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Abstract 
 

Sediment core HH13-012GC-TUNU, retrieved from Nordfjord, North-East Greenland, has been 

investigated in order to reconstruct the paleoceanographic development during the mid- and late 

Holocene. Nordfjord is one of three tributary fjords to Kaiser Franz Joseph Fjord, and Waltershausen 

Gletcher is located at its head. The fjord system is largely influenced by the Eastern Greenland 

Current. 

Most of the paleoceanographic research from fjords in Greenland have been done in the south-east, 

and south-west, whereas there are very few studies from the north-eastern part. In this study, results 

from the sediment core HH13-012GC-TUNU are based on benthic foraminiferal assemblages. An age 

model is established based on two AMS 14C dates, in addition to an assumed age of the uppermost 

part. From the results, three foraminiferal assemblage zones are established within the last ⁓7800 cal. 

yr. BP, covering the Holocene Climate Optimum, the Neoglaciation, and the Little Ice Age. The strong 

dominance of the species Cassidulina reniforme throughout the core indicates that the conditions 

within Nordfjord have been that of a glaciomarine environment during the last ⁓7800 cal. yr. High 

relative abundance of Islandiella Helenae indicates that Atlantic Water, and seasonal sea ice 

conditions influenced the area until ⁓5200 cal. yr. BP. The transition from the Holocene Climate 

Optimum to the Neoglaciation is marked by an abrupt increase in the cold water species Astrononion 

Gallowayi, indicating inflow of Arctic Water, combined with higher energy conditions. The last ⁓630 

cal. yr. BP is dominated by Elphidium excavatum f. clavata, indicating continued inflow of Arctic 

Water, combined with seasonal sea ice cover.  
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1. Introduction 

1.1  Objectives 
The primary objective of this study is to reconstruct the paleoceanography and paleoclimate in 

Nordfjord in the northeast of Greenland during the Holocene. By looking at benthic foraminiferal 

records from sediment core HH13-012GC-TUNU, changes in water masses and seafloor environment 

should be identified. 

 

1.2 Paleoceanography and paleoclimate 
Paleoceanography is the scientific study of changes in the oceans’ characteristics regarding e.g. 

chemistry, circulation and temperature over time, whereas paleoclimate is the study of past climates 

during time. Ocean currents are driven by differences in density, where temperature and salinity plays 

a major role. Changes in these parameters can slow down, or increase the flow rate of ocean currents, 

and thereby influence the climate in certain regions. Reconstruction of paleoceanography and 

paleoclimate is done by analysing proxy data. Proxies are indirect measurements of past climate or 

environmental changes, and are found within e.g. ice cores and sediment cores. By considering the 

uniformitarian principle, “The present is the key to the past”, samples found within ice cores or 

sediment cores can be compared to present day’s environment. In this study, benthic foraminifera are 

analysed. As benthic foraminifera can be quite particular about which environment they thrive in, one 

can by applying transfer functions, correlate the foraminiferal assemblages found at different depths 

within a sediment core to specific bottom water temperatures (BWT) and bottom water salinity 

(BWS).   

 

1.3  Evolution of paleoceanography and paleoclimate on East Greenland 
 

1.3.1 Holocene paleoceanographic development  
The circulation of surface water within the ocean, is mainly driven by atmospheric circulation. The 

circulation of deeper water masses is on the other hand, driven by differences in density, which come 

as a result of variations in temperature and salinity. This phenomena is called the thermohaline 

circulation (THC) (Bradley, 2015). The Greenland Sea is important to the global ocean circulation, as 

deep water convection occurs in this area. This again leads to the formation of North Atlantic Deep 

Water (NADW) (Marshall and Schott, 1999; Telesiński et al., 2014a). NADW forms as surface water 

cools, and increases in salinity north of ⁓ 60ºN, resulting in a dense water mass to sink and move 

southwards towards the South Atlantic. As a response to the formation of NADW, warm and saline 

surface waters move poleward within the Gulf Stream and North Atlantic Current. This process is 
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termed the Atlantic Meridional Overturning Circulation (AMOC) (Bradley, 2015). The NADW 

circulation is severely sensitive to changes in salinity, and the entire process could wind down when 

the catchment area of the North Atlantic is added as little as 0,06 Sv (1 sverdrup = 106 m3 s-1) 

additional freshwater (Rahmstorf, 1995).   

The two major surface-water masses influencing the area are the cold and low saline Polar Water 

(PW) transported southwards by the Eastern Greenland Current (EGC), and the relatively warm and 

saline Atlantic Water (AW) transported northwards by the North Atlantic Current (NAC) (Telesiński 

et al., 2014a) (Figure 1). During the Holocene, the paleoceanographic evolution of the Greenland Sea 

was primarily controlled by insolation, whereas variations in inflow of warm AW controlled the 

spatial variability (e.g. Telesiński et al., 2014b). During the early Holocene (11.9-7 ka) the surface 

water warmed up, which again led to an increase in productivity and the surface water ventilation 

improved. From 7-3 ka, during the Middle Holocene, there was a decrease in insolation, which led to 

the Neoglacial cooling that was enhanced by inflow to the area of cold PW. As a consequence of the 

Neoglacial cooling, at 3 ka the surface layer thickened, which rapidly decreased the ventilation and the 

stratification of the upper water mass became stronger. At  ̴ 2 ka the late Holocene warming occurred. 

This was caused by increased inflow of AW into the Nordic Seas (Telesiński et al., 2014a).  

According to Jennings and Weiner (1996), there have during the last millennium been changes in both 

water masses and sea ice condition within the EGC. Their study is based on benthic and planktic 

foraminifera, lithofacies, and sedimentological analysis of two marine sediment cores collected from 

Nansen Fjord. Nansen Fjord is located in the south-eastern part of Greenland, and is thereby 

influenced by the EGC. The Medieval Warm Period ( ̴ 730 AD –  ̴ 1110 AD) was a period which was 

characterized by a relatively warm and stable climate, and in Nansen Fjord this warming period was 

represented by Atlantic Intermediate Water dominating the fjord, either caused by relatively low influx 

of PW, or a strong influx of AW. Findings from diatom analysis from Kangerlussuaq Trough on the 

SE Greenland shelf, show that from ⁓1000 C.E, an abrupt warming occurred, increasing the sea 

surface temperature with ⁓2.4℃ in only ⁓55 years (Miettinen et al., 2015).  

The Little Ice Age followed the Medieval Warm Period, and in Nansen Fjord, South-Eastern 

Greenland, the conditions varied severely, with some brief periods with perennial sea-ice cover, 

indicating exceptionally cold conditions (Jennings and Weiner, 1996). Miettinen et al., (2015) suggest 

the same variations during the period, with cooling of the sea surface temperature from 1200-1600 CE, 

followed by a relatively warm period until 1820 CE, before reaching the coldest period within the last 

millennium, lasting until ⁓1890 CE.  

Several studies propose that the positive phase of the Arctic Oscillation (AO)/North Atlantic 

Oscillation (NAO) was an important factor for the changes occurring during the MWP (e.g. Mann et 

al., 2009). The positive phase is associated with increased southwards sea ice export within the EGC 
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from Fram Strait (Andrews and Jennings, 2014). Findings from the SE Greenland shelf indicate that 

both the MWP, and the transition to the LIA most likely were caused by a combination of solar- and 

atmospheric forcing (Miettinen et al., 2015). In their study, the authors claim that the Oort solar 

minimum could have triggered a rapid warming in the area. The Oort minimum could have led to a 

low melting rate of the Greenland Ice Sheet, again leading to a decreased sea ice formation. In 

addition, the authors found that NAO reached a high positive phase at the end of a high sea surface 

temperature event, and thereby possibly being the reason for the following cooling of the surface 

waters. According to Shindell et al., (2003), a combination of volcanic- and solar forcing was 

responsible for the global LIA signal. They claim that volcanic forcing played a major role of the 

global cooling during the LIA, whereas solar forcing was behind regional variations.   

 

 

 

Figure 1: Overview of the main ocean currents affecting the Greenland Sea at present time. Black arrows 

indicate warm and saline Atlantic Water, whereas white arrows indicate cold and less saline Polar Water  

(Adapted from Marshall and Schott, 1999) 
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 1.3.2 Holocene paleoclimate development 
The climate in East Greenland is largely influenced by oceanic circulation and radiation energy. The 

further north, the cooler it is. This is related to the northward decrease in radiation energy, and 

northward increase in the influence of the cold EGC. 

According to Wagner et al., (2000) records of climatic variations on East Greenland during the 

Holocene can be found from lake sediments formed after 9000 cal. yr. BP. During the early Holocene 

(9000 - 6500 cal. yr. BP) the climate consisted of warm summers and higher temperatures than at 

present, combined with high summer insolation. This period is called the early Holocene climatic 

optimum. Within the Holocene Climatic Optimum evidence has been found for a short lived cold 

event, lasting from 8300 – 8200 cal. yr. BP. This event is named the “8.2 ka event”, and was related to 

decrease in the salinity at the sea surface, and the strength of North Atlantic overturning circulation as 

a response to substantial outflow of freshwater from the Hudson Strait (Barber et al., 1999). This again 

led to an expansion of sea ice during winter time (Alley et al., 2010).  

Following the early Holocene climatic optimum came a period with high precipitation rates, lasting 

until 3000 cal. yr. BP. The temperatures started decreasing at 5000 cal. yr. BP and lasted until 

approximately 1000 cal. yr. BP, making up a cold and dry climate the last 2000 years of the period 

(Wagner et al., 2000). The Neoglaciation started at least at 5000 cal. yr. BP, and led to glaciers 

expanding all over Greenland (Bennike and Weidick, 2001).  

During the end of the Neoglaciation the Medieval Warm Period (MWP) occurred, associated with 

increasing temperatures. It lasted for approximately 200 years, before the Little Ice Age (LIA) 

commenced. The Little Ice Age lasted from about 800 to 100 cal. yr. BP, and was the coldest period 

within the Holocene. During the beginning of this period, the precipitation rates slightly increased 

(Wagner et al., 2000).  

Following the LIA the temperatures started increasing again, followed by a cooling from the 1970s to 

early 1990s, and a new warming, finally reaching the present day temperatures (Kobashi et al., 2015).  

 

1.4 Study Area 
Greenland is the world’s largest island, and it is surrounded by the Arctic Ocean to the north, the 

Greenland Sea to the east, the Atlantic Ocean to the south, and Baffin Bay to the west. Overall 

Greenland has a total coastline of 44,087 km (Olsen, 2015), and approximately 80% of the overall area 

is covered by glaciers. As fjords are formed by land-based ice, the severe glaciological action that has 

been characterizing Greenland over time has formed fjords around almost the entire coastline, varying 

in range from a few kilometres up to hundreds of kilometres in length (Cottier et al., 2010). 

The sediment core investigated in this study (HH13-012GC-TUNU) was collected from Nordfjord, 

one of the three main tributary fjords of Kaiser Franz Joseph Fjord, in the northeast of Greenland 
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(Figure 2). The other two tributary fjords making up the fjord system are Geologfjord and Isfjord. 

Overall the fjord system covers 2200 km2, and stretches for 220 km from head to mouth (Evans et al., 

2002). Both Kaiser Franz Joseph Fjord, and its related tributary fjords have glaciers terminating at 

their head. These glaciers are the results of The Greenland Ice Sheet draining through the inner coastal 

mountain zone. At the head of Nordfjord, Waltershausen Gletscher is terminating. This is the largest 

of the glaciers found within the Kaiser Franz Joseph Fjord system, and the width of the terminus is 

approximately 10.2 km (Evans et al., 2002).   

 

Figure 2A) Overview map of Greenland. The location of Kaiser Franz Joseph Fjord is indicated by a 

black square. Figure 2B shows Kaiser Franz Joseph Fjord, and its related tributary fjords and 

topography. NF-Nordfjord, GF - Geologfjord, MF - Moskusoksefjord, WG – Waltershausen Gletscher, 

FB – Fosters Bugt.
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2. Physical and Geological Setting 

2.1 Fjords 
 
Syvitski et al., (1987) define a fjord as “a deep, high-latitude estuary which has been (or is presently 

being) excavated or modified by land-based ice”. The authors also describe fjords as transition zones 

between land and open ocean where there is a mixing of salt- and freshwater, with a resulting 

production of strong physical and chemical gradients.  

Hambrey (1994) made a classification of fjords related to their glacial influence at present day 

conditions. His classification contains four regimes, Alaskan regime, Svalbard regime, Greenland 

regime, and Antarctic maritime regime. Kaiser Franz Joseph Fjord falls under the Greenland regime, 

which is characterized by dynamic, floating, cold glaciers in deep fjords, typically derived from the 

Greenland ice sheet.  

Syvitski et al., (1987) divided the Greenland fjords into four quadrants, with Kaiser Franz Joseph 

Fjord located on the north-eastern coast (Figure 3). What characterizes the fjords in this zone is that 

they are cut in crystalline bedrock, and the fjords with a north-south trend are controlled by major fault 

zones.  
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Figure 3: Greenland's four different fjord zones. The black square within the N.E. Coast zone indicates 

location of Kaiser Franz Joseph Fjord. Modified from Syvitski et al., (1987). 

 

2.2 Bathymetry 
 
According to Olsen, (2015), Nordfjord is approximately 35 km long, and 13 km wide, which makes it 

a relatively short and wide fjord. It follows a N-S trend, with Waltershausen Gletscher located at its 

head in the north. From the head of the fjord the water depth quickly increases to a depth of above 200 

m (Figure 4). Within Nordfjord, a fjord basin in the inner part, and the sea floor surface appears 

generally smooth. There is nevertheless, the presence of several sediment lobes and a slide scar within 

the middle part of Nordfjord (Olsen, 2015).  

In the intersection of Nordfjord and Kaiser Franz Joseph Fjord, Evans et al., (2002) found a prominent 

shallow sill. Sills may be a result of overdeepening of the fjord relatively to the adjacent shelf due to 
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glacial activity, and are normally found at the mouth of the fjord, or within the fjord separating several 

basins (Syvitski et al., 1987).  

The middle-outer part of Kaiser Franz Joseph Fjord has a maximum depth of ̴ 550 meters, and the 

outer fjord basin can be divided into three sub-basins. At the mouth of Kaiser Franz Joseph Fjord, the 

Fosters Bugt form a wide embayment. The maximum water depth is here 340 meters. On the inner 

part of the shelf, there is an elevated high, where the water depth is 235 meters, whereas the outer most 

part of the continental shelf shows water depths between 280 – 340 meter deep. From the elevated 

high, the shelf stretches for 110 km to the shelf break (Evans et al., 2002).  

 

 

Figure 4: Bathymetric map of Kaiser Franz Joseph Fjord, and its associated continental shelf. Red dot 

indicates location of core HH13-012GC-TUNU. 

 

2.3 Present oceanography 
 
As mentioned, Eastern Greenland is majorly influenced by the EGC. The EGC originates at the Fram 

Strait and continues southwards along the East Greenland continental shelf and slope. As it reaches the 
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Denmark Strait, the EGC meets up with the warm Irminger Current, and continues around Cape 

Farewell and northwards along the western coast of Greenland (Figure 5). 

Aagaard and Coachman, (1968) recognized three main water masses within the EGC north of 

Denmark Strait. The uppermost  ̴150 m consists of cold Polar Water (PW), which holds a temperature 

between  ̴ 0 ̊ C and freezing point. Downwards in the PW, there is an increase in salinity from 

approximately 30ppt at the surface, to approximately 34ppt at the bottom. The middle water mass 

consists of Atlantic Intermediate Water (AIW), which extends down to  ̴ 800 meter below the sea 

surface. AIW has a temperature that is above 0 ̊ C, and the salinity increases downwards from the top 

until it reaches a salinity between 34.88ppt-35ppt. This value is normally found above 400 m. From 

this depth, down to the base of the AIW, the salinity remains stable. The lowermost water mass is the 

Deep Water, which underlies the AIW. It holds a temperature below 0 ̊ C, and a salinity between 

34.87ppt - 34.95ppt.  

However, it is not only water that is transported by the EGC. Substantial amounts of sea ice are also 

transported southwards along the East Greenland coast by the EGC. Outlet glaciers on the east coast of 

Greenland add icebergs and meltwater to the EGC during the summer months, but from October until 

June the drift is prevented by shore fast ice (Evans et al., 2002). The Greenland Ice Sheet is seen as 

one of the most important sources of freshwater to the North Atlantic, and the transport of meltwater 

from the glaciers, via fjords, into the oceanic system, is thereby an important process (Cottier et al., 

2010).  
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Figure 5: Present day ocean circulation in the Nordic Seas and North Atlantic. Blue arrows indicate flow 

path of cold and low saline PW, whereas the other arrows indicate flow path of warm and saline AW. 

Modified from Watts, (2010) 

 

The general fjord circulation consists of surface water flowing from the head to the mouth of the fjord, 

and due to this movement, there is a current of inward moving water to balance the water budget in the 

fjord. There are several factors influencing the circulation in a fjord together with the bathymetry and 

the Coriolis Effect (Syvitski et al., 1987). According to Farmer and Freeland (1983), there are two 

main groups of factors influencing fjords. The first, “Buoyancy sources”, includes amongst other river 

discharge, the gravitational circulation, and the exchange of surface heat or water. The second, 

“Turbulent kinetic energy sources” includes tides, winds, convection by surface cooling and kinetic 

energy from rivers.  

Within fjords with a sill, as Nordfjord has, there is a typical three layer arrangement of the water 

masses (Farmer and Freeland, 1983; Cottier et al., 2010). According to Cottier et al., (2010) the 

uppermost layer, the surface layer, consists of fresh water, which has its origin from melting of 

glaciers, basal melting or terrestrial runoff like rivers or melting of snow. The intermediate layer 
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normally consists of advected water masses, which has its origin external to the fjord. Due to mixing 

with adjacent waters, the characteristics of the water masses are majorly altered from their original 

characteristics. As the EGC is the major transport force of water masses on the eastern coast of 

Greenland, the intermediate layer within the fjords is derived from the EGC, and is termed Polar 

Water (Cottier et al., 2010). The lowermost water masses typically consist of dense water with higher 

salinity than the overlying water masses. In the fjords of East Greenland, this water mass is made up of 

recirculated Atlantic Water from the Nordic Seas, or AW that has evolved into Arctic Intermediate 

Water (ArIW) (Azetsu-Scott and Tan, 1997; Cottier et al., 2010).   

As Kaiser Franz Joseph Fjord is covered with sea ice during most of the year, year around 

oceanographic observations are not available. Hubberten, (1995) suggests that the interannual 

variability of both temperature and salinity is strong within the uppermost layer. This theory is based 

on comparison to other hydrographic stations on East Greenland. Within Nordfjord, the water inside 

and below sill depth is only renewed during certain periods of the year. In the other periods with no 

renewal, the water is stagnant, and the density is decreased over time as a result of vertical diffusion 

(Stigebrandt, 1976).  
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3. Material and Methods 

3.1 Sediment Core 
 
The sediment core, HH13-012-GC-TUNU, investigated in this project was collected during a scientific 

cruise with R/V Helmer Hanssen in august 2013. Station HH13-012-GC-TUNU is located at 

73o40.515’N 024o10.939’E, and the core was retrieved from a water depth of approximately 210m. A 

total of 459 cm of sediments were preserved within the core. After retrieving the core on board the 

vessel, it was split into five sections, making up approximately 100 cm each.  

 

3.2 Laboratory work 
 
The laboratory work was carried out from May 2016, until December 2016 at the Department of 

Geoscience at The Arctic University of Norway in Tromsø.  

  

3.2.1 Previous work 
Olsen (2015) investigated the core to reconstruct the glacial history and sedimentary paleoenvironment 

in her master thesis. Her work included amongst other a grain size analysis, analysing the wet-bulk 

density and magnetic susceptibility, and doing a radiocarbon dating on the core. After her work, the 

core had been stored in cooling store with a temperature of approximately 4oC until the work on this 

project started.  

 

 3.2.2 Sampling 
At every 5 cm of the core, a 1 cm thick slice was sub-sampled for foraminiferal analysis using a knife 

and a small spatula. After retrieving the slices, they were immediately put into plastic bags marked 

with the core name, and sampling depth. A total of 91 samples were retrieved from the core. After 

retrieving the samples from the core, they were stored in a cold storage over the summer.  

In August 2016, every sample was weighed to establish the wet weight, before being left in the freeze 

dryer overnight. The freeze dryer efficiently removes water from within the sample by freezing the 

material and thereafter reducing the pressure, which leads to the sublimation of the water. After this 

process, it was possible to establish the dry weight of each sample the next day.  

 

 3.2.3 Sieving 
Each of the samples were wet-sieved thoroughly through three sieves with mesh sizes of 1 mm, 100 

µm, and 63 µm, thereby filtering out all of the clay in the samples. The 100 µm and 63 µm grain size 
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fractions were sorted in previously labelled paper filters, whereas the 1 mm grain size fraction was 

kept in larger metal bowls. The paper filters and bowls were dried in a heating oven set to 40oC, before 

weighing each grain size fraction. 

 

 3.2.4 Foraminiferal analysis 
Foraminiferal analysis was at first made from every second sample within the 100µm size fraction, 

making up 45 samples. When all of these were analysed, a total of 25 extra samples were counted. 

These extra samples were chosen as they were located in transition zones within the core. Most of the 

samples were small enough to use the entire 100µm size fraction when counting, but some of them 

contained too much material for it all to be counted at the same time. These samples were split into 

two equal parts using a manual sample splitter.  

In theory at least 300 calcareous benthic foraminifera within each sample should be picked and 

identified from a picking tray, using a microscope, to get a reliable statistic. However, only 24 samples 

contained over 300 calcareous benthic foraminifera, whereas the number of specimens in the other 

samples varied between 50 and 290 specimens. In the final statistics, only the 57 samples containing 

more than 100 specimens are included in order to get the most credible statistics. In addition, both the 

planktic and agglutinated foraminifera found within the same squares as the benthic foraminifera were 

identified. Species identifications were made by comparing the observed foraminifera with 

foraminifera plates found within Feyling-Hanssen (1964), and using the Ellis & Messina Catalogue of 

Micropaleontology, as well as comparing them to foraminifera species slides found in the laboratory.  

 

 3.2.5 Foraminiferal concentration and flux calculations 
After identifying the necessary 300 foraminifera from the sample, the percentage abundance of each 

species was calculated by dividing it by the total amount of benthic foraminifera found within the 

picked sample:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑚𝑒𝑛𝑠 𝑜𝑓𝑠𝑝𝑒𝑐𝑖𝑒 𝑋

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑡ℎ𝑖𝑐 𝑓𝑜𝑟𝑎𝑚𝑖𝑛𝑖𝑓𝑒𝑟𝑎
∗ 100% 

The foraminiferal flux was calculated by the following formula: 

𝐹𝑜𝑟𝑎𝑚𝑖𝑛𝑖𝑓𝑒𝑟𝑎 𝑓𝑙𝑢𝑥 = 𝑓𝑜𝑟𝑎𝑚𝑖𝑛𝑖𝑓𝑒𝑟𝑎 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

For bulk density, the mean wet bulk density given by Olsen, (2015) (1,8 g/cm3) is chosen, as there was 

not enough data available to calculate the dry bulk density. This leads to a consequent use of wet 

weight throughout the calculations for foraminiferal flux. 
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3. Material and Methods 

The foraminiferal concentration within a sample is calculated by the relative amount of foraminifera 

divided by the total wet weight: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
((

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑜𝑟𝑎𝑚𝑖𝑛𝑖𝑓𝑒𝑟𝑎

𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑
∗45)∗𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑙𝑖𝑡𝑠)

𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡
  

 

 

 3.2.6 Radiocarbon dating and calibration 
During her work, Olsen (2015) radiocarbon dated the core. Three samples were collected, located at 

455-454 cm, 196-195 cm, and 98-97 cm, whereof only the two deepest samples contained enough 

material to be radiocarbon dated (Table 1).  

  3.2.6.1 Principle 

Radiocarbon dating is a method based on the decay of 14C, which is a radioactive isotope found within 

the atmosphere. By assuming that the ratio between 14C and 12C within the atmosphere has been 

constant during time, and knowing the half life time of 14C (5730 ± 30years), organisms containing 

organic material can be dated by comparing the residual 14C/12C ratio to the modern standard (Allaby, 

2013). Due to the known half-life time, this method is useful up to approximately 50 000 years, before 

all 14C within the samples have decayed.  

  3.2.6.2 Calibration and marine reservoir effects 

As a result of variations in atmospheric 14C concentration values through time, due to changes in 

production rates, 14C years do not directly transfer to calendar years. To get the age in calendar years, 

it is necessary to make a calibration (Reimer et al., 2013a).  

At the sea surface, there is a constant exchange of 14C from the atmosphere to the sea. However, this 

exchange only occurs at the sea surface, and does not occur deeper in the sea. As water masses sink 

from the sea surface, the exchange stops, and the 14C isotope will start to decay. As a result of this, the 

apparent age of the water mass increases. This effect is called the marine reservoir effect, and the 

average global marine reservoir age is ⁓400 years (Mangerud, 1972; Reimer et al., 2013b). Another 

factor to take into account is the local regional difference (ΔR). The ΔR varies over short distances, 

and is due to regional differences of the different water masses (Stuiver and Braziunas, 1993).  

To calibrate the radiocarbon ages obtained from Olsen (2015) to calendar years Before Present, the 

CALIB 7.1 software was used. This software uses the MARINE13 curve, and a global reservoir 

correction of 405 years (Reimer et al., 2013a). As this does not take the regional differences into 

account, an extra ∆R of 166 ± 54 was used (Haakansson, 1973).   
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3. Material and Methods 

Table 1: Calibrated ages 

Lab 

reference 

Sampling 

depth (cm) 

14C age BP Cal. yr. BP 

Calib 7.1 

1 σ range 

Cal. yr. BP 

Calib 7.1 

2 σ range 

Cal. yr. BP 

Calib 7.1 

Median 

Probability 

60281.1.1 195 cm 1295 ± 70 614-777 537-871 691 

60282.1.1 454 cm 7470 ± 130 7644-7911 7500-8036 7771 

 

3.2.7 Age model 
An age model was established by using linear interpolation between the calibrated ages obtained from 

radiocarbon dates from Olsen (2015), and assuming an age of 2013CE of the upper 10 cm. By 

assuming that the sediment accumulation rates within the core area had stayed constant between the 

dated intervals in the core, the age at different depths can be estimated by applying the formula for a 

linear equation:  

𝑦 = 𝑎𝑥 + 𝑏 

In this case, only two of the radiocarbon samples contained enough material to be dated. Moreover, it 

cannot be ratified that there has not been a change in the accumulation rates of sedimentation either 

between these two depths, or after. This will be discussed in Chapter 4.1.    
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4. Results 

4.1 Age model 
 
As there are only two dated levels within the core (454cm and 195cm), the age model (Figure 6) is 

established by assuming a constant sedimentation rate between these two levels. Olsen (2015) 

discovered several muddy sand layers between the two dated levels (Figure 7). These layers might be 

turbidites which can erode, and remove sediments. It is therefore difficult to claim with certainty that 

the sediments between the two dated levels have not been disturbed, and that the sedimentation rate 

has been constant. On the other hand, a linear sedimentation rate is the best option with the data 

available.  

As there was no radiocarbon dating done above 195 cm within the core, the sedimentation rate 

between 195cm-0cm is unknown. Two main theories were considered when establishing the age of the 

upper 195 cm.  

The first theory that was considered, was a linear sedimentation rate throughout the entire core, 

following the same trend as between the two dated levels. This would on the other hand, give an 

assumed age at the uppermost part, of approximately 4000 years into the future. If the sedimentation 

rate has stayed constant throughout the entire core, there must be one or several hiatuses present 

within the core. However, in her work, Olsen (2015) discovered that the uppermost 50 cm of the core 

most likely accumulated in less than 100 years, which gives a much higher sedimentation rate in the 

uppermost part than between the two dated levels, indicating a change in sedimentation rate through 

the core.   

The second theory that was considered, the one that was chosen for the age model presented in Figure 

6, was an age model with a change in sedimentation rate. The 10 cm sample is assumed to represent 

the year of retrieval (2013 CE). This assumption is made as Olsen (2015) described that the uppermost 

10 cm of the core was heavily disturbed during core retrieval. As seen from the age model, this theory 

gives an abrupt rise in sedimentation rate in the upper 195 cm. The presumption that the uppermost 50 

cm most likely accumulated during less than 100 years, could support the theory presented in the age 

model.  

The accumulation rates between the dated levels are presented in Table 2. In Appendix 1 the calibrated 

ages, both the ones used for the age model, including a change in accumulation rate, and those of the 

theory of a linear sedimentation rate throughout the entire core are visualized.  

Table 2: Accumulation rate throughout core HH13-012GC-TUNU. 

Depth (cm) Age (cal. yr. BP) Accumulation rate (cm/k yr.) 

454 – 195 7771 – 691 36 

195 – 10 691 – -63 279 
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4. Results 

 

 

Figure 6: Age-depth plot for HH13-012GC-TUNU. The black dots indicate the levels within the core that 

were radiocarbon dated, and their calibrated ages.  
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4. Results 

 

Figure 7: Lithological log of core HH13-012GC-TUNU. (Adapted from Olsen (2015)) 
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4.2 Foraminifera 
 

As seen from Table 3, a total of 24 different calcareous species of benthic foraminifera were identified 

within the core, in addition to five different agglutinated species. Overall there were no clear 

indications of dissolution of the calcareous foraminifera. Of the 29 benthic species, 10 occurred with a 

high enough relative abundance (>2%) to be taken into account when considering the results.  

The total number of benthic calcareous species, agglutinated species, and planktic species at each 

sampling depth is seen in Appendix 2, whereas the number of each identified species within each 

sample is found in Appendix 3.  

Table 3: Foraminiferal list including all benthic calcareous, and agglutinated species found within core 

HH13-012GC-TUNU. 

SPECIES LIST 

 

Benthic species 

 

Astrononion gallowayi Loeblich & Tappan, 1953 

Cassidulina laevigata Rhumbler, 1949 

Cassidulina reniforme Nørvang, 1945 

Cassidulina teretis Tappan, 1951 

Cibicides lobatulus (Walker & Jacob, 1798) 

Dentalina drammenensis (Feyling-Hanssen, 1964) 

Dentalina trondheimensis (Feyling-Hanssen, 1964) 

Elphidium excavatum f. clavata Cushman, 1930 

Elphidium hallandense Brotzen, 1943 

Fissurina laevigata Reuss, 1850 

Globobulimina sp. Cushman, 1927 

Haynesina orbiculare (Brady, 1881) 

Islandiella helenae Feyling-Hanssen & Buzas, 1976 

Islandiella norcrossi (Cushman, 1933) 

Lagena clavata (d’Orbigny, 1846) 

Lenticula linearis 

Melonis barleeanus (Williamson, 1858) 

Parafissurina lateralis (Cushman, 1913) 

Quinqueloculina stalkeri Loeblich & Tappan, 1953 

Stainforthia fusiformis (Williamson, 1848) 

Stainforthia loeblichi Feyling-Hanssen, 1954 

Silicosigmoilina groenlandica Loeblich & Tappan, 1953 

Triloculina tricarinata d’Orbigny, 1826 

Triloculina trihedra Loeblich & Tappan, 1953 

  

Agglutinated species    

 

Adercotryma glomeratum (Brady, 1878) 

Alveolophragmium crassimargo (Norman, 1892) 

Textularia earlandi Parker, 1952 

Cribrostomoides crassimargo (Norman, 1892) 

Jadammina macrescens (Brady, 1870)  
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4.2.1 Ecological preferences of dominating species 
Different foraminifera thrive within different environments, which can be of great importance for the 

interpretation of the past environment. As mentioned, 10 different species occurred with a high enough 

abundance to be taken into account while considering the results. Their ecological preferences are 

discussed in alphabetical order in the following sub-chapters.  

 

  4.2.1.1 Astrononion gallowayi 

Astrononion gallowayi is a facultative epifaunal species that seems to prefer shallow areas related to 

coarse sediments, and high current conditions (Steinsund et al., 1994; Polyak et al., 2002). According 

to Steinsund et al., (1994), the species prefers low temperatures ( < 1℃) and high salinities above at 

least 30‰, and preferably above 33‰. Wollenburg and Mackensen, (1998) claim that the species also 

can occur as an infaunal species. When A. gallowayi is found within muddy sediments, and especially 

combined with the occurrence of Cibicides lobatulus, it may be an indicator of post-mortem transport 

(Husum and Hald, 2004; Jennings et al., 2004).  

 

  4.2.1.2 Cassidulina reniforme 

This species is frequently found in glaciomarine environments, and it is one of the most commonly 

found species on the Arctic shelves (Hald and Korsun, 1997; Polyak et al., 2002).  Steinsund et al., 

(1994) claim that C. reniforme is an opportunistic species taking advantage of environments that 

generally are unfavourable. The species prefers areas with water temperatures below ca. 2℃, in 

addition to seasonal ice cover, and preferably muddy sediments. As for the salinity conditions, the 

species is seldom found in areas with a salinity below 30‰ (Steinsund et al., 1994; Polyak et al., 

2002). C. reniforme is often described as ice-proximal, as the species seems to be abundant close to 

glacier terminus (Hald and Korsun, 1997).   

 

  4.2.1.3 Cibicides lobatulus 

Cibicides lobatulus is a species that, like A. gallowayi, thrives in environments with high energy 

conditions, coarse sediments and a low sedimentation rate (Steinsund et al., 1994; Hald and Korsun, 

1997; Polyak et al., 2002). C. lobatulus is described as an epifaunal suspension feeder, which often 

clings on to coarse material in the high energy conditions (Steinsund et al., 1994; Hald and Korsun, 

1997; Polyak et al., 2002). Ivanova et al., (2008) discovered that the species can penetrate deep into 

sediments by being transported downwards by bioturbation. The species is tolerant to a wide range of 

temperatures, but is more particular about salinity, where it prefers salinities above 32‰ (Steinsund et 
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al., 1994).  

 

  4.2.1.4 Elphidium excavatum forma clavata 

Elphidium excavatum forma clavata is the most common shallow marine benthic foraminifera found 

within late Quaternary glaciomarine deposits from the Arctic shelves (Steinsund et al., 1994; Hald and 

Korsun, 1997). The species is widely distributed on Arctic shelves and shallow polar seas, and is often 

found in extreme conditions, as near-glacial environments (Hald and Korsun, 1997; Polyak et al., 

2002). Near-glacial environments are known for strongly fluctuating environmental conditions, with 

rapid changes in salinity and sediment supply, and E. excavatum f. clavata is thereby considered an 

opportunistic species (Hald and Korsun, 1997; Jennings et al., 2004). Within these areas that are 

seeming unsuitable for life, the species is capable of quickly colonizing the seafloor as a result of 

being nutritional and habitat versatile (Linke and Lutze, 1993; Steinsund et al., 1994; Polyak et al., 

2002). Steinsund et al., (1994) claim that the species thrives in areas with fluctuating temperatures, 

preferably below 1℃, and a salinity range from 30-34‰, as well as high energy conditions, high 

sedimentation rates, and the presence of sea ice.  

 

  4.2.1.5 Haynesina orbiculare 

Haynesina orbiculare is a species that can indicate shallow water depths and the species can often be 

found in areas with cold water and stable marine salinities (Hansen and Knudsen, 1995; Polyak et al., 

2002). In addition, according to Polyak et al., (2002), H. orbiculare can be a major indicator of river-

proximal environments.  

 

  4.2.1.6 Islandiella helenae 

Islandiella helenae is an Arctic species that thrives in open ocean with stable salinity (Hald and 

Korsun, 1997). As the species is an open-ocean form, according to Korsun and Hald, (1998) I. helenae 

is also an indicator of  glacier-distal environments. Steinsund et al., (1994) do on the other hand claim 

that the species populates areas that are shallow and have a less stable environment.   

 

  4.2.1.7 Islandiella norcrossi 

Korsun and Hald, (1998) claim that I. norcrossi has its main distribution in cold waters on the Arctic 

shelf, and prefers relatively high and stable bottom water salinities. This contention is supported by 

Steinsund et al., (1994) who say that the species thrives in areas with relatively low temperature, and 

relatively high salinities. The authors also claim that mixed populations between I. norcrossi and I. 

helenae are common in shallow areas with unstable environments. Others indicate that the species has 

its preferred environment at water depths from 200-400 m, preferring fine sediments, and low 
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sedimentation rates, in addition to seasonal sea ice (Steinsund et al., 1994; Polyak et al., 2002).  

 

  4.2.1.8 Quinqueloculina stalkeri 

According to Korsun and Hald, (1998) Quinqueloculina stalkeri is an Arctic species that occurs in 

shallow waters surrounding Alaska, Greenland, and Svalbard. The authors say that the species might 

be an indicator of near-glacier, shallow marine habitats, as it is very rarely, or not at all, found in the 

Late glacial deposits in areas with deeper water.   

 

  4.2.1.9 Stainforthia loeblichi 

Stainforthia loeblichi is a species that mainly occurs in cold waters (⁓0℃) and areas influenced by 

seasonal sea ice (Steinsund et al., 1994). According to Polyak et al., (2002) the Stainforthia species is 

opportunistic, and takes advantage of pulses of high seasonal productivity. S. loeblichi is an infaunal 

species according to Wollenburg and Mackensen, (1998).  

 

  4.2.1.10 Triloculina tricarinata 

Very little is known about this species. However, some research indicate that it can live in 

environments with salinities up to 38‰ (Dias et al., 2010). In addition, the species is found within fine 

sandy mud (Wang and Chappell, 2001), and in the North Atlantic it is observed at water depths below 

2400 meters (Hermelin and Scott, 1985).  

 

 

4.3 Foraminiferal assemblage zones 
 

Three assemblage zones are defined within HH13-012GC-TUNU (Figure 8 and Figure 9). Normally, 

the foraminiferal flux would be taken into as much account as the percentage abundance of 

foraminiferal species when establishing the boarders between the different zones. However, as the flux 

is related to the sedimentation rate, which in this case is not very reliable due to only two dated levels, 

the assemblage zones established in this research are mainly based on the percentage abundance of the 

species.  

The relative abundance of each species can be seen in Appendix 4, and the total benthic calcareous 

foraminiferal flux can be seen in Appendix 5.  
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4.3.1 Establishment of assemblage zones 
Three different assemblage zones have been identified and are named AZ 1, AZ 2 and AZ 3, where 

AZ 3 is located at the bottom of the core, and AZ 1 at the top. As seen from Figure 8, AZ 3 stretches 

from 454 – 360 cm, AZ 2 stretches from 360 – 180 cm, and AZ 1 stretches from 180 – 0 cm. The 

border between AZ 3 and AZ 2 is established by the decrease in percentage abundance of I. helenae 

towards the border, combined with the sudden increase of A. gallowayi when entering the deepest part 

of AZ 2. In addition, there are near the borderline in AZ 3, peak high of H. orbiculare, S. loeblichi, 

and C. lobatulus. The border between AZ 2 and AZ 1 at 180 cm, is established by the major increase 

of E. excavatum f. clavata in the lowermost part of AZ 1 as well as the decrease of A. gallowayi. By 

looking at the age model, AZ 3 covers 7771 – 5201 cal. yr. BP, AZ 2 covers 5201 – 630 cal. yr. BP, 

and AZ 1 covers 630 - -63 (2013 CE) cal. yr. BP (Figure 9).  

  

4.3.2 Assemblage zone 3 (AZ 3) 
AZ 3 is located from 454 – 360 cm when the results are plotted against depth, and 7771 – 5201 cal. yr. 

BP when plotted against age (Figure 8 and Figure 9). 

C. reniforme and I. helenae are the dominating species within this assemblage zone. The abundance of 

C. reniforme is quite stable throughout the entire zone, with a slight decrease from the bottom, towards 

the top of the zone. The maximum abundance is ⁓66%, and the minimum is ⁓37%, with an average of 

⁓55%. The frequency of I. helenae increases slightly from the bottom of the assemblage zone, until it 

reaches its maximum value of ⁓47% at 365 cm (5338 cal. yr. BP). Following this maximum, there is a 

decrease in the abundance of the species towards the border to AZ2. The species constitutes on 

average ⁓29% of the assemblage zone.   

The relative abundance of E. excavatum f. clavata is, as C. reniforme, relatively stable throughout the 

zone, reaching a maximum of ⁓21% at 435 cm (7252 cal. yr. BP). The species constitutes on average 

7,5% of the assemblage zone. The percentage of A. gallowayi stays low throughout the entire zone, 

with an average value below 0,5%, and it increases slightly towards the upper part of the assemblage 

zone. The frequency of C. lobatulus varies from 0-1% within the assemblage zone except for the 

interval around 385 cm (5885 cal. yr. BP) where it reaches a high value of 14%. The abundance of Q. 

stalkeri and T. tricarinata are both low throughout most of the assemblage zone, and do not exceed 

1%. The relative abundance of I. norcrossi and S. loeblichi show generally the same trends within AZ 

3, with relatively high values in the lower and upper part of the zone. The average percentage of I. 

norcrossi is ⁓0,5%, whereas the average of S. loeblichi is ⁓1,6%.  H. orbiculare does not occur before 

365 cm (5338 cal. yr. BP), where it reaches its maximum percentage of ⁓4,6%. H. orbiculare has an 

average abundance of ⁓0.5%.   
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The total benthic calcareous foraminiferal flux within AZ 3 is characterized by two areas with relative 

high values, at 425 - 395 cm (6978 – 6158 cal. yr. BP) and 375 – 365 cm (5612 – 5338 cal. yr. BP). It 

reaches its maximum value of ⁓4800 specimens/cm2/year at 365 cm. The average foraminiferal flux 

within the zone is 2192 specimens/cm2/year. 

 

 4.3.3 Assemblage zone 2 (AZ 2) 
AZ 2 is located from 360 – 180 cm when the results are plotted against depth, and 5201 – 630 cal. yr. 

BP when plotted against age (Figure 8 and Figure 9). C. reniforme is, as in AZ 3, the dominating 

species within the assemblage zone. It increases slightly from the bottom of the zone, until it reaches 

its maximum value of 73% at 265 cm (2605 cal. yr. BP). Following this maximum, there is a drop in 

the abundance, reaching a minimum value of ⁓34% at 215 cm (1238 cal. yr. BP). Following this 

minimum, there is a slight increase in the abundance towards the top of the zone. C. reniforme 

constitutes on average ⁓51% within AZ 2.    

The relative abundance of A. gallowayi is, opposite to in AZ 3, relatively high within AZ 2. From the 

bottom of the zone, the percentage rises up to ⁓36%, followed by a drop, and a new increase, before it 

stabilizes with values all above 15%, still including some fluctuations. Above 215 cm (1238 cal. yr. 

BP) there is a general decrease in the relative abundance towards the top of the zone. Maximum high, 

⁓43%, is found at 235 cm (1784 cal. yr. BP), and the average of the species is ⁓20%. The abundance 

of E. excavatum f. clavata fluctuates throughout the zone, starting off with a high value at 300 cm 

(3561 cal. yr. BP), exceeding 34%, followed by a period with barely no presence until 250 cm (2195 

cal. yr. BP), where four relatively high values can be observed, intervened with abrupt decrease 

between each. The maximum high of ⁓42% is found at 210 cm (1101 cal. yr. BP). Following this high 

value, the relative abundance decreases to ⁓0,1% just below the assemblage zone border. The species 

average percentage within AZ 2 is ⁓12%. 

I. helenae, which was quite abundant within AZ 3, shows a general decrease in relative abundance 

from the bottom of the zone towards the top. Its maximum value is ⁓26%, and the minimum value is 

⁓1%, making up an average percentage throughout the zone of ⁓7%. The percentage of Q. stalkeri 

fluctuates throughout the zone, with a slight increase in the middle of the zone. The maximum value is 

found at 346 cm (4819 cal. yr. BP), where it exceeds 10%. Elsewhere in the zone the relative 

abundance varies from 0% - ⁓9%. The species average abundance is ⁓2,9%. T. tricarinata, and I. 

norcrossi follow approximately the same trend with fluctuations including several peaks throughout 

the zone. T. tricarinata is reaching a maximum at 335 cm (4518 cal. yr. BP), with a relative abundance 

of ⁓9%, whereas I. norcrossi reaches a maximum at 185 cm, where the relative abundance exceeds 

2%. The average percentage of the two species are respectively ⁓2% and ⁓0,5%. The relative 

abundance of S. loeblichi is generally low through AZ 2, with relative high values in the intervals 265 

- 255 cm (2605 – 2331 cal. yr. BP), and 210 cm (1101 cal. yr. BP) where it exceeds 1,5 %. Other than 
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these areas, the relative abundance is <1%, which gives an average percentage of ⁓1,2%. The 

percentage of H. orbiculare is also low through the zone. It reaches its maximum value at 210 cm 

(1101 cal. yr. BP), where the relative abundance is 1,7%, otherwise it is <0,9%, making up an average 

abundance of ⁓0,8% within AZ 2. C. lobatulus is only observed at two different depths, at 285 cm 

(3151 cal. yr. BP) and 240 cm (1921 cal. yr. BP), with values of respectively 0,4% and 0,3%.  

The total benthic calcareous foraminiferal flux within AZ 2 is low throughout the entire zone, with an 

increase in the values at the uppermost part. On average the foraminiferal flux is 585 

specimens/cm2/year. 

 

 4.3.4 Assemblage zone 1 (AZ 1) 
Assemblage zone 1 is located from 180 cm – 0 cm when plotted against depth, and from 630 – -63 cal. 

yr. BP (2013CE) when plotted against age (Figure 8 and Figure 9). C. reniforme and E. excavatum f. 

clavata are the most common species within this assemblage zone. C. reniforme appears to fluctuate 

cyclically with several high values exceeding 57 %, intervened by low values down to 25%. The 

maximum abundance is located at 40 cm (59 cal. yr. BP), where it exceeds 64%, and the minimum is 

located at 165 cm (569 cal. yr. BP), where it is 25%. The average percentage of C. reniforme, within 

the zone is ⁓49%. The percentage of E. excavatum f. clavata increases from barely being present at the 

borderline between AZ 2 and AZ 1, up to above 40% at 165 cm (569 cal. yr. BP). Through the zone, 

the species, as C. reniforme, fluctuates with high values and intervening low values. It exceeds 45% at 

both 125cm (406 cal. yr. BP), and 70 cm (182 cal. yr. BP). The maximum abundance, ⁓48%, is found 

at 125 cm (406 cal. yr. BP), and the minimum is ⁓15% at 15 cm (-43 cal. yr. BP / 1993CE). The 

average of the species is ⁓31%. It is worth noticing that several of the high values of E. excavatum f. 

clavata coincide with lower values of C. reniforme, and vice versa.  

Compared to the results in AZ 2, A. gallowayi has a lower relative abundance within AZ 1, decreasing 

from the bottom of the zone, towards the top. The maximum value is located at 165 cm (569 cal. yr. 

BP), where it makes up ⁓27% of the total fauna. The average percentage of A. gallowayi within the 

zone is ⁓10%. Q. stalkeri shows a general increase in the relative abundance from 0% at the 

assemblage zone border, up to approximately 11% at 25 cm (-2 cal. yr. BP / 1952CE), before it 

decreases slightly at the top of the zone. The average of the species is ⁓5%. I. helenae continues the 

low values found within AZ 2, and makes up an average of ⁓1,2%. Both I. norcrossi, and S. loeblichi 

fluctuate heavily through AZ 1. I. norcrossi shows a trend of increased values in the middle of the 

zone, with low values at both the bottom and top. The average abundance of the two species are 

⁓0,75% for both. T. tricarinata shows rather a quite stable trend throughout the assemblage zone, with 

a slight decrease from the bottom towards the top. Some minor relatively high values can be observed, 

and the maximum abundance is ⁓3,9%, located at 155 cm (529 cal. yr. BP). The species’ average 
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abundance is ⁓1,4%. H. orbiculare does only occur at one level within AZ 1. At 165 cm (569 cal. yr. 

BP), it makes up ⁓0,3 % of the total foraminiferal fauna.  

The total benthic calcareous foraminiferal flux within AZ 3 is fluctuating throughout the entire zone, 

with several high values intervened by following low values. The maximum value of ⁓4800 

specimens/cm2/year is found at 155 cm (528 cal. yr. BP). On average the foraminiferal flux within the 

zone is 2010 specimens/cm2/year.  
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Figure 8: Percentage 

abundance of the most 

common species found 

within HH13-012GC-

TUNU, in addition to the 

total benthic calcareous 

foraminiferal flux, plotted 

against depth, and the 

established foraminiferal 

assemblage zones AZ 1-AZ 

3. 
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Figure 9: Percentage 

abundance of the most 

common species found 

within HH13-012GC-

TUNU, in addition to 

total benthic calcareous 

flux, plotted against 

age, and the established 

foraminiferal 

assemblage zones AZ 1-

AZ 3. 
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5. Discussion 

5.1 Interpretation of assemblage zones 
 
In the following sub-chapters, the paleoenvironment within each of the three assemblage zones will be 

interpreted based on the environmental preferences of the most abundant species. 

 

5.1.1 Dissolution of calcareous foraminifera 
Due to an increased solubility of CO2 within colder water, dissolution of calcareous foraminifera is 

often observed within the cold and low-saline Arctic waters (Hald and Steinsund, 1992; Jennings and 

Helgadottir, 1994). Findings from the East Greenland shelf and in fjords located south of the study 

area in this study, suggest that the abundance of calcareous species is connected to water mass 

changes, including productivity, sea-ice cover and dissolution of CaCO3 (Jennings and Helgadottir, 

1994; Jennings and Weiner, 1996). Jennings and Weiner (1996) suggested a dissolution gradient with 

two end-members, where areas that were influenced by Polar Waters showed 100% calcareous 

dissolution, and areas influenced by Atlantic Intermediate Water showed 90 % preservation of calcium 

carbonate as the two end-members.  

Findings from Disko Bugt, in West-Greenland, suggest a connection between dissolution of calcareous 

foraminifera and the sedimentation rate in areas in close proximity to a glacier. Periods with high 

sedimentation rates and cold water conditions favour preservation of calcareous foraminifera, and 

periods with low sedimentation rates and relative warm water conditions increase the dissolution of 

calcareous foraminifera (Lloyd et al., 2005; Lloyd, 2006).  

Although there are several levels within core HH13-012GC-TUNU with low abundance of calcareous 

foraminifera, the samples showed little or no visual signs of dissolution. However, one cannot 

disembark the possibility of dissolution being a contributing factor.  

 

 5.1.2 Assemblage zone 3 
The assemblage zone is dominated by C. reniforme and I. helenae. C. reniforme is a species thriving 

in cold bottom waters (<2℃), with salinities above 30‰, in addition to seasonal ice cover. The species 

can be an indicator of both glacier-proximal, and distal glaciomarine environments (Steinsund et al., 

1994; Hald and Korsun, 1997; Korsun and Hald, 1998; Polyak et al., 2002). I. helenae is associated 

with seasonal ice cover (Steinsund et al., 1994), and thrives in areas with high and stable 

salinity(Korsun and Hald, 1998). The species is also known to be an indicator of glacier-distal 

environments (Korsun and Hald, 1998), and as the levels with the highest relative abundance of the 

species coincide with minor drops in relative abundance of both C. reniforme and E. excavatum f. 
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clavata it can be assumed that the environment is glacier-distal and influenced by Atlantic Water at 

these levels. 

At 385 cm (5885 cal. yr. BP) C. lobatulus reaches its maximum value of 14%. This relative high value 

may indicate a period with a salinity above 32‰, combined with high energy conditions (Steinsund et 

al., 1994; Hald and Korsun, 1997; Polyak et al., 2002).   

The maximum abundance of both I. norcrossi and S. loeblichi is below 5%. Due to the low relative 

abundance, the presence of these species in the lower and upper part of the zone cannot indicate any 

major environmental changes on their own. However, S. loeblichi can be an indicator of high seasonal 

productivity, and sometimes occurs in oxygen depleted environments. Moreover, high relative values 

of H. orbiculare can be indicative of stable marine salinities and cold water. In addition, the species 

may indicate shallow water depths (Hansen and Knudsen, 1995; Polyak et al., 2002).  

The total foraminiferal flux is characterized by two areas with relative high values, at 425 - 395 cm 

(6978 – 6158 cal. yr. BP) and 375 – 365 cm (5612 – 5338 cal. yr. BP), indicating a favourable 

environment. Both levels coincide with relative high abundance of I. helenae, which aforementioned 

indicates a glacier-distal environment, and seasonal sea-ice cover. Seasonal sea-ice can enhance 

primary productivity at the sea-ice margin, and thereby an increased food supply for the foraminifera 

(Seidenkrantz, 2013; Ribeiro et al., 2017).   

Generally the area within AZ 3 has been influenced by inflow of recirculated Atlantic Water up until 

⁓390 cm (6022 cal. yr. BP), with seasonal sea ice affecting the area. During this period there is also an 

increase in the total foraminiferal flux, and there does not seem to be any major changes in energy 

conditions. Following this level, the introduction of C. lobatulus indicates a period (390 – 370 cm, 

6022 – 5475 cal. yr. BP) of higher energy conditions. The general decrease in abundance of I. helenae 

from 365 cm (5338 cal. yr. BP) towards the top of the zone, may indicate that colder and less saline 

water masses are entering the fjord. Occurrence of the cold water species E. excavatum f. clavata 

towards the top of the zone can support this theory.  

 
5.1.3 Assemblage zone 2 

The relative abundance of C. reniforme is as high in AZ 2 as in AZ 3, meaning that the conditions still 

are those of a glaciomarine setting. The most noticeable change is the introduction of A. gallowayi, 

which is an indicator of high bottom current conditions, as well as cold water conditions (<1℃) 

(Steinsund et al., 1994; Polyak et al., 2002). The species introduction might be an indicator of either 

strong bottom currents occurring in front of the glacier terminus, or high influx of Arctic Water. The 

several high relative values of E. excavatum f. clavata may represent periods with lowering of the 

salinity, which can be an indicator of influx of Arctic water to the area, or runoff from the 

Waltershausen Gletscher.   
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As the high relative abundance of S. loeblichi found at 355 cm (5065 cal. yr. BP) coincides with a drop 

in the total foraminiferal flux, it is a possibility that due to high productivity over a period of time, the 

water mass has been depleted in oxygen, and the opportunistic species has moved into the area.  

The total foraminiferal flux shows low values from the bottom of the zone up until the assemblage 

zone border at 185 cm (650 cal. yr. BP), where there is a sudden increase. The low values throughout 

the zone indicate unfavourable conditions, and limited food supply. If taking into account that 

dissolution of calcareous foraminifera happens at a much higher rate within water masses influenced 

by Polar water than Atlantic water (see Chapter 5.1.1), this could be an explanation for the low 

foraminiferal flux throughout the zone. However, as there were no clear signs of dissolution of the 

calcareous foraminifera, and the calculations of the foraminiferal flux are not reliable, this assumption 

is not so credible without any more evidence.  

 
 5.1.4 Assemblage zone 1 
The fluctuating relative abundance of C. reniforme, and E. excavatum f. clavata could indicate an 

environment influenced with variations in inflow of Arctic water to the area, or a glacier-proximal 

environment. Both species may indicate a glacier-proximal environment, with the relative abundance 

of E. excavatum f. clavata often being higher closer to the glacier terminus (Korsun and Hald, 1998). 

High relative abundance of E. excavatum f. clavata indicates an environment with cold (<1℃) and 

low saline (30 – 34 ‰) bottom water. The high relative abundance of the opportunistic species is also 

related to increased glacial activity, high sedimentation rates and the presence of sea ice (Steinsund et 

al., 1994; Hald and Korsun, 1997; Jennings et al., 2004). According to Korsun and Hald, (1998), a 

foraminiferal assemblage dominated only by these two species alone, is not enough to determine a 

glacier-proximal environment. The relative abundance of Q. stalkeri increases from the lowest part of 

the zone towards the top. As this species is considered to possibly be an indicator of near-glacial, 

shallow marine habitats (Korsun and Hald, 1998), it is likely to believe that when relative high values 

of this species coincide with relative high values of C. reniforme and E. excavatum f. clavata, as it 

does at certain depths within AZ1, the environment is glacier-proximal. However, as the research on 

Q. stalkeri is limited, one cannot solely rely on the theory that the environment is glacier-proximal 

when high values of these three species coincide. Both C. reniforme and E. excavatum f. clavata are 

however found in more glacier-distal environments as well, and as the location of the core is situated 

approximately 11 km from the present glacier terminus, the fluctuations in the abundance are more 

likely to be caused by the presence of cold water masses. An explanation for the high abundance of E. 

excavatum f. clavata is lowering of the salinity within the area. This lowering could be caused by 

influx of low-saline Arctic Water, or terrestrial runoff.   
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The fact that both A. gallowayi and C. lobatulus, which are species thriving in high energy 

environments, have a low relative abundance might indicate that the energy conditions are lower 

within AZ 1, than AZ 2.  

Three relative high values in the total foraminiferal flux are observed at 85 cm (243 cal. yr. BP), 65 cm 

(161 cal. yr. BP), and 35 cm (39 cal. yr. BP).  It is also worth mentioning that the highest total 

foraminiferal flux values coincide with relatively low values of E. excavatum f. clavata, indicating that 

the environment has been more favourable for other species at these levels. More favourable 

conditions could be caused by influx of more saline water masses. 

 

5.2 Paleoceanographic and paleoclimatic development during Holocene 
 
In the following subchapters the results discussed above will be presented and tried to explain in 

context with the main time periods during the mid-late Holocene, comprising the Holocene Climate 

Optimum, the Neoglaciation, and the last 2000 cal. yr. BP. Reconstruction of the paleoceanography 

and paleoclimate is based on the results from the foraminiferal analysis, combined with results found 

from Olsen (2015), concerning the sedimentary paleoenvironment.  

As the dating from the lowermost level of core HH13-012GC-TUNU has an age of 7771 cal. yr. BP, 

the core covers the Holocene Climate Optimum (>8000 – 4500 cal. yr. BP), the Neoglaciation and 

Medieval Warm Period (⁓4500 – 800 cal. yr. BP), the Little Ice Age (⁓800 – 100 cal. yr. BP), and the 

Modern Maximum (⁓100 cal. yr. BP - present) (Figure 10 and Figure 11). The onset of the main time 

periods are established based on previous studies of the paleoclimate of the area (see Chapter 1.3.2 

Holocene paleoclimate development)  

As seen from Figure 10 and Figure 11, there is a slight offset between the borders in the established 

assemblage zones, and the onset of the Neoglaciation and the Little Ice Age. One reason for this might 

be that the age model (Figure 6) used for the boundaries assumes a constant sedimentation rate 

between the two dated levels, and does not take the assumed turbidites into account, which might 

indicate hiatus. Both the estimated onset of the Neoglaciation and the Little Ice Age lie within this 

area, and therefore one cannot rely solely on the estimated depths of the dates. Another possible 

explanation for the offset between the assemblage zone borders, and the time period divisions is that 

the onset of the different climatic periods varies regionally. This will be discussed further in the 

following subchapters. 

 
5.2.1 Onset of climatic periods during the late Holocene in Nordfjord 

As mentioned above, the dating of the different time periods in Figure 10 and Figure 11 are based on 

previous climatic research from the area. By comparing the results found in this study to other 
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research, and assuming the age model is reliable, some of the borders can be readjusted (Figure 12). 

The suggested onset of the Neoglaciation is adjusted from 4500 cal. yr. BP to 5200 cal. yr. BP, and the 

onset of the Little Ice Age is adjusted from 800 cal. yr. BP to 600 cal. yr. BP. The age and depth of the 

different periods can be seen from Table 4. 

 

 

Table 4: Age and depth of the different climatic periods within the Late Holocene, found from core HH13-

012GC-TUNU. 

Climatic Period Depth (cm) Age (cal. yr. BP) 

Holocene Climate Optimum 454 – 360  >7771 – 5200 

Neoglaciation 360 – 180  ⁓ 5200 – 600 

The Little Ice Age 180 – 35  ⁓ 600 – 50 

Modern Maximum 35 – 0 ⁓ 50 – present 
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Figure 10: Core HH13-012GC-

TUNU divided into time 

periods through the Holocene, 

established by previous studies 

of the paleoclimate of the area 

(HCO – Holocene Climate 

Optimum, Neoglaciation, and 

LIA – the Little Ice Age). 

Percentage abundance of the 

most common species found 

within the core is plotted 

against age. The established 

foraminiferal assemblage zones 

AZ 1-AZ 3 are indicated by the 

shaded grey areas. 
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Figure 11: Core HH13-012GC-

TUNU divided into time periods 

through the last 2000 cal. yr. BP, 

established by previous studies of 

the paleoclimate of the area 

(Neoglaciation, and LIA – the 

Little Ice Age). Percentage 

abundance of the most common 

species found within the core is 

plotted against age. The 

established foraminiferal 

assemblage zone AZ 1 is indicated 

by shaded grey area. 
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 5.2.2 Holocene Climate Optimum (>7771 – 5200 cal. yr. BP) 
The Holocene Climate Optimum covers the depth from ⁓454 – 335 cm within the core. As seen from 

Figure 10, the section between these two levels is located within AZ3, and the lowermost part of AZ2. 

However, the established termination of the Holocene Climate Optimum, and onset of the 

Neoglaciation, are positioned 25 cm from the border to AZ2, which from the age model constitutes 

⁓700 years. 

As mentioned in chapter 1.3.2, the Holocene Climate Optimum was a period with warm and dry 

summers, combined with high summer insolation. The date of termination for this period is however, 

varying regionally. Simpson et al., (2009) found in their study, reconstructing the extent of the 

Greenland Ice Sheet (GIS) from the Last Glacial Maximum to present-day, that between 5 – 4 ka BP 

the ice margin retreated approximately 80 km behind its present day position in the northeast of 

Greenland. On the other hand, records from lake sediments, retrieved from Geographical Society Ø 

near Kaiser Franz Josephs Fjord, indicate that a period with high precipitation rates and increase in 

snow accumulation commenced at ⁓6500 cal. yr. BP, followed by a decrease in the temperature 

around 5000 cal. yr. BP (Wagner et al., 2000). Olsen, (2015) found from her research that this cooling 

could have caused the Waltershausen Gletscher to advance into tidewater.  

From the benthic calcareous foraminifera found within this timespan, the strong presence of C. 

reniforme combined with the high relative abundance of I. helenae indicate the environment is glacier-

distal from the bottom of the core up until ⁓ 6000 cal. yr. BP. The two species combined with the high 

foraminiferal flux, give an indication of that seasonal sea-ice influenced the area, as seasonal sea ice 

enhances primary production (Ribeiro et al., 2017). Due to the high foraminiferal flux and the species 

found within this time span, it can be assumed that the influence of Polar water to the area has been 

low, and warmer Atlantic water has occupied the sea floor.  

The high relative abundance of C. lobatulus from ⁓ 6000 – 5475 cal. yr. BP indicates a period of high 

energy. This could be a result of the increased precipitation rate in the area during this period, leading 

to terrestrial runoff causing turbulence. However, as C. lobatulus is found within water masses with 

relatively high salinity, the reason might instead be a strong inflow of recirculated Atlantic Water from 

the EGC, or a combination of both.  

Perner et al., (2015) found from their paleoceanographic research based on planktic and benthic 

foraminifera assemblage data, on the shelf east of Kaiser Franz Josef Fjord, that relatively warm 

subsurface water influenced the Eastern Greenland shelf until ⁓ 4.5 ka BP. Their results coincide with 

the results found from the Greenland Sea, where Telesiński et al., (2014a) also claim that the influence 

of warm subsurface waters was amplified during this time span.  

From 5338 cal. yr. BP (365 cm) the general decrease of both I. helenae and the total foraminiferal 

flux, combined with the occurrence of species as E. excavatum f. clavata and Q. stalkeri, indicate that 
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the environment changed, with influence of more Arctic water. This faunal change corresponds well 

with the alleged decrease in temperature ⁓5000 cal. yr. BP found from the Geographical Society Ø, 

and the theory that the cooling climate led to Waltershausen Gletscher turning into tidewater presented 

by Olsen (2015).  

These findings imply that the termination of the Holocene Climate Optimum is found at 360 cm, and 

not 335 cm which was established by dates from previous research from the area. This discrepancy 

constitutes ⁓700 years, and would, assuming the age model is correct, shift the date of termination of 

Holocene Climate Optimum to ⁓5200 cal. yr. BP. By shifting the date of termination, the border 

between the Holocene Climate Optimum and the Neoglaciation coincides with the border between 

AZ3 and AZ2 (Figure 12). 

 

 5.2.3 Neoglaciation (⁓ 5200 – 2000 cal. yr. BP)  
In Figure 10 the Neoglaciation and Medieval Warm period cover the depth from 335 – 200 cm. 

However, as the termination of the Holocene Climate Optimum should coincide with the onset of the 

Neoglaciation, the lower limit should be at 5200 cal. yr. BP.  

The high precipitation rates continued until ⁓3000 cal. yr. BP, whereas the climatic cooling lasted until 

⁓1000 cal. yr. BP, which culminated in the last 2000 years of the period consisting of a cold and dry 

climate (Wagner et al., 2000).  The onset of the Neoglacial cooling came as a result of a decrease in 

insolation, commencing at 7 ka. BP, which was enhanced by inflow of cold Polar Water in the Nordic 

Seas (Telesiński et al., 2014a). Due to the Neoglaciation, glaciers expanded all over 

Greenland(Bennike and Weidick, 2001). The initiation time of the glacier expansion did, on the other 

hand, vary largely. Expansion started in northeast Greenland at ⁓5000 year BP (Hjort, 1997), whereas 

studies from Scoresby Sund, south of Kaiser Franz Josephs Fjord, indicate that the expansion started 

approximately 2000 years later than in the northeast (Funder et al., 1989).  

The general decrease in I. helenae, combined with the occurrence of cold water species as E. 

excavatum f. clavata and A. gallowayi, are clear indicators of that the area is more influenced by arctic 

water from ⁓ 5200 cal. yr. BP. This theory coincides well with findings from the North Iceland shelf 

based on drift ice, and sea surface temperatures, which indicate an increase in Artic water influence 

after ⁓5.5 ka BP (Moros et al., 2006).  

In the beginning of the Neoglaciation A. gallowayi is introduced. The species thrives in cold waters 

with high energy conditions, and as there is a change in the environment from the Holocene Climate 

Optimum to the Neoglaciation, it is reasonable to assume that higher energy conditions occurred in the 

area. Several levels with high relative abundance of E. excavatum f. clavata in the uppermost part of 

the core covering the Neoglaciation indicate periods with higher inflow of low saline polar water. 
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Findings from the eastern Greenland shelf indicate a southwards movement of the polar front and 

perennial sea ice (Perner et al., 2015). This would likely have made Nordfjord ice covered year round. 

A constant sea ice cover, combined with the cold water masses occupying the fjord, could be an 

explanation for the low total foraminiferal flux throughout the entire Neoglaciation.  

 

 5.2.4 Last 2000 cal. yr. BP 
As seen from Figure 11, the last 2000 cal. yr. BP cover the youngest period of Neoglaciation, which 

includes the Medieval Warm Period, the Little Ice Age, and the Modern Maximum, which is the 

present climate warming.  

 

  5.2.4.1 Medieval Warm Period 

During the end of the Neoglaciation, the Medieval Warm Period (MWP), which is suggested to have 

commenced at ⁓1000 cal. yr. BP, and lasted for approximately 200 years, occurred (Wagner et al., 

2000). From Nansen Fjord in south-eastern Greenland, Jennings and Weiner, (1996) identified the 

MWP as a period with relatively warm and stable climate lasting from 730 – 1110 cal. AD, where 

Atlantic Intermediate Water dominated the seabed within the fjord. This is suggested to be a result of 

relatively low influx of Polar Water, or strong influx of Atlantic Water. Miettinen et al., (2015) found 

from a diatom analysis from a core recovered from Kangerlussuaq Trough on the SE Greenland shelf, 

that from ⁓1000 C.E, an abrupt warming occurred, increasing the sea surface temperature with ⁓2.4℃ 

in only ⁓55 years. The warm period lasted until ⁓1200 C.E, and is seen as the local signal of the 

MWP. From their study on the Eastern Greenland shelf, Perner et al., (2015), observed a minor 

increase in agglutinated species thriving in Atlantic Intermediate Water at ⁓1.0 ka BP, indicating an 

increase in chilled Atlantic Water influencing the area.   

In this study there is no clear evidence of the climatic event affecting the area. However, as there are 

only two samples from within the time span covering MWP, one cannot determine this statement with 

certainty from the results provided from the analysis of the calcareous benthic foraminifera found 

within HH13-012GC-TUNU alone. Wagner et al., (2000) did during their research on pollen within 

Keiser Franz Josephs Fjord, identify a period of warming lasting from ⁓900 – 500 cal. yr. BP.  

 

5.2.4.2 The Little Ice Age (⁓ 600 – 50 cal. yr. BP) 

By the previous climatic research in the area, The Little Ice Age commences ⁓800 cal. yr. BP (200 

cm), and as seen from Figure 10 and Figure 11 there is an offset between the onset of The Little Ice 

Age and the start of AZ 1 of 20 cm. As the dominance of E. excavatum f. clavata does not start until 

630 cal. yr. BP, combined with the end of the warm period identified by Wagner et al., (2000), it is not 
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unlikely that this marks the onset of the Little Ice Age within the area. The onset of the period thereby 

coincides with the onset of AZ 1.   

The Little Ice Age was the coldest period within the Holocene, and precipitation rates increased 

slightly from the Medieval Warm period (Wagner et al., 2000). The conditions would suggest glacier 

expansion, and glaciers in Norway and Svalbard did advance during the Little Ice Age. However, 

during her research, Olsen (2015), did not find any clear evidence that the core location had been 

overridden by the glacier, indicating that a potential glacier advance must have been less than 10 km 

from the present day glacier terminus.  

The dominance of the cold water species E. excavatum f. clavata occurs at ⁓630 cal. yr. BP, which 

coincides roughly with the end of the warmer period identified by Wagner et at., (2000). Following 

this level, the dominance of E. excavatum f. clavata and C. reniforme indicate an environment 

influenced by Arctic water.  

In addition, the total foraminiferal flux also fluctuates through the period. Olsen (2015) discovered that 

a change in turbidites found within the core towards the end of Little Ice Age, could be indicative of 

warm intervals intervening the otherwise cold and harsh time period. As there are found several 

intervals of decreased values in the relative abundance of E. excavatum f. clavata that coincide with 

high relative values in the total foraminiferal flux, these fluctuations in the climate are not 

inconceivable. In addition, Perner et al., (2015) suggest that from ⁓1.4 ka BP, sea ice conditions in 

Fosters Bugt, at the mouth of Kaiser Franz Josephs Fjord, went back to seasonal cover, which would 

enhance primary production, and thereby more favourable conditions.  

 

  5.2.4.3 Modern Maximum (50 cal. yr. BP – present) 

The Modern Maximum is the present warming period, and commenced at the termination of the Little 

Ice Age. The temperatures started increasing, before a cold period from the 1970s to early 1990s AD, 

followed by a new warming reaching the present day temperature (Kobashi et al., 2015).  

From the sedimentological study by Olsen (2015), an increased amount of sand found within the top 

of the core, could imply an increased meltwater discharge from the Waltershausen Gletscher following 

the termination of the Little Ice Age. The author is however, uncertain whether the glacier has 

retreated or not. 

The foraminiferal fauna shows little variation from the Little Ice Age and into the Modern Maximum, 

and the depth of where the Little Ice Age terminates and the Modern Maximum commence is therefore 

hard to determine. There is no clear evidence of warming of the water masses, which would suggest 

that Arctic Water still has a strong influence in the area. A study from the North Icelandic shelf, based 

on benthic and planktonic foraminiferal assemblages, stable isotope values, and ice rafted debris 
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concentrations, shows the same results, with no signs of water masses warming during the last decades 

(Knudsen et al., 2004)  

However, in this study there are only five foraminiferal samples from the last decade, and only three 

samples from after the warming in the 1990s, and one can therefore not conclude that the present 

climatic warming does not affect the area.   
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Figure 12: Percentage 

abundance of the calcareous 

benthic foraminifera found 

within Core HH13-012GC-

TUNU, seen with regards to the 

different climatic periods within 

the late Holocene. (HCO - 

Holocene Climate Optimum, 

the Neoglaciation, and LIA – 

the Little Ice Age) 
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6. Conclusions 
 

The study of benthic foraminifera from core HH13-012GC-TUNU shows the paleoceanographic 

development within Nordfjord, North-East Greenland, during the mid- and late Holocene. The main 

outcomes from this study are as follows:  

   

 The strong presence of C. reniforme throughout the entire core is an indicator of that the 

conditions within Nordfjord have been that of a glaciomarine environment during the last 

⁓7800 cal. yr. BP. 

 Based on the benthic calcareous foraminiferal fauna, the core was divided into three 

assemblage zones. Each of the assemblage zones coincides with the main climatic periods in 

the mid- to late Holocene, which are the Holocene Climate Optimum, the Neoglaciation, and 

the Little Ice Age. 

 The Holocene Climate Optimum lasted from >7770 – 5200 cal. yr. BP. The foraminiferal 

fauna within the period is dominated by Cassidulina reniforme and Islandiella Helenae, 

indicating inflow of recirculated Atlantic Water from the Eastern Greenland Current, and 

seasonal sea ice conditions. 

 During the Neoglaciation, the area was within the Polar Front, and the perennial sea ice 

covered the area. The introduction of the cold water species Astrononion Gallowayi and 

Elphidium Excavatum f. clavata indicates a transition from inflow of Atlantic Water to inflow 

of Arctic Water to the fjord from ⁓5200 cal. yr. BP in addition to an increase in the energy at 

the sea floor. 

 The onset of the Little Ice Age is defined by an abrupt increase in relative abundance of 

Elphidium Excavatum f. clavata, at ⁓630 cal. yr. BP. The composition of the foraminiferal 

fauna within the period indicates continued inflow of Arctic Water. In addition, a northwards 

movement of the Polar Front gives seasonal sea ice conditions, and enhanced primary 

production.  

 The onset of the Modern Maximum is hard to determine from the results, as there is no clear 

boundary to the termination of The Little Ice Age. This indicates that the water masses 

influencing the fjord, have not changed remarkably the last 100 years, and that Arctic Water is 

still occupying seafloor.  
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Appendix   

Appendix 1 – Depth-Age estimations 
This appendix contains the assumed ages of each sample within core HH13-012GC-TUNU. The 

middle column represents the ages used in this study, and the right column represents the ages of an 

assumed linear sedimentation rate.   

Depth (cm) Age (Cal yr. BP) – change in 
sedimentation rate 

Age (Cal yr. BP) - assumed linear 
sedimentation rate 

454 7771 7771 

450 7662 7662 

444 7498 7498 

440 7388 7388 

435 7252 7252 

430 7115 7115 

425 6978 6978 

420 6842 6842 

415 6705 6705 

410 6568 6568 

405 6432 6432 

400 6295 6295 

395 6158 6158 

390 6022 6022 

385 5885 5885 

380 5748 5748 

375 5612 5612 

370 5475 5475 

365 5338 5338 

361 5229 5229 

355 5065 5065 

350 4928 4928 

346 4819 4819 

340 4655 4655 

335 4518 4518 

330 4381 4381 

325 4245 4245 

320 4108 4108 

315 3971 3971 

310 3835 3835 

305 3698 3698 

300 3561 3561 

296 3452 3452 

290 3288 3288 

285 3151 3151 
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280 3015 3015 

275 2878 2878 

270 2741 2741 

265 2605 2605 

260 2468 2468 

255 2331 2331 

250 2195 2195 

245 2058 2058 

240 1921 1921 

235 1784 1784 

230 1648 1648 

225 1511 1511 

220 1374 1374 

215 1238 1238 

210 1101 1101 

205 964 964 

200 828 828 

195 691 691 

185 650 418 

180 630 281 

175 609 144 

170 589 8 

165 569 -129 

160 548 -266 

155 528 -402 

150 508 -539 

145 487 -676 

140 467 -812 

135 446 -949 

130 426 -1086 

125 406 -1223 

120 385 -1359 

115 365 -1496 

110 345 -1633 

106 328 -1742 

100 304 -1906 

94 279 -2070 

90 263 -2179 

85 243 -2316 

80 222 -2453 

75 202 -2589 

70 182 -2726 

65 161 -2863 

60 141 -2999 
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55 120 -3136 

50 100 -3273 

45 80 -3409 

40 59 -3546 

35 39 -3683 

30 18 -3819 

25 -2 -3956 

20 -22 -4093 

15 -43 -4229 

10 -63 -4366 

5 -63 -4503 

0 -63 -4640 
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Appendix 2 – Number of calcareous, agglutinated and planktic species 
 

In this appendix, the total number of calcareous, agglutinated, and planktic species found at the 

sampled depths are shown. 

Depth 
(cm) Age (cal. yr. BP) Calcareous species Agglutinated species Planktic species 

454 7771 308 0 19 

444 7498 132 4 12 

435 7252 296 0 14 

425 6978 307 2 17 

415 6705 305 0 18 

405 6432 312 2 13 

395 6158 309 1 15 

385 5885 307 1 21 

375 5612 307 0 28 

365 5338 306 9 21 

355 5065 304 17 34 

346 4819 268 17 36 

335 4518 245 30 0 

330 4381 208 - - 

325 4245 192 8 0 

320 4108 301 4 9 

315 3971 301 13 22 

310 3835 333 14 15 

300 3561 311 17 13 

296 3452 302 1 34 

285 3151 235 4 17 

275 2878 220 8 14 

265 2605 304 7 17 

255 2331 307 0 9 

250 2195 260 0 9 

245 2058 177 8 6 

240 1921 338 5 8 

235 1784 199 7 4 

230 1648 351 21 3 

225 1511 229 - - 

215 1238 303 0 10 

210 1101 176 9 12 

205 964 47 9 3 

200 828 248 7 3 

195 691 304 9 3 

185 650 146 12 10 

175 609 304 - - 
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Depth 
(cm) Age (cal. yr. BP) Calcareous species Agglutinated species Planktic species 

165 569 313 0 0 

155 528 309 18 11 

145 487 216 19 8 

140 467 246 24 6 

135 446 72 3 3 

130 426 85 2 2 

125 406 105 0 0 

120 385 137 4 3 

115 365 51 7 8 

100 304 50 3 2 

94 279 134 14 12 

90 263 168 18 5 

85 243 276 25 12 

75 202 82 4 3 

70 182 140 6 7 

65 161 221 7 6 

55 120 87 8 7 

50 100 127 4 8 

45 80 85 6 4 

40 59 133 3 8 

35 39 314 18 23 

25 -2 197 12 6 

20 -22 149 0 0 

15 -43 120 11 4 

10 -63 153 5 13 

5 -63 70 7 3 

0 -63 98 9 7 
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Appendix 3 – Number of foraminiferal specimens 
 

 

This appendix contains two tables showing the counted number of each benthic calcareous foraminiferal species at every sampling depth within core HH13-

012GC-TUNU.  

Depth 
(cm) 

Age 
(Cal 
yr. 
BP) 

C. 
reniforme 

E. 
excavatum 
f. clavata 

I. 
helenae 

I. 
norcrossi 

S. 
loeblichi 

Q. 
stalkeri 

A. 
gallowayi 

C. 
lobatulus 

T. 
tricarinata 

H. 
orbiculare 

M. 
barleeanus 

P. 
lateralis 

454 7771 185 17 89 7 5 1 0 4 0 0 0 0 

444 7498 87 4 27 0 2 2 0 0 0 0 1 4 

435 7252 155 64 69 3 5 0 0 0 0 0 0 0 

425 6978 191 25 71 1 8 2 0 0 1 0 5 0 

415 6705 162 21 105 0 7 0 0 0 0 0 1 0 

405 6432 166 26 104 0 4 0 0 2 3 0 5 0 

395 6158 145 8 146 0 2 1 0 2 1 0 2 1 

385 5885 188 24 38 0 3 0 4 44 0 0 2 2 

375 5612 166 22 64 0 6 0 2 38 0 0 5 1 

365 5338 114 12 131 4 3 0 5 13 1 14 6 1 

355 5065 152 57 17 0 15 13 8 0 1 9 5 2 

346 4819 149 16 40 0 2 29 6 0 0 4 2 0 

340 4655 124 25 26 0 2 14 27 0 0 7 0 0 

335 4518 119 28 18 0 1 6 29 0 22 11 2 2 

330 4381 109 5 54 3 10 4 7 0 11 0 0 0 

325 4245 100 12 33 0 3 1 36 0 1 5 0 0 

320 4108 165 52 47 1 2 2 24 0 6 0 0 0 
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Depth 
(cm) 

Age 
(Cal 
yr. 
BP) 

C. 
reniforme 

E. 
excavatum 
f. clavata 

I. 
helenae 

I. 
norcrossi 

S. 
loeblichi 

Q. 
stalkeri 

A. 
gallowayi 

C. 
lobatulus 

T. 
tricarinata 

H. 
orbiculare 

M. 
barleeanus 

P. 
lateralis 

315 3971 138 5 21 1 4 4 108 0 14 0 0 0 

310 3835 164 54 34 4 3 6 61 0 3 0 0 0 

300 3561 159 107 3 3 3 2 30 0 2 0 1 0 

296 3452 148 7 13 1 3 8 115 0 2 0 0 0 

285 3151 125 5 19 2 2 4 62 1 5 2 1 0 

280 3015 127 6 13 1 3 6 64 0 6 3 1 0 

275 2878 129 4 14 0 2 2 62 0 4 1 0 0 

265 2605 222 4 11 1 7 4 51 0 1 1 0 0 

255 2331 185 7 16 0 2 7 79 0 7 1 0 0 

250 2195 108 69 7 1 4 12 52 0 5 0 0 0 

245 2058 82 5 13 0 2 16 54 0 3 0 0 0 

240 1921 126 127 8 1 2 10 52 1 6 2 0 0 

235 1784 92 6 5 0 1 6 86 0 1 0 0 0 

230 1648 180 104 12 5 2 17 21 0 6 2 0 0 

225 1511 130 3 6 0 1 7 75 0 2 0 0 0 

215 1238 104 57 0 1 2 6 123 0 4 2 0 0 

210 1101 61 74 5 1 3 2 21 0 3 3 0 0 

205 964 32 2 1 2 0 4 3 0 1 0 0 0 

200 828 176 46 4 1 2 3 12 0 3 0 0 0 

195 691 153 28 20 5 2 17 68 0 3 0 0 0 

185 650 77 11 11 3 0 0 26 0 11 0 1 0 

175 609 180 44 21 1 4 1 43 0 5 0 0 0 

165 569 79 135 1 0 1 3 85 0 4 1 0 0 

155 528 150 87 4 1 4 5 28 0 12 0 0 0 

145 487 125 57 0 0 1 2 26 0 3 0 1 0 
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Depth 
(cm) 

Age 
(Cal 
yr. 
BP) 

C. 
reniforme 

E. 
excavatum 
f. clavata 

I. 
helenae 

I. 
norcrossi 

S. 
loeblichi 

Q. 
stalkeri 

A. 
gallowayi 

C. 
lobatulus 

T. 
tricarinata 

H. 
orbiculare 

M. 
barleeanus 

P. 
lateralis 

140 467 112 89 1 1 1 0 35 0 3 0 0 0 

135 446 37 19 0 1 0 1 13 0 1 0 0 0 

130 426 48 26 3 0 2 3 3 0 0 0 0 0 

125 406 34 50 0 1 0 3 15 0 1 0 1 0 

120 385 46 61 0 2 4 7 14 0 2 0 0 0 

115 365 27 17 1 0 1 3 0 0 1 0 0 0 

110 345 24 18 1 1 1 4 2 0 1 0 0 0 

106 328 25 15 2 1 0 8 4 0 0 0 0 0 

100 304 26 14 1 0 0 6 3 0 0 0 0 0 

94 279 69 39 1 1 0 12 8 0 2 0 0 0 

90 263 97 42 0 1 2 9 14 0 2 0 0 0 

85 243 145 80 11 6 3 14 13 0 0 0 1 0 

80 222 41 22 1 0 2 6 14 0 0 0 0 0 

75 202 39 18 1 0 3 7 14 0 0 0 0 0 

70 182 46 65 5 0 1 6 15 0 1 0 0 0 

65 161 116 71 0 1 1 17 11 0 2 0 1 0 

60 141 36 18 0 0 0 14 17 0 0 0 0 0 

55 120 38 16 0 0 0 15 15 0 1 0 0 0 

50 100 79 26 0 2 2 9 6 0 2 0 0 0 

45 80 59 11 0 2 0 3 8 0 2 0 0 0 

40 59 86 26 1 2 1 12 2 0 3 0 0 0 

35 39 161 89 5 2 1 14 35 0 2 0 0 0 

25 -2 73 74 3 3 0 21 15 0 3 0 0 0 

20 -22 63 52 2 1 2 8 13 0 5 0 0 0 

15 -43 73 18 1 1 0 10 13 0 2 0 0 0 
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Depth 
(cm) 

Age 
(Cal 
yr. 
BP) 

C. 
reniforme 

E. 
excavatum 
f. clavata 

I. 
helenae 

I. 
norcrossi 

S. 
loeblichi 

Q. 
stalkeri 

A. 
gallowayi 

C. 
lobatulus 

T. 
tricarinata 

H. 
orbiculare 

M. 
barleeanus 

P. 
lateralis 

10 -63 96 34 0 0 1 4 16 0 1 0 0 0 

5 -63 23 35 0 0 0 5 7 0 0 0 0 0 

0 -63 41 34 0 1 0 8 13 0 0 0 0 0 

 
 

 

Depth 
(cm) 

Age 
(Cal. 
yr. 
BP) 

S. 
fusiformis 

E. 
hallandense 

S. 
groenlandica 

F. laevigata 
C. 

teretis 
C. 

laevigata 
T. 

trihedra 
D. 

Trondheimensis 
Globobulimina 

Sp. 
D. 

drammenensis 
L. 

clavata 
L. 

linearis 

454 7771 0 0 0 0 0 0 0 0 0 0 0 0 

444 7498 0 0 0 0 0 0 0 0 0 0 0 0 

435 7252 0 0 0 0 0 0 0 0 0 0 0 0 

425 6978 1 0 0 0 0 0 0 0 0 0 0 0 

415 6705 0 1 0 0 0 0 0 0 0 0 0 0 

405 6432 0 0 1 0 0 0 0 0 0 0 0 0 

395 6158 0 0 0 0 0 0 0 0 0 0 0 0 

385 5885 1 1 0 0 0 0 0 0 0 0 0 0 

375 5612 1 0 0 2 0 0 0 0 0 0 0 0 

365 5338 1 0 0 1 0 0 0 0 0 0 0 0 

355 5065 6 3 1 2 6 5 2 0 0 0 0 0 

346 4819 4 0 0 0 3 4 0 0 0 0 0 0 

340 4655 3 0 0 0 2 2 0 0 0 0 0 0 

335 4518 5 2 0 0 0 0 0 0 0 0 0 0 

330 4381 0 0 0 4 0 0 0 1 0 0 0 0 
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Depth 
(cm) 

Age 
(Cal. 
yr. 
BP) 

S. 
fusiformis 

E. 
hallandense 

S. 
groenlandica 

F. laevigata C. 
teretis 

C. 
laevigata 

T. 
trihedra 

D. 
Trondheimensis 

Globobulimina 
Sp. 

D. 
drammenensis 

L. 
clavata 

L. 
linearis 

325 4245 1 0 0 0 0 0 0 0 0 0 0 0 

320 4108 0 1 0 1 0 0 0 0 0 0 0 0 

315 3971 4 0 0 0 0 0 0 0 2 0 0 0 

310 3835 1 1 0 1 1 0 0 0 0 0 0 0 

300 3561 2 0 0 0 0 0 0 0 0 0 0 0 

296 3452 1 0 0 0 4 0 0 0 0 0 0 0 

285 3151 2 1 0 0 0 1 1 0 2 0 0 0 

280 3015 2 2 0 2 1 2 2 0 1 0 0 0 

275 2878 1 0 0 1 0 0 0 0 0 0 0 0 

265 2605 2 0 0 0 0 0 0 0 0 0 0 0 

255 2331 1 0 0 0 0 1 1 0 0 0 0 0 

250 2195 2 0 0 0 0 0 0 0 0 0 0 0 

245 2058 1 1 0 0 0 0 0 0 0 0 0 0 

240 1921 1 2 0 0 0 0 0 0 0 0 0 0 

235 1784 0 2 0 0 0 0 0 0 0 0 0 0 

230 1648 1 1 0 0 0 0 0 0 0 0 0 0 

225 1511 4 1 0 0 0 0 0 0 0 0 0 0 

215 1238 3 1 0 0 0 0 0 0 0 0 0 0 

210 1101 1 2 0 0 0 0 0 0 0 0 0 0 

205 964 2 0 0 0 0 0 0 0 0 0 0 0 

200 828 1 0 0 0 0 0 0 0 0 0 0 0 

195 691 6 1 0 0 0 0 0 0 0 0 0 0 

185 650 5 0 0 0 0 0 0 0 0 1 0 0 

175 609 2 2 0 0 0 0 0 0 0 1 0 0 

165 569 3 1 0 0 0 0 0 0 0 0 0 0 

155 528 6 6 0 0 0 2 3 0 0 1 0 0 
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Depth 
(cm) 

Age 
(Cal. 
yr. 
BP) 

S. 
fusiformis 

E. 
hallandense 

S. 
groenlandica 

F. laevigata C. 
teretis 

C. 
laevigata 

T. 
trihedra 

D. 
Trondheimensis 

Globobulimina 
Sp. 

D. 
drammenensis 

L. 
clavata 

L. 
linearis 

145 487 1 0 0 0 0 0 0 0 0 0 0 0 

140 467 2 1 0 0 0 0 0 0 0 0 0 1 

135 446 0 0 0 0 0 0 0 0 0 0 0 0 

130 426 0 0 0 0 0 0 0 0 0 0 0 0 

125 406 0 0 0 0 0 0 0 0 0 0 0 0 

120 385 0 1 0 0 0 0 0 0 0 0 0 0 

115 365 0 0 0 1 0 0 0 0 0 0 0 0 

110 345 0 0 0 0 0 0 0 0 0 0 0 0 

106 328 0 0 0 0 0 0 0 0 0 0 0 0 

100 304 0 0 0 0 0 0 0 0 0 0 0 0 

94 279 1 0 0 0 0 0 1 0 0 0 0 0 

90 263 0 1 0 0 0 0 0 0 0 0 0 0 

85 243 3 0 0 0 0 0 0 0 0 0 0 0 

80 222 0 0 0 0 0 0 0 0 0 0 0 0 

75 202 0 0 0 0 0 0 0 0 0 0 0 0 

70 182 1 0 0 0 0 0 0 0 0 0 0 0 

65 161 1 0 0 0 0 0 0 0 0 0 0 0 

60 141 0 0 0 0 0 0 0 0 0 0 0 0 

55 120 2 0 0 0 0 0 0 0 0 0 0 0 

50 100 0 0 0 0 0 1 0 0 0 0 0 0 

45 80 0 0 0 0 0 0 0 0 0 0 0 0 

40 59 0 0 0 0 0 0 0 0 0 0 0 0 

35 39 2 1 0 0 0 1 0 1 0 0 0 0 

25 -2 2 2 0 0 0 0 0 1 0 0 0 0 

20 -22 2 0 0 0 0 0 0 0 0 0 1 0 

15 -43 1 0 0 1 0 0 0 0 0 0 0 0 
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Depth 
(cm) 

Age 
(Cal. 
yr. 
BP) 

S. 
fusiformis 

E. 
hallandense 

S. 
groenlandica 

F. laevigata C. 
teretis 

C. 
laevigata 

T. 
trihedra 

D. 
Trondheimensis 

Globobulimina 
Sp. 

D. 
drammenensis 

L. 
clavata 

L. 
linearis 

10 -63 0 1 0 0 0 0 0 0 0 0 0 0 

5 -63 0 0 0 0 0 0 0 0 0 0 0 0 

0 -63 0 0 0 1 0 0 0 0 0 0 0 0 
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Appendix 4 – Species abundance 
 

This appendix contains the relative abundance of each of the 10 most common species at sampling depths within core HH13-012GC-TUNU, and their average 

abundance within each of the assemblage zones. Samples containing less than 100 specimens are left out.  

Depth 
(cm) 

Age  
(Cal yr. BP) 

% C. 
reniforme 

% E. 
excavatum 

% I. 
Helenae 

% I. 
norcrossi 

% S. 
loeblichi 

% Q. 
stalkeri 

% A. 
gallowayi 

% C. 
lobatulus 

% T. 
tricarinata 

% H. 
orbiculare 

454 7771 60,06 5,52 28,90 2,27 1,62 0,32 0,00 1,30 0,00 0,00 

444 7498 65,91 3,03 21,21 0,00 1,52 1,52 0,00 0,00 0,00 0,00 

435 7252 52,36 21,62 23,31 1,01 1,69 0,00 0,00 0,00 0,00 0,00 

425 6978 62,21 8,14 23,13 0,33 2,61 0,65 0,00 0,00 0,33 0,00 

415 6705 53,11 6,89 34,43 0,00 2,30 0,00 0,00 0,00 0,00 0,00 

405 6432 53,21 8,33 33,33 0,00 1,28 0,00 0,00 0,64 0,96 0,00 

395 6158 46,93 2,59 47,25 0,00 0,65 0,32 0,00 0,65 0,32 0,00 

385 5885 61,24 7,82 12,38 0,00 0,98 0,00 1,30 14,33 0,00 0,00 

375 5612 54,07 7,17 20,85 0,00 1,95 0,00 0,65 12,38 0,00 0,00 

365 5338 37,25 3,92 42,81 1,31 0,98 0,00 1,63 4,25 0,33 4,58 

355 5065 47,04 18,03 5,26 0,00 4,28 3,62 2,30 0,00 0,00 2,63 

346 4819 55,22 5,97 14,93 0,00 0,75 10,82 2,24 0,00 0,00 1,12 

340 4655 52,99 10,68 11,11 0,00 0,85 5,98 11,54 0,00 0,85 2,99 

335 4518 48,57 11,43 7,35 0,00 0,41 2,45 11,84 0,00 8,98 4,49 

330 4381 52,40 2,40 25,96 1,44 4,81 1,92 3,37 0,00 5,29 0,00 

325 4245 52,08 6,25 17,19 0,00 1,56 0,52 18,75 0,00 0,52 2,60 

320 4108 54,82 17,28 15,61 0,33 0,66 0,66 7,97 0,00 1,99 0,00 

315 3971 45,85 1,66 6,98 0,33 1,33 1,33 35,88 0,00 4,65 0,00 

310 3835 49,25 16,22 10,21 1,20 0,90 1,80 18,32 0,00 0,90 0,00 

300 3561 51,13 34,41 0,96 0,96 0,96 0,64 9,65 0,00 0,64 0,00 

296 3452 49,01 2,32 4,30 0,33 0,99 2,65 38,08 0,00 0,66 0,00 
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Depth 
(cm) 

Age  
(Cal yr. BP) 

% C. 
reniforme 

% E. 
excavatum 

% I. 
Helenae 

% I. 
norcrossi 

% S. 
loeblichi 

% Q. 
stalkeri 

% A. 
gallowayi 

% C. 
lobatulus 

% T. 
tricarinata 

% H. 
orbiculare 

285 3151 53,19 2,13 8,09 0,85 0,85 1,70 26,38 0,43 2,13 0,85 

280 3015 52,48 2,48 5,37 0,41 1,24 2,48 26,45 0,00 2,48 1,24 

275 2878 58,64 1,82 6,36 0,00 0,91 0,91 28,18 0,00 1,82 0,45 

265 2605 73,03 1,32 3,62 0,33 2,30 1,32 16,78 0,00 0,33 0,33 

255 2331 60,26 2,28 5,21 0,00 2,28 2,28 25,73 0,00 2,28 0,33 

250 2195 41,54 26,54 2,69 0,38 1,54 4,62 20,00 0,00 1,92 0,00 

245 2058 46,33 2,82 7,34 0,00 1,13 9,04 30,51 0,00 1,69 0,00 

240 1921 37,28 37,57 2,37 0,30 0,59 2,96 15,38 0,30 1,78 0,59 

235 1784 46,23 3,02 2,51 0,00 0,50 3,02 43,22 0,00 0,50 0,00 

230 1648 51,28 29,63 3,42 1,42 0,57 4,84 5,98 0,00 1,71 0,57 

225 1511 56,77 1,31 2,62 0,00 0,44 3,06 32,75 0,00 0,87 0,00 

215 1238 34,32 18,81 0,00 0,33 0,66 1,98 40,59 0,00 1,32 0,66 

210 1101 34,66 42,05 2,84 0,57 1,70 1,14 11,93 0,00 1,70 1,70 

200 828 70,97 18,55 1,61 0,40 0,81 1,21 4,84 0,00 1,21 0,00 

195 691 50,33 9,21 6,58 1,64 0,66 5,59 22,37 0,00 0,99 0,00 

185 650 52,74 0,08 7,53 2,05 0,00 0,00 17,81 0,00 7,53 0,00 

175 609 59,21 14,47 6,91 0,33 1,32 0,33 14,14 0,00 1,64 0,00 

165 569 25,24 43,13 0,32 0,00 0,32 0,96 27,16 0,00 1,28 0,32 

155 528 48,54 28,16 1,29 0,32 1,29 1,62 9,06 0,00 3,88 0,00 

145 487 57,87 26,39 0,00 0,00 0,46 0,93 12,04 0,00 1,39 0,00 

140 467 45,53 36,18 0,41 0,41 0,41 0,00 14,23 0,00 1,22 0,00 

125 406 32,38 47,62 0,00 0,95 0,00 2,86 14,29 0,00 0,95 0,00 

120 385 33,58 44,53 0,00 1,46 2,92 5,11 10,22 0,00 1,46 0,00 

94 279 51,49 29,10 0,75 0,75 0,00 8,96 5,97 0,00 1,49 0,00 

90 263 57,74 25,00 0,00 0,60 1,19 5,36 8,33 0,00 1,19 0,00 

85 243 52,54 28,99 3,99 2,17 1,09 5,07 4,71 0,00 0,00 0,00 

70 182 32,86 46,43 3,57 0,00 0,71 4,29 10,71 0,00 0,71 0,00 
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Depth 
(cm) 

Age  
(Cal yr. BP) 

% C. 
reniforme 

% E. 
excavatum 

% I. 
Helenae 

% I. 
norcrossi 

% S. 
loeblichi 

% Q. 
stalkeri 

% A. 
gallowayi 

% C. 
lobatulus 

% T. 
tricarinata 

% H. 
orbiculare 

65 161 52,49 32,13 0,00 0,45 0,45 7,69 4,98 0,00 0,90 0,00 

50 100 62,20 20,47 0,00 1,57 1,57 7,09 4,72 0,00 1,57 0,00 

40 59 64,66 19,55 0,75 1,50 0,75 9,02 1,50 0,00 2,26 0,00 

35 39 51,27 28,34 1,59 0,64 0,32 4,46 11,15 0,00 0,64 0,00 

25 -2 37,06 37,56 1,52 1,52 0,00 10,66 7,61 0,00 1,52 0,00 

20 -22 42,28 34,90 1,34 0,67 1,34 5,37 8,72 0,00 3,36 0,00 

15 -43 60,83 15,00 0,83 0,83 0,00 8,33 10,83 0,00 1,67 0,00 

10 -63 62,75 22,22 0,00 0,00 0,65 2,61 10,46 0,00 0,65 0,00 

0 -63 41,84 34,69 0,00 1,02 0,00 8,16 13,27 0,00 0,00 0,00             

Depth Assemblage 
zone: 

Average C. 
reniforme 

Average E. 
excavatum 

Average I. 
helenae 

Average I. 
norcrossi 

Average S. 
loeblichi 

Average 
Q. 

stalkeri 

Average 
A. 

gallowayi 

Average C. 
lobatulus 

Average T. 
tricarinata 

Average H. 
orbiculare 

454-360 AZ3 54,64 7,50 28,76 0,49 1,56 0,28 0,36 3,35 0,19 0,46 
360-180 AZ2 51,05 12,08 6,96 0,49 1,25 2,91 19,59 0,03 2,03 0,76 
180 - 0 AZ1 48,62 30,74 1,16 0,76 0,74 4,94 10,21 0,00 1,39 0,02 
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Appendix 5 – Foraminiferal flux 
This appendix contains the total foraminiferal flux, and the foraminiferal concentration at all sampled 

depths within core HH13-012GC-TUNU, in addition to average foraminiferal flux within each of the 

assemblage zones. 

Depth 
(cm) 

Age (Cal 
yr. BP) 

Sedimentation 
rate 

Total number of 
foraminifera 

Foraminiferal 
concentration 

Total 
foraminiferal 

flux 

454 7771 36 308 18,7 1208,6 

444 7498 36 132 4,8 311,9 

435 7252 36 296 8,2 528,4 

425 6978 36 307 32,9 2132,5 

415 6705 36 305 40,2 2604,0 

405 6432 36 312 68,5 4435,6 

395 6158 36 309 51,8 3358,2 

385 5885 36 307 9,7 625,5 

375 5612 36 307 29,5 1908,6 

365 5338 36 306 74,1 4802,5 

355 5065 36 304 10,9 707,0 

346 4819 36 268 9,0 581,2 

340 4655 36 234 7,0 451,0 

335 4518 36 245 6,8 440,8 

330 4381 36 208 6,1 398,3 

325 4245 36 192 5,9 379,5 

320 4108 36 301 11,5 745,6 

315 3971 36 301 17,9 1161,5 

310 3835 36 333 13,1 849,0 

300 3561 36 311 11,6 750,2 

296 3452 36 302 14,9 966,7 

285 3151 36 235 5,2 335,0 

280 3015 36 242 6,2 399,0 

275 2878 36 220 5,5 359,0 

265 2605 36 304 9,2 594,6 

255 2331 36 307 11,3 735,2 

250 2195 36 260 5,4 349,1 

245 2058 36 177 4,4 284,3 

240 1921 36 338 7,8 506,4 

235 1784 36 199 5,3 343,3 

230 1648 36 351 11,6 753,4 

225 1511 36 229 7,8 503,7 

215 1238 36 303 10,6 685,8 

210 1101 36 176 5,5 353,3 

205 964 36 47 1,3 84,5 

200 828 36 248 6,2 399,7 
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Depth 
(cm) 

Age (Cal 
yr. BP) 

Sedimentation 
rate 

Total number of 
foraminifera 

Foraminiferal 
concentration 

Total 
foraminiferal 

flux 

195 691 36 304 6,1 395,6 

185 650 279 146 3,8 1892,6 

175 609 279 304 7,0 3505,2 

165 569 279 313 8,8 4429,8 

155 528 279 309 9,5 4791,9 

145 487 279 216 6,0 3015,7 

140 467 279 246 6,7 3385,6 

135 446 279 72 2,2 1096,7 

130 426 279 85 2,5 1252,2 

125 406 279 105 3,4 1687,4 

120 385 279 137 5,1 2585,5 

115 365 279 51 1,3 669,1 

110 345 279 52 1,8 924,7 

106 328 279 55 2,1 1045,9 

100 304 279 50 1,5 744,0 

94 279 279 134 2,4 1227,3 

90 263 279 168 4,2 2126,3 

85 243 279 276 6,3 3188,6 

80 222 279 86 2,0 1000,2 

75 202 279 82 2,0 990,6 

70 182 279 140 3,1 1546,6 

65 161 279 221 7,3 3643,7 

60 141 279 85 2,6 1288,5 

55 120 279 87 3,1 1541,7 

50 100 279 127 4,0 1995,6 

45 80 279 85 2,4 1207,6 

40 59 279 133 2,7 1361,4 

35 39 279 314 7,6 3805,9 

25 -2 279 197 5,0 2535,5 

20 -22 279 149 4,8 2393,7 

15 -43 279 120 2,8 1414,3 

10 -63 279 153 4,1 2040,3 

5 -63 279 70 1,9 938,7 

0 -63 279 98 1,9 949,6 

 
 
     

Assemblage zone Depth (cm) Age (cal. yr. BP) Average foraminiferal flux 

AZ 3 454 - 360 7771 - 5221 2191,6 

AZ 2 360 - 180 5221 - 630 585,9 

AZ 1 180 - 0 630 - -63 2010,3 

 


