
Faculty of Science and Technology
Department of Computer Science

EC3
Edge Command-Control-Communication System for Arctic Observatories
—
Łukasz Sergiusz Michalik
Master thesis in Computer Science [INF-3990] May 2017



This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2017 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis


Dedicated to those whom I can always depend upon



“We don’t want to conquer the cosmos, we simply want to extend the
boundaries of Earth to the frontiers of the cosmos.”

–Stanislaw Lem, Solaris

“... they couldn’t do it the easy way, so they cut through the problem and
made another option.”

–Evan Currie, Odyssey One



Abstract
This paper presents a prototype of a system for automated observations of
flora and fauna in the Arctic. Currently applied methods of observation depend
mostly on systems (usually consisting of a camera unit, a motion detection
sensor and a memory card) that are left unattended in remote locations during
extended periods of data gathering. The main problem with such approach
is that no remote control or monitoring is available for those systems and
manual inspection on site is not performed as often as it would be required for
ensuring continuous operation. If a system fails, there is no way of detecting
it, let alone fixing the issue or performing a reboot. Exposed to challenging
environmental conditions of the Arctic and prone to problems such as power
loss, hardware malfunction or inappropriate initial configuration, the systems
have high probability of failing without it being noticed. In such cases, all
several-months worth of data might be lost or never even recorded.

The solution presented in this paper intends to address the above issues by
extending the functionality of an observation system with long range com-
munication, self-monitoring and power saving capabilities. Proposed architec-
ture allows for constant monitoring of system’s health status and reporting it,
together with sensor readings, via a remote gateway to the backend applica-
tion. The system’s designed uses IoT modules, which give it good extensibility
properties if need for incorporating additional sensor types arises. The paper
describes also the prototype implementation and the results of experiments
performed.

The main focus of system test scenarios was on energy consumption, efficiency
of data gathering and wireless communication capabilities. Currently the most
serious concern identified for the system is its high energy demand. Experiments
with different approaches to reducing the energy demand were conducted and
presented in this paper. A satisfactory method of reducing energy demand is yet
to be found, but some propositions have already been presented in the Future
Work section, based on experiences with the developed prototype.

The proposed system proved capable of performing the additional functionali-
ties intended for it. As a prototype, it still has room for refining and introducing



iv ABSTRACT

improvements (such as incorporating an animal recognition system into it),
but already in the current state of research it is compelling, that the idea of
developing an efficient and highly dedicated system for automated observa-
tions in the Arctic is sound, and the goal is achievable. We hope that this paper
provides a solid base for it and sets a starting point for conducting further
work on more robust approaches to environmental data collection in the Arctic
regions.



Acknowledgements
I would like to thank the following people:

• My advisor, Professor Otto Anshus, for the idea of an Edge Command-
Control-Communication System for Arctic Observatories, guidance and
input throughout the process of writing this dissertation.

• My co-advisor, Associate Professor John Markus Bjørndalen, for many
useful discussions, encouragement when I needed it and useful guidance.

• Jan Fuglesteg, for all his assistance with the practicalities involved in
taking a Master’s degree at the Arctic University of Tromsø.

• My parents, for all their support and endless faith in me and my ideas.





Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Hardware Platforms 5
2.1 Hardware selection . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Support device . . . . . . . . . . . . . . . . . . . . . 7
2.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Architecture and Design 9
3.1 Observation unit . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Main device . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Support device . . . . . . . . . . . . . . . . . . . . . 11

3.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Implementation 15
4.1 Observation unit . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Main device . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Support device . . . . . . . . . . . . . . . . . . . . . 20

4.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Experiments 25
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Energy-consumption reference for observation unit . 26

vii



viii CONTENTS

5.1.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Power consumption measurement instrument . . . . 27

5.2 Extreme load scenario . . . . . . . . . . . . . . . . . . . . . 27
5.3 Medium load scenario . . . . . . . . . . . . . . . . . . . . . 28
5.4 LoRa message rate scenario . . . . . . . . . . . . . . . . . . 28
5.5 Execution times scenario . . . . . . . . . . . . . . . . . . . 29

6 Results 31
6.1 Extreme load scenario . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Amount of collected data . . . . . . . . . . . . . . . 32
6.1.2 Effective LoRa message output . . . . . . . . . . . . 32
6.1.3 Data captured by Camera sensor . . . . . . . . . . . 34

6.2 Medium load scenario . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 Amount of collected data . . . . . . . . . . . . . . . 35
6.2.2 Effective LoRa message output . . . . . . . . . . . . 36
6.2.3 Data captured by Camera sensor . . . . . . . . . . . 37

6.3 LoRa message rate scenario . . . . . . . . . . . . . . . . . . 37
6.4 Execution times scenario . . . . . . . . . . . . . . . . . . . 38

7 Discussion 41
7.1 Observation unit . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . 42
7.1.2 Camera module . . . . . . . . . . . . . . . . . . . . 42
7.1.3 Real Time Clock issues . . . . . . . . . . . . . . . . . 43

7.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Prototype limitations . . . . . . . . . . . . . . . . . . . . . . 44
7.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.6 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Summary 47

9 Future Work 49

Bibliography 51

Appendices 53

A Observation Unit Usage 55
A.1 Arduino Pro Mini . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Raspberry PI 3 . . . . . . . . . . . . . . . . . . . . . . . . . 55

B LoRa Gateway usage 57
B.1 AWS IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS ix

B.2 Raspberry PI 3 . . . . . . . . . . . . . . . . . . . . . . . . . 58





List of Figures
2.1 The LoRa star topology. . . . . . . . . . . . . . . . . . . . . 8

3.1 The EC3 system architecture. . . . . . . . . . . . . . . . . . 9
3.2 The observation unit’s main components. . . . . . . . . . . . 10
3.3 The main device’s functionality. . . . . . . . . . . . . . . . . 11
3.4 Gateway architecture. . . . . . . . . . . . . . . . . . . . . . 12
3.5 Gateway design. . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 The observation unit. . . . . . . . . . . . . . . . . . . . . . 16
4.2 Visualization of simplified motion detection concept. . . . . 17
4.3 The LoRa module application flow. . . . . . . . . . . . . . . 18
4.4 Connections between Observation unit’s devices. . . . . . . . 20
4.5 Gateway applications flow. . . . . . . . . . . . . . . . . . . 22
4.6 Backend application flow. . . . . . . . . . . . . . . . . . . . 23

5.1 Time measuring steps in LoRa Bandwidth scenario. . . . . . 29

6.1 Energy consumption in extreme load scenario. . . . . . . . . 32
6.2 Data collected from sensors in extreme load scenario. . . . . 33
6.3 LoRa messages sent in extreme load scenario. . . . . . . . . 33
6.4 Number of captured images and occupied storage in extreme

load scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 Energy consumption in medium load scenario. . . . . . . . . 35
6.6 Data collected from sensors in medium load scenario. . . . . 36
6.7 LoRa messages sent in medium load scenario. . . . . . . . . 36
6.8 Number of captured images and occupied storage in the medium

load scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.9 Time required to send LoRa messages. . . . . . . . . . . . . 38
6.10 Tasks execution times. . . . . . . . . . . . . . . . . . . . . . 39

xi





List of Tables
2.1 Microcontrollers’ features comparison. . . . . . . . . . . . . 6

4.1 Mapping of LoRa Bee pin connections. . . . . . . . . . . . . 17
4.2 Mapping of DHT11 pin connections. . . . . . . . . . . . . . 19
4.3 Mapping of relay and support device pin connections. . . . . 19
4.4 Mapping of RTC DS1302 pin connections. . . . . . . . . . . 21

5.1 List of tasks executed during extreme load scenario. . . . . . 27
5.2 List of tasks executed during medium load scenario. . . . . . 28
5.3 List of tasks in execution times scenario. . . . . . . . . . . . 29

xiii





1
Introduction
Arctic region observations made by Climate-ecological Observatory for Arctic
Tundra (COAT) are usually conducted using several types of sensors (automatic
cameras, microphones) to monitor wildlife and environmental factors. Each
device gathers data and stores it on an internal memory for further processing.
However, experiences with equipment placed in the wild showed, that several-
months worth of data can be lost due to inappropriate device configuration
(as stated by COAT workers). This is especially true in hardly accessible, Arctic
regions.

Currently used cameras have limited functionality and, once configured, do
not provide anything more than just images stored on a flash card. In order to
prevent the loss of important data, observations of the Arctic tundra require a
system which can report collected data and health of the devices, can provide a
way to recover frommost common types of failures, has self-aware configuration
mechanism and allows new configurations to be remotely delivered to the
devices.

Digital cameras placed in the wild are not equipped with any communication
modules because, by design, those devices are closed for further extension. This
problem can be addressed by using custom IoT (Internet of Things) hardware,
which is extendable and allows specific customization to be made in order to
achieve a more robust and configurable solution.

Several types of IoT sensor systems currently exist, such as Vicotee Njord[1],

1



2 CHAPTER 1 INTRODUCT ION

SensorTag 2[2] or Waspmote[3]. All of these systems can monitor the environ-
ment with multiple available sensors and communicate with remote services
while being low-power-consumption devices. However, some of these systems
are still in a development stage and they can not be tested yet (Vicotee Njord),
others cannot be extended with specific sensor types because of a closed design
(SensorTag2) or due to custom module interface (Waspmote).

On the other hand, there is a variety of IoT boards designed for general-purpose
tasks, for example, Raspberry PI[4] and Arduino[5]. These microcontrollers
can be extended with additional modules thanks to common interfaces, such a
Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C) or Camera Serial
Interface (CSI). A variety of peripherals, a big community of users and open-
source code and examples make them an efficient platform for prototyping a
customized solution for Arctic Observatories.

1.1 Problem statement
This thesis is looking to design and build a prototype of a system for observ-
ing flora and fauna of the Arctic tundra. The main purpose of the project is
to extend camera functionality beyond taking images of animals in the wild
environment. The developed system needs to report various types of events
to a remote server, capture images when motion is detected and collect other
sensors’ data. The development process can be split into several phases: defin-
ing functionality and data flow, selecting hardware for building the prototype,
implementing firmware and conducting experiments according to previously
specified scenarios. Those steps require performing a full development cycle,
including architecture, design, implementation and experiment phases respec-
tively.

As the purpose of the system’s prototype is to extend the basic functionality
beyond a camera, a compatible microcontroller module needs to be introduced
into the system to bind and control additional communication and data flow.
That implies examining various types of IoT hardware in order to select a set of
mutually compatible components. A robust solution requires also an easy way
of implementing the designed functionality using a high-level programming
language like python and C++. A power consumption factor needs to be
considered as well, because the device is expected to survive in the Arctic
environment for as long as one year. Finally, the system proposed for COAT
should report its health status and events of data collection.



1.2 CONTR IBUT IONS 3

1.2 Contributions
This thesis contributes to the Arctic observations research with the follow-
ing:

• architecture and design of the sensors system prototype to monitor the
Arctic environment, with the ability to store and report different types of
data and operate even if there is no connection to the remote services,

• working EC3 System prototype,

• an analysis of how the prototype performs during weeks of tests and how
much energy it consumes,

• definition of most critical considerations to be made when developing a
system for Arctic observations (such as determining a balanced system
configuration for effective data collection, communication and power
consumption) and providing preliminary solutions as basis for further
development,

• thoughts on future work and further improvements to the current proto-
type.





2
Hardware Platforms
This chapter presents a research on hardware components and why particular
models were chosen for EC3 System implementation. Additionally, communi-
cation considerations were presented, to provide for an effective exchange of
information between the devices.

2.1 Hardware selection
It was difficult to choose the hardware for this project because of a large
variety of IoT boards available on the market, all differing greatly between
one another. In practice, it is necessary to have them physically available
in order to be able to compare their features. However, not many of the
boards were actually at our disposal beforehand. This led to a selection of the
boards based only on their specification. The conducted hardware examination
focused on several characteristics, such as possibility of a dynamic configuration,
power consumption, available storage, memory size, and types and numbers
of connections for peripherals. The following devices were examined: Nordic
SemiconductorNRF52[6]¹, STMNucleo L476RG[7], Arduino UNO and ProMini,
and Raspberry PI 3. The comparison of the boards and the features required
in the project is presented in Table 2.1. It was determined that only Raspberry
PI 3 could fulfill the basic functionality of the system (image capture, SD card

1. Thanks to Telenor ASA, which delivered the board

5



6 CHAPTER 2 HARDWARE PLATFORMS

storage) planned in the project. That is because it is the only microcontroller
in this comparison with a built-in camera connection socket and an SD card
slot, that are both needed for capturing and saving images.

Microcontroller

R
as
pb

er
ry

PI
3

N
R
F5
2

ST
M
32

L4
76
R
G

A
rd
ui
no

U
N
O

A
rd
ui
no

Pr
o
M
in
i

Fe
at
u
re

SD Card slot Yes No* No* No* No*

D
es
ig
n
re
qu

ir
em

en
ts

Yes
Camera interface Yes No* No* No* No* Yes
Sleep mode No Yes Yes Yes Yes Yes
Measured power
consumption

200 mA 4 mA 40 mA 47 mA 12 mA ***

CPU speed 1,2 GHz 64 MHz 80 MHz 16 MHz 16 MHz -
Number of cores 4 1 1 1 1 -
RAM size 1 GB 64 kB - - - -
SRAM size - - 128 kB 2 kB 2 kB -
FLASH size - 512 kB 1 MB 32 kB 32 kB -
SPI Yes Yes Yes Yes Yes Yes
I2C Yes Yes Yes Yes Yes Yes
Number of I/O pins 40 32 51 20 20 ****
Dynamic config-
uration**

Yes No No No No Yes

* extension board required
** or remote configuration upload
*** less is better
**** more allows to connect more peripherals

Table 2.1: Microcontrollers’ features comparison.

However, since Raspberry PI 3 does not have a sleep mode², and therefore
drains around 200 mA when being idle (as presented in Figure 6.1), there was
a need to turn it off to save power. It introduced an additional problem of
turning the device back on, which had to be done by an auxiliary board (called
a support device in this work). That kind of device allowed to build a more
flexible solution, because it provided an additional source of information for

2. A state, in which a device is not functional but is able to recover within short time, similar
to the shutdown. The difference, however is, that device saves its state and could be fully
operational in a quick time, without full booting



2.2 COMMUN ICAT ION 7

the Raspberry PI 3 (main device). In this project, the main device and the
support device form the observation unit (OU) embedded computer.

A similar purpose hardware, with sleep mode, already exists and is available
on the market as Sleepy PI 2[8]. It could be used as an external power supply
for Raspberry PI and allow to wake it up. Unfortunately, Sleepy PI was not
available to us in the frame of this project and it was not used in the presented
system prototype.

2.1.1 Support device
A support device must be an extremely low-powered element because it is
turned on all the time. It could be used with a connection to a motion sensor to
quickly turn on the main device when a motion is detected. Therefore, Nucleo
L476RG does not meet these requirements, since it consumes 40mA. For NRF52
and Arduino Pro Mini it is 5mA and 12mA respectively. All devices are able to
communicate with the main device via I2C bus.

Arduino Pro Mini was selected for this project because it has an Atmel AT-
mega328P [9] microcontroller, which can be used on a custom PCB (as detailed
in chapter 9) designed for Raspberry PI. A Sleepy PI 2[8] extension board uses
the same [9] chipset, which gives good prognosis for the likelihood of devel-
oping a working solution. Furthermore, Arduino is a low-power-consumption
board, which makes it suitable for the prototype. It is possible to reduce its
demand for energy even more, to less than 1 mA[10], but since it requires
introducing physical modifications to the board itself, it was not introduced
in this project. Finally, there are many examples of source code and designed
circuits available for Arduino boards, which was of significant importance in
this project.

2.2 Communication
The communication between the sensors system and a remote server does not
need to be permanent (like in TCP for example). It means that the sensor
system should be able to reach the other side of the connection at least from
time to time. As the other parts of the prototype, the communication module
should be low-powered and offer long range coverage, even at the expanse
of low bandwidth. It is crucial for COAT to receive any kind of information
from sensors, even meta-data only, therefore long range is more important
characteristic than the bandwidth.



8 CHAPTER 2 HARDWARE PLATFORMS

The solution whichmeets the described characteristics was LoRa[11] technology.
It uses a spread-spectrum modulation technique to send data at low-rate on a
long range, using both 868 and 900 MHz ISM bands. It uses a star topology
(presented in Figure 2.1), in which IoT devices are sending information to the
gateway connected to the Internet and then such data is forwarded to the
remote server (called backend). It consumes only 10 mA when receiving and
40 mA when transmitting data. Moreover the LoRa ISM bands are opened for
private use (license-free) in Europe without any cost. Taking into account the
low power consumption and long range coverage, the LoRa communication
modules were selected for the EC3 System. Some documents, like a LoRaWAN
Range Testing[12] prepared by Laird company, claim LoRa range to be around
15-20 km following a line of sight. It could be extended even more if the gateway
is installed in a high location above the ground.

Figure 2.1: The LoRa star topology.



3
Architecture and Design
The EC3 is a distributed observations system for the Arctic environment, com-
posed of an observation unit, a gateway and backend services. The OU collects
information about the surrounding environment and sends meta-data to the
gateway using a long-range link. The gateway forwards the meta-data to the
backend services for further processing (decryption, storage). The overview of
the EC3 system architecture is presented in Figure 3.1.

Figure 3.1: The EC3 system architecture.

9



10 CHAPTER 3 ARCH ITECTURE AND DES IGN

3.1 Observation unit
The observation unit is composed of two boards (themain device and the support
device) connected via I2C bus. The main device is the heart of the system and
its main purpose is to collect and send information such as sensor readings
and own health status. The support device is used to power on the main device
on scheduled time and supply it with the current time value from Real Time
Clock (RTC) because the main device does not have a hardware clock. The
COAT needs the sensor readings to be marked with the current time, which
is later used in scientific analysis. It means, that every time the device is off,
its software clock is stopped and it needs to be updated to the current time
value on the next start-up. The support device works as a slave and executes
operations only when requested. The overview of the OU design is depicted in
Figure 3.2.

Figure 3.2: The observation unit’s main components.

3.1.1 Main device
This device is designed to work in a periodic fashion. Figure 3.3 presents the
main device’s functionality. Once turned on, the board is collecting data (sensor
readings, health reports), capturing images if motion is detected, encrypting
and sending information to the gateway. Then, it is turned off for a specified
amount of time. The camera sensor is responsible for motion detection but only
when the device is turned on. The data is delivered to the gateway using the
LoRa module.



3.2 GATEWAY 11

Figure 3.3: The main device’s functionality.

3.1.2 Support device
The support device operates continuously and conducts tasks requested by the
main device. The following list of operations was designed:

set_wakeup_time defines when the support device turns on the main device,

set_RTC_clock initializes the RTC module with the current time requested
from API[28],

get_RTC_clock returns current time from the RTC module.

Communication between the main device and the support device is designed to
use I2C bus.

3.2 Gateway
The gateway architecture depicted in Figure 3.4 consists of a communication
module, data collector and data forwarder. The first is used to communicate
with the OU and pass all data to the data collector process, which saves the data
in a database. The data forwarder process selects records from the database



12 CHAPTER 3 ARCH ITECTURE AND DES IGN

and sends them to the backend services.

Figure 3.4: Gateway architecture.

The gateway is designed to be a transparent component in the EC3 system.
It means that this device receives an encrypted message but is not supposed
to decrypt it. Instead, the encrypted meta-data is forwarded to the backend
services. In thatway, any other public LoRa gatewaymight be used for delivering
data, without a risk of information leak. It allows mixing the EC3 system
infrastructure with another operator’s LoRa network. The following list of
functionalities was designed for the gateway:

• receiving and acknowledging messages from the OU,

• storing the messages in a database,

• pushing the messages to cloud services.

Figure 3.5: Gateway design.

In this project, the gateway is designed to useMQTT[14] protocol to deliver data
to AWS IoT[15] service,where the receivedmessage in stored in DynamoDB[16]
database, as depicted in Figure 3.5. It prevents duplication of messages and
ensures that the received data is stored even if the backend services are not
available at the time of information forwarding.



3.3 BACKEND 13

3.3 Backend
The EC3 backend service receives and decrypts data from the observation unit.
In the proposed design the backend downloads data from AWS IoT service,
requesting LoRa messages stored in DynamoDB. However, neither GUI nor any
other interface to browse and analyse data was not designed, since it is not a
part of this thesis.





4
Implementation
The EC3 system prototype is build on Raspberry PI and Arduino hardware. The
software implementation was done using C++ and Python, and it works on
Raspbian Jessie[17] (for the OU and the gateway) and on any linux distribution
with support of Python >= 2.7 (for the backend services).

4.1 Observation unit
The observation unit is based on Raspberry Pi 3B (the main device) and Ar-
duino Pro Mini (the support device). Both operate on 5 volts of input voltage,
which allows to use the same power source for them without additional logic-
level converters[18]. Detailed unit circuit is presented in Figure 4.1, which
corresponds to the real prototype built on a breadboard.

The following subsections describe all parts of the OU prototype, including
both hardware and software implementations.

15



16 CHAPTER 4 IMPLEMENTAT ION

Figure 4.1: The observation unit.

4.1.1 Main device
Camera sensor
The camera module used in the prototype is Raspberry Pi Camera Module v2[19],
which comprises an 8-megapixel sensor. The Python application written for
this purpose is a modified version of pi-timolo[20] (written by Claude Pageau).
It is a picamera[21] module capable, among others, of detecting motion and
taking images even in a low-light environment. Its role is to detect motion and
take a picture when it occurs. The detection algorithm compares the area seen
by the camera in real time with the past frame and if the compared fragments
of the view (small groups of pixels) differ between each other, it takes a picture.
A simplified concept of the algorithm is depicted in Figure 4.2.

The camera module is configured to capture images in resolution of 1024 x 768
pixels to save device’s storage space. The captured images are not sent by the
LoRa module. Instead, when photos are taken, only an information is send to



4.1 OBSERVAT ION UN IT 17

Figure 4.2: Visualization of simplified motion detection concept.

the gateway about detecting a motion.

Communication module
As mentioned previously in chapter 2.2, the communication module selected for
this project is LoRa module, specifically Dragino LoRa Bee[22], which is based
on the Semtech SX1276[23] transceiver chip. The module is connected via SPI
to the main device, using the pin mapping presented in Table 4.1.

Main device LoRa Bee
Function Pin Pin Function
+3.3V 17 1 +3.3V

MOSI (SPI) 19 11 MOSI (SPI)
MISO (SPI) 21 4 MISO (SPI)
SCLK (SPI) 23 18 SCK (SPI)
CEO_N (SPI) 24 17 NSS (SPI)

GND 25 10 GND

Table 4.1: Mapping of LoRa Bee pin connections.

A C++ code for sending data from the observation unit to the gateway is
based on LowCostLoRaGw[24] implementation made by Congduc Pham from
the University of Pau in France. The code selects information from sqlite3
database stored on the main device, where the OU saves all sensors’ readings
and its health status. The data is then sent to the gateway. The program’s flow
is depicted in Figure 4.3.

The LoRa module operates in 868 MHz band frequency and it is configured to
use 125 kHz Bandwidth (BW), Spreading Factor (SF) 12 and Command Rate
(CR) 4/5 for the maximum range. This configuration is optimal in the terms
of long range communication, as specified in Semtech LoRa Modem Design
Guide[13].



18 CHAPTER 4 IMPLEMENTAT ION

Figure 4.3: The LoRa module application flow.

Humidity and temperature sensor
The prototype is equipped with DHT11[25] humidity and temperature sensor.
It is connected with a single bus (Single-Wire Two-Way) to the main device,
which means that a single connection is used to request and receive 40-bits
of data from the sensor. Connections between the device and the module are
presented in Table 4.2. The implementation is written in Python and uses
Adafruit Python DHT Sensor Library[26] to read the sensor’s output. The value



4.1 OBSERVAT ION UN IT 19

returned by the sensor is stored in sqlite3 database. The newest value is sent
by the communication module to the gateway, when possible.

Main device DHT11
Function Pin Pin Function
+5V 2 1 +5V

GPIO_GCLOCK 7 2 Signal
3 Not connected

GND 14 4 GND

Table 4.2: Mapping of DHT11 pin connections.

Connection to the Support device
The main device is connected to the support device via I2C bus. However, since
one of the Raspberry PI 3B I2C pins is also used to turn this device on, a signal
switch (Keys SRD-05VDC-SL-C relay in this case) is required. It allows to share
the same pin by two separate circuits and switch the pin to the circuit which
is used at the moment. The default circuit (normally closed) is the one which
uses I2C bus for communication between devices. When the main device is
turned off, after a specified amount of time, the support device turns it on by
switching circuits for 100 milliseconds. The operation of turning on the device
requires a short circuit. Therefore, this short signal is enough, and it should not
be longer in order not to damage the device. Table 4.3 presents connections
between the main device and the support device, including signal switch.

Main device relay Support device
Function Pin Pin name Pin Function
SDA1 (I2C) 5 A4 SDA (I2C)
SCL1 (I2C) 3 C

NO D7 turn on
NC A5 SCL (I2C)
VCC VCC +5V
GND GND GND
In D8 switch signal

Table 4.3: Mapping of relay and support device pin connections.

An additional element used in the prototype to make connections between
devices is a logic-level converter. The reason it is needed is because Raspberry
PI 3 supplies voltage of 3V for every pin, while for Arduino Pro Mini it is
5V. This component prevents damage of pins when there is a difference in
voltage between connected devices. Figure 4.4 presents both circuits used in
the project.



20 CHAPTER 4 IMPLEMENTAT ION

Figure 4.4: Connections between Observation unit’s devices.

The I2C bus communication between devices works using the following schema:
if themain device requests data, it sends an operation code to the support device,
and in return it receives the same code as the confirmation. Then, it requests
and receives the size of the requested data (in bytes) and finally, it receives
the data itself, byte by byte. It works similarly in the other direction, when
the main device sends data to the support device. When an error occurs during
the communication, since it is unknown when the connection was broken,
the support device is restarted by the main device. This solution prevents
conflicting situations, in which one of the devices, Arduino or Raspberry PI,
would be waiting for data, while the other would be in the middle of another
operation.

4.1.2 Support device
Arduino Pro Mini 5V was selected as the support device for the EC3 system
prototype. It runs on only 12 mA of current and its firmware is written in
C++. Therefore, every time the device’s code is changed, it requires to be



4.2 GATEWAY 21

compiled on an external host and flashed to the board using an FTDI USB serial
cable.

Real Time Clock
Since none of the boards used in the project have a build-in hardware clock, the
support device was equipped with the RTC module, specifically DS1302. It has
an additional battery power source, which starts its ticking as soon as the clock
is initialized. In the current implementation of the EC3 system, the RTC module
is used by the support device to turn on the main device at a specified time
and to pass the current time for it. The first initialization is done by the main
device, using I2C communication with the support device and timezonedb.com
API. The connections between the support device and RTC clock are presented
in Table 4.4.

Support device DS1302
Function Pin Pin Function
GND GND 1 GND
+5V VCC 2 VCC

D6 3 CLK
D5 4 DAT
D4 5 RST

Table 4.4: Mapping of RTC DS1302 pin connections.

4.2 Gateway
Raspberry PI 3B is used as the gateway and uses the same LoRa module with
the same device’s pins (Table 4.1) as the observation unit. To receive LoRa
messages, a modified LowCostLoRaGw[24] library is used. It is executed as
soon as the device’s operating system is up and running and it remains in
the background until the system’s shutdown. All received messages are stored
in an sqlite3 database and published in AWS MQTT using a separate python
application. The gateway applications flow is depicted in Figure 4.5.



22 CHAPTER 4 IMPLEMENTAT ION

Figure 4.5: Gateway applications flow.

4.3 Backend
In the current implementation, the backend might be any host capable of
running a python script in which the data is requested from AWS DynamoDB
database. The code marks every received record as downloaded and it is trying
to decrypt it. If the data was sent by the OU, then the backend examines
Message Integrity Check (MIC) for the received record (the last 4 bytes) and
decrypts the data using AES keys associated to the device. The full application
flow is depicted in Figure 4.6.



4.3 BACKEND 23

Figure 4.6: Backend application flow.





5
Experiments
All experiments were conducted on the observation unit as the element in
the EC3 System which will be placed in the Arctic environment, where the
access to the device is limited and the possibility of failure is highest. In order
to determine how well the OU performed in terms of power-consumption
and task-execution times, several experiment scenarios were designed and
performed, revealing some of the device’s capabilities and limitations. Moreover,
the tests and the received results have shed some light on the configuration and
components that need to be adjusted in order to keep the device operational.
Several software fixes were made in order to obtain the prototype stability
during these tests.

Other parts of the system, such as the gateway and the backend, are powered up
by regular power grid and constantly connected to the Internet, so their failure,
if it occurs, could be easily detected virtually instantaneously. Since those
parts of the system are not deployed in remote locations and are available for
inspection and maintenance, unlike the OU, ensuring their reliability through
extensive testing was considered out of the scope of this project.

Each of the following sections contains a description of a test scenario and the
conditions in which every test was conducted. The obtained results and the
conclusions are presented in chapter 6.

25



26 CHAPTER 5 EXPER IMENTS

5.1 Experimental setup
The configuration of the observation unit differs for each experiment and is
detailed in the following sections. However, the configuration of some system
components, such as the gateway, is always the same and thus it is specified
only once. This section includes the setup description for all common parts and
tools used in the EC3 System examination.

In the current implementation, the system does not allow for setting its param-
eters after being deployed. Changing parameter values for different scenarios
is currently done by hardcoding them. That setup includes the following vari-
ables:

• how often data from the sensors is gathered,

• how often the device’s health status is reported and written to database,

• how many messages are sent before the device is powered off.

For the purpose of conducting the tests, the camera unit was artificially forced
to take photos every fixed amount of time specified in the scenario. In actual
operations the image capture would be triggered by detecting a motion.

5.1.1 Energy-consumption reference for observation unit
Two reference energy consumption values were obtained for the observation
unit. First, the measurement of the energy consumed was done for 24-hour
period while the system was left in idle state. Then, the system was powered
off completely for another 24 hours (since the prototype drains power even if
the main device is turned off) and the corresponding energy consumption was
measured again. For the idle state, the device’s operating system was running in
minimal mode, which means that only the default system tasks were occupying
the CPU and the memory. It is a nominal state of the device when nothing from
the user’s space is running.

5.1.2 Gateway
The gateway was running in a continuous¹ mode, receiving LoRa messages
and passing them to the AWS MQTT service. The device was placed in the

1. Once turned on, the gateway was waiting and receiving messages until this process was
manually stopped.



5.2 EXTREME LOAD SCENAR IO 27

same room as the OU with 1 meter of distance between them. The ambient
temperature of the room varied between 18 to 23 Celsius degrees.

5.1.3 Power consumption measurement instrument
In the experiments where power consumption needed to be measured, Mini
USB Charger Doctor[27] was used. This device is capable of detecting electric
current consumption and voltage levels in the circuit connected to it via USB.
Its specification states, that this charger doctor is able to measure a current
within the range 0 A to 3 A (with +- 1% of error and minimum resolution
of 10 mA) and time (only when a device is draining power) within range 0
to 99 hours. Therefore, it was a good choice for the long power-consumption
experiments conducted in this project.

5.2 Extreme load scenario
The main purpose of this scenario was to determinate how much energy the
observation unit consumes when all tasks defined for this scenario are executed
in predefined intervals. The device was examined during 24 hours of testing
for every interval case (the same for every task during the whole test) which
gives 4 days of testing in total. In order to obtain the reference value for power
consumption, the device was left in idle state for another 24 hours. Each task
was running independently in endless loop with a sleeping time specified by
interval length. The list of tasks and used intervals included in this scenario
are presented in Table 5.1.

Task name
Idle-state Interval

System idle
1s 10s 30s 60s

1 x LoRa message sending x x x x
1 x RTC value reading x x x x
1 x DHT11 sensor’s value reading x x x x
1 x Camera image capture x x x x

Test duration 24h 24h 24h 24h 24h

Table 5.1: List of tasks executed during extreme load scenario.

Taking advantage of executing the extreme load scenario, additional quantities
were measured for logging purposes. Those were not connected to the energy
consumption and included the number of data samples collected for all sensors
and the number of LoRa messages sent.



28 CHAPTER 5 EXPER IMENTS

5.3 Medium load scenario
Medium load scenario was a second power-consumption test for the observation
unit. In this scenario the device was being turned on and off. As soon as the
device was turned on and finished its booting sequence, it was executing the
same tasks as described in section 5.2 and then it was turned off for specified
time. This cycle was repeated in a loop of 24 hours in one test, and four
such tests were performed – one for every interval. Tasks performed during this
scenario and the lengths of power-off intervals are specified in Table 5.2.

Task name
Power off Interval

System idle
1s 60s 30m 60m

1 x LoRa message sending x x x x
1 x RTC value reading x x x x
1 x DHT11 sensor’s value reading x x x x
1 x Camera image capture x x x x

Test duration 24h 24h 24h 24h 24h

Table 5.2: List of tasks executed during medium load scenario.

The same additional parameters as in the case of extreme load scenario were
also measured during the execution of medium load scenario.

5.4 LoRa message rate scenario
The purpose of this scenario was to determine how many messages (with ACK)
of size 130 bytes could be sent by the observation unit during a specified time
period (1s, 10s, 30s, 60s). This test was conducted 5 times for every time period,
in order to obtain the average values, and the time itself was measured in
three steps. The first step was focused on the internal application time for
every message sent separately, the second step took into account the number
of seconds from the beginning of the application’s execution until the end.
The last step measured the external time of application’s execution and was
conducted using the linux commandline function called time. All three steps,
presented in Figure 5.1, helped to determine how much time the OU needs
to send a message, how long time the message preparation takes, and finally,
what the total time of application execution is.



5.5 EXECUT ION T IMES SCENAR IO 29

Figure 5.1: Time measuring steps in LoRa Bandwidth scenario.

5.5 Execution times scenario
The last scenario was focused on the time of a specific task execution. The
time was measured using the linux commandline function time. In this test, to
obtain the average value, every single task was repeated 99 times.

Task name Number Time measurement method
of repetitions

Lora Message sending

99 linux time function
RTC value reading

DHT11 sensor’s value reading
Camera image capture
The device shutdown

5 digital stopwatch
The device booting

Table 5.3: List of tasks in execution times scenario.

An exception to this rule was the measurement of the observation unit shutdown
and booting times,whichwas done using a digital stopwatch (in case of booting,
the timer was stopped when the device was ready to conduct user’s space tasks).
The list of tasks from this experiment is presented in Table 5.3.





6
Results
This chapter presents the results of the experiments conducted to measure
the device’s power consumption in various scenarios. Moreover, in several
cases, additional metrics were collected and found useful for the analysis of
the observation unit’s behavior. Those include: an analysis of the amount of
sensors’ data collected, an effective LoRa message output, and an influence of
the captured images on the device’s storage capacity. The additional metrics
are described in sections 5.2 and 5.3.

6.1 Extreme load scenario
The main purpose of this scenario was to determine how much energy the
observation unit consumes when tasks execution are interleaved with idle states.
The results presented in Figure 6.1 show that the device’s power demand
proportional to the frequency of tasks executions. In the most intense test case
the power consumption was 1,7 times bigger than in the idle state. The tasks
execution frequency for which the power consumption was close to the one
in the idle state resulted to be around once every minute. It suggests, that
if the measurements are less frequent, then they do not have any significant
influence on the power drainage by the device.

What is most interesting here, is the fact that even in the idle state the device
consumes around 5 Ah a day. If it was to be left alone for a year, it would

31



32 CHAPTER 6 RESULTS

require approximately 1825 Ah for the device to remain operative. This is a
huge demand on energy, and to visualize this, a decent smartphone battery,
which has a capacity around 2,5 Ah, would be exhausted by our device in half
a day if it was just in its idle state doing nothing. Even if it was acceptable,
the issue with the OU is that, unlike with a mobile phone, it is not possible to
recharge the device’s battery yet.

0 10 20 30 40 50 60
0

2

4

6

8

10

4.92

8.44
7.80

6.63

5.10

Duration of idle-state interval between task executions [s]

En
er
gy

co
ns
um

pt
io
n
[A

h] Tasks execution (24h)
Idle state (24h)

Figure 6.1: Energy consumption in extreme load scenario.

It is clear that, due to the energy demand, the device could not sustain collecting
data as often as every second for prolonged period of time. In fact, the energy
consumption is so high, that even keeping the device just powered on all the
time, without executing any tasks, would pose a demand for energy that is
difficult to satisfy with regular batteries.

6.1.1 Amount of collected data
Figure 6.2 depicts the numbers of sensors readings performed in the extreme
load scenario as a function of idle-state intervals length. For the highest intensity
24-hour test it almost reached a hundred thousands records. It was not analyzed,
however, which sensor collect the most of the data. The purpose of this metric
is to present the observation unit’s performance in collecting data, which will
be useful for adjusting the device’s configuration.

6.1.2 Effective LoRa message output
One of the repeatedly executed tasks was sending the collected sensor’s data to
the gateway. Figure 6.3 presents how many LoRa messages were sent during
24 hours for each of four specified lengths of idle-state intervals. These metrics



6.1 EXTREME LOAD SCENAR IO 33

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100 94.77

13.03
4.89 2.59

Duration of idle-state interval between task executions [s]

N
um

be
r
of

co
lle

ct
ed

da
ta

sa
m
pl
es

[t
ho

us
an

ds
]

Figure 6.2: Data collected from sensors in extreme load scenario.

allow to estimate that a single LoRamessage requires in total around 10 seconds
to reach its destination and to get an acknowledgment, which was calculated
by dividing the number of seconds in a whole day (24h) by the number
of messages and subtracting the length of idle time between each message.
However, these numbers are only an overview of the LoRa message sending
time. Since the message preparation time and the LoRa module initialization
time are unknown, a more accurate numbers collected from LoRa message rate
scenario are presented in section 6.3.

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10 9.09

2.19
1.24

Duration of idle-state interval between task executions [s]N
um

be
r
of

Lo
R
a
m
es
sa
ge
s
[t
ho

us
an

ds
]

Figure 6.3: LoRa messages sent in extreme load scenario.



34 CHAPTER 6 RESULTS

6.1.3 Data captured by Camera sensor
As the device’s storage is limited, it is important to know how many images in
resolution 1024 x 768 can be captured by the camera sensorwithout overflowing
the SD card and causing the unit’s failure. Figure 6.4 presents the number of
images and the corresponding size of the occupied storage for different time
intervals between tasks execution. Based on the metrics, an average image size
is 75 KB. In the experiment, the free storage capacity was limited to 13 GB,
which would be enough to save almost 182 thousands of images. In a scenario
where images are taken every 60 seconds, such storage would be sufficient for
almost half a year of image recording.

0 10 20 30 40 50 60

0
2
4
6
8

10
12
14
16
18
20 19.46

4.89
2.07 1.16

Duration of idle-state interval between task executions [s]N
um

be
r
of

ca
pt
ur
ed

im
ag
es

[t
ho

us
an

ds
]

0
200
400
600
800
1,000
1,200
1,400
1,600
1,800
2,000

1,454.14

366.83
154.77 81.01

St
or
ag
e
oc
cu
pi
ed

by
im

ag
es

[M
B
]

Number of images (24h)
Occupied storage (24h)

Figure 6.4: Number of captured images and occupied storage in extreme load scenario.

6.2 Medium load scenario
The results of this experiment could contribute to the system’s configuration ad-
justments that are necessary for improving the observation unit power efficiency.
Figure 6.5 shows the energy consumption levels for 24-hour-long periods of task
executing, interrupted with shutdown states of various lengths (the lengths of
shutdown states are marked on the horizontal axis of the figure). The highest
energy consumption measured in this scenario (5.43 Ah obtained for 1-second
long shutdown intervals) is comparable with the lowest energy consumption
measured in the extreme load scenario (5.10 Ah obtained for 60-seconds long
idle intervals), as presented in Figure 6.1. What needs to be taken into account
in this scenario, is that there are additional delays connected to the device’s
shutdown (around 8 seconds) and the device’s booting (ranging between 25



6.2 MED IUM LOAD SCENAR IO 35

and 45 seconds), so the effective time intervals between tasks executions (dur-
ing which the device is not operational) are longer than the shutdown intervals
presented on the figures in this section. Taking into account the shutdown and
booting times reported above, it can be estimated that for a 1-second shutdown
interval, the actual effective non-operational time is around 34 - 54 seconds.
Considering this, both the energy consumption levels (5.43 Ah versus 5.10 Ah)
and the effective non-operational times (up to 54 seconds versus 1 minute) are
comparable.

01 30 60
0

2

4

6

2.27

5.43

4.01

2.36 2.41

Duration of shutdown state [min] (0 coresponds to 1 second)

En
er
gy

co
ns
um

pt
io
n
[A

h] Tasks execution (24h)
Shutdown state (24h)

Figure 6.5: Energy consumption in medium load scenario.

The important result from this scenario is the energy consumption in the shut-
down state, in which the unit still drains a lot of power. Since the support device’s
power efficiency is estimated to be around 20 mA, it means that powered-off
Raspberry PI 3 requires around 75 mA of energy. The value was calculated by
dividing the reference (shutdown state) value by 24h and subtracting the sup-
port device’s power consumption. This is an issue which could be addressed by
reducing the power supply to the main device, as described in chapter 9.

The power consumption for the 60-minute intervals case is slightly above the
value for the 30-minute intervals case. Most probably it was caused by the
variations in image capture times. A more detailed explanation to this is
provided in section 6.4.

6.2.1 Amount of collected data
The amount of data collected by the observation unit decreased significantly in
comparison with the previous scenario. It is depicted in Figure 6.6, which shows
how many data records were produced for various system configurations. The
difference is connected to the effective delay in tasks execution as mentioned



36 CHAPTER 6 RESULTS

at the beginning of this section.

01 30 60
0

400

800

1,200

1,600

2,000

2,400

2,800 2,607

986

92 48

Duration of shutdown state [min] (0 coresponds to 1 second)

N
um

be
r
of

co
lle

ct
ed

da
ta

sa
m
pl
es

Figure 6.6: Data collected from sensors in medium load scenario.

6.2.2 Effective LoRa message output
Figure 6.7 presents the communication metrics for the medium load scenario.
It shows how many LoRa messages are sent in each test case in order to deliver
all sensors’ readings collected in that case.

01 30 60
0

200
400
600
800

1,000
1,200
1,400
1,600 1,497

493

46 24

Duration of shutdown state [min] (0 coresponds to 1 second)

N
um

be
r
of

Lo
R
a
m
es
sa
ge
s

Figure 6.7: LoRa messages sent in medium load scenario.

As it resulted from the power consumption experiments, also here the mea-
sured values are similar between two cases: the 60-second intervals case in
extreme load scenario (with results presented if Figure 6.3) and the 1-second
intervals case in medium load scenario. The corresponding numbers of sent
LoRa messages are 1241 and 1497 respectively. This results are in accordance



6.3 LORA MESSAGE RATE SCENAR IO 37

with the previously presented conclusions about the effective non-operational
times in medium load scenario (which are longer than the intervals presented
on the horizontal axis of Figure 6.7 due to device booting and shutting down
times).

6.2.3 Data captured by Camera sensor
Figure 6.8 presents how the system configuration impacts the number of
captured images. It is worth noticing that the results obtained here for the
most intense case (1 s intervals) are roughly corresponding to the results from
the extreme load scenario for the least intense case (60 s intervals). It can
be explained by the overhead cost of the booting and shutting down times
that prolong the effective time interval between task executions. Obtaining
similar numbers for both aforementioned cases supports the earlier conclusions
that the total extra overhead in medium load scenario sums up to around 1
minute.

01 30 60

0
200
400
600
800

1,000
1,200 1,113

496

49 27

Duration of shutdown state [min] (0 coresponds to 1 second)

N
um

be
r
of

ca
pt
ur
ed

im
ag
es

0
20
40
60
80
100
120

89.18

32.26

3.07 1.6

St
or
ag
e
oc
cu
pi
ed

by
im

ag
es

[M
B
]

Number of images
Occupied storage

Figure 6.8: Number of captured images and occupied storage in the medium load
scenario.

6.3 LoRa message rate scenario
Figure 6.9 presents measurements of the number of LoRa messages sent by
the observation unit. Since the purpose of this experiment was to determine
how many messages could be send for a given time period, the chart shows
data in range from 0 to 65 seconds. One message requires slightly above 5
seconds to be delivered and acknowledged, if the time of module initialization
and message preparation is not taken into account. Those application and



38 CHAPTER 6 RESULTS

module preparation times are roughly constant, independent of the number of
messages sent and oscillate around 4.35 second (+- 0.02s).

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

9.63
14.98

20.66
25.67

31.04
36.34

41.71
47.03

52.36
57.78

63.06

5.34
10.67

16.01
21.34

26.68
32.02

37.35
42.69

48.02
53.36

58.70

Number of LoRa messages

Ti
m
e
ta
ke
n
to

se
nd

m
es
sa
ge
s
[s
]

Time of application execution
Internal send & ACK time

Figure 6.9: Time required to send LoRa messages.

6.4 Execution times scenario
Execution times of specified tasks weremeasured in this experiment. The results
are presented in Figure 6.10, including the standard deviation mark for each
task type. The camera image capture times are covered here as well, to elaborate
on the inconclusive power consumption results described in section 6.2.

Lets consider the task types with considerably high standard deviation from
the mean execution times. One such task is sending LoRa messages, which on
average took around 10 seconds. In some cases, however, the acknowledgment
was not received within a period of time specified in the source code, called ac-
knowledgment_timeout. Even if the message was delivered, it was unconfirmed,
so theOU tried to resend it up to five times, hence the variation. The experiment
was conducted in a laboratory, where conditions for communication were close
to optimal, so it should be expected that in the field tests the message would
be sent repeatedly, several times before the observation unit finally receives the
confirmation.

Another interesting task is the observation unit’s booting time. The shortest
registered time was 25 seconds, while the longest reached 45 seconds. This
variation is directly connected to the services enabled in system’s start-up
configuration, especially network dhcpd service, which was not disabled during
tests, because it would not be possible to collect the measured system metrics



6.4 EXECUT ION T IMES SCENAR IO 39

without it. Therefore, the list of start-up services enabled for Raspberry PI
3 should be carefully reviewed in order to disable the services that are not
needed for environmental observations, especially those negatively impacting
the unit’s booting time.

DH
T1
1 r
ea
din
g

Lo
Ra
me
ssa
ge
se
nd
in
g

RT
C
re
ad
in
g

Ca
me
ra
ca
pt
ur
e (
da
yli
gh
t)

Ca
me
ra
ca
pt
ur
e (
ni
gh
t t
im
e)

Ob
se
rv
ati
on
Un
it
sh
ut
do
wn

Ob
se
rv
ati
on
Un
it
bo
ot
in
g

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

0.96
9.95

1.63
9.48

147.96

8.1

32.3Ta
sk

ex
ec
ut
io
n
ti
m
e
[s
]

Figure 6.10: Tasks execution times.

Analyzing the medium load scenario test results, an interesting fluctuation in
power consumption levels was noticed. The camera image capture times were
believed to be directly connected to those changes in power demand, so an
additional experiment was performed to check the influence of light intensity
on the capture times. Not surprisingly, the length of capture time resulted to
be inversely proportional to the level of ambient light. A significantly longer
time of capture was observed in dark conditions. The camera sensor captured
images 15.5 times faster during the day than at night. This is an important
consideration for the power consumption, given that in the Arctic day and



40 CHAPTER 6 RESULTS

night time can last much longer then in lower latitudes. Depending on time of
the year, the observation unit might stay turned on far longer or shorter than
expected, consuming different amounts of energy independently from the unit
shutdown times. The OU might also be completely unable to take photos of an
animal at night because of long capture times in dark conditions.



7
Discussion
7.1 Observation unit
The observation unit implementation is quite complex and its operations can
be rather resource-intensive. We believe, however, that as the first attempt to
automated Arctic observations, the presented solution performed promisingly
enough to invest further work into it. The power efficiency of the unit needs
to be improved, since Raspberry PI 3 chosen for the main device is a power-
ful component and it requires considerable amounts of energy. This could be
alleviated by introducing a power management circuit into the system to de-
crease its energy demand. Such solution would have non-negligible additional
complexity and would depend on incorporating modules that were not easily
obtainable for the project, so it was decided that such power management was
out of the scope of this work.

When choosing an approach for reducing energy demand there are two aspects
to consider. Shutting the device down seems to be saving slightly more energy
then having it idle for a corresponding amount of time. However, having
the device powered-off and unavailable for instantaneous data capture when
motion is detected (the booting time is at least half a minute) might actually
be a too big of a cost to be balanced by the little energy gain. If the acceptable
non-operational times are longer (around 30 minutes and more) then the
approach of powering the device off becomes more justifiable.

It also needs to be noted, that power consumption was measured in a room

41



42 CHAPTER 7 D ISCUSS ION

temperature. It should be expected that the batteries exposed to the cold
temperatures of the Arctic region would have much shorter lifespan. The same
consideration would need to be made for particular electronic elements of the
system, as their behavior under low temperatures might also vary.

7.1.1 Configuration
The results show, that it might be difficult to find the optimal configuration
for the device when the demand for the sensors’ data is unknown. Therefore,
testing system load for various configurations was considered to be most
practical and conclusive approach to that problem. As learned, the system has
its constraints and it is crucial to choose an appropriate configuration in order
not to violate them. The OU itself would need to be aware of such limitations
in order to prevent hard failures. It could adjusts its configuration based on
its health state, for example to decrease the power consumption or when the
available storage is almost full.

Another aspect of the system’s configuration is the amount of collected data.
The device is configured to send the sensors readings in FIFOmanner, the oldest
first. Therefore, the amount of data gathered and queued for sending should
not exceed the capacity of the communication module’s message rate in order
to prevent long delays in the data collection at the backend side. Alternatively,
similar results might be grouped together to decrease the amount of stored
data. In the case of more than two sensors connected to the device it is more
than desired to select at least one of proposed solutions.

7.1.2 Camera module
The camera module does not work exactly as expected. It was known that
taking an image at night would increase the capture time, but the current
results are far beyond the acceptable times for catching an image of an animal
in front of the observation unit. An infrared camera module was, unfortunately,
not part of the tests, but having it available would not solve the problem directly
either. It is not possible to have two camera modules connected simultaneously
to the same Rasppbery PI 3 device (most probably not even to any other device
from Raspberry PI family). It would be reasonable, however, to choose the
infrared module instead of the current one, and to stop using the camera itself
to detect motion. A dedicated motion detection sensor wired to the support
device could be used as a trigger to wake up the main device, which in turn
would be taking images with an infrared camera, regardless of the time of day.
Such solution is currently not possible with the motion detection code used in
the observation unit’s implementation.



7.2 GATEWAY 43

Current EC3 System prototype does not enable sending captured pictures over
LoRa messages because of their size limitation. An attempt was made to limit
the image size from 450 kB (raw picture) to 75-85 kB (at the current level of
post-processing). Unfortunately, even images of this small size are still too big
to send them with the LoRa module. A single file has a size of roughly 80 kB,
while a single message length can not exceed 256 B. To send such image, it
would require 320 messages (withoud including AES encryption and the CRC
overhead). Taking into account single message sending time (presented in
section 6.3) it would take at least half an hour to send one photo, not nearly
enough to send images in real time at high capture rates. A solution for that
issue could be to use the capabilities of Raspberry PI 3 basedOU and implement
an animal recognition software into it, in order to be able to later send only a
meta-information about spotted animals.

7.1.3 Real Time Clock issues
Some issues with DS1302 RTC module encountered during the medium load
tests should be mentioned. Several phases of the experiment had to be repeated,
because the main device was not always woken up by the support device on
a specified time. The logs collected show, that in some cases the time value
returned by the RTC module was too far in the future (several hours) and it
caused the experiments to fail. In an attempt to eliminate the malfunction, all
the wired connections of the module and its backup battery were replaced, but
the problem reemerged. At this point, it is assumed that the DS1302 module or
the library used to read its value is unreliable, but without access to another
DS1302 module it is not possible to confirm the real source of encountered
problems.

7.2 Gateway
LoRa gateway implementation used in the EC3 System worked as expected
during all conducted tests. It was experienced, as stated in the LoRa specifica-
tion, that the gateway receives all the LoRa messages in its range, also those
not sent by the observation unit. Such messages were also stored in the AWS
IoT cloud and later downloaded by the backend application. The gateway could
be able to filter those messages out based on the sender’s address, which is
an unencrypted part of the message. Even if the sender’s address matched the
address of observation unit, which could happen as the addresses are arbitrarily
chosen and hardcoded, it would be possible to filter those message later on
the backend side, since it would not be possible to decrypt the wrong message
without AES keys associated to the source device.



44 CHAPTER 7 D ISCUSS ION

What was not examined in the presented solution was the effective range of
the communication module. It is advisable to compare the gateway range with
the professional solutions and decide which one should be selected for the EC3

System.

7.3 Backend
The implemented backend part of the EC3 System was found useful in mon-
itoring the sate and results of the conducted experiments in real time. The
application was downloading the LoRa messages from the AWS IoT cloud and
decrypting the data contained. It was possible to check the content of the
messages and the time when a single message was received by the gateway.
This allowed to match the received information with the expected experiment
results and thus detect and fix several bugs in the observation unit’s implemen-
tation.

The backend itself does not store the downloaded data, so additional work
is required to present the received information in a more user friendly way.
The main focus should be on facilitating the analysis of the collected sensors
readings and checking the OU health status.

7.4 Prototype limitations
The following simplifications have been assumed in the current implementation
of the EC3 System:

• The delays in sensor readings, the device sleeping time and LoRa physical
address are not configurable and their values are permanently set in the
source code. The last parameter needs to be changed for every OU
because without it the data collected from more than one device will
not be distinguished. A good solution that addresses this limitation is to
create a separate configuration file to store these parameters and then
rewrite the code to read the file.

• The system prototype provides security only in communications between
the gateway and AWS IoT services, AWS DynamoDB and the backend
services, and between the OU and the gateway. AES encryption and
decryption keys for the OU and the backend services are set in the source
code. The configuration file would solve also this limitation.



7.5 CHALLENGES 45

7.5 Challenges
The challenges that one can expect taking up a project are often not as de-
manding as the ones that result from unforeseen development.

The biggest initial challenge was to choose the components for the final system
basing just on their technical specifications. Several times, starting to work
with a component, or putting it under tests in combination with other system
elements, caused it to exhibit an unexpected behavior. In some cases, only after
including a component in operations was it discovered that it was unsuitable
for the required task. The problem with that late discovery was that obtaining a
different, replacement devicewas often out of question due to timing constraints
of this work.

Familiarizing with IoT field, reading and modifying electronic schematics in
order to select and properly combine basic building blocks into a more complex
system, programming Arduino boards – it was all an anticipated challenge.
Somewhat underestimated part was the actual, physical building of the system.
Many of the elements required to be soldered, which is quite a meticulous task,
or connected through a breadbord with numerous wired connections into one
big mesh. Using the breadbord in a systematic way and keeping track of the
wired connections proved to be particularly important in cases where hardware
problem needed to be traced and a component replaced.

Probably the least expected challenge was the necessity of inspecting the sys-
tem at the lowest, electronic level. Some of the problems could not have been
tracedwithout determining the values of electrical current and voltage between
specified parts of the circuit. The resulting conclusion was often that the two
neighboring components are not mutually compatible and require and addi-
tional middleman part. That in turn required calculating the accurate values
of the parameters of the electronic components to be introduced (e.g. resistors
and diodes), and finally physically incorporating them into the system.

7.6 Lessons Learned
Many issues were detected in the process of developing the EC3 System pre-
sented in this document. Starting to conduct experiments in the early stages
of the development is crucial for confirming system’s stability at every step,
before further expanding the implementation. The workload devoted to early
testing pays off in the later stages, when due to growing system’s complexity
detecting problems consumes significantly longer time and effort.



46 CHAPTER 7 D ISCUSS ION

It was important to select hardware’s components for the prototype, which
are widely supported by the IoT community in order to ensure multi-platform
(Raspberry, Arduino) support. Availability of well documented libraries was
crucial for meeting time constraints of the project.

Before the final devices for the prototype were selected, much time was spent
on selecting the candidates from a much bigger set of available modules. An
example was a Nordic Semiconductors NRF52 microcontroller that was difficult
to integrate with the LoRa module due to limited debugging capabilities and
lack of libraries. The same applied to two other devices with flashed firmware
that were, in consequence, dismissed in the design phase of the project. It
is good to start with a more intuitive, linux-based board, which behaves in a
more predictable way, rather then assuming a complicated and apt system and
achieving little functionality with it.

Perhaps the most important lesson is that the stability of a distributed system,
like the EC3 System presented in this paper, depends on many components,
both the software and the hardware implementations. Often the hardware
components prove insufficient or defective and require replacement. Having
an easy access to spare parts is essential in confirming the source of emerging
issues and fixing them. As an example, much time was devoted to pinpoint
troubles with the observation unit’s communication module. The issue could
not be traced neither to the hardware nor to the software implementation,
until a broken wired connection proved to be the source of the problem.



8
Summary
The goal of this Master’s thesis was to develop a system capable of observing the
Arctic environment, detecting motion in front of the installed camera, reporting
collected data and the state of system’s sensors, and recovering from several
types of failures. Such system, named a EC3 system, was designed, built, tested
and described in this paper.

The EC3 system is a first attempt towards monitoring the wildlife in a more
robust way than just through a simple photo camera capturing images when
the motion is detected. The research brought much positive outcome. The ob-
servation unit provides a way of delivering information on a long distance using
a low-powered communication module. The infrastructure for data receiving
could be build using the EC3 System’s gateway implementation or using the
professional LoRa gateways with bigger antennas and more sensitive receiving
modules available on the market. The data could be also delivered via an exist-
ing infrastructure by cooperating with a third-party operator without a risk of
data leakage. The device can be extended with additional sensor peripherals
to collect even more types of data for climate change analysis.

On the other hand, the OU consumes too much power to be placed in the
field in its current form and it shows some signs of instability. The increased
functionality of the prototype definitely did not come without a price, but with
more extensive examinations and the addition of several missing parts it could
be polished to the state when it proves useful in the real environment.

47



48 CHAPTER 8 SUMMARY

The observation unit’s ability to recover from failures is limited to retry and
reboot. It is the most obvious way of dealing with system’s internal issues and
it requires only a few seconds of device’s operational time to recover. The
unit reports the state of observations, and even in case of a hard failure the
lack of information itself is a sufficient sign that the device requests a human
intervention.

Since the main device is under the control of a linux operating system, it allows
to use much more existing software solutions and programming languages to
deliver the desired functionality, which could not be provided by the embedded
systems only. It opens a door for introducing further improvements without
the necessity of being familiar with IoT development as a prerequisite. As
an example, an animal-recognition system could be written in a software
programming language and integrated into the EC3 system, thanks to its linux
compatibility. The OU would first serve as a test data generator for the animal-
recognition system and then could be integrated with it for more efficient
processing of the camera-captured images. This would not only speed up
the data analysis but it could also eliminate the need to collect images in a
traditional way of copying them from an SD memory card. The information
about recognized animals could be send directly to the gateway via LoRa
message.

The implementation of the observation unit prototype showed how many dif-
ferent aspects need to be taken into account beyond software implementation.
The system’s stability, for example, does not depend only on the quality of the
software part, but also on the selected hardware components, which some-
times are less reliable than others. Testing several models of the same type of
peripheral is highly advisable when choosing a candidate for the final solution
to be deployed in the field.



9
Future Work
Right now the observation unit consumes too much energy to be placed in
the Arctic environment and survive on batteries for several months. Raspberry
PI 3 used as the main device drains power even in the shutdown state, which
requires an external power circuit controlled by the support device to cut off
such power-leakage.

Another approach to limit the OU’s power demand would be to replace Rasp-
berry PI 3 with a much more power-efficient Raspberry PI Zero (a less powerful
version of Raspberry PI family boards with a single core chip). More experi-
ments need to be conducted in order to determine the accurate numbers, but
just by looking through specification, the board seems promising. Moreover, it
would not require a lot of software refactoring, except for adjusting the SX1276
chip library, which is written for more powerful versions of Raspberry PI.

The observation unit prototype is build on a breadboard with a lot of wired
connections between elements of the unit, which in many cases was the source
of failure and caused significant delays in conducting experiments. The solution
to such problem would be a customarily designed PCB mounted with screws at
the top of themain device. Designing the PCB circuitwould entailmorework and
soldering of the elements would require more advanced tools, but the resulting
hardware would constitute a much more physically-robust solution.

Real Time Clock (DS1302) used in the system’s prototype gives signs of being
unstable, which caused problems in the medium load scenario experiment,

49



50 CHAPTER 9 FUTURE WORK

leading to different than expected results. In order to stabilize theOU prototype,
a new, more reliable RTC module should be used.

The EC3 System,which states for Command-Control-Communication System, is
actually an EC2 System (Control-Communication) with Command part missing.
It is the consequence of using the LoRa module in the observation unit for
sending messages, which does not allow for establishing a connection between
devices. In the current software implementation, the transceiver peripheral
wired to the main device works as a transmitter only, the data exchange is
unidirectional, from the sensors to the gateway. The solution to this matter
would be to change the OU’s behavior so that it plays a role of the gateway for
a specified amount of time. It could send a message to the gateway, stating that
it is awaiting incoming data for a specified amount of time, thus allowing the
Command part to be added to the current EC3 System implementation.

Security is one of those important real-life factors that was out of the scope of
this project. The data send from the observation unit is encrypted by the 128 bits
AES mechanism, but the device itself is not secured. Anyone with direct access
to it would be able to take over it. The device’s storage could be encrypted as
well, in order to prevent the data leakage, but a physical security layer should
be also considered.

As the results of the test scenario described in Section 6.4 showed, the camera
module requires different amounts of time to take images, depending on
ambient brightness. In daylight, the average capture time is around 10 seconds,
while at night the same operation takes more than 2 minutes. It is an issue with
the pi-camera library, and probably with the camera module itself as well. The
solution to this matter would be to have two camera modules, one for daylight
photos (e.g. the current one) and another one handling better the night-time
light levels (for example an infrared camera module).

Finally, the EC3 System should be examined in the field, in conditions similar
to the ones of the Arctic environment. Without it, it is difficult to determine
how many more new issues would emerge as a result of exposing the system
to actual environmental factors. However, since the observation unit is missing
the power circuit in its current implementation, it is not possible to power it
from a battery source and thus leave unattended for extended periods of time.
Providing for that would be the necessary first step in taking the system’s tests
out of the lab into the outdoors.



Bibliography
[1] "Vicotee Njord", http://www.vicotee.com/. Accessed: 18.03.2017.

[2] "SensorTag 2", http://www.ti.com/tool/cc2650stk. Accessed: 18.03.2017.

[3] "Waspmote", https://goo.gl/MSKObw. Accessed: 18.03.2017.

[4] "Raspberry PI", https://www.raspberrypi.org/. Accessed: 18.03.2017.

[5] "Arduino", https://www.arduino.cc/. Accessed: 18.03.2017.

[6] "Nordic Semiconductor NRF52", https://goo.gl/gyvshb.
Accessed: 27.03.2017.

[7] "STM Nucleo L476RG", https://goo.gl/dIXSdB. Accessed: 27.03.2017.

[8] "Spell Foundry Sleepy PI", https://goo.gl/5V7KyH. Accessed: 27.03.2017.

[9] "Atmel ATmega328P", https://goo.gl/q7jiOp. Accessed 27.03.2017.

[10] "Arduino Low Power", https://goo.gl/5YDFVq. Accessed 29.03.2017.

[11] "LoRa Alliance™ Technology ", https://goo.gl/9Nebiq.
Accessed 29.03.2017.

[12] "LoRaWAN Range Testing", https://goo.gl/3Mp71h.
Accessed 29.03.2017.

[13] "Semtech LoRa Modem Design Guide", https://goo.gl/U1ZMvK.
Accessed 17.04.2017.

[14] "AWS IoT MQTT protocol", https://goo.gl/V41mLT.
Accessed 09.04.2017.

[15] "AWS IoT", https://aws.amazon.com/iot/. Accessed 09.04.2017.

51

http://www.vicotee.com/
http://www.ti.com/tool/cc2650stk
https://goo.gl/MSKObw
https://www.raspberrypi.org/
https://www.arduino.cc/
https://goo.gl/gyvshb
https://goo.gl/dIXSdB
https://goo.gl/5V7KyH
https://goo.gl/q7jiOp
https://goo.gl/5YDFVq
https://goo.gl/9Nebiq
https://goo.gl/3Mp71h
https://goo.gl/U1ZMvK
https://goo.gl/V41mLT
https://aws.amazon.com/iot/


52 B IBL IOGRAPHY

[16] "AWS DynamoDB", https://aws.amazon.com/dynamodb/.
Accessed 09.04.2017.

[17] "Raspbian Jessie", https://www.raspberrypi.org/downloads/raspbian/.
Accessed 16.04.2017.

[18] "Overview for Voltage Level Translation", https://goo.gl/xyXVZo.
Accessed 16.04.2017.

[19] "Raspberry PI Camera Module V2", https://goo.gl/vv382W.
Accessed 16.04.2017.

[20] "pi-timolo", https://github.com/pageauc/pi-timolo.
Accessed 16.04.2017.

[21] "picamera", https://picamera.readthedocs.io/en/release-1.13/.
Accessed 16.04.2017.

[22] "Dragino LoRa BEE", https://goo.gl/oMi67i. Accessed 17.04.2017.

[23] "Semtech SX1276", https://goo.gl/OqiuBt. Accessed 17.04.2017.

[24] "Low-cost LoRa IoT & gateway with SX1272/76, Raspberry and Arduino",
https://goo.gl/aEwHT3. Accessed 17.04.2017.

[25] "DHT11 - Humidity & Temperature sensor",
http://www.micropik.com/PDF/dht11.pdf. Accessed 18.04.2017.

[26] "Adafruit Python DHT Sensor Library", https://goo.gl/8sRbul.
Accessed 18.04.2017.

[27] "USB Charger Doctor", https://www.adafruit.com/product/1852.
Accessed 1.05.2017.

[28] "timezonedb", https://timezonedb.com/. Accessed 10.05.2017.

https://aws.amazon.com/dynamodb/
https://www.raspberrypi.org/downloads/raspbian/
https://goo.gl/xyXVZo
https://goo.gl/vv382W
https://github.com/pageauc/pi-timolo
https://picamera.readthedocs.io/en/release-1.13/
https://goo.gl/oMi67i
https://goo.gl/OqiuBt
https://goo.gl/aEwHT3
http://www.micropik.com/PDF/dht11.pdf
https://goo.gl/8sRbul
https://www.adafruit.com/product/1852
https://timezonedb.com/


Appendices

53





A
Observation Unit Usage
A.1 Arduino Pro Mini
Arduino Pro Mini needs to be flashed first using the user’s host. The code
for the device is placed inside the EC3 System repository. The full path after
extraction is: C3/device/arduino/.

The recommended software for flashing the Arduino is PlatformioIO IDE
(http://platformio.org/).

A.2 Raspberry PI 3
In order to run the system, Raspbian Jessie Lite must be written on the SD
card, then the EC3 System repository must be extracted in /home/pi directory,
so that the full path to the files is /home/pi/C3.

The system requires wiringpi library to be installed, which is done with the
following commands in Raspbian Jessie:

$ sudo apt−get update
$ sudo apt−get upgrade
$ sudo apt−get i n s t a l l w i r ingp i

55



56 APPEND IX A OBSERVAT ION UN IT USAGE

System initialization is done with the following command executed in /home-
/pi/C3/device/ directory:

$ sh setup . sh

After a successful execution of this command, Raspbian Jessie needs to be
rebooted. This will start the observation unit tasks after system booting. It
means, that the device is going read values of:
- DHT11 sensor,
- system’s free space,
- number of captured photos.

Moreover, it will run:
- motion detection script,
- LoRa messages sending application.

When LoRa application finishes its execution, the device will request Arduino to
wake it up after a period of 1 minute and will then shutdown on its own.

The whole cycle will be repeated in an endless loop.



B
LoRa Gateway usage
B.1 AWS IoT
AWS account needs to be created first as described in AWS Documentation:
https://goo.gl/DhQ571

When AWS account is active, in order to access AWS Command Line Interface
(AWS CLI) the AWS IAM user named Gateway needs to be created with the
following settings:

AWS access type Programmatic access

Permissions Policies AWSIoTConfigAccess, AmazonDynamoDBFullAccess

Access key ID and Secret access key from AWS IAM user summary page need to
be saved in a safe place, because these credentials are required to configure
AWS CLI.

Next, a new IAM policy named RolePolicy needs to be created in AWS IAM
console with the following content:

{
" Vers ion " : "2012−10−17" ,
" Statement " : [

{

57



58 APPEND IX B LORA GATEWAY USAGE

" Sid " : " Stmt1482712489000 " ,
" E f f e c t " : " Allow " ,
" Act ion " : [

" iam : CreateRole " ,
" iam : PutRo lePo l i cy " ,
" iam : PassRole "

] ,
" Resource " : [

" * "
]

}
]

}

When RolePolicy policy is successfully created, it needs to be assigned to the
IAM User Gateway.

Next steps related to AWS IoT are described in section B.2.

B.2 Raspberry PI 3
In order to run the gateway, Raspbian Jessie Lite must be written on the SD
card, then EC3 System repository must be extracted in /home/pi directory, so
that the full path to the files is /home/pi/C3.

The system requires wiringpi library to be installed, which is done with the
following commands in Raspbian Jessie:

$ sudo apt−get update
$ sudo apt−get upgrade
$ sudo apt−get i n s t a l l w i r ingp i

User needs to install python-2.7 and pip-2.7 if these packages are not present
in Raspbian Jessie.

The next step is to install and configure AWS CLI using the following com-
mands:

# Acces key ID and Secre t acces s key i s requ i red in t h i s s tep
$ sudo pip i n s t a l l −−upgrade awsc l i
$ aws conf igure



B.2 RASPBERRY P I 3 59

When the AWS CLI configuration is done, the AWS IoT Cloud needs to be
configured via the following commands:

$ aws i o t create−th ing −−thing−name ou
$ aws i o t create−po l i c y −−po l i cy−name gateway−po l i c y \
−−po l i cy−document f i l e : //C3/gateway/aws/ po l i c y /gateway . j son
$ aws i o t create−keys−and− c e r t i f i c a t e −−set−as−a c t i v e \
−− c e r t i f i c a t e −pem−o u t f i l e C3/gateway/aws/ keys /gateway . c e r t . pem \
−−publ ic−key−o u t f i l e C3/gateway/aws/ keys /gateway . pub l i c . pem \
−−pr iva te −key−o u t f i l e C3/gateway/aws/ keys /gateway . p r i v a t e . pem

The next command will return a JSON output, from which certificateArn field’s
value needs to be passed to the next commands:

$ aws i o t at tach−p r i n c i pa l −po l i c y −−po l i cy−name gateway−po l i c y \
−−p r i n c i p a l v a l u e _o f _ c e r t i f i c a t eA rn
$ aws i o t at tach−thing−p r i n c i p a l −−thing−name ou \
−−p r i n c i p a l v a l u e _o f _ c e r t i f i c a t eA rn

In order to store LoRa messages, DynamoDB table named package needs to be
created as fallows:

$ aws dynamodb create−t ab l e −−tab le−name package2 \
−−a t t r i bu t e −d e f i n i t i o n s AttributeName=address , A t t r ibu teType=N \
AttributeName=timestamp , At t r ibu teType=N \
−−key−schema AttributeName=address , KeyType=HASH \
AttributeName=timestamp , KeyType=RANGE \
−−provis ioned−throughput ReadCapaci tyUnits=5,Wr i teCapac i tyUni t s=5

It will return a JSON output, from which TableArn field’s value needs to be writ-
ten to C3/gateway/aws/policy/dynamodb.json file, in the Resource field.

The last step in AWS IoT CLI configuration is to assign a rule in which all LoRa
messages from MQTT protocol will be saved in DynamoDB table. It needs to
be done via the following commands:

$ aws iam create−r o l e −−ro le−name Gateway−Role \
−−assume−ro le−po l i cy−document \
f i l e : //C3/gateway/aws/ ro l e /gateway . j son

# above command w i l l re turn JSON from which ARN f i e l d value
# needs to be wr i t t en to f i l e C3/gateway/aws/ ru l e /
# mqtt−to−dynamodb . j son in f i e l d ro leArn before the next
# two commands can be executed :



60 APPEND IX B LORA GATEWAY USAGE

$ aws iam put−ro le−po l i c y −−ro le−name Gateway−Role \
−−po l i cy−name Permiss ions−Po l i cy−For−Gateway \
−−po l i cy−document \
f i l e : //C3/gateway/aws/ po l i c y /dynamodb . j son

$ aws i o t create−top ic−ru l e −−rule−name MQTTToDynamoDB \
−−top ic−rule−payload \
f i l e : //C3/gateway/aws/ ru l e /mqtt−to−dynamodb . j son

When the above steps are successfully executed, the file C3/gateway/postprocessing.py
needs to be edited to replace an argument of functionmyMQTTClient.configureEndpoint
with the value obtained from Settings page from AWS IoT web interface.

To finalize the gateway setup, the last two commands need to be executed:

$ cd /home/ pi /C3/gateway/ && sh setup . sh
$ sudo reboot

Performing the above commands ensures that the gateway application is cor-
rectly installed and will be running at every system booting.






	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.2 Contributions

	2 Hardware Platforms
	2.1 Hardware selection
	2.1.1 Support device

	2.2 Communication

	3 Architecture and Design
	3.1 Observation unit
	3.1.1 Main device
	3.1.2 Support device

	3.2 Gateway
	3.3 Backend

	4 Implementation
	4.1 Observation unit
	4.1.1 Main device
	4.1.2 Support device

	4.2 Gateway
	4.3 Backend

	5 Experiments
	5.1 Experimental setup
	5.1.1 Energy-consumption reference for observation unit
	5.1.2 Gateway
	5.1.3 Power consumption measurement instrument

	5.2 Extreme load scenario
	5.3 Medium load scenario
	5.4 LoRa message rate scenario
	5.5 Execution times scenario

	6 Results
	6.1 Extreme load scenario
	6.1.1 Amount of collected data
	6.1.2 Effective LoRa message output
	6.1.3 Data captured by Camera sensor

	6.2 Medium load scenario
	6.2.1 Amount of collected data
	6.2.2 Effective LoRa message output
	6.2.3 Data captured by Camera sensor

	6.3 LoRa message rate scenario
	6.4 Execution times scenario

	7 Discussion
	7.1 Observation unit
	7.1.1 Configuration
	7.1.2 Camera module
	7.1.3 Real Time Clock issues

	7.2 Gateway
	7.3 Backend
	7.4 Prototype limitations
	7.5 Challenges
	7.6 Lessons Learned

	8 Summary
	9 Future Work
	Bibliography
	Appendices
	A Observation Unit Usage
	A.1 Arduino Pro Mini
	A.2 Raspberry PI 3

	B LoRa Gateway usage
	B.1 AWS IoT
	B.2 Raspberry PI 3


