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In just over two decades, structure based protein kinase inhibitor discovery has grown from trial and error ap-
proaches, using individual target structures, to structure and data driven approaches that may aim to optimize
inhibition properties across several targets. This is increasingly enabled by the growing availability of potent
compounds and kinome-wide binding data. Assessing the prospects for adapting known compounds to new
therapeutic uses is thus a key priority for current drug discovery efforts. Tools that can successfully link the di-
verse information regarding target sequence, structure, and ligand binding properties nowaccompany a transfor-
mation of protein kinase inhibitor research, away from single, block-buster drug models, and toward
“personalized medicine” with niche applications and highly specialized research groups. Major hurdles for the
transformation to data driven drug discovery include mismatches in data types, and disparities of methods and
molecules used; at the core remains the problem that ligand binding energies cannot be predicted precisely
from individual structures. However, there is a growing body of experimental data for increasingly successful
focussing of efforts: focussed chemical libraries, drug repurposing, polypharmacological design, to name a few.
Protein kinase target similarity is easily quantified by sequence, and its relevance to ligand design includes broad
classification by key binding sites, evaluation of resistancemutations, and the use of surrogate proteins. Although
structural evaluation offers more information, the flexibility of protein kinases, and differences between the
crystal and physiological environments may make the use of crystal structures misleading when structures are
considered individually. Cheminformatics may enable the “calibration” of sequence and crystal structure infor-
mation,with statisticalmethods able to identify key correlates to activity but alsohere, “the devil is in thedetails.”
Examples from specific repurposing and polypharmacology applications illustrate these points. This article is part
of a Special Issue entitled: Inhibitors of Protein Kinases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The first protein kinase structure determinations [1,2] initiated the
era of kinase inhibitor structure based drug design. The rho-kinase
inhibitor HA1077 [3] (Fasudil) was approved in Japan in 1995, but
it was the approval of imatinib (Glivec) [4,5] in 2001 that firmly
established protein kinases as high priority drug targets, particularly
in oncology. Since then, the structural information available for drug de-
sign,, has grown massively. Now, structure and data driven approaches
evenmay rationally attempt to optimize target selectivity profiles based
on biological data, using information from thousands of known inhibi-
tors. Assessing the prospects for adapting known compounds to new
therapeutic uses is thus a key priority for current drug discovery efforts,
and repurposing or redesigning known compounds may be most

efficient [6–11]. Tools that can successfully link the diverse information
regarding target sequence, structure, and ligand binding properties
have the potential to transform kinase inhibitor research away from
single, block-buster drug models, and into “personalized” and other
niche areas where also academic groups may specialize.

An understanding of “where to look” aids these efforts, and the
evaluation of protein kinase target similarity is part of this. This is
most easily quantified by sequence, and such a bioinformatics approach
is familiar to the broadest audience, usually using phylogenetic trees of
whole sequences. Broad and useful similarity classification can bemade
by identifying key binding sites, supporting an evaluation of resistance
mutations, and the use of surrogate proteins to aid experiment. However,
ligand design requires an understanding of ligand–target interactions,
and this ismost directly a structural topic. Although structural evaluation
uses and offers more information, the flexibility of protein kinases, and
differences between the crystal and physiological environments may
make the use of crystal structures misleading when structures are
considered individually. For use of structures collectively, informatics
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methods must be used. Such methods may enable the “calibration” of
sequence and crystal structure information, with statistical methods
able to identify key correlates to activity but also here, it is still true
that “the devil is in the details” [12].

2. Results and discussion

2.1. Similarity by sequence

2.1.1. Key residues
A direct way to visualize some key aspects of protein kinase sim-

ilarity is simply to plot the distribution of key residues on a phyloge-
netic tree with the same layout as the original kinome analysis of
Manning et al. [13], which has become intimately familiar to
most protein kinase researchers. Thus, the gatekeeper distribution
(Fig. 1A) readily shows the clustering of themost common gatekeep-
er residues: Met, Thr, Leu, and Phe, and also identifies some poten-
tially surprising connections, such as Flt3 with CMGC kinases. Less
well known is the conservation of the “gatekeeper +2 residue”
(Fig. 1B), which is usually an aromatic amino acid (tyrosine or phe-
nylalanine, sometimes tryptophan as in BRAF) or leucine. This site
is particularly interesting as one that is often found in drug resistant
cancers, and in CML is often the one with the most rapid appearance
[14]. Other key residues include the glycine residues of the glycine-
rich loop, with the consensus sequence GxGxxG. Although the func-
tion of these residues is not entirely clear, besides sterically allowing
ATP binding [15], they contribute the high flexibility seen for the
glycine-rich loop in response to inhibitor binding, with possibly en-
hanced flexibility for Abl1, with its GGGxxG sequence, and reduced
flexibility for protein kinases lacking the third glycine (Fig. 1C; the
first two are most highly conserved).

Although plots of individual residues are informativewith respect to
specific features, they cannot suggest overall inhibitor binding similarities
between kinases. On the other hand, the phylogenetic tree itself does rep-
resent overall homology, but not specifically for inhibitor binding. An in-
termediate similarity measure would be the use of pseudosequences,
chosen to represent residues important for inhibitor binding. The choice
of these residues is however not unique. The differing binding geometries
of different inhibitors involve different side chains, and many residues
that play a role in binding maymake no contact at all, but may influence
other properties, such as flexibility.

Fig. 2 shows pseudosequence similarity plots for Aurora B and Abl
kinases, calculated using the Needleman–Wunsch algorithm and a
Blosum62 similarity matrix as implemented in Mathematica, on a
pseudosequence of key residues. For comparison, Fig. 2 also shows
the correlations of inhibitor binding energies for the same kinases
with the protein kinases in the Ambit kinase profiling set of 2011
[16]. These pseudosequences show the Aurora kinases to be quite
unique (Fig. 2A), with some cognates in the CAMK group, rather
more specific than the kinase binding data show (Fig. 2B). In con-
trast, Abl pseudosequence similarity clusters within the tyrosine
kinase subfamily (Fig. 2C), with better agreement with the inhibitor
data.

2.2. Similarity by structure

Sequence determines structure, and structure determines binding
energetics, so structure represents a higher level of information content
for evaluating target similarity; efforts to contribute to and use the in-
formation from worldwide Protein Data Bank [17,18] reflect its central
importance. However, even though sequence determines structure, a
unique sequence does not guarantee a unique structure, despite a per-
sistent prejudice to the contrary. Throughout the period of protein crys-
tallography, protein structures have been known to be dynamic and
dependent on total chemical composition (i.e. posttranslational modifi-
cations), environment (pH, temperature, ionic strength), binding

partners (proteins, small molecules), and so on. As the PDB grows,
more andmore of these effects can be recognized and characterized, en-
abling meaningful PDB wide searches, e.g. repurposing opportunities
[19,20]. Because the structural variability is large compared to what de-
termines ligand binding energetics, conformational space remains enor-
mous compared to the size of the PDB.

Many of the key states of protein kinases have been determined; key
activitymodulationmechanisms involving especially “helix C”, the acti-
vation loop (including phosphorylation and the “DFG-in”, “DFG-out”,
and intermediate states), and the glycine-rich loop have been identified.
However, their observation in association with a particular inhibitor
does not guarantee that that is the only, or even the lowest energy
state of the complex. Crystallization conditions, the energy of crystal
packing contacts, and the state of the protein used for crystallization
can be major determinants for the observed state. Compounding this
problem is the fact that inhibitors are usually assumed to possess a
single binding geometry: 1) Crystals lacking the resolution to identify
structural heterogeneity will lead to a single modeled structure, as a
rule, 2) inhibitors that bind with structural heterogeneity may cause
such a moderate resolution, and 3) optimization of crystallization
conditions to maximize resolution may be a search for conditions to
eliminate alternate binding geometries that occur in a biological envi-
ronment. The examples presented in the section illustrate some of the
difficulties.

2.2.1. Understanding the binding mode(s) of VX680
The inhibitor VX680 (or MK0457), originally identified as an Aurora

kinase inhibitor, has been in several clinical trials for cancer indications
including solid tumors [21], leukemias [22–24], and lung cancer, as
reflected by its low nanomolar inhibition of Abl, Aurora, and Flt3
kinases, including the drug resistant Abl mutant T315I [16]. The cross
reactivity between Abl and Aurora is in apparent contradiction to their
overall similarity (unlike the cross reactivity between Aurora and Flt3,
which is identified, Fig. 2). One notable feature that Aurora and Abl
kinases share when binding to VX680 is a reconfiguration of the
glycine-rich loop to form a pi–pi stacking arrangement between the in-
hibitor and the highly conserved aromatic amino acid at the beta-
hairpin turn of the loop. If the two kinases shared an anomalous propen-
sity for such a reconfiguration, the cross-reactivity might be explained.
And indeed, Abl is unusually glycine-rich, with a GGGxYG motif. But
Aurora's GxGxFG is not remarkable in this respect. Further, VX680 is
seen bound to Aurora both with and without the pi–pi interaction
(Fig. 3). Mutational studies indicate that the pi–pi interaction is impor-
tant for binding independent of binding to co-factor TPX2 [25]. Abl
kinase has been observed in DFG-in, DFG-out, and intermediate states,
and SRC-like, as recently reviewed [26]. VX680 binds to Abl kinase in
both active and inactive forms (Fig. 3b). This is consistentwithmeasure-
ments of VX680 binding to phosphorylated Abl variants by Ambit
Biosciences in 2011 [16]. Here, phosphorylation of the Abl kinase do-
main had only small effects on binding of VX680, and variously tight-
ened or weakened binding, depending on the mutant form of the
kinase. In contrast to the weak effect of phosphorylation, mutation of
the hinge aromat (gatekeeper + 2, see Fig. 1B) residue from phenylala-
nine to leucine or especially isoleucine weakened binding by two to
three orders ofmagnitude. One clear consequence of these observations
is that crystal structures may not, in isolation, be considered to be proof
of the “true” or even minimum energy binding geometry as it occurs ex
crystallo. Another may be that the anomalous cross reactivity of binding
to both Abl and Aurora kinases stems from a propensity to bind to
multiple target structures.

2.2.2. Understanding the polypharmacology of crizotinib
Crizotinib was designed [33] as a dual inhibitor of Alk and Met

kinases (low or subnanomolar for Alk, Met, but also Mertk, Ros1,
Ephb6, Axl, and Abl kinases [16]). Inhibitor correlation analyses show
moderate similarities for Alk and Met (see also 2.3 Cheminformatics,
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below). The availability of X-ray structures for crizotinib in complex
with both Alk (PDB ID: 2YFX [34]) and Met (PDB ID: 2WGJ [33])
might explain the similarity. Examination of the structures shows that,
although the hinge binding and overall geometry are the same,

crizotinib has no side chain interactions in common between the struc-
tures. Thus, the similarity is not likely to be clearly reflected in a se-
quence based analysis. In this case, binding pocket analyses might be
the proper approach. However, comparison of the available structures

Fig. 1.Distributions of key residues in the human kinome. A) the gatekeeper, B) the hinge residue two residues downstream from the gatekeeper, and C) the third glycine position of the
GxGxxG motif.
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for Met and Alk show that they have been crystallized in very different
states, especially with respect to activation loop geometries, with no
clear choice for making direct comparisons (Fig. 4).

2.2.3. Docking to similar kinases
The examples above illustrate how the flexibilities of target

structures complicate binding pocket analysis. Generally, even high

resolution crystal structures will represent at best a subset of the bind-
ing site conformations that are energetically available for ligand bind-
ing. Docking provides a way to observe specific effects that may arise
in automated methods, and indeed, automated docking procedures
fail more often than not even with correct target structure, at least for
protein kinases [35], and the proceduresmay be tailored to optimize re-
sults [36,37]. For unknown protein kinase target structures, homology

Fig. 2. Pseudosequence similarity plots for Aurora B (2A) and Abl (2C), compared to the inhibition profile correlations of Aurora B (2B) and Abl (2D) with other tested kinases (see text).
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modeling introduces additional error, such that it may be better to dock
against the template structure than the modeled target. However; the
modeled targets may even perform better [38]. Because of the uncer-
tainties, experiencedmedicinal chemistswill viewdocking results skep-
tically, but they will view them, because inspection of the range of
docking poses and characteristics of the binding site will generate
ideas for further optimization and testing. Docking done with diverse
methods and diverse targets provides a test for the robustness and
variability of the predictions.

Here we show tests of docking ROCK1 inhibitors to ROCK1, PKA, and
PKA–ROCK1 hybrid target structures (Fig. 5), looking at the predicted
minimum energy poses as functions of target structure, minimization
of target structure, protonation state of the inhibitor. Although only
a small fraction of docking experiments reproduced the experimental
binding pose in its entirety (dark green), somewhat over half
reproduced at least the hinge binding interactions (dark and light
green), and a clear majority predicted at least some hinge binding (yel-
low and greens). The failure of staurosporine to dock successfully in any
target except its parent structure (and here only with XP precision
docking) is notable. Because staurosporine, with its extended planar
and aromatic structure, significantly expands the binding site [39],

docking requires adequate prediction of flexibility prediction for
the target, as has been noted previously [40,41]. The target 1SVG
also usually failed to predict hinge binding. Here, due to definition
of the pocket grid based on the extent of the native ligand, the
more extended inhibitor of 1SVG led to a pocket that included
more residues distant from the hinge. Several of these created a
hydrophobic/aromatic site that the docking algorithm ranked higher
than hinge binding interactions. Although the minimization of the
target molecule often significantly changed the outcome, there is
no overall correlation with respect to the quality of the prediction.
The proton assignment could be decisive: Unfavorable assignment
of the protonation state of indazole-18 search prevented correct
docking. The homology models performed diversely: the ROCK1
model (based on 1q8w) was as good as the best ROCK1 structures,
while the PKA homology model was quite poor.

2.2.4. Water and structural variability
Analogous to the problem of treating protein flexibility, the mobil-

ities and potential bridging functions of water in ligand binding pose
a serious challenge to structural methods to predict ligand binding
[42–44]; SAR analyses of filling a pocket may be complicated by the
displacement of a water molecule and partial cavity formation and un-
favorable energetics. Analysis of target similarity is less severely impact-
ed, as targets with similar geometric and electrostatic properties would
be likely to share similar effects of solvent, even if these are unpredict-
able. But side chain and other flexibilities determine solvent positions.
So, as with flexibility, multiple structure determinations with varying
conditions and ligands enable the identification of conserved water po-
sitions [45]. Aurora kinases have shown clusters of water; some of these
have evolved into distributions. One cluster may be observed in a deep
pocket between ATP, the gatekeeper, and the aspartic acid of the DFG

Fig. 3.Overlay of VX680 structures show variations in the A) glycine-rich loop and B) DFG
configurations. Abl DFG-in structures are colored with shades of blue (ABL1, PDB ID: 2F4J
[27] and PDB ID: 3E5A [28]; ABL2: PDB ID: 2XYN [29]), ABL1 DFG-out structures in cyan
(PDB ID: 4ZOG); Aurora structures in shades of purple (Aurora A, PDB ID: 4JBQ [30]; Au-
rora B, PDB ID: 4B8M and PDB ID: 4AF3[31]), and PKA based Aurora mimic in pink (PDB
ID: 3AMB [32]).

Fig. 4. Superposition of ALK andMET structures. The ALK structures in the PDB (here with
a single representative in red) share a configuration with the activation loop locked in a
helix with the phosphorylation site tyrosine (red sticks) oriented toward the back. The
MET structures cluster into several groups (green and violet), DFG-in, DFG-out and inter-
mediate states.
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segment of the activation loop (Fig. 6a). While strategies to replace this
water molecule with a corresponding polar group might be successful,
superposition of inhibitor complexes with Aurora show that this pocket
may be eliminated entirely by breaking the salt bridgemade by the cat-
alytic lysine residue with the helix C glutamic acid and displacing the
residues (Fig. 6b).

2.3. Similarity by cheminformatics: calibrating sequence and structure?

Ultimately, it seems, the complexities and many uncertainties of
structural analysiswill be dealtwith by automated application of empir-
ical data. The growing set of computational algorithms for calculating
hundreds or thousands of molecular properties increasingly enables

A

B

Fig. 5.Docking of Rho kinase inhibitors to ROCK1, PKA, and PKA-ROCK1 hybrid target structures. a) Overall results. Each target structure (in rows) was usedwith (bottom half of row) and
without (tophalf of row)minimization. Inhibitorswithmultiple possible charge or protonation states havemultiple columns. Hatching indicates that the inhibitorwas extracted from that
target structure. The degree towhich the energyminimumdocked pose is correct is shown by color. Green indicates the correct pose. Light green indicates that thehinge-bindingmoiety is
correctly docked, but not all of themolecule. Yellow indicates that the inhibitor docked at the hinge, but in the incorrect pose. Red indicates that theminimumenergy docked posewas not
at the hinge. Black indicates that there was no docked solution found at all. b) The failure of docking in target structure 1SVG arises from the extended definition of the binding site grid
from the native inhibitor (yellow).Without constraints to explicitly require binding at the hinge (white sticks), theminimumenergy docking poses place the fasudil variants (purple) near
the tip of the glycine-rich loop, where the binding pocket is bounded by residues rich in aromatic side chains (cyan).
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machine learning in chemoinformatics. Machine learningmethods gen-
erally involve building a model of complex data relationships from a
training set, validating the model with a test set, and then making pre-
dictions. These approaches are used e.g. for predicting binding affinities
of protein–ligand complexes from molecular properties but may
be generalized to predictions of arbitrary relationships, such as the pre-
diction of ADMET properties. Approaches that are especially relevant to
chemoinformatics include Random Forest [46,47], Artificial Neural Net-
works [48], Support Vector Machine [49], and naïve Bayes classifiers
[50]. But no matter what the method, application of empirical methods
to large and complex systems remains accurate only when the state of
the system is not too far from empirically validated states. It remains
to be seen how well such methods may be applied also in kinase
selectivity and drug design and repurposing studies [51–58], including
biological data as well [59].

Kinase inhibitor profiling is a good test case [60,61]. Although the
data may be clearly defined, the types of assays differ qualitatively, the
targets used are diverse, and key details may not be accessible for
query (by humans or machines). Such details may include substrates,

co-factors, pH, post-translational modifications, statistics of parameter
fitting, and so on. One may hope that the data set is so large that these
sources of error become statistically distributed inway thatmultivariate
statistics may still find the signal in the noise.

2.3.1. Applications of “activity homology”
Posy et al. of Bristol-Myers Squibb published data derived from over

20,000 compounds [61] in Ambit assays. That extent of data enables the
definition of “activity homology”, or “the prior probability that a com-
pound will be active for kinase B given that it is active for kinase A”.
This is calculated as the percentage of the inhibitor set of kinase A that
inhibits kinase B, and provides an interestingmethod for evaluating tar-
get similarity. It is related to inhibitor correlation, but compares binding
strength rather than binding patterns.

Fig. 7 shows “activity homology” analyses from the BMS data for
three sets of targets. First, activity homologies are plotted for Auroras
A and B, and Abl kinase, with kinases ordered along the abscissa
descending according to their activity homology with Aurora A. Since
the activity homology of a protein kinase with itself is 100%, the yellow
green points at 100% mark the position along the abscissa of Aurora B
and Abl, respectively. Aurora B has an activity homology of roughly
35%with Aurora A, with Abl at about 15%. Aurora B is more homologous
to Aurora A in this measure than Abl, but both show a similar pattern of
lower homologies with the kinases on the right (with lowest homology
to Aurora A). Also apparent are themany outliers to this pattern for Abl,
presumably due to different mechanisms for homology (or inhibitor
binding) available to Abl and the outlier kinases that are not available
to the Aurora kinases. Another pattern is evident: Aurora B has generally
higher activity homology to other kinases than Aurora A, that is, Aurora
A is a more idiosyncratic kinase.

Comparisons of Alk,Met, and EGFR, all lung cancer targets, show a dif-
ferent pattern (Fig. 7b). Here the similarity of Alk andMet is evident, as is
the dissimilarity of EGFR. For polypharmacological targeting of these
three kinases, either exceptional compounds with cross-reactivity for all
three must be found, or inhibitors must be designed with “orthogonal”
binding mechanisms. Covalent binding to the cysteine found at the gate-
keeper +7 hinge position of EGFR would be such a mechanism [62,63].
Finally, Fig. 7c shows a comparisonof targets found to be inhibited byfire-
fly luciferin and derivatives [64].Many of these fragment-like compounds
were found to be selective for Dyrk kinases, but individual derivatives
were found to target other seemingly unrelated kinases. A full spectrum
of patterns is evident, ranging from the close similarity of Dyrks1A and
1B, to the reversed pattern for Aurora A.

2.4. Applying target similarity to efforts against parasites and
infectious disease

The use of target similarity to guide drug repurposing or retargeting
is especially significant in key areas of infectious disease, especially
tuberculosis, malaria, and other protozoan parasite diseases. Some of
the focus here is motivated by a market potential considered to small
to support large scale research programs, despite the clear medical
need; indeed, widespread tropical diseases may be considered orphan
diseases in developed countries [65,66]. With its enormous amount of
available information and compounds (many coming off patent), pro-
tein kinase inhibition for these applications is promising but distinct in
several ways. Primary among these is that non-human target kinases
are more likely to have novel features compared to the well established
human targets. Therefore, theremay be greater need formodification of
the known compounds. Closely related to this, selectivity for the disease
targets over potential human off-target will be a high priority. Thus,
the new target must be similar enough to benefit from a retargeting
approach, but different enough to allow for the design of selectivity.
This may focus attention on more promiscuous inhibitors or fragments
in early discovery processes.

Fig. 6. Water clusters identified from superpositions of Aurora A structures. A) Spheres
with shades of redmark different clusters at or near a pocket found betweenATP, the gate-
keeper, and the aspartic acid of DFG. B) A view from “inside” the protein, looking into the
ATP pocket (with the surface generated for the ATP bound Aurora structure). This view
shows how inhibitors can occupy the water cluster site, but no longer as a pocket due to
the altered conformation of the active site lysine salt bridge (with hydrogen bonds
highlighted as yellow dashes).

1611O.A. Gani et al. / Biochimica et Biophysica Acta 1854 (2015) 1605–1616



Fig. 7. Activity homology plots for selected sets of kinases: A) Aurora A, Aurora B, and Abl; B) Alk, Met, and EGFR, and C) Dyrk1A, Dyrk1B, ERK7, CK2A1, Aurora B, and Aurora A.
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One approach is simply to test known inhibitors for activity. A study
performed at GSK [67] screened the approximately 2 million com-
pounds of in-house collection against P. falciparum, among which
around 13,500had antiplasmodial activity. Theywere clustered into dif-
ferent chemotypes, and possible targets were analyzed. 51 possible
P.falciparum targets were found, 30 ofwhich are proposed to be kinases.
In some cases, no obvious target was found in the malaria genome,
which presents the possibility that “P. falciparum could have essential
proteins that are structurally and functionally similar to the human
targets yet have no significant primary amino acid homology.” Another
example concerns trypanosomiasis: Based on the observation that tyro-
sine kinase inhibitors could inhibit the diacylglycerol-stimulated endo-
cytosis of transferrin in T. brucei, Patel et al. optimized EGFR inhibitors
based on tests in full cell cultures [68], with toxicitymonitored in paral-
lel, to create a compound with promising antitrypanosomal activity
confirmed inmousemodel studies. In a similar approach, the Aurora in-
hibitor Hesperadinwas tested andmodified for antiproliferative activity
against several targets [69]. Also, pyrrolopyrazines, originally being de-
veloped as herbicidal agents were found to be effective antiplasmodials.
Computational studies revealed kinases as potential targets, observing
inhibitory activity against human IRK, RAF-1, Src, TrkA and PfPK5, the
plasmodial homolog of human CDK2 [70].

Target based approaches, either at initiation or as a followup from
screening as described above, require sequence or structural informa-
tion. In the case of M. tuberculosis, genome sequence analysis found 11
eukaryotic-like Ser/Thr kinases [71,72],with low sequence identity
with human kinases but some similarity to the CK1 group [73]. To
date, crystal structures of the kinase domains of 5 Mtb kinases [18]
and other surrogate kinase targets [74] are available for drug design.

Kinomes of P. falciparum [75] and protozoan parasites more gen-
erally [76] have been characterized, identifying parasite kinases with
some 35–60% identity with their human homologues. They differ in
several significant ways: large C- and/or N-terminal extensions, in-
sertions in the catalytic domain, and differences in regulatory do-
main and at the activation site. Some 89–99 kinases have been
identified, including 65–80 eukaryotic kinases, and a new group
(FIKK) [75,77] exclusively within the Apicomplex phylum [78]. Espe-
cially noteworthy is a family of seven calcium-dependent kinases
(PfCDPKs) belonging to the CAMK group, absent from mammalian
hosts but conserved among apicomplexans [78], including several
that are necessary for plasmodial survival [79]. In addition, a family
of CMGC protein kinases include seven CDK cognates, some shared
among protists (Pfmrk) or apicomplexans. Other “orphan” kinases
are not assigned to established subfamilies; one of these (PfPK7) is
exclusive to Plasmodium spp [78]. Currently, 5 different P.falciparum
protein kinase crystal structures are available on the PDB [18], along
with 7 other structures for different apicomplexa organisms. Reviews
on kinase targets of interest for P. falciparum [80] and approaches to in-
hibition have been published [79,81].

The PfCDPKs have been of special interest as targets for the develop-
ment of antimicrobials against malaria, in part because they lack a
human homolog. Lead compounds have been identified through
screening [82–85].

An alternative way of exploiting the exclusivity of CDPK targets to
apicomplexa has been demonstrated by Vidadala et al. [86]. They devel-
oped a series of pyrazolopyrimidines that display important selectivity
against Toxoplasma gondii and Crtyptosporidium parvum CDPK1s based
on the observation of a glycine at the gatekeeper position (which does
not occur in the human kinome, see Fig. 1) and on binding to an
adjacent “ribose pocket” [87].

The kinase profiling data of Davis et al. [16] included kinase domains
from three pathogen targets, one from M. tuberculosis (PKNB), and
two from P. falciparum (PfCDPK1 and PfPK5). As described above, high
correlations of the apparent inhibitor binding energies for the same
series of inhibitors compared for two targets should reflect average
(dynamic) structural similarity. Fig. 8 shows the correlations of the

inhibitors of the three pathogen targets with the human kinases in the
panel. For PKNB, there is a rather broadly distributed similarity, with
PAK4 and PAK5 having the highest values. For PfCDPK1, there is low
similarity. In contrast to these, PfPK5 shows clearly clustered similarity
with CDK2 kinases, and a few other kinases in the CAMK and STE
groups.

3. Methods

Pseudosequence similarities between protein kinases were calcu-
lated using the Needleman–Wunsch similarity algorithm as imple-
mented in Mathematica (www.wolframresearch.com), with a
prohibitive gap penalty (100) and the Blosum62matrix for similarity
scoring. The pseudosequence used for the plots of this manuscript
was chosen from the kinase residues that align with the following
PKA residues 49, 54, 57, 72, 91, 95, 104, 120, 122, 123, 127, 170,
171, 173, and 183. These correspond to the initiator of the glycine-
rich loop and partial “ceiling” of the adenine site (Leu49), the typical-
ly aromatic amino acid at the tip of the glycine-rich loop (Phe54), the
terminator of the glycine-rich loop and partial “ceiling” of the ade-
nine site (Val57), the innermost side chain of helix C that extends to-
ward the ATP site (Leu95), the ATP site directed side chain of the
alpha4–helix C loop (Val104 of the “molecular brake” assembly),
the gatekeeper (Met120), the gatekeeper +2 and +3 residues at
the hinge (Y122; the gatekeeper +1 residue is highly conserved as
Glu and lacks discriminatory power), the gatekeeper +7 residue
(Glu127; often responsible for substrate and inhibitor specificity),
Glu170 at the entrance to the ATP site (also a substrate specificity de-
terminant), (Asn171 near the phosphate binding sites), and Leu173
and Thr183 at the base of the adenine binding site. The sequence
alignment [13] was downloaded from kinase.com.

Inhibitor correlation plots were generated from the published
Ambit data profiling of 72 inhibitors against a panel of over 400
protein kinases [16]. Logarithms of the published Ki values were
calculated to obtain values proportional to binding energies, and
Pearson's correlation coefficients for pairs of kinases were calculated
with Mathematica using the respective vectors of logarithmic inhibi-
tion values.

The Schrodinger software suite (www.schrodinger.com) was used
for docking Rock1 inhibitors. The target structures chosen were as fol-
lows: ROCK1 (PDB ID: 2ESM [88], PDB ID: 2F2U [89], PDB ID: 3NCZ
[90], PDB ID: 3V8S [91], PDB ID: 4W7P [92]); a five-fold mutant PKA
model [93] for ROCK1 (PDB ID: 2GNH, PDB ID: 2GNI, PDB ID: 2GNF), a
three-fold mutant PKA model [93] for ROCK1 (PDB ID: 2GNJ, PDB ID:
2GNL), and native PKA (PDB ID: 1STC [39], PDB ID: 1SVG [94], PDB ID:
1Q8W [95]). The following ligands used for docking were taken
from these structures (see Fig. 5a): fasudil, hydroxyfasudil, Y27632,
H1152P, 3NC, 3ND, indazole compound 18, RKI1342, YB-15-QD37, and
staurosporine.

Two homology models were generated (using Schrodinger and its
PRIME modeling package), one for Rock1 using PKA structure PDB ID:
1Q8W as a template, and one for PKA using Rock1 structure 3NCZ as a
template. The models were subjected to H-bond optimization and re-
strained minimization. For docking, the target structures were first
preprocessed, missing side chains were added if required, water mole-
cules were removed unless they were important as H-bond bridges
between two or more side chains. Het-states were generated with the
S2 state chosen by default. H-bonds were optimized, followed by re-
strained minimization. Receptor grids were generated from the bound
ligand for the protein–inhibitor complex structures, and by specific
amino acid definitions in the apo homology model structures. The li-
gands were extracted from the structures, and the target structures
were then subjected to energyminimization. The ligandswere analyzed
for potential variations in charge and protonation states (Ligprep), with
one or two forms generated for each inhibitor (Fig. 5A). The inhibitors
were docked individually into both the minimized and unminimized
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targets structures, whereby all rotatable groups were allowed to rotate.
The docking was carried out without any constraints, first in “standard
precision” (SP) mode and then the poses were subjected to “extra
precision” (XP) mode.

Transparency document

The Transparency document associated with this article can be
found, in the online version.

Fig. 8. Based on correlations of inhibitor binding energies, the similarities of human protein kinases to A)M. tuberculosis PknB, B) P. falciparum PfCDPK1, and C) P. falciparum PfPK5.
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