, Δ𝑆𝑆̅̅ ̅  is calculated for core 993. By plotting the measured sand 

content (%) against the measured 𝑆𝑆̅̅ ̅ mean grain size (µm) the average relationship between 

the two fractions is found by a linear regression line (Figure 10). A linear regression line was 

chosen as it appear to be the best fit for the data set (Figure 10). The r
2
 value of 0.26 indicates 

a poor correlation between the sand and 𝑆𝑆̅̅ ̅ mean grain size (µm). An increase in sand content 

relative to silt content will give a lower Δ𝑆𝑆̅̅ ̅  signal compared to the measured 𝑆𝑆̅̅ ̅ and vice 

versa (Hass (2002) and references therein).  

The sand value is substituted for X in the linear regression equation Y (Figure 10) to find 

𝑆𝑆̅̅ ̅
pot, which is needed to calculate Δ𝑆𝑆̅̅ ̅.       
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Figure 10: Measured sand content (%) plotted against the measured sortable silt (µm). A linear regression line based on the 

data points is shown in the figure, from core 993.  

 

 
Figure 11: A and B shows the connection between sand (%), Δ𝑆𝑆̅̅ ̅ and the measured 𝑆𝑆̅̅ ̅ in core 993. C shows the measured  

𝑆𝑆̅̅ ̅ and the 𝑆𝑆̅̅ ̅pot. D shows the current sorted fraction of the sortable silt mean grain size in core 993 
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Calculating Δ𝑆𝑆̅̅ ̅  is done by using the equation Δ𝑆𝑆̅̅ ̅= 𝑆𝑆̅̅ ̅ - 𝑆𝑆̅̅ ̅
pot. Positive and negative Δ𝑆𝑆̅̅ ̅ 

values indicate an increase or decrease, respectively, in bottom current strength (Figure 11D). 

For core 993, Δ𝑆𝑆̅̅ ̅ indicate stronger currents in the top half (Figure 11D).   

As seen in Figure 11B, the measured sortable silt correlates well with the calculated Δ𝑆𝑆̅̅ ̅. The 

observed result shows a decrease from the bottom to about 26cm core depth. In general, the 

lowest sortable silt size is observed in the lower half and the highest in the top half of the 

core.   

There is a poor correlation between the measured 𝑆𝑆̅̅ ̅ and 𝑆𝑆̅̅ ̅
pot (Figure 11C), where they show 

opposite trends from the bottom to 23cm where they begin to show a similar trend to the top 

of core 993.  
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Figure 12: continues on next page 
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Figure 12: Grain size, TOC and sortable silt results.  
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4.4 Agglutinated foraminifera 

In total six agglutinated species, from a total of 62 species, were 

identified across the cores (appendix 1). Reophax spp. and 

Cribrostomoides spp. were the only agglutinated species with a high 

enough abundance (>5%), relative to the entire faunal composition, 

to be mentioned.    

In Figure 13, the abundance, relative to the entire faunal 

composition, of Cribrostomoides spp. and Reophax spp. in core 993 

is shown. The Cribrostomoides spp. values never exceed 0.4% for 

the entire core. Reophax spp. has values close to or at 0% from the 

bottom to 24cm core depth where it increases to 6%. There is a 

gradual decrease from 6% at 24cm to 0% at the top of the core 

(Figure 13). The agglutinated flux of the species are generally low, 

on average 10.4#/cm
2
*ka (Figure 18). 

In core 893, the abundance, relative to the entire faunal composition, 

of Cribrostomoides spp. is below 1% throughout the core. The 

Reophax spp. is relative stable around 5-10% from the bottom to 

34cm, where the abundance increases to about 40%. From 34cm to 

the top of the core the abundance are generally fluctuating around 

30% (Figure 14). The agglutinated flux of the species are generally 

low, on average 1.6#/cm
2
*ka (Figure 18). 

A general increasing trend from the bottom to the top of core 897 is 

observed in the abundance, relative to the entire faunal composition, 

of Cribrostomoides spp. (Figure 15). The abundance of Reophax 

spp. shows a decrease from about 70% at the bottom of the core to 

about 37cm, where the value stabilizes at around 32%. At 34cm, the value begins to increase 

to about 60% at 32cm. The abundance stabilizes and is relatively stable up to 28cm where a 

gradual decrease in the abundance to the top of the core, where it reach below 10% (Figure 

15). The agglutinated flux of the species are generally low, on average 4.17#/cm
2
*ka (Figure 

18). 

   

Figure 14: Abundance, relative to the 

entire faunal composition, in percent, 

of Cribrostomoides spp. and Reophax 

spp. in core 893. 

Figure 13: Abundance, relative to the 

entire faunal composition, in percent, 

of Cribrostomoides spp. and Reophax 

spp. in core 993. 
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In core 902, Cribrostomoides spp. shows an increase in abundance, relative to the entire 

faunal composition, from about 5% at the bottom of the core, to a peak of 25% at 38cm. The 

abundance suddenly drops to around 5% at 36cm, followed by a general increase towards the 

top of the core where the abundance ends on about 10% (Figure 16). The agglutinated flux of 

the species in core 902 is the highest of all the cores, on average 76#/cm
2
*ka (Figure 18). 

The abundance, relative to the entire faunal composition, of Cribrostomoides spp. and 

Reophax spp. in core 903 is shown in Figure 17. Cribrostomoides spp. are relatively stable 

around 3% from the bottom of core 903 up to 33cm, where the abundance of Cribrostomoides 

spp. drops to and remain relatively stable around 1% towards the core top. Reophax spp. 

shows a peak of 12% in the bottom, followed by a drop to 3% at 44cm. The abundance 

remains stable around 3% to the core top (Figure 17). The agglutinated fluxes of the species 

are higher than for cores 993, 893 and 897, on average 38.5#/cm
2
*ka (Figure 18). 

As shown in Figure 18, the agglutinated flux is generally lower than the calcareous flux for all 

the cores. The exception is core 897, below 26cm core depth, where the agglutinated flux is 

highest. (Figure 18) 

 

 

 

 

Figure 15: Abundance, relative to the 

entire faunal composition, in percent, 

of Cribrostomoides spp. and Reophax 

spp. in core 897. 

Figure 16: Abundance, relative to the 

entire faunal composition, in percent, 

of Cribrostomoides spp. and Reophax 

spp. in core 902. 

Figure 17: Abundance, relative to the 

entire faunal composition, in percent, of 

Cribrostomoides spp. and Reophax spp. 

in core 903. 
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Figure 18: The total agglutinated flux plotted together with the total calcareous flux to give an impression of their 

relationship. 

4.5 Calcareous flux 

A constant sedimentation rate is assumed throughout the cores while calculating the 

calcareous flux. The flux has the unit, numbers per square cm times thousand years 

(#/cm
2
*ka).   

4.5.1 HH12-903-mc 

The total calcareous flux in core 903 shows a relatively steady increase from the bottom to the 

top of the core with a bottom value of  101#/cm
2
*ka ending in 1321#/cm

2
*ka at the top. There 

is a peak at 27-28cm of 1424#/cm
2
*ka, which disturb the stable increasing trend (Figure 18, 

Figure 19).  

4.5.2 HH12-902-mc 

In core 902 the total calcareous flux shows fluctuations around 250#/cm
2
*ka with an overall 

stable trend from the bottom to the top. There is an interval between 27cm and 30cm with a 

higher flux, around 800#/cm
2
*ka (Figure 18, Figure 19). 

4.5.3 HH12-897-mc 

The total calcareous flux values in core 897 is the lowest average flux value of all five cores 

with an average flux value of 4.7#/cm
2
*ka. A peak is present at 36-37cm with a value of 

12.5#/cm
2
*ka followed by a drop to 4.5#/cm

2
*ka at 34cm before a steady increase towards 

the top, ending on 7#/cm
2
*ka (Figure 18, Figure 19).  
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4.5.4 HH12-893-mc 

Core 893 has an average total calcareous flux of 5.9#/cm
2
*ka, showing a declining trend 

towards the top. From the bottom to 30cm the calcareous flux shows fluctuations between 

4#/cm
2
*ka and 12#/cm

2
*ka, followed by a stable period, around 3.5#/cm

2
*ka, towards the top 

(Figure 18, Figure 19). 

4.5.5 IG15-993-mc 

The total calcareous flux in core 993 shows a relative stable increasing trend towards the top. 

A general increase is observed from the bottom (~400#/cm
2
*ka) to a peak at 22-23cm of 

1208#/cm
2
*ka before the flux decrease to 400#/cm

2
*ka at the top of the core (Figure 18, 

Figure 19).  
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 Figure 19: Continues on next page. 
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Figure 19: Overview of the flux of the different species. Note the different x-axis scales. It is assumed a constant sedimentation rate throughout the cores for the flux calculations.  
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4.6 Calcareous species abundance and flux 

In total 56 of the 62 identified species were calcareous (appendix 1). The ten most abundant 

calcareous species in the cores are presented in this chapter. These species were chosen 

because they show a relative abundance above 5% in at least one sample and are often used in 

other studies, making is easier to compare results in the discussion section. The relative 

abundance is calculated only relative to other calcareous species. Changes in flux of the 

individual species are largely concurrent with changes in relative abundance. Therefore, 

further mention of flux changes is limited to where they show differences. The cores are 

described from the bottom to the top. 

4.6.1  HH12-903-mc 

Buccella spp. fluctuates around 10% with an overall stable relative abundance towards the top 

of the core. The highest relative abundance of 15% is found as a peak at 41-42cm and the 

lowest relative abundance of 5% is a low peak at 32-33cm in core 903 (Figure 20).  

Both C. excavatum and C. reniforme show an overall stable relative abundance with 

fluctuations around 13% and 15% respectively. C. excavatum shows a low peak at 42-43cm 

of 4% before the relative abundance increase to about 13% at 36-37cm. From 36cm to the top 

of the core, the relative abundance fluctuates around 13% (Figure 20). C. reniforme have a 

similar low peak at 43-44cm where the relative abundance is 0% and show a steady increase 

to 40cm where it begins to fluctuate around 15% for the rest of the core (Figure 20).  

C. laevigata has a low relative abundance of close to or at 0% in core 903. At 43-44cm core 

depth, there is a peak where the relative abundance is 22% (Figure 20). C. neoteretis display a 

similar pattern as C. laevigata with no values above 1% (Figure 20).  

I. norcrossi shows a general decrease in relative abundance towards the top of the core. From 

the bottom of the core to 33cm, the value fluctuates around 15% before a drop to 10% at 

which the relative abundance continues to fluctuate around towards the top of the core (Figure 

20).  

E. nipponica has a low relative abundance with an overall increasing trend to the top of the 

core. From the bottom to 36cm, the relative abundance increase. At 36cm, the value drops 0% 

before a relatively steady increase towards the top where the relative abundance ends on 2% 

(Figure 20). 
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L. lobatula shows a general, relatively stable decrease towards the top of the core. There are 

two peaks worth noting, one at 42-43cm of 14% and a peak of 12% at 28-29cm core depth 

(Figure 20).  

M. barleeanus shows a relative stable relative abundance trend throughout the core of around 

10%, with the exception of the interval between 26cm and 33cm where the value is generally 

lower and lies relative stable around 6% (Figure 20). 

Nonionella spp. has a general decrease in relative abundance from the bottom to the top of the 

core. The highest value of 11% is observed in the interval between 34cm and 40cm. From 

34cm to the top of the core, the relative abundance is relatively stable around 6% (Figure 20).  

4.6.2 HH12-902-mc 

Buccella spp. shows an overall stable trend around 18% from the bottom to the top of the 

core. A declining trend is observed from the bottom to 31cm before an increasing trend 

towards the top of the core (Figure 20).  

C. excavatum has an overall average relative abundance of about 6% and appear to have a 

slightly decreasing trend from the bottom to the top. There are two peaks worth noting at 42-

43cm and 27-28cm of 24% and 15% respectively (Figure 20).  

C. laevigata has a generally low relative abundance, less than 2%, throughout the core, with 

an average value of 0.2%. There is an interval of higher values between 35cm and 38cm with 

an average value of 1.1% (Figure 20).  

C. neoteretis shows a relative abundance of 0% from the bottom to the top, with the exception 

of a peak at 41-42cm of 9% (Figure 20).  

The relative abundance of C. reniforme shows a relatively stable trend around 2% from the 

bottom to the top of the core. There are two peaks worth noting, at 42-43cm and 23-25cm 

with values of 17% and 8% respectively (Figure 20).  

I. norcrossi shows a fluctuating, but general increasing relative abundance from the bottom to 

the top of the core starting at 5% ending on 15% (Figure 20). The same trend is observed for 

the I. norcrossi flux with the exception of an interval with a peak in the flux values between 

27cm and 30cm (Figure 19). 
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E. nipponica does not show any apparent trends and the relative abundance is less than 4%. 

There are two peaks with values close to 4% at 39-40cm and 22-23cm (Figure 20).  

L. lobatula has an overall decreasing trend towards the top of the core. At a core depth of 

35cm, a drop in the relative abundance, from an average value of 8% to an average value of 

3.5%, is observed (Figure 20). L. lobatula shows a similar trend in the flux, with the 

exception of an interval with lower values between 36cm and 39cm (Figure 19).  

M. barleeanus fluctuates between 10% and 20% with an overall stable relative abundance 

towards the top of the core. The fluctuations show a trend of lower amplitudes towards the top 

of the core (Figure 20).      

Nonionella spp. shows an overall stable trend with increasing relative abundance from the 

bottom to 30cm (from 4% to 10% respectively), where the value drop and remains relatively 

stable around 5% towards the top (Figure 20).  

4.6.3 HH12-897-mc             

The relative abundance of Buccella spp. fluctuates, but shows a general increase from the 

bottom to the top of the core from about 4% to 8% (Figure 20).  

C. excavatum does not show any values above 3% and have an overall stable calcareous 

abundance from the bottom to the top of the core. However, there are two peaks, one at 37-

38cm and another is an interval at 22-25cm with a relative abundance of 2.7% and 2% 

respectively (Figure 20).  

C. laevigata shows a relative abundance fluctuating around 8% with an overall increasing 

trend towards the top of the core. There is a peak at 35-36cm of 7.7% (Figure 20). This is the 

same pattern as observed in the Buccella spp.  

C. neoteretis has a general low relative abundance in core 897 with values less 2% not 

showing any obvious trends. However, there are two peaks at 36-37cm and 25-27cm with 

values of 2% and 1.7% respectively (Figure 20). 

C. reniforme shows a general increase in relative abundance from the bottom to the top of the 

core. An interval with higher values is observed at 34-37cm depth with a value of above 11%. 

The observed increase mainly occurs from 26cm towards the core top (Figure 20).  
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I. norcrossi has a relative abundance close to or at 0% for the most of the core. There are two 

peaks at 24-25cm of 5% and 37-39cm of 9% (Figure 20).  

E. nipponica mostly shows a relative abundance at or close to 0% with the exception of two 

peaks at 32-33cm and 25-26cm of 9% and 5% respectively (Figure 20).      

L. lobatula shows a slight overall decreasing relative abundance. There is a decreasing trend 

from the bottom to 27cm (from 15% to 3%) where a shift to higher relative abundance (31%) 

occurs before a relatively steady decline towards the top of the core, ending on 11% (Figure 

20). A similar trend is observed in the L. lobatula flux, with the exception of a high peak at 

36-37cm (Figure 19). 

M. barleeanus display an overall decreasing trend from the bottom to the top of the core from 

50% to 17%. There is a major peak worth noting at 29-30cm of 74% (Figure 20). The M. 

barleeanus flux shows a similar trend, with slightly higher values towards the bottom, before 

a sudden drop (Figure 19). 

Nonionella spp. fluctuates between 0% and 15% throughout the core, with an overall 

increasing trend. There is a high peak at 32-33cm of 13% and a low peak at 25-26cm of 0% 

that disturbs the general increasing trend (Figure 20).  

4.6.4 HH12-893-mc 

Buccella spp. shows a relative abundance close to or at 0% throughout the core. The only 

exception is a peak at the bottom of the core of 15% (Figure 20).  

C. excavatum shows a similar trend as Buccella spp. with a relative abundance below 5% 

(Figure 20).  

C. laevigata shows some fluctuations, but have a slight increase in relative abundance from 

the bottom and up. There is an interval of higher values around 13% between 30cm and 34cm 

(Figure 20).  

C. neoteretis has values close to or at 0% throughout the core, with the exception of a peak 

similar to the interval with higher values for C. laevigata at 31-33cm of 7-12% (Figure 20).  

C. reniforme shows a fluctuating relative abundance around 10% with an overall decreasing 

trend towards the top. There is one peak worth noting at 36-37cm of 20% (Figure 20).  
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I. norcrossi have generally low relative abundance values less than 3%. The highest values 

are found in the bottom of the core, close to 3% (Figure 20).   

E. nipponica has the highest relative abundance from the bottom up to 31cm, with the highest 

value of 3.6%. At 31cm the value drops to 0% and remain there towards the top of the core 

(Figure 20).  

L. lobatula shows a fluctuating relative abundance between 5% and 25% with an overall 

increase towards the top of the core. The amplitude of the fluctuations becomes greater up 

core (Figure 20).  

M. barleeanus has a fluctuating relative abundance with a slight overall increasing trend from 

the bottom to the top. There is a low peak at 31-32cm of 22%, which is the lowest value in the 

core and dilutes the signal of an overall increasing trend. The highest value in the core is 75% 

and is found at 22-23cm (Figure 20). The M. barleeanus flux shows an opposite trend from 

the relative abundance. In the same area as the relative abundance show an increase, the flux 

shows a decrease (Figure 19). 

Nonionella spp. shows a fluctuating relative abundance with an overall decreasing trend 

towards the top. The values are not exceeding 7%. There is a shift from high amplitude 

fluctuation between 1% and 7% in the bottom to a relative stable relative abundance around 

1.8% at 27cm (Figure 20).  

4.6.5 IG15-993-mc 

Buccella spp. has a relative abundance of less than 5% and the trend is relative stable 

throughout the core. There is a peak at the top of the core of 5%, other than that the value is 

generally between 0% and 2% (Figure 20).  

C. excavatum has a decreasing relative abundance towards the top. The value is relative stable 

around 38% in the bottom and at a depth of 25cm, the value drop to 9% before a relatively 

steady increase towards the top where it ends on 31% (Figure 20).  

C. laevigata shows a fluctuating relative abundance with an overall stable trend from the 

bottom to the top of the core. There is an interval between 23cm and 25cm with higher 

relative abundance where the value is around 12% (Figure 20).  
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C. neoteretis has an increasing relative abundance towards the top of the core. There is an 

interval of values under 1% between 23cm and 25cm, which dilutes the increasing trend. A 

high peak is found at 22-23cm with a value of 17% before decreasing towards top of the core 

(Figure 20).  

C. reniforme shows a slight decrease in relative abundance from the bottom to the top of the 

core. The value is relative stable from the bottom to 25cm, where the relative abundance 

drops from 20% to 8% before a steady increase towards the top (Figure 20).  

I. norcrossi has a general decrease in relative abundance from the bottom towards the top of 

the core. The relative abundance is at its highest in the bottom of the core (6%) before a 

steady decrease to 1.7% at 26-27cm where the value remain relatively stable for the rest of the 

core (Figure 20).  

E. nipponica shows an increasing relative abundance towards the top of the core. The value 

lies steadily at or close to 0% from the bottom up to 25cm where the value increase and reach 

the highest value of 13.7% at 23-24cm before decreasing towards the top (Figure 20).  

L. lobatula shows a similar trend in calcareous abundance as E. nipponica, with low relative 

abundance values from the bottom up to 25cm before an increase reaching a high value of 

18% at 22-23cm before decreasing towards the top (Figure 20).  

M. barleeanus shows fluctuating relative abundance around 8%, with an overall increasing 

trend towards the top (Figure 20).  

Nonionella spp. has a relative stable relative abundance, with an overall decreasing trend 

towards the top of the core. The bottom and top values are 21.8% and 7.8% respectively 

(Figure 20). 
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Figure 20: Continues on next page. 
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Figure 20: The relative abundance of the ten most common calcareous species for all five cores. Sortable silt (SS), sand, clay, total organic carbon (TOC) and the calcareous flux are shown to the 

left in the figure. Notice the different x-axis scales. 
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5 Discussion 

This section includes an interpretation and a discussion of the results from the previous 

section.  

The variation in the inflow of Atlantic water is discussed using results obtained in this study 

compared to previous studies on Atlantic water inflow on the Barents Sea region. To provide 

a good overview and easier comparisons, the discussion is divided into four time intervals 

based on significant changes in the fauna observed in the dataset. The time intervals covered 

by the cores represent the Late Glacial (15 500-14 900yr BP), early Holocene (10 900-7300yr 

BP), mid Holocene (7300-2500yr BP) and late Holocene (2500-400yr BP). The start of the 

Holocene is widely accepted as 11 700yr BP, and the period is often sectioned in the early 

(11 000-7500yr BP), mid (7500-2500yr BP) and late (2500-0yr BP) Holocene 

(Risebrobakken, et al., 2010), although different authors may use different ages depending on 

their sampled data. All ages are, where possible, rounded off to nearest hundred calibrated 

years before present due to the error margins of the datings.   

The calcareous flux in core 897 and 903 show a similar pattern, both show an increase in flux 

starting about 2000yr BP towards the present. Core 902 covers a smaller portion of the period, 

thus giving a more detailed view on the flux changes, making it hard to fit to the other two 

northern cores (Figure 19). Core 893 is the core covering the longest time span with the 

lowest average sedimentation rate. Both core 902 and 903 show some overlapping with each 

other and core 897 cover the entire time span of both those cores as well as a part of the 

youngest age of core 893 (Figure 8). Core 993 is not overlapping with any of the other cores 

in this study.  

Improved environmental conditions are in this thesis defined as a warmer environment with 

higher food availability, unless otherwise stated in the text. 

The TOC in the southwestern Barents Sea is mainly composed of marine organic material 

originating from nutrient rich Atlantic water (Knies & Martinez, 2009). During spring bloom, 

there is a high vertical export of phytoplankton and incomplete degradation of the organic 

material, due to high productivity. This might explain the enrichment of organic material in 

the sediments (Knies & Martinez, 2009). These blooms are an important food source for 

benthic foraminifera, and since they may occur as a result of the inflow of nutrient rich 
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Atlantic water, the variability in the inflow therefore influence the benthic foraminiferal 

assemblages (Knies & Martinez, 2009). Phytoplanktic blooms may also occur in proximity of 

a sea ice edge or marginal ice zone (MIZ) and at the Arctic Front (Slubowska, et al., 2005; 

Knies & Martinez, 2009). 

C. reniforme, C. excavatum and Nonionella spp. show high relative abundance, especially in 

core 903, supporting a colder and possibly a sea ice or front proximal environment. TOC has 

a reduced preservation potential in coarse-grained sediments relative to finer sediments, as the 

fine-grained sediments might reduce exposure to oxygen, and bind the organic matter to clay 

particles, thus preserving the organic material better (Hald & Steinsund, 1992; Kennedy, et 

al., 2002).   

The sortable silt correlates well with the sand content in all cores, except from core 993, 

where the sortable silt and sand values show opposing trends. Due to the late glacial age of 

core 993, and influence from IRD (Figure 9), Δ𝑆𝑆̅̅ ̅ was calculated (Figure 11).   

Descriptions of the environmental preferences of the different species are given in section 2.5 

Ecological preferences. 

5.1 Agglutinated flux 

The agglutinated species Cribrostomoides spp. and Reophax spp. are generally displaying a 

low flux in all the cores (Figure 18). The highest flux (239.5#/cm
2
*ka) of agglutinated species 

is found in core 902 at 40-41cm core depth. The high abundance, relative to the total fauna, of 

Reophax spp. in core 897 and 893 might be due to Reophax spp. being tolerant to poor trophic 

conditions and adapted to low amounts and poor quality of organic material (Dessandier, et 

al., 2015). The intervals in core 897 where the agglutinated flux is higher than the calcareous 

flux might be explained by the generally low (<16#/cm
2
*ka) flux throughout the core (Figure 

18), as Reophax spp. is an opportunistic species, capable of surviving where other species 

struggle (Dessandier, et al., 2015). The higher presence of Reophax spp. in the top of core 993 

corresponds with higher current strength inferred by Δ𝑆𝑆̅̅ ̅ (Figure 11D, Figure 13). 

Dense and saline water (brine) is often found in association with areas with sea ice formation, 

such as a sea ice edge and Arctic Front (Steinsund & Hald, 1994). Brine formation at the 

Arctic Front, sea ice edge or in an area covered by sea ice may cause the seawater to contain a 

higher amount of CO2 than the surrounding water (Steinsund & Hald, 1994). As brine is 



 

Page 57 of 85 

denser than the surrounding seawater, it sinks to the sea floor, bringing the CO2, making the 

bottom water more acidic (Steinsund & Hald, 1994). In addition to transporting CO2 to the 

sea floor, the downward current caused by the sinking brine creates well oxygenated 

conditions at the sediment-water interface, which can cause oxidization of organic material 

and produce even more CO2 (Steinsund & Hald, 1994). Acidification of the bottom water can 

cause dissolution of the calcium carbonate tests of calcareous benthic foraminifera. The 

dissolution mainly occurs on epifaunal species as sediments cover the infaunal species thus 

they have better protection against the dissolution (Steinsund & Hald, 1994). Steinsund & 

Hald (1994) found a correlation between higher values of agglutinated species and low 

amounts of calcium carbonate, suggesting higher values of agglutinated species in areas 

dissolution of calcium carbonate occur (Steinsund & Hald, 1994).   

Dissolution of calcareous species might explain the high agglutinated flux relative to the 

calcareous flux in the cores 893 and 897 (Figure 18). As the CCD generally appears at depths 

greater than 4500m (Allaby, 2013) it is more likely that brine, enriched in CO2, is the source 

of the possible dissolution.        

The agglutinated foraminifera have not been further elaborated in this thesis as it is a known 

fact that agglutinated foraminifera have a poor preservation potential down core (Slubowska, 

et al., 2005; Dijkstra, et al., 2015; Sejrup, et al., 2004) and the agglutinated flux is generally 

low (Figure 18). For this reason, to avoid erroneous low relative abundances of calcareous 

species in Figure 20, the relative abundances are based on the calcareous taxa only, unless 

stated otherwise in the text. 

5.2 The Late Glacial (15 500-14 900yr BP)  

Core 993 is not compared with the other cores due to the age difference, where the top of core 

993 is dated to 14 900yr BP and the closest core, in distance and age, core 893, begins at 

10 900yr BP (Figure 8, Table 4). The 4000yr time gap is considered too large to allow a direct 

comparison between the cores.  

The TOC value shows the same down core pattern as the Arctic species C. excavatum, which 

is associated with Arctic and glaciomarine environments (Mackensen, et al., 1985; Hald, et 

al., 1994). An explanation for the correlation between TOC and C. excavatum can be higher 

primary production at a marginal ice zone, providing more organic material to the seafloor 

between 15 400yr BP and 15 100yr BP (Figure 20) (Knies & Martinez, 2009). Additionally, 
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the TOC and clay values correlate well throughout the core, indicating a connection in the 

controlling factors of TOC and clay content. This corresponds to the findings of e.g. Dijkstra 

et al. (2015), Junttila et al. (2014) and Groot et al. 2014, that TOC show a good correlation 

with clay, as both clay and organic material show absorptive properties (Kennedy, et al., 

2002). 

The increasing sand content might indicate stronger currents at core 993, which transport 

organic material as well as finer sediments, away from the site, leaving a higher observed 

sand content. The observed sand would then be a lag deposit from winnowing, a process 

where the current sort out and transport the fine grained sediments away from the site (King, 

et al., 2014). The overall increasing presence of sand and L. lobatula and the decreasing 

content of clay and TOC supports an increase in hydrodynamic activity, which could explain 

the different sources of the sand and sortable silt discovered when calculating ∆𝑆𝑆̅̅ ̅ (Figure 11, 

Figure 20). The increase of 𝑆𝑆̅̅ ̅ and the calculated Δ𝑆𝑆̅̅ ̅ supports stronger currents for the most 

recent parts of core 993 (Figure 11). It is reasonable to assume that an increase in 

hydrodynamic activity at core 993 may have caused reworking of the sediments present, and 

deposit already reworked sediments.  

The overall increasing presence of C. laevigata, C. neoteretis, E. nipponica and M. 

barleeanus (Figure 20), all associated with Atlantic or Atlantic derived water, together with 

the decrease of C. excavatum, C. reniforme and I. norcrossi, associated with colder conditions 

(Figure 20), can indicate a warmer and/or more nutrient rich Atlantic water influenced 

environment (Dijkstra, et al., 2015) towards 14 900yr BP. This foraminiferal assemblage 

could reflect the beginning of the retreat of the Scandinavian ice sheet from its late 

Weichselian maximum position at 17 000-15 000yr BP (Mangerud, et al., 2004). About 

15 000yr BP the lobe area of Ingøydjupet was ice free (Ruther, et al., 2011), indicating open 

water over the southern parts of the southwestern Barents Sea and likely over core 993.    

At 15 300yr BP the first signs of a warming appear, where C. excavatum, C. reniforme and I. 

norcrossi begin to decrease, shortly followed by an advance of C. laevigata, E. nipponica and 

L. lobatula at 15 200yr BP (Figure 20). The advance of the warm water species E. nipponica, 

associated with warm Atlantic bottom water (Saher, et al., 2012), and disappearance of the 

cold water species C. excavatum, associated with Arctic conditions (Mackensen, et al., 1985), 

suggests a period of stronger Atlantic water inflow. This is further supported by the increase 

of the M. barleeanus flux (Figure 19), which is associated with Atlantic derived waters 
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(Mudie, et al., 1984). Both clay and TOC show a decrease from 15 200yr BP, the same time 

the M. barleeanus flux increase, suggesting another factor controlling the increasing flux of 

M. barleeanus. As M. barleeanus prefers partially degraded organic material, often 

redeposited from shallower areas (Caralp, 1989), it could be that the organic material is 

redeposited from a nearby shallow bank, such as Tromsøflaket. Due to the simultaneously 

increase in the flux of C. laevigata, associated with Atlantic water (Klitgaard-Kristensen, et 

al., 2002), it is likely the area was influenced by Atlantic derived bottom water around 

15 200yr BP.     

The indications of Atlantic water inflow last until 15 000yr BP where E. nipponica and L. 

lobatula start to disappear and C. excavatum begins to advance. C. laevigata disappears 

earlier (15 100yr BP) than the two other species and is replaced by a suddenly appearance of 

C. neoteretis which begins to decrease almost immediately after. This can be interpreted as a 

cooling of the Atlantic bottom water, considering C. neoteretis prefer chilled Atlantic water 

and organic rich sediments (Mackensen & Hald, 1988). Organic rich sediments may occur as 

a result of phytoplanktic blooms, often associated with Atlantic water, in connection with a 

seasonal sea ice edge or at the Arctic Front (Knies & Martinez, 2009), thus possible indicating 

an advance of the Arctic Front towards the core site bringing cooler conditions or a cooling of 

the incoming Atlantic water. 

The flux peak at 15 000yr BP is mainly caused by an increase in the flux of C. neoteretis, E. 

nipponica and L. lobatula. This could be due to a strong inflow of Atlantic water, transporting 

the readily reworked E. nipponica (Saher, et al., 2012; Hald & Steinsund, 1992; Murray, et 

al., 1982) to core 993, reflected in the increased sortable silt mean grain size. At the same 

time, there is a low peak in the sand concentration. The low peak is not necessarily due to a 

decrease in sand concentration, but rather an increase in the silt and clay fractions. The 

stronger current may have transported and redeposited the tests of E. nipponica to the site, as 

its small and round shape makes it more susceptible for reworking (Murray, et al., 1982; Hald 

& Steinsund, 1992; Saher, et al., 2012), thus giving a false impression of the actual abundance 

of E. nipponica. 

The poor correlation between measured 𝑆𝑆̅̅ ̅ and 𝑆𝑆̅̅ ̅
pot (Figure 11C) indicates different 

transportation and deposition processes between the sortable silt and sand, suggesting the silt 

is not ice rafted. The Δ𝑆𝑆̅̅ ̅ show a higher current strength than what is to be expected towards 

the top of core 993 (Figure 11D), which correlates well with the occurrence of L. lobatula. 
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The high current strength could be the reason for the obtained low sedimentation rates, as 

mud and possibly some foraminifera can be transported away from the site, by winnowing, 

hence the low (19.1cm/ka) sedimentation rates at core 993. It is also possible that the higher 

bottom current speeds, inferred by the Δ𝑆𝑆̅̅ ̅ calculations, have transported some old material 

and foraminifera from nearby areas, contributing to the old datings.     

In addition, another species associated with strong bottom currents, Trifarina angulosa (Hald 

& Steinsund, 1992), not mentioned earlier due to its small relative abundance in most of the 

cores, show the same trend as L. lobatula, thus supporting a strong hydrodynamic 

environment at the time. 

A significant amount of IRD (Figure 9) was observed when sieving the samples, indicating 

the presence of icebergs. This is also one of the reasons for calculating Δ𝑆𝑆̅̅ ̅, to investigate if 

the sand, assumed ice rafted, and 𝑆𝑆̅̅ ̅ originates from the same source. The amount of IRD 

suggests icebergs drifting over the core site, supporting the suggestion of a retreat of the 

Scandinavian ice sheet, described by Mangerud et al. (2004). A high IRD content was also 

observed further south by Klitgaard-Kristensen et al. (2001) in the period 18 000- 14 499yr 

BP. They suggest the high IRD content indicate a harsh environment, strongly influenced by 

glaciers and outlet of icebergs (Klitgaard-Kristensen, et al., 2001).   

The general trend during the Late Glacial, here represented by core 993 (15 500-14 900yr 

BP), is a high relative abundance of both C. excavatum and C. reniforme, suggesting a cold 

and possibly a glacial proximal, or near a glacier, in the early parts. A general warming trend 

follows towards the Holocene, as inferred by the increasing flux of M. barleeanus, C. 

laevigata, C. neoteretis and E. nipponica (Figure 19). Slubowska-Woldengen et al. (2008) 

found similar results, showing a warming trend in the southeast Barents Sea.  

Although it is possible to obtain results from core 993, due to the old age and the chance of 

the core being partly reworked the results are potentially less reliable, and care should be 

taken interpreting the core.  

5.3 Early Holocene (10 900-7300yr BP) 

The early Holocene is covered by the bottom half of core 893 (10 900-7300yr BP). The area 

of core 893, in the southwestern Barents Sea, is dominated by M. barleeanus in the beginning 

and middle parts (10 900-8700yr BP) of the early Holocene, rapidly replaced by C. laevigata 
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and L. lobatula towards the end of the mid- early Holocene, 8700yr BP. An initial decrease, 

from 10 900yr BP, in the Arctic species C. excavatum, C. reniforme and I. norcrossi could 

indicate the end of a cold period, and the beginning of a period with a warmer environment. 

Northwest of core 893, in Kveithola trough, a similar decrease of arctic foraminifera is 

observed during this time (Groot, et al., 2014). The decreasing Arctic species are replaced by 

an increase in the relative abundance of C. laevigata, E. nipponica and a high relative 

abundance of M. barleeanus (Figure 20). This may suggest a warming of the bottom water, 

causing an improvement of environmental conditions for the species associated with warmer, 

more nutrient rich water, possibly as a response to an increase in the inflow of Atlantic water.  

C. reniforme occur in high abundance (>10%) between 10 900yr BP and 9100yr BP. 

However, the abundance of C. reniforme is not stable enough on a high abundance to be 

called a dominant species in the southwestern Barents Sea during the early Holocene (Figure 

20). The general increase in E. nipponica and C. laevigata (Figure 20) suggest warmer bottom 

water passing over core 897 in the middle and late parts (8700-7300yr BP) of the early 

Holocene, indicating an increased inflow of Atlantic water in the middle and late parts of the 

early Holocene. Slubowska-Woldengen et al. (2008) observed similar trends with inflow of 

Atlantic water to the southeastern Barents Sea via the NCaC, together with a general 

dominance of M. barleeanus and C. reniforme in the southeast Barents Sea during the early 

Holocene (9500-7500yr BP (Slubowska-Woldengen, et al., 2008)). This supports the findings 

in this study, of a general warming trend during the early Holocene.  

The general dominance of M. barleeanus and L. lobatula occasionally supported by C. 

reniforme suggests a strong influence of Atlantic water and stronger bottom current speeds 

(Hald & Steinsund, 1996; Mackensen, et al., 1985). The continuous presence of C. laevigata 

and Nonionella spp. also point towards a stronger influence of Atlantic water over core 893 

throughout the early Holocene. The high sand concentration (28%) and sortable silt (30µm) at 

9800yr BP corresponds to the peaks in the flux of M. barleeanus and L. lobatula (Figure 19). 

As little to no IRD (Figure 9) were found during sieving it is unlikely the increased sand and 

sortable silt originates from icebergs or sea ice (Gilbert, 1990). Due to the lack of IRD and the 

peak in L. lobatula, it is suggested that stronger bottom currents, removing the clay particles 

(winnowing), is the reason for the observed increase in sand concentration, rather than an 

increase in deposited sand.  



 

Page 62 of 85 

The decrease in the relative abundance of M. barleeanus towards the end of the early 

Holocene is not reflected in the M. barleeanus flux, which remain stable for the late early 

Holocene. This indicates an increased flux of other species rather than a decrease of the 

presence of M. barleeanus (Figure 19, Figure 20).     

Almost all the foraminifera species in core 893 show fluctuations with an increasing trend for 

both flux and abundance in the period 10 900yr BP to 7300yr BP. This may suggest an 

unstable and shifting inflow of Atlantic water during the early Holocene. The total calcareous 

flux is generally low (<16#/cm
2
*ka), thus small changes in a species flux has a great impact 

on the relative abundances. However, the observed foraminiferal faunal composition, mainly 

consisting of C. laevigata, E. nipponica, L. lobatula, M. barleeanus and Nonionella spp., 

suggests a general warming. 

5.4 Mid Holocene (7300-2500yr BP)  

The disappearance of E. nipponica, C. neoteretis and a decline of C. laevigata together with 

the stabilizing low flux (<2#/cm
2
*ka) of L. lobatula and M. barleeanus from 7300yr BP, can 

indicate a shift to a cooler environment towards the top of core 893. The increased and stable 

clay content from 6000yr BP suggest a calm environment. The total flux decrease at the same 

time, and remain stable at a low value (3-8#/cm^2*kyr) for the rest of core 893 (Figure 19).      

A period with a calmer environment is observed in core 893 between 7300yr BP and 6900yr 

BP as indicated by an increase in clay content and decrease in the silt fraction together with a 

small decrease in sand concentration. The sortable silt shows a decrease as well, indicating a 

decrease in the coarse silt fraction. The TOC concentration is lower at 7300yr BP, but show 

an increase to 6900yr BP, when the clay content is high. Around the same time, the relative 

abundance of C. laevigata declines and C. neoteretis disappear, possibly as a consequence of 

change in the physical environment, as they are limited by fine grain sediments (Mackensen 

& Hald, 1988; Mackensen, et al., 1985). This increase of finer particles correlates well with 

the increase of M. barleeanus, further supporting that changes in the physical environment is 

the main controlling factor of the foraminiferal species assemblage. L. lobatula continue with 

a generally increasing relative abundance, however, the fluctuations increase in both 

amplitude and period. The L. lobatula flux becomes relative stable, indicating the shifting 

abundance to be caused by variations in other species rather than for L. lobatula. The 

increasing clay content may suggest weaker currents, and together with a decline in species 
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associated with Atlantic water, such as C. laevigata and C. neoteretis, this indicates a 

reduction in the inflow of Atlantic water.  

The pulses of higher relative abundance of Nonionella spp. from 7300yr BP to 6000yr BP and 

the lack of other species associated with sea ice and fronts, suggest the pulses of Nonionella 

spp. to be caused by changes in food supply (Jennings, et al., 2011), rather than a seasonal sea 

ice cover or a front. This is supported by the low and stable TOC values around 6000yr BP, 

the same time the relative abundance of Nonionella spp. stabilize at a lower value. The 

stabilizing, higher clay concentration at 6000yr BP, and the lower sand concentration, 

supports a calmer environment in the mid Holocene.   

The overall declining trend of the total calcareous flux from the early Holocene in core 893, 

stabilize at low values (<8#/cm
2
*ka), starting at 7300yr BP to the top of core 893 (3600yr 

BP), suggesting a low food availability in the area during the mid Holocene. This is reflected 

in the TOC values, which follows the trend of the flux (Figure 19).  

The generally increasing, yet fluctuating relative abundance of L. lobatula in core 893 may 

indicate an increasingly unstable hydrodynamic activity between 7300yr BP and 3600yr BP. 

This trend is also reflected in the relative abundance of M. barleeanus which show an 

opposite trend, when the relative abundance of M. barleeanus increase, the relative abundance 

of L. lobatula decrease and vice versa (Figure 20). The indications of increasingly 

hydrodynamic activity, inferred by L. lobatula, is not supported by the grain size distribution 

suggesting another controlling factor of the increase in L. lobatula, such as food availability 

or salinity (Hald & Steinsund, 1996).  

The flux of L. lobatula and M. barleeanus remains relatively stable from 7300yr BP towards 

the core top, thus indicating a reduction in other species rather than increasing favorable 

environmental conditions for L. lobatula and M. barleeanus. This suggests relatively calm 

and stable environmental conditions during the mid Holocene (7300-2500yr BP), which is 

indicated by the relatively stable grain size distribution. The TOC is relative stable around 

0.9% and shows the higher values at the same time M. barleeanus show highest flux and 

relative abundance (Figure 19, Figure 20).    

The generally low total flux (3-12 #/cm^2*kyr) observed between 7300yr BP to 2500yr BP, 

seen in cores 893 and 897, might suggest a period of low primary productivity, providing 

fewer nutrients to the sea floor. This is also apparent in the lower (<1%) TOC values in both 
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cores 893 and 897. The fluctuations in the relative abundance of all the species can be 

explained by the low total flux (3-12 #/cm^2*kyr), meaning that a small change in a species 

flux can have a large impact on the relative abundances. The mid Holocene appears to have 

unfavorable environmental conditions for Arctic and cold water species like C. excavatum, I. 

norcrossi and C. reniforme, indicating conditions were relatively warm. However, species 

associated with warm Atlantic water show a low presence, suggesting chilled bottom waters 

in the mid Holocene (Figure 19, Figure 20). 

Looking at the high relative abundance (40-80%) of M. barleeanus, which would suggest a 

high availability of degraded organic material (Jennings, et al., 2011), this contradicts the 

decreasing flux, meaning another factor controlling M. barleeanus is dominating. This other 

factor could be a stable and higher clay content from 6900yr BP, around the same time TOC 

and the total flux stabilize on a lower value (Figure 20).  The M. barleeanus flux has been 

relative stable since the early Holocene (8700yr BP), suggesting a change in the flux of other 

species rather than improved environmental conditions favorable for M. barleeanus (Figure 

19). 

The flux of most of the species in core 893 remain relative stable from 6900yr BP towards the 

present, even though the relative abundance changes. This can be due to the low total flux, 

meaning a small change in a species flux can give a significant change in relative abundance, 

as previously mentioned.  

The relative abundance of C. laevigata declines and reaches a low point at 4500yr BP, 

suggesting a change in the physical environment or possibly a weakening in the inflow of 

Atlantic water indicating the start of a colder period. The decreasing total flux corresponds to 

the decline of the relative abundance and flux of C. laevigata, suggesting the increase in 

relative abundance of the other species is caused by the decrease of C. laevigata (Figure 19, 

Figure 20). The increase following the low point at 4500yr BP is similar for both C. reniforme 

and C. laevigata, while M. barleeanus and L. lobatula both show a decrease in the relative 

abundance, but an increase in the flux. This may suggest an environment with chilled Atlantic 

bottom water, allowing the opportunistic C. reniforme to increase its presence (Mackensen, et 

al., 1985; Elverhøi & Bomstad, 1980). At the very top of core 893, 4000yr BP, there is a 

slight increase in Buccella spp. and Nonionella spp., which might indicate a retreating 

summer sea-ice edge or a front (Figure 19, Figure 20).   
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It appears that the increase in Buccella spp. and Nonionella spp. flux can be traced northwards 

from core 893 to core 897, around 4000yr BP, where both species show a small general 

increase towards the late Holocene. This could suggest a northeastern movement of the Arctic 

Front from core 897 to core 893, as both Buccella spp. and Nonionella spp. are associated 

with the presence of a sea ice edge, Arctic Front and/or a marginal ice zone (MIZ), associated 

with high primary productivity (Polyak & Solheim, 1994; Hald & Steinsund, 1996; Jennings, 

et al., 2011). The Buccella spp. flux and relative abundance begins to decrease around 3500yr 

BP and reach 0% at 2500yr BP. M. barleeanus and L. lobatula both continue with the general 

decrease in relative abundance in core 897 (Figure 20). Around this time a possibility of 

dissolution of the calcareous tests are inferred by the high agglutinated flux relative to the 

calcareous flux (Figure 18), supporting the proximity of  a sea ice edge or the Arctic Front 

(Steinsund & Hald, 1994).     

From 4000yr BP to the end of the mid Holocene at 2500yr BP, episodes where C. excavatum 

and C. reniforme show a presence occur, suggesting some influence of cold, possibly Arctic, 

bottom water (Figure 20) over core 897. This partly supported by Slubowska-Woldengen et 

al. (2008) suggesting a cooling of the Barents Sea in the late middle Holocene, as they 

observed a dominance of I. norcrossi in the southeast Barents Sea and a dominance of  C. 

excavatum and C. reniforme along the Svalbard and northern Barents Sea shelf. The 

dominance of I. norcrossi in the southeastern Barents Sea, found by Slubowska-Woldengen et 

al. (2008) is not present in core 897, where I. norcrossi show a low relative abundance of 

<2% (Figure 20). This could be because the cores used by Slubowska-Woldengen et al. 

(2008) are located further north.   

At 3500yr BP, the total flux in core 897 show a positive peak, followed by a decline, similar 

to the decline spotted in core 893, about 7300yr BP. Due to the time difference of 3800yr it is 

not likely they reflect the same event causing the peak in total flux. The peak in core 897 ends 

at a low (4#/cm
2
*ka) flux, about 2500yr BP, followed by a steady increase. In addition to this, 

the presence of C. reniforme and a brief appearance of C. neoteretis at 3500yr BP (Figure 20) 

may indicate chilled Atlantic water over core 897 between 4000yr BP and 2500yr BP.  

Risebrobakken et al. (2010) found similar results in the southwestern Barents Sea, closer to 

the Norwegian coast, where they observed a decline in total relative abundance of benthic 

Atlantic species between 4000yr BP and 2500yr BP. However, based on an increase in A. 

weddellensis, which is morphologically similar to E. nipponica (Saher, et al., 2012; Jennings, 

et al., 2011), they suggest a transition from chilled to less chilled Atlantic bottom water 
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throughout the period. The increase in A. weddellensis (E. nipponica) found by 

Risebrobakken et al. (2010) is not reflected in the occurrence of E. nipponica in this study.  

M. barleeanus and L. lobatula are the dominant species in core 897 despite displaying a 

decrease in relative abundance towards the core top (Figure 20). This is likely due to changes 

in the physical environment, rather than the supply of nutrients, as L. lobatula thrives in 

coarse sediments, indicating strong hydrodynamic activity, and M. barleeanus prefers fine 

grained, calmer environments (Klitgaard-Kristensen, et al., 2002; Jennings, et al., 2011). This 

is supported by the relative stable flux of M. barleeanus from 2700yr BP towards the late 

Holocene and the low (<2#/cm
2
*ka), but changing flux of L. lobatula. The highest relative 

abundance of M. barleeanus occurs at the same point (2700yr BP) when the total calcareous 

flux is at a minimum, indicating a decrease for other species rather than a bloom of M. 

barleeanus, again supported by the relative stable M. barleeanus flux. This could suggest a 

weakening of the inflow of Atlantic water, bringing less organic material to the area, or the 

presence of sea ice, preventing primary production. Due to the lack of Arctic species and 

species associated with sea ice, it is not likely the area was covered by sea ice. In either case, 

the bottom water appears to have been cooler in the late part of the mid Holocene.  

5.5 Late Holocene (2500-400yr BP)  

The flux of Buccella spp. and C. laevigata begins to increase, starting at 2500yr BP, followed 

by an increase in L. lobatula flux, beginning about 1900yr BP, indicating stronger bottom 

currents and a gradual increase in bottom water temperature and salinity, possibly an increase 

in the strength of inflowing Atlantic water (Figure 19). Core 897 shows an increased sand 

concentration and sortable silt size from 1900yr BP to the top of the core (Figure 20). The 

flux is also at its lowest in core 897 at 1900yr BP, and the TOC value stabilizes. At 1400yr 

BP, C. excavatum appears again after being gone since 2500yr BP and C. reniforme begin to 

increase its presence. I. norcrossi also show increasing presence, indicating a shift to a colder 

environment, which could be caused by either a weakening of the inflow of Atlantic water or 

the proximity of a sea ice edge or possibly a combination. Given that species associated with 

colder bottom water, like C. reniforme and I. norcrossi, are dominating, it suggests chilled 

bottom water, possibly of Atlantic origin (Korsun & Hald, 1998; Mackensen, et al., 1985).   

The general increase in the flux observed in both core 897 and 903 for the period from 2100yr 

BP towards 400yr BP, suggests an environment with more nutrients. The general increase of 
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Buccella spp., I. norcrossi and Nonionella spp. (Figure 19, Figure 20) suggest the presence of 

a sea ice edge or front close to core 897 and 903. Primary production close to a sea ice edge 

or front could explain the increasing TOC values (Jennings, et al., 2011; Hald & Steinsund, 

1996).    

The shift to a higher TOC content at 1700yr BP, in core 903, reflected in C. excavatum, I. 

norcrossi and E. nipponica. C. excavatum stabilize together with the TOC value at 1700yr BP 

and remain relative stable towards the core top. This can hint to colder conditions, which is 

supported by the same stabilizing trend for the relative abundance of C. reniforme, occurring 

a little earlier, about 1800yr BP. E. nipponica, almost disappear at this time, but show a 

gradual increase beginning at 1600yr BP towards the core top, indicating a shift to a warmer 

environment. However, the relative abundance of E. nipponica is low and due to the small 

size, it is susceptible to reworking and may be a result of that process (Hald & Steinsund, 

1992; Saher, et al., 2012; Murray, et al., 1982). Even if E. nipponica is reworked, it still 

indicates a presence near the core location as it is not likely it is transported more than 100km 

before being redeposited. As the cold water species C. excavatum, C. reniforme and I. 

norcrossi show an increasing flux, generally higher than E. nipponica, it is more likely that E. 

nipponica occur as a result of reworking prior to 1600yr BP in the late Holocene. Around 

1700yr BP the cold water species C. excavatum, C. reniforme and I. norcrossi are the 

dominating species.  

The slight decrease of C. excavatum relative abundance from 1600yr BP towards the top of 

core 903 fits the slight overall increase in C. reniforme, from 1600yr BP to the core top, 

supporting a small increase in the inflow of Atlantic water. The beginning decrease of the 

relative abundance of I. norcrossi at 1700yr BP could indicate a retreating sea ice edge or 

front. This is supported by the relative stable high (around 14%) relative abundance of C. 

excavatum and C. reniforme as well as the steady increase in E. nipponica (from 1550yr BP). 

As little (<0.3g) IRD (Figure 9) were found during sieving, meaning it is not impossible that a 

few occasional melting icebergs have passed over the area. However, a front is more likely 

than a sea ice edge due to the small amount of IRD and the steady increase on E. nipponica. 

The incoming Atlantic water as a surface current would bring more organic material and 

increase the vertical flux of organic matter to the seafloor (Knies & Martinez, 2009), thus 

might explain the higher TOC values. This is supported by the lower relative abundance of 

cold water species such as C. excavatum and C. reniforme and a higher relative abundance of 

species associated with an sea ice edge or front, such as Nonionella Spp. (Jennings, et al., 
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2011) prior to 1700yr BP. This suggests the presence of a front or sea ice edge at core 903 in 

the early part of the late Holocene. An alternate scenario could be that the Atlantic water was 

present and the Arctic Front moved to a position more proximal to the core location. 

However, as species associated with a front and presence of a sea ice edge show a higher 

presence in core 903 prior to the suggested advance of Atlantic water, it is believed a sea ice 

edge or front was present at core 903 prior to 1700yr BP, and pushed north by the Atlantic 

water at about 1700yr BP. The higher relative abundance of the cold water species I. 

norcrossi, prior to 1700yr BP, support this.  

The upper and most recent part of core 897, 902 and 903, from 1500yr BP and younger, show 

peaks in the foraminiferal flux, suggesting episodes of enhanced productivity, although few 

changes in the species composition occur, the relative abundances display some change 

throughout this period. Together with a general coarsening of the grain sizes, this might 

suggest a more vigorous environment, possibly due to a stronger inflow of Atlantic water in 

the Barents See region (e.g. Groot et al. (2014), Slubowska et al. (2005) and Hass (2002)). 

Groot et al. (2014) observed similar peaks in the foraminiferal flux and small changes in the 

flux and abundance, as well as a coarsening of the grain sizes, in Kveithola trough for this 

period, supporting a more vigorous environment.   

The increase of TOC and the flux of species associated with food availability, e.g. M. 

barleeanus and Nonionella spp. (Polyak & Solheim, 1994; Conradsen, et al., 1994), suggest 

increased food availability in northern part of Bjørnøyrenna (core 903, 902 and 897) for the 

last 1500 to 400 years (Figure 19). The increase in the flux of C. excavatum, C. reniforme and 

I. norcrossi at the same time as the increase in the species linked to food availability suggest 

the area to be influenced by seasonal sea ice, indicating a return of colder conditions and a 

reduction of the inflowing Atlantic water. It is also likely that a southward movement of the 

Arctic Front occurred, indicated by the increased flux of Buccella spp. and Nonionella spp. 

(Figure 19).    

The peak in relative abundance of C. neoteretis, in core 903, correlates well with the period of 

lower sand and higher silt content between 1400yr BP and 1100yr BP. Throughout this 

period, I. norcrossi show a stable increasing presence, possibly indicating a temporarily return 

of a sea ice proximal environment (Jennings, et al., 2011). The increase in C. neoteretis could 

also indicate influence of transformed Atlantic bottom water (Wilson, et al., 2011). M. 

barleeanus show a lower relative abundance, but a stable flux, between 1500yr BP and 



 

Page 69 of 85 

1400yr BP, suggesting an increase of the other species fluxes, like L. lobatula and C. 

neoteretis (Figure 19, Figure 20). The peak in the relative abundance and flux of L. lobatula 

might suggest a stronger bottom current. However, the low sand content for the period is not 

corresponding with stronger currents, inferred by L. lobatula, meaning a different factor is 

controlling the peak of L. lobatula for instance food availability. 

The sand content in core 903 begins to increase at 1100yr BP and L. lobatula starts to 

disappear (Figure 19). As L. lobatula is associated with a turbulent, high-energy environment 

(Hald & Steinsund, 1996; Mackensen, et al., 1985), this suggests another controlling factor, 

for instance food availability, for the disappearance of the species around 1100yr BP. 

Simultaneously with the disappearance of L. lobatula and increase in the coarse grain size 

fraction, M. barleeanus show increasing presence even though it prefer fine-grained 

sediments (Hald & Steinsund, 1996; Jennings, et al., 2011; Mackensen, et al., 1985). This 

further supports food availability or another factor controlling M. barleeanus, L. lobatula and 

the rest of the species. 

Both L. lobatula and M. barleeanus show a similar trend during the overlapping time span 

(1000-600yr BP) of core 897 and 902 (Figure 20), with a relative stable, slightly decreasing 

relative abundance of M. barleeanus and a general decline in L. lobatula, showing a similar 

declining pattern in both cores. The same is seen in the overlapping time span (1000-800yr 

BP) between core 902 and core 903 as well. 

At 900yr BP, in core 902, the TOC content stabilize at a higher value (Figure 12), C. 

laevigata appears and I. norcrossi start to increase in abundance. C. laevigata disappear at 

850yr BP while I. norcrossi continue to increase in both relative abundance and flux. This 

may suggest a cooling of the bottom water and possibly an advance of a sea ice edge or Arctic 

Front (Polyak & Solheim, 1994). The increase of  I. norcrossi correspond with the clay 

content stabilizing at a lower value, as well as the sand content showing an increase towards 

the present. The general decrease of L. lobatula at 890yr BP does not seem to be controlled by 

the increase in sand content, thus suggesting food supply or another factor, such as a lowered 

salinity (Hald & Steinsund, 1996), controlling the decrease of L. lobatula.  

Although the total calcareous flux has increased greatly from core 897 to core 902 (Figure 

19), the general trend of the calcareous flux in core 902 is relative stable with the exception of 

an episode between 800yr BP and 700yr BP, with a peak in the calcareous flux (Figure 19). 
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The relatively steady relative abundance of M. barleeanus and Nonionella spp. and a decline 

in L. lobatula suggest the peak in total flux to affect all the considered species. Both TOC and 

the clay concentration show little change between 800yrBP and 700yr BP, but the sortable silt 

mean grain size and sand content are at a lower value during this time (Figure 12), suggesting 

a calmer environment. C. excavatum is the most affected species as the relative abundance of 

this species is increasing the most (Figure 19). This may suggest a pulse of cooler conditions 

entering the area from the north around 800yr BP. As the relative abundance to most of the 

other species show little response to the peak in total flux, and the steadily increasing relative 

abundance of I. norcrossi, it is likely that a pulse of cooler conditions from the north entered 

the southwestern Barents Sea.  

Between 820yr BP and 730yr BP, in core 902, the total calcareous flux is high, although most 

of the species considered show an increasing flux around this time, C. excavatum and L. 

lobatula is the only species showing an increase in relative abundance (Figure 20). The 

relative abundance of Buccella spp., M. barleeanus and Nonionella spp. show a decline, and 

the flux of M. barleeanus and Nonionella spp. are decreasing, starting at 780yr BP towards 

the core top (Figure 20). Given the dominance of C. excavatum, I. norcrossi and L. lobatula 

during this time it suggests a colder period with higher hydrodynamic activity, as could be 

expected by a strong pulse of Arctic bottom water as previously inferred.  

The high flux period between 820yr BP and 730yr BP, followed by an increase in sand 

content, support a continuation of the high energy environment, supported by the increase in 

L. lobatula towards the present. The brief introduction of E. nipponica at 650yr BP 

correspond to the increase in the coarser grain size fractions, and could occur as a result of 

higher currents, meaning they could be reworked (Hald & Steinsund, 1992; Saher, et al., 

2012; Murray, et al., 1982). The relative abundance of Buccella spp. increase, starting at 

730yr BP continuing to 400yr BP, possibly indicating a seasonal sea ice cover or Arctic Front 

in the northern part of the studied area in the southwestern Barents Sea (Polyak & Solheim, 

1994; Hald & Steinsund, 1996). 

Given the opportunistic nature of C. excavatum (Hald & Steinsund, 1996; Linke & Lutze, 

1993) and the lower relative abundance of the species in core 902, it is believed that the 

environmental conditions have been relative stable throughout the timespan of core 902 

(1000-600yr BP), with the exception of the proposed cold water period between 820yr BP and 

730yr BP. 
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Although the total flux and TOC show a general increase up core in core 903, the increase 

does not seem to favor any particular species (Figure 19, Figure 20). 

Between 700yr BP and 400yr BP the total flux is relative stable in core 902 and the relative 

abundance of Buccella spp. and L. lobatula increase. However, only the flux of Buccella spp. 

show an increase and as the species is often associated with a seasonal sea ice cover or front 

(Polyak & Solheim, 1994; Hald & Steinsund, 1996), it is not unlikely that a seasonal sea ice 

cover or front were present between 700yr BP and 400yr BP.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 72 of 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 73 of 85 

6 Conclusion 

During the Late Glacial (15 500-14 900yr BP), the general trend is a warming of the bottom 

water, with increasing inflow of Atlantic water in the southern part of the study area (core 

993). However, due to the possibility that parts of core 993 are reworked, care should be 

taken interpreting the results from the core.  

During the early Holocene (10 900-7300yr BP) there was a general warming of the bottom 

water over core 893 in the southwestern Barents Sea, with higher current velocities and an 

increasing inflow of Atlantic water. This is inferred by the decreasing presence of the cold 

water species C. excavatum, C. reniforme and I. Norcrossi and increasing presence of warm 

water species such as E. nipponica and C. laevigata (Figure 20). At 9800yr BP strong bottom 

currents were present, inferred by a coarse sand fraction, no IRD and a peak in L. lobatula. 

The general warming trend found in this study is supported by the findings of Slubowska-

Woldengen et al. (2008).  

A cooling of the inflowing Atlantic water occurred during the mid Holocene (7300-2500yr 

BP), where the early parts are covered by core 893, and the late parts are covered by core 897, 

both located in the middle part of Bjørnøyrenna. This is inferred by a decrease in species 

associated with Atlantic water, such as C. laevigata, C. neoteretis and E. nipponica (Figure 

20). However, the temperature did not drop enough for Arctic and cold water species like C. 

excavatum and I. norcrossi to occur. Atlantic water was still present during most of the mid 

Holocene, just colder than during the early Holocene. The decrease in Atlantic species and 

clay content suggest the mid Holocene to be a relative calm period. The first signs of a front 

occur at about 4000yr BP. Influence of Arctic water occurred in the late parts of the mid 

Holocene, indicating front proximal settings.  

The start of the late Holocene (2500-400yr BP), covered by core 897, 902 and 903, remain 

chilled, inferred by C. reniforme and I. norcrossi (Figure 19, Figure 20), but at 1700yr BP the 

Arctic Front is pushed north. At 1500yr BP signs of a more vigorous environment is evident. 

It is likely that a marginal ice zone (MIZ) or Arctic Front is present in the northeastern part of 

the studied area for the early part of the late Holocene. A calmer environment occurs from 

890yr BP with a pulse of Arctic water coming in from the north between 800-700yr BP, as 

inferred by C. excavatum among others (Figure 19, Figure 20). The latest part of the late 



 

Page 74 of 85 

Holocene (700-400yr BP), covered by core 897 and 902, is a period with weaker currents and 

possibly a seasonal sea ice cover in the northern part of Bjørnøyrenna. 

 



 

Page 75 of 85 

7 References 

Aagaard-Sørensen, S., Husum, K., Hald, M. & Knies, J., 2010. Paleoceanographic 

development in the SW Barents Sea during the Late Weichselian-Early Holocene transition. 

Quarternary Science Reviews 29 (25-26), pp. 3442-3456. 

Allaby, M., 2013. A dictionary of Geology and Earth Sciences. 4. ed. s.l.:Oxford University 

Press. 

Austin, W. E. N. & Sejrup, H. P., 1994. Recent shallow water benthic foraminifera from 

western Norway: ecology and paleoecological significance. Cushman Foundation Special 

Publication 32, pp. 103-125. 

Blott, S. J., 2010. GRADISTAT 8.0. s.l.:s.n. 

Board, W. E., 2016. World Register of Marine Species (WoRMS). [Online]  

Available at: http://www.marinespecies.org/ 

[Accessed 2016]. 

Byrd polar research Center, 2001. Foraminiferal research. [Online]  

Available at: http://research.bpcrc.osu.edu/geo/projects/foram/home.htm 

[Accessed 16 December 2016]. 

Caralp, M. H., 1989. Abundance of Bulimina exilis and Melonis barleeanum: Relationship to 

the quality of marine organis matter. Geo-Marine letters 9, pp. 37-43. 

Conradsen, K. et al., 1994. Recent Benthic foraminiferal distribution in the Kattagatt and 

Skagerrak, Scandinavia. Cushman Foundation special publications, 32, pp. 53-68. 

Corliss, B. H., 1991. Morphology and microhabitat preferences of benthic foraminifera from 

the northwest Atlantic ocean. Marine micropaleontology 17, pp. 195-236. 

Dessandier, P.-A.et al., 2015. Lateral and vertical distributions of living benthic foraminifera 

off the douro river (western Iberian margin): Impact of the organic matter quality. marine 

microopaleontology 120, pp. 31-45. 

Dijkstra, N., Junttila, J. & Aagaard-Sørensen, S., 2016. Reconstructing pre-impact baseline 

conditions using benthic foraminifera in an area of increasing petroleum exploration 

activities. Geophysical Reaserch Abstract 18, pp. EGU2016-1253. 

Dijkstra, N. et al., 2013. Baseline benthic foraminiferal assemblages and habitat conditions in 

a sub-Arctic region of increasing petroleum development. Marine Environmental Research, 

pp. 178-196. 



 

Page 76 of 85 

Dijkstra, N. et al., 2015. Natural variability of benthic foraminiferal assemblages and metal 

concentrations during the last 150 years in the Ingøydjupet trough, SW Barents Sea. Marine 

micropaeoltology 121, pp. 16-31. 

Eiriksson, J., Knudsen, K. L., Haflidason, H. & Heinemeyer, J., 2000. Chronology of late 

Holocene climatic events in the northern North Atlantic based on AMS 14C dates and tephra 

markers from the volcano Hekla, Iceland. Journal of Quarternary Science 15 (6), pp. 573-

580. 

Eiriksson, J. et al., 2011. Coupling of paleoceanographic shifts and changes in marine 

reservoir ages off North Iceland through the last millenium. Palaeogeography, 

paleoclimatology, paleoecology 302, pp. 95-108. 

Ellis, B. E. & Messina, A. R., 1940-1978. Catalogue of Foraminifera American Museum of 

Natural History, New York.  

Elverhøi, A. & Bomstad, K., 1980. Late Weichselian glacial and glaciomarine sedimentation 

in the western, central Barenst Sea, Oslo: Norsk Polarinstitur. 

Elverhøi, A., Hooke, R. L. & Solheim, A., 1998. Late Cenozoic erosion and sediment yield 

from the Svalbard-Barents Sea region: Implications for understanding erosion of glacierized 

basins. Quarternary Science Reviews 17 (1), pp. 209-241. 

Ercilla, G. & Casas, D., 2012. Submarine mass movements: Sedimentary Characterization 

and controlling factors. In: I. A. Dar, ed. Earth Sciences. s.l.:InTech, pp. 99-128. 

Feyling-Hanssen, R. W., 1972. The Foraminifer Elphidium excavatum (Terquem) and its 

variant forms. Micropaleontology 18 (3), pp. 337-354. 

Gilbert, R., 1990. Rafting in glacimarine environments. Geological society special 

publication, 53, pp. 105-120. 

Goddard, B. et al., 2016. Experimental setup and commisioning baseline study in search of 

time-variations in beta-decay half-lives. Neuclear instruments and methods in physics 

reaserch section A: Accelerators, Spectrometers, Detectors and associated equipment, 812, 

pp. 60-67. 

Gothmann, A. M. et al., 2016. Cacium isotopes in scleractinian fossil corals since the 

Mesozoic: Implications for vital effects and biomineralization through time. Earth and 

planetary science letters, 444, pp. 205-214. 

Groot, D. E., Aagaard-Sørensen, S. & Husum, K., 2014. Reconstruction of Atlantic water 

variability during the Holocene in the western Barents Sea. Climate of the Past 10, pp. 51-62. 

Gutschick, R. C., 1986. Middle Ordovician agglutinated foraminifera including Reophax from 

the Miffin Formation, Platteville group of Illinois. Journal of paleontology 60 (2), pp. 233-

248. 



 

Page 77 of 85 

Hald, M. & Steinsund, P. I., 1992. Distribution of surface sediment benthic foraminifera in 

the southwestern Barents Sea. Journal of Foraminferal Research, v22, no4, , pp. 347-362. 

Hald, M. & Steinsund, P. I., 1996. Benthic foraminifera and carbonate dissolution in the 

surface sediments of the Barents and Kara Seas. In: R. Stein, I. Ivannov G, M. A. Levitan & 

K. Fahl, eds. Surface-sediment composition and sedimentary processes in the central Arctic 

Ocean and along the Eurasian Continental Margin. s.l.:Berichte zur Polarforschung, pp. 285-

307. 

Hald, M. et al., 1994. Recent and late quarternary distribution of Elphidium excavatum F. 

clavatum in Arctic seas. Cushman Foundation Special Publications 32, pp. 141-153. 

Hald, M. & Vorren, T., 1984. Modern Holocene foraminifera and sediments on the 

continental shelf of Troms, North Norway. Boreas, 13, pp. 133-154. 

Hald, M. & Vorren, T., 1987. Foraminiferal strathigraphy and environment of late 

Weichselian deposits on the continental shelf of Troms. northern Norway. Mairone 

micropaleontology 12, pp. 129-160. 

Hass, C. H., 2002. A method to reduce the influence of ice-rafted debris on a grain size record 

from northern ram straight, Arctic Ocean. Polar research, 21 (2) , pp. 299-306. 

Jennings, A., Andrews, J. & Wilson, L., 2011. Holocene environmental evolution of the SE 

Greenland shelf North and South of the Denmark Strait: Irminger and East Greenland current 

interactions. Quarternary sciuence reviews , pp. 980-998. 

Jennings, A. E., Weiner, N. J., Helgadottir, G. & Andrews, J. T., 2004. Modern foraminiferal 

faunes of the southwestern to northern Iceland shelf: oceanographic and environmental 

controls. Journal of foraminiferal research 34, pp. 180-207. 

Junttila, J., Aagaars-Sørensen, S., Husum, K. & Hald, M., 2010. Late glacial-Holocene clay 

minerals elucidating glacial history in the SW Barents Sea. Marine Geology 276, pp. 71-85. 

Junttila, J., Carrol, J., Husum, K. & Dijkstra, N., 2014. Sediment transport and deposition in 

the Ingøydjupet trough, SW Barents Sea. Continental shelf research 76, pp. 53-63. 

Junttila, J., Carroll, J. & Dijkstra, N., 2015. Variability of present and past PAH (polyaromatic 

hydrocarbons) concentrations in sediments of the SW Barents Sea. Norwegian journal of 

geology, 95 , pp. 191-210. 

Kartverket, n.d. Norgeskart. [Online]  

Available at: 

https://norgeskart.no/geoportal/#3/995102/8314071/l/wms/[http://maps.imr.no/geoserver/ows]

/+Arctic_background/+barents_sea_currents 

[Accessed Desember 2016]. 



 

Page 78 of 85 

Kennedy, M. J., Peaver, D. R. & Hill, R. J., 2002. Mineral surface control of organic carbon 

in black shale. Science 295, pp. 657-660. 

Khusid, T. K. & Korsum, S. A., 1996. Modern benthic foraminiferal assemblages in the Kara 

Sea. In: R. Stein, G. I. Ivanov, M. A. Levitan & K. Fahl, eds. Surface-sediment composition 

and sedimentary processes in the central Arctic Ocean and aling the Euasian continental 

margin. s.l.:Ber. Polarforsch. 212, pp. 308-314. 

King, E. L. et al., 2014. Contour current driven continental slope-situated sandwaves with 

effects from secondary current processes on the Barents Sea margin offshore Norway. Marine 

Geology 353, pp. 108-127. 

Klitgaard-Kristensen, D., Sejrup, H. P. & Haflidason, H., 2002. Distribution of recent 

calcareous benthic foraminifera inthe northern North Sea and relation to the environment. 

Polar research 21 (2), pp. 275-282. 

Klitgaard-Kristensen, D., Sejrup, H. P. & Haflidason, H., 2001. The last 18 kyr fluctuations in 

Norwegian Sea surface conditions and implications for the magnitude of climatc change: 

evidence from the North Sea. Paleoceanography 16 (5), pp. 455-467. 

Knies, J. & Martinez, P., 2009. Organic matter sedimentation iin the western Barents Sea 

region: Terrestrial and marine contribution based on isotopic composition and organic 

nitrogen content. Norwegian journal of geology, 89, pp. 79-89. 

Knudsen, K. L. & Ausin, W. E. N., 1996. Late Glacial Foraminifera. Geological society, 

London, Special Publications 111, pp. 7-10. 

Korsun, S. & Hald, M., 1998. Modern Benthic foraminifera off Novaya Zemlya tidewater 

Glaciers, Russian Arctic. Arctic and Alpine Research 30 (1), pp. 61-77. 

Lagoe, M. B., Eyles, C. H. & Eyles, N., 1994. Foraminiferal biofacies and paleoenvironments 

in a pliocene megachannel of the glaciomarine Yakatage formation, gulf of Alaska. Cushman 

Foundations Spacial Publication 32, pp. 127-139. 

Lambeck, K., 1996. Limits on the areal extend of the Barents Sea ice sheet in Late 

Weichselian time. Global planetary change 12, pp. 41-51. 

Landvik, J. Y. et al., 1998. The last glacial maximum of Svalbard and the Barents Sea area: 

ice sheet extent and configuration. Quarternary science reviews 17, pp. 43-75. 

Linke, P. & Lutze, G. F., 1993. Microhabitat preferences of benthic foraminifera - a static 

concept or a dynamic adaption to optimize food aquisition?. Marine micropaleontoogy 20, pp. 

215-234. 

Loeblich, A. R. & Tappan, H., 1987. Foraminiferal Genera and Their Classification. New 

York: Van Nostrand Reinhold Co. 



 

Page 79 of 85 

Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar 

research, 10, pp. 5-18. 

Mackensen, A. & Hald, M., 1988. Cassidulina teretis Tappan and C. laevigata D'orbigny: 

their modern and late quarternary distribution in northern seas. Journal of foraminiferal 

research 18 (1), pp. 16-24. 

Mackensen, A., Sejrup, H. P. & Jansen, E., 1985. The distribution of living benthic 

foraminifera on the continental slope and rise off southwest Norway. Marine 

micropaleontology 9, pp. 275-306. 

Mangerud, J. et al., 2006. Marine 14C reservoir ages for 19th century whales and molluscs 

from the North Atlantic. Quarternary Science Reviews, 25, pp. 3228-3245. 

Mangerud, J. & Gulliksen, S., 1975. Apparent radiocarbon ages of recent marine shells from 

Norwy, Spitsbergen and Arctic Canada. Quarternary Research 5, pp. 263-273. 

Mangerud, J. et al., 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia 

during the Last Glaciation. Quarternary science reviews 23, pp. 1313-1332. 

Montfort, P. D. D., 1808. Conchyliologie systématique, et classification méthodique des 

coquilles. 1. ed. Paris: Schoell, Fraedaeric. 

Mudie, P. J., Keen, C. E., Hardy, I. A. & Vilks, G., 1984. Multivariate analysis and 

quantitative paleoecology of benthic foraminifera in surface and late Quarternary shelf 

sediments, northern Canada. Marine Micropaleontology 8, pp. 283-313. 

Murray, J. W., 2006. Ecology and applications of Banthic foraminifera. s.l.:Cambridge 

university press. 

Murray, J. W., Sturrock, S. & Weston, J., 1982. Suspended load transport of foraminiferal 

tests in a tide- and wave-swept sea. Journal of Foraminiferal Research 12 (1), pp. 51-65. 

Patterson, R. T. & Fishbein, A., 1989. Re- examination of the statistical methods used to 

determen the number of point counts needed for micropaleontological quantitative research. J. 

Paleont, 63(2), pp. 245-248. 

Polyak, L. et al., 2002. Benthic foraminiferal assamblages from the southern Kara Sea, A 

river-influenced Arctic marine environment. Journal of foraminiferal research 32, pp. 252-

273. 

Polyak, L. & Mikhailov, V., 1996. Post-glacial envireonments of the southeastern Barents 

Sea: foraminiferal evidence. geological society special publications 111, pp. 323-337. 

Polyak, L. & Solheim, A., 1994. Late- and post glacial environments of the northern Barents 

Sea west of Franz Josef Land. Polar Research 13 (2), pp. 197-207. 



 

Page 80 of 85 

Purser, K. H. & Litherland, A. E., 1990. The elimination of cherge-changing backgrounds in 

an AMS radiocarbon system. Nuclear instruments and Methods in Physics Reaserch, B52, pp. 

424-427. 

Rahmstorf, S., 2006. Thermohaline Ocean circulation. In: Encyclopedia of Quarternary 

Sciences. Amsterdam: Elsevier. 

Rasmussen, T. L. et al., 2007. Paleoceanographic evolution of the SW Svalbard margin 

(76°N) since 20,000 14C yr BP. Qouarternary research 67, pp. 100-114. 

Risebrobakken, B. et al., 2010. Climate and oceanographic variability in the SW Barents Sea 

during the Holocene. The Holocene, pp. 1-13. 

Ruther, D. C. et al., 2011. Seismic architecture and sedimentology of a major grounding zone 

system deposited by the Bjørnøya Ice Stream during Late Weichselian deglaciation. 

Quarternary Science Reviwes, 30 , pp. 2776-2792. 

Saher, M. et al., 2012. Changes in distribution of calcareous benthic foraminifera in the 

central Barents Sea between the periods 1965-1992 and 2005-2006. Global and Planetary 

Change 98-99, pp. 81-96. 

Saher, M. et al., 2009. Benthic foraminifera assemblages in the Central Barents Sea: an 

evaluation of the effect of combining live and todal fauna studies in tracking environmental 

change. Norwegian Journal og Geology 89, pp. 149-161. 

Schröder, C. J., Scott, D. B. & Medioli, F. S., 1987. Can smaller benthic foraminfera be 

ignored in paleoenvironmental analyses?. Journal of foraminiferal research, 17 (2), pp. 101-

105. 

Seidenkrantz, M.-S., 1995. Cassidulina teretis Tappan and Cassidulina neoteretis new species 

(Foreminifera): stratigraphic markers for deep sea and outer shelf areas. Micropaleontology 

14 (2), pp. 145-157. 

Sejrup, H.-P.et al., 1981. Benthonic Foraminifera in surface samples from the Norwegian 

continental margin between 62°N and 65°N. Journal of foraminiferal research 11 (4), pp. 

277-295. 

Sejrup, H. P., Birks, H. J. B., Klitgaard, K. D. & Madsen, H., 2004. Bnthonic foraminiferal 

distributions and quantitative transfer functions for the northwest European continental 

margin. Marine Micropaleontology 53 , pp. 197-226. 

Slobuwska-Woldengen, M. et al., 2007. Advection of Atlantic Water to the western and 

northern Svalbard shelf since 17,500 cal yr BP. Quarternary Science Reviews 26, pp. 463-

478. 



 

Page 81 of 85 

Slubowska, M. A., Koc, N., Rasmussen, T. L. & Klitgaard-Kristensen, D., 2005. Changes in 

the flow of Atlantic water into the Arctic Ocean since the last degalciation: Evidence from the 

northern Svalbard continental margin, 80°N. Paleoceanograohy 20, pp. 1-15. 

Slubowska-Woldengen, M. et al., 2008. Time-Slice reconstructions of ocean circulation 

changes on the continental shelf in the Nordic and Barents Seas during the last 16,000 cal yr 

B.P.. Quarternary Science Reviewes, 27, pp. 1476-1492. 

Smedsrud, L. H. et al., 2013. The role of the Barents Sea in the Arctic climate system. 

Reviews of Geophysics 51 (3), pp. 415-449. 

Steinsund, P. I. & Hald, M., 1994. Recent calcium carbonate dissolution in the Barents Sea: 

Paleoceanographic applications. Marine Geology 117, pp. 303-316. 

Struck, U., 1995. Stepwise postglacial migration of benthic foraminifera into the abyssal 

northeastern Norwegian Sea. Marine Micropaleontology 26, pp. 207-213. 

Stuvier, M., Pearson, G. & Brasiunaz, T., 1986. Radiocarbon age calibration of marine 

samples back to 9000 cal yr BP. Radiocarbon, 28 (2B), pp. 980-1021. 

Tappan, H., 1951. Northern Alaska index Foraminifera. Contributions from the Cushman 

Foundation for Foraminiferal Research 2 (1), pp. 1-8. 

Usami, K., Ohi, T., Hasegava, S. & Ikehara, K., 2013. Foraminiferal records of bottom-water 

oxygenation and surface-water productivity in the southern Japan Sea during 160-15 ka: 

Associations with insolation changes. Marine micropaleontology 101, pp. 10-27. 

Vorren, T. O., Hald, M. & Lebsbye, E., 1988a. Late Cenozoic environments in the Barents 

Sea. Paleoceanography 3 (5), pp. 601-612. 

Vorren, T. O. et al., 1988b. The last deglaciation (20,000 to 11,000 BP) on Andøya, northern 

Norway. Boreas 17, pp. 41-77. 

Wilson, L. J., Hald, M. & Godtliebsen, F., 2011. Foraminiferal faunal evidence of twentieth-

century Barents Sea warming. The Holocene 21 (4), pp. 527-537. 

Wollenburg, J. E. & Mackensen, A., 1998. Living benthic foraminifers from the central Arctic 

Ocean: faunal composition, standing stock and diversity. Marine micropaleontology 34, pp. 

153-185. 

 

 



 

Page 82 of 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 83 of 85 

Appendix 1: Species list 

Adercotryma glomerata 

Armorella spp. 

Cribrostromoides spp. 

Rahbdamina spp. 

Reophax spp. 

Trochammina spp. 

Astronion Gallowayi 

Bolivina spp. 

Bolivina pseudopunkta 

Buccella spp. 

Bulimina spp. 

Cassidulina laevigata 

Cassidulina neoteretris 

Cassidulina obtusa 

Cassidulina spp. 

Cornuspira spp. 

Cribroelphidium albiumbilicatum 

Cribroelphidium excavatum 

Dentalina spp. 

Eilohedra nipponica 

Elphidae spp. 

Elphidium bartletti 

Elphidium incertum 

Epistominella spp. 

Fissurina spp. 

Glandulina ovula 

Glandulina spp. 

Globobulimina auriculata 

Globobulimina spp. 

Haynelina balthica 

Haynesina depressula  

Haynesina germanica 

Haynesina orbiculare 

Islandiella helenae 

Islandiella norcrossi 

Islandiella spp. 

Lagena spp. 

Lenticulina spp. 

Lenticulina Thalmanni 

 

 

 

 

 

Lobatula lobatula 

Melonis barleanus 

Miliolinella spp.  

Nonionella auricular 

Nonionella labradorica  

Nonionella turgida 

Oolina spp. 

Pullenia bulloides 

Pullenia spp. 

Pyrgo Wiliamsoni 

Quinqueloculina seminula 

Quinqueloculina spp. 

Robertinoides spp. 

Sigmoilina spp. 

Stainforthia concava 

Stainforthia feylingi 

Stainforthia loeblichi 

Stainforthia spp. 

Stainforthia fussiformis 

Trifarina angulosa 

Trifarina fluens 

Triloculina spp.   

Valvulina spp. 

  

 

In total 62 species were identified, where 

six are agglutinated and 56 are calcareous. 
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core depth interval core depth interval core depth interval

HH12-893 MCD 20-21 HH12-902 MCC 20-21 IG15-1-993-MCC 20-21

21-22 21-22 21-22

22-23 22-23 22-23

23-24 23-24 23-24

24-25 24-25 24-25

25-26 25-26 25-26

26-27 26-27 26-27

27-28 27-28 27-28

28-29 28-29 28-29,5

29-30 29-30 29,5-31

30-31 30-31

31-32 31-32

32-33 32-33

33-34 33-34

34-35 34-35

35-36 35-36

36-37 36-37

37-38 37-38

38-39 38-39

39-40 39-40

40-41 40-41

HH12-897 MCA 20-21 41-42

21-22 42-43

22-23 43-44

23-24 HH12-903 MCC 20-21

24-25 21-22

25-26 22-23

26-27 23-24

27-28 24-25

28-29 25-26

29-30 26-27

30-31 27-28

31-32 28-29

32-33 29-30

33-34 30-31

34-35 31-32

35-36 32-33

36-37 33-34

37-38 34-35

38-39 35-36

39-40 36-37

37-38

38-39

39-40

40-41

41-42

42-43

43-44

44-45

Appendix 2: Sample Interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


