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I 

Abstract 

Cold-adapted enzymes (CAEs or psychrophiles) display stunning properties 
thanks to adaptation to low temperature environments (< 15 ˚C). In 
particular, the lower thermostability and higher specific activity compared to 
warm-adapted (or mesophilic) homologs have attracted the interest of 
researchers and industries. In the case of basic research, this class of enzymes 
is an exciting model for studying the relationship between enzyme structure 
and activity/stability. Different structural and sequence hypotheses have been 
suggested to account for enzyme cold adaptation, but still a clear picture is 
lacking despite decades of studies in the field. However, it has been shown 
that psychrophilic reactions are less dependent on temperature through lower 
activation enthalpies.  

 In my PhD project I have studied the endonucleases A from Aliivibrio 
salmonicida (VsEndA, cold-adapted) and Vibrio cholerae (VcEndA, warm-
adapted). The goal was to compare these two systems, in order to find 
structural differences that could explain the mechanism of cold adaptation in 
the psychrophilic EndA. These two enzymes have previously been studied 
experimentally and the crystal structures have been solved. We first employed 
Molecular Dynamics (MD) simulations to characterize and compare the 
dynamical behavior of the two homologs and the underlying interaction 
network. RMSF analysis did not show a significant increase in the flexibility of 
VsEndA compared to VcEndA and the active sites have similar mobility, 
contrary to general findings and assumptions in previous cold adaptation 
studies. There are, however, few regions with slightly increased RMSF values 
in both enzymes and in particular the psychrophilic C-terminal displays 
higher flexibility than the mesophilic one. Protein structure network (PSN) 
analysis revealed two clusters of ion-pairs in this region of VcEndA (E179-
R222-E226 and D210-R225-E214). MD simulations of VsEndA incorporating 
the R222 salt-bridge network, display a decrease of the C-terminal RMSF 
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compared to the wild-type (WT) enzyme, suggesting a possible role in 
thermostability for this electrostatic cluster in the mesophilic variant. We 
furthermore aligned the sequences of VsEndA and VcEndA together with 
other homologs from different thermal environments, in order to pinpoint 
amino acid substitutions shared only by psychrophilic enzymes. The amino 
acid substitutions T120V, S141I and A166S emerged from these studies as 
potential important mutations for temperature adaptation. 

In order to develop an Empirical Valence Bond (EVB) model to evaluate 
reaction thermodynamics, a clear understanding of the reaction mechanism 
and the conformations of the different states of the EndA reaction is 
fundamental. In this respect, we first carried out Quantum Mechanical (QM) 
studies of the enzymatic reaction, computing the relevant energetics. Our 
calculations confirmed a concerted mechanism. Subsequent EVB calculations 
of the reaction in VcEndA gave activation free energies consistent with 
experimental data. In silico calculations of Arrhenius plots by EVB 
simulations reproduced the activation parameters for the reaction of VsEndA 
and VcEndA, displaying the characteristic trends in activation enthalpy (∆H‡) 
and entropy (∆S‡) for cold-adapted enzymes. Furthermore, the lower ∆H‡ in 
the psychrophilic enzyme was reflected in a lower internal energy change of 
the system along the reaction for the regions outside the active site. This 
observation was further tested in our EVB simulations by gradually imposing 
positional restraints on the outer parts of VsEndA structure and increasing in 
this way the rigidity of these regions. A lower surface mobility could, indeed, 
transform the psychrophilic enzyme activation parameters to resemble those 
of the mesophilic counterpart. We subsequently assessed with EVB the effect 
of mutations on the reaction catalyzed by VsEndA/VcEndA. The EVB models 
for the EndA homologs estimated an effect on activation parameters for the 
mutation S141I, located on the enzyme surface (previously identified by 
multiple sequence alignment). Altogether these data suggest that surface 
properties enable VsEndA to adapt to low temperatures.  
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Introduction 

Enzymes are widely applied as biological tools for industrial, medical and 
scientific research purposes. Nature offers a rich and broad variety of 
biocatalysts to select from for the appropriate properties and reaction for these 
applications. Nonetheless, in order to have full performance and yield, it is 
necessary to mutate the wild-type enzyme for improved features such as 
stability and/or activity. This task is very challenging, since enzymes are 
formed by hundreds of amino acids and their 3D shape is determined by even 
more numerous bonded and non-bonded interactions. Tailored-made enzymes 
can either be produced through directed evolution, i.e. random mutagenesis 
and selection of the optimal variants, or in a rational structure-guided 
manner. The first option has gained more success, despite being limited by the 
vastness of sequence space and the low frequency of effective mutations. 
Rational design, instead, requires detailed knowledge of the specific structure 
and catalytic mechanism. It often fails due to limited understanding of active 
site amino acids and how their interplay relates to activity and stability. To fill 
this gap, it is advantageous to study how nature optimizes enzymes for 
determined environments and reactions. Fortunately, there exist many 
examples in biological life where these biomolecules change their structure, 
and so their biochemical properties, to face harsh medium conditions: 
psychrophiles and thermophiles (adapted to low and high temperatures), 
halophiles (adapted to high salt concentration), alcalophiles and acidophiles 
(adapted to basic or acidic environment) etc. 

Standard experimental techniques are employed to characterize these 
classes of enzymes structure (X-ray or NMR), kinetics (Steady State Kinetic 
analysis), reaction mechanism (Kinetic Isotope Effect or KIE) and 
thermodynamics (Arrhenius plot), temperature stability (Differential 
Scanning Calorimetry or Fluorescence quenching) and other medium optima 
(pH, ion preference etc.), in order to understand their properties. Even though 
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these methods are fundamental for describing macroscopic properties of cold-
adapted enzymes, they cannot explain what happens in the "microscopic 
world". For this purpose, the only available options are computational methods 
such as MD simulations or Empirical Valence Bond (EVB). EVB, in particular, 
has the great advantage of combining structural sampling and free energy 
calculations. What makes it even more interesting is, however, the ability to 
derive activation parameters and study their change as a consequence of 
protein mutagenesis. Thus, it is possible to pinpoint the structural causes of 
enzyme cold adaptation in ways that no other technique can achieve. 

In Chapter 1, I will explain what enzymes are and how they are studied 
through kinetics and Transition State Theory (TST). A short summary of the 
theories put forward since the beginning of the 20th century, to explain the 
origin of enzymatic catalysis will follow. In Chapter 2, the concept of cold-
adapted enzymes will be introduced, together with the findings gathered in 
the last decades and the main conclusions that have been suggested to explain 
this phenomenon. The enzyme models that have been chosen to investigate 
psychrophilic enzymes will be presented in Chapter 3. An overview of the 
computational methods employed in my PhD project will then be given in 
Chapter 4. The main discoveries of the three articles will be discussed and will 
be related to literature findings in Chapter 5. Finally, a summary connecting 
the different findings and concluding remarks will end the thesis (Chapter 6-
7). 
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1   
 
Enzyme Catalysis 

Enzymes (from Greek "en" and "zyme", meaning in yeast) are mostly 
proteins, but a small proportion can also be formed by RNA (RNAzymes) [1,2] 
or DNA (DNAzymes) [3]. The ability to catalyze chemical reactions with high 
efficiency and selectivity in biologically useful timescales, makes these 
biomolecules fundamental for life. Enzymes speed up reactions that "non-
helped" would take years to a few seconds or less. They are, in fact, able to 
accelerate the reaction rate by more than 10 orders of magnitude with respect 
to the uncatalyzed reaction [4]. Their main catalytic role is to provide an 
optimal environment for the reaction to occur more rapidly, and, at the same 
time, to protect the cells from toxic and reactive reaction intermediates, as 
radicals or charged molecules. On the contrary of other type of catalysts, 
enzyme activity can be regulated by molecules known as inhibitors or 
activators. The reason for this is that they work together in synchronicity 
inside metabolic or transductional pathways, and the ability to tune their 
activity is fundamental for cellular or multi-cellular organisms organization. 
Another type of regulation is given by the allosteric effect, where binding of 
small molecules or effectors induces conformational changes in the enzyme, 
affecting substrate binding. Allosteric enzymes are often multi-subunit 
polypeptides, with multiple active sites, and are characterized by cooperative 
binding, where ligand binding in one subunit enhances the binding affinity in 
the others. 

The binding of substrate and the following reaction take place in a 
designated part of the enzyme called the active site, where all the important 
residues for catalysis are located. This region is confined in a pocket of 
variable size (according to substrate) on the enzyme surface. The specificity for 
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the substrate is determined by the active site size and shape, its 
physicochemical properties and by the configuration of the amino acids coating 
it, in particular the catalytic one. Enzymes, in fact, are able to distinguish 
between very similar molecules and stereoisomers. Promiscuous enzymes are 
an exception to this rule, since they are able to bind different ligands and 
catalyze reactions other than the physiological one [5]. For example, the 
cytochrome P450, located in the human liver and involved in detoxification of 
blood molecules, is able to oxidize a broad spectrum of functional groups from 
structurally different substrates [6]. 

Enzymes often bind non-proteic biomolecules such as cofactors (ions), 
coenzymes (vitamin-derived NADH, CoA or non-vitamin ATP) and prosthetic 
groups (heme group), which assist in catalysis or in structural stability. They 
work in aqueous solutions and most of them function in mild pH and 
temperature conditions. Extremophilic enzymes constitute an exception, since 
they thrive at the limits of temperature for life (psychrophile or 
hyperthermophile), pH (acidophiles and alkalophiles), NaCl concentration 
(halophiles) [7] and in non-aqueous solutions (solvent-tolerant) [8].  

1.1.  Enzyme kinetics 

Enzyme kinetics studies the rate and related constants of reactions, and it 
is the first stage in the characterization of enzymes. It is also a fundamental 
approach to study reaction mechanisms and to determine the change of the 
reaction rate upon variation of experimental parameters, such as pH or 
temperature. Enzyme kinetics is essential, particularly, for the analysis and 
comparison of enzymes adapted to different temperatures. This class of 
enzymes displays, in fact, distinct and consistent kinetics trends, as will be 
further discussed in Chapter 2. 

The kinetics of substrate binding and catalysis can be summarized in the 
classical equation: 
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E + S

k1

k−1
⎯ →⎯← ⎯⎯ ES

k2

k−2
⎯ →⎯← ⎯⎯ EP

k3

k−3
⎯ →⎯← ⎯⎯ E +P  ( 1 ) 

where the enzyme E binds the substrate S to form an ES complex, with rate of 
formation k1 and corresponding opposite rate of dissociation k-1. Once the 
substrate is bound, the reaction takes place to form an enzyme-product 
complex (EP), with equilibrium shifted to the right (k2 >> k-2). Final release of 
the product regenerates the enzyme to its initial state (E + P), in a rapid step 
compared to the catalytic one (k3 >> k2). Like all other catalysts, enzymes 
accelerate reaction rate without being consumed or permanently altered, and 
they increase reaction rates maintaining the chemical equilibrium between 
reactants and products.  

The key factor affecting the rate of enzyme reaction is the concentration of the 
substrate, [S]. Studying the effect of [S] on the reaction rate is complicated, 
though, by the fact that it changes during catalysis due to its consumption. 
Enzyme kinetics is then generally experimentally determined measuring the 
initial rate, V0, at different starting substrate concentrations, when [S] >> [E]. 
Under these conditions, the substrate concentration is almost unchanged and 
a product is nearly undetectable. The related plot (see Fig 1) shows a 
saturation-kinetics in which, at low [S], V0 increases linearly, and there is still 
presence of free enzyme [E]; at higher concentrations, the initial velocity 
reaches asymptotically its highest value, known as Vmax, where all the enzyme 
is present in the bound form ES in Eq. 1, reaching a plateau.  

The simplest and best-known model to reproduce this kinetic behavior for 
single-substrate monomeric enzyme reactions was studied by Michaelis and 
Menten in 1913. They proposed the reaction scheme in Eq. 2, where the first 
step of substrate binding is fast and reversible, while the second step is 
irreversible and rate-determining with first-order rate constant kcat 

(corresponding to k2).  
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E + S

k1

k−1
⎯ →⎯← ⎯⎯ ES k2⎯→⎯ EP→ E +P  ( 2 ) 

In case the reaction proceeds through different intermediate states, kcat will 
be a function of the several single rate constants, while in the case of no 
intermediates it will be equal to k2. When V0=Vmax, the system is in steady-
state, since the concentration of the ES complex is constant and the initial rate 
depends on it. 

 
Fig 1: Variation of the initial reaction rate (V0) with respect to the substrate 
concentration, [S]. Vmax is the maximum velocity that can be achieved and KM is the substrate 
concentration where half of Vmax is reached. Before the plateau, the ES complex concentration increases 
along the substrate one and the kinetics is in pre-steady state (yellow area). When V0 reaches the plateau 
region, the concentration of the ES complex becomes approximately constant and the reaction is in a 
steady-state. 

The plot in Fig 1 is reproduced by the Michaelis-Menten equation: 

 𝑉! =
𝑉!"# 𝑆
𝐾! + 𝑆  ( 3 ) 

where KM is defined as the concentration at which the initial velocity is half of 
Vmax. The maximum speed is related to kcat as follows: 

 𝑉!"# = 𝑘!"# 𝐸𝑆  ( 4 ) 

Furthermore, KM can be also expressed as: 
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 𝐾! =
𝑘!"# + 𝑘!!

𝑘!
 

( 5 ) 

Since kcat is the rate-limiting step, then kcat << k-1 and KM can be 
approximated to k-1/k1, which is the dissociation constant of the ES complex. 
The Michaelis constant can be then seen as an approximation of the enzyme 
affinity for the substrate. 

1.2.   Transition State Theory (TST) 

TST was simultaneously developed by Eyring, Evans and Polanyi, in 1935, 
to link kinetic rate constants with thermodynamic activation parameters 
[9,10]. It was originally used to study reaction mechanisms in gas phase, while 
nowadays TST is also employed to study reactions in enzymes. According to 
TST, the reaction is described considering only two physical entities: the 
reagents (ground state) and the activated complex [ES]‡ (transition state). The 
TS lies on a saddle point at the highest point of the potential energy surface 
between the reactant and product state (Fig 2), and the barrier height is 
equal to the activation free energy ∆G‡ (Fig 2). From a mathematical point of 
view, it is said that the TS misses one degree of freedom, which is the reaction 
coordinate (3N-7 instead of 3N-6 for reactant and product). The activated 
complex is not a chemical species with relevant stability (lifetime 10-13 s, 
which is the time for a single stretching vibration), but rather a distorted 
structure in between the structure of the reactants and that of the products. 
According to the Hammond postulate [11], the structure of the TS has a free 
energy closer to the reactant state for exothermic reactions, meaning that it 
resembles reactants more than products. Conversely, in the case of an  
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Fig 2: Free energy reaction diagram for an enzymatic reaction. The different steps in 
substrate binding and catalysis are characterized. ∆G‡ is related to the Michaelis-Menten kinetic 
turnover-number kcat, while ∆G‡ T is related to the catalytic efficiency kcat/KM [12]. ∆GS is the free energy 
of binding. 

endothermic reaction its free energy will be closer to product and it will 
resemble this state. 

The fundamental postulate of TST is that the transition-state and ground-
state populations are in thermodynamic equilibrium. Furthermore, barrier 
recrossing of the trajectory is not accepted before reaching thermal 
equilibrium with the product state. Assuming equilibrium between reactant 
and transition state, the equilibrium constant, K‡, will be: 

 
𝐾‡ =

𝐸𝑆 ‡

𝐸𝑆  
( 6 ) 

Reformulating Eq. 6 and considering that ∆G‡ is equal to -RTln(K‡), we 
obtain: 

 𝐸𝑆 ‡ = 𝐸𝑆 𝑒𝑥𝑝 −∆𝐺‡ 𝑅𝑇  ( 7 ) 
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where T is the temperature and R the gas constant. If we further combine   
Eq. 7 with v = kcat[ES] = k‡[ES]‡ (where v is the reaction rate and k‡ is the 
frequency of the bond vibration leading to product formation), then: 

 𝑘!"# = 𝑘‡𝑒𝑥𝑝 −∆𝐺‡ 𝑅𝑇  ( 8 ) 

Finally, considering that the bond vibration frequency, ν, of the TS is equal to 

kbT/h and that k‡=νκ we get: 

 
𝑘!"# = 𝜅

𝑘!𝑇
ℎ 𝑒𝑥𝑝

−Δ𝐺‡

𝑅𝑇  

 

( 9 ) 

where κ	 is the	 transmission coefficient, which is a multiplicative factor equal 

to the fraction of TS that proceeds to product state, and it is generally close to 
1. kB is the Boltzmann constant and h is the Planck constant.  
If the ∆G‡ is decomposed into its enthalpic and entropic contributions we get: 

 
𝑘!"# = 𝜅

𝑘!𝑇
ℎ 𝑒𝑥𝑝

Δ𝑆‡

𝑅 𝑒𝑥𝑝
−Δ𝐻‡

𝑅𝑇  

 

( 10 ) 

As explained by Fersht [12], the Michaelis constant KM and the enzyme 
efficiency, given by kcat/KM, can be related to thermodynamic activation 
parameters: 

 

		

E + S
KM

∆Gbind
⎯ →⎯⎯← ⎯⎯⎯ ES kcat

∆G‡⎯ →⎯ EP

E + S
kcat /KM
∆Genz‡

⎯ →⎯⎯← ⎯⎯⎯ EP
 

( 11 ) 

The free energy of binding (∆GS or ∆Gbind), the free energy of activation (∆G‡) 
and ∆GT‡ or ∆Genz (Fig 2), can be derived from the kinetic rate constants: 

 Δ𝐺!"#$ = 𝑅𝑇𝑙𝑛(𝐾!) ;  Δ𝐺!"#
‡ = −𝑅𝑇𝑙𝑛 𝑘!"# 𝐾! + 𝑅𝑇𝑙𝑛 𝑘𝑇 ℎ   

 

( 12 ) 

As will be explained in the next section, TST terminology and concepts have 
been largely employed to explain enzyme catalysis. 
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1.3.  The quest for the origin of enzymatic catalytic 
power 

The statement made by Warshel in 2006 [13], is still a valid point of view to 
summarize the importance and difficulty in pinpointing the origin of enzyme 
efficiency, and the state of the art of the scientific effort: 

"...In this respect it is crucial to understand what is the origin of the enormous 
catalytic power of enzymes, which remains one of the challenges of modern 
biophysics. Although many elements of this puzzle were elucidated by 
biochemical and structural studies, the source of the catalytic power of 
enzymes has not been widely understood and, clearly, has not been agreed 
upon by the scientific community..." 

Attempts to explain the origin of the enzyme catalytic power goes back to 
1894, when Emil Fischer proposed the famous lock-and-key model [14]. This 
theory was based on the observation of stereoselectivity for the enzyme 
invertase, which was able to hydrolyze α-glucosides, but not β-glucosides. This 
led to the hypothesis of an enzyme action, in which intimate fit, like a lock and 
a key, between enzyme and substrate is a necessary requirement for catalysis.  

Subsequently in 1946-48, Linus Pauling suggested that the origin of enzyme 
catalysis was due to a tighter binding of the enzyme in the TS, rather than the 
ground state, due to a major complementarity of the enzyme for the activated 
complex [15,16]. In 1958, Koshland, helped by newly solved X-ray crystal 
structures (myoglobin in 1958 [17] and haemoglobin in 1960 [18]), suggested a 
new model accounting for enzyme substrate specificity, which he called 
induced-fit model. The hypothesis he put forth was that the substrate, upon 
enzyme binding, would induce a conformational change to properly orient the 
catalytic residue for catalysis, whereas a non-substrate would not.  

In early 1970s, Wolfenden [19] further formalized Pauling’s theory, by 
comparing reactions catalyzed by enzymes and the corresponding uncatalyzed 
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reaction in water, showing that the former had a higher rate constant (kcat) 
than the latter (knon), and thus explaining the enzyme catalytic power. Here, 
the enzyme proficiency constant was also defined, which measures the 
capacity of an enzyme to lower the activation barrier compared to the 
uncatalyzed reaction in water. The catalytic proficiency is obtained by dividing 
the second-order constant enzymatic efficiency (kcat/KM), by the rate constant 
of the reaction in water (knon) [20].  

Jencks [21] theorized what he named the Circe effect (or ground-state 
destabilization), giving to substrate binding not only a role for specificity, but 
also for catalysis. According to this theory, the free energy of binding (∆Gbind) 
can be utilized to provide extra driving force for catalysis, via 1) ES complex 
destabilization, relative to TS, and consequent higher free energy to lower 
∆G‡, or 2) entropy loss attained during binding, that is not paid for during TS 
formation (as opposed to the reaction in solution) [21]. This theory was one of 
the first attempts to explain how enzymes can lower ∆G‡.  

Warshel also pointed out the importance of comparing the enzymatic 
reaction and the one in solution, in order to understand the origin of 
enzymatic catalysis [22]. In particular, he stated that, to avoid any discussion 
between different mechanistic effects in the solution and the enzyme reaction, 
a reference reaction in water had to be compared to the enzymatic one [13,23]. 
In this reference reaction, all the catalytic residues present in the enzyme 
except the protein itself, are considered. In order to assess the acceleration of 
the reaction rate, the enzymatic free energy of activation, ∆G‡, and the free 
energy of activation in water, ∆G‡cage, had to be compared. ∆G‡cage is the free 
energy difference between the reactants, in the same water cage, and the TS 
(Fig 3). 
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Fig 3: Schematic description of the free energy profile for an enzymatic reaction (A) and for the 
corresponding reference reaction (B). Picture taken from ref  [13]. 

In 1976, Warshel and Levitt [22] conducted one of the first quantum 
mechanical computation on enzyme reactivity, and postulated an electrostatic 
TS stabilization for decreasing the reaction barrier in lysozyme. This study 
showed that the transition -state charged species (carbonium ion) was 
stabilized by electrostatic interactions, with Asp52, in lysozyme. Two years 
later, Warshel [24] explained how the lysozyme active site could give better 
electrostatic stabilization of the TS (∆GQμ) than bulk water. In fact, polar 

solvents spend about half of the energy gained from charge-dipole interaction 
in reorienting solvent molecules for proper dipole-dipole interactions with the 
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TS (∆Gμμ). In this way, the transition-state free energy of solvation (∆Gsol) is 

given by: 

 ∆𝐺!"# ≅  ∆𝐺!" + ∆𝐺!! ≅ ∆𝐺!" − 1 2∆𝐺!" = 1 2∆𝐺!" 

 

( 13 ) 

 Warshel called the free energy ∆Gμμ  term "reorganization energy", and 

postulated that enzymes pay this energetic cost during the folding process, so 
that, upon TS formation, the active site dipoles are already properly oriented 
to interact with the substrate. He further formalized this theory for all 
enzymes [13,23].  

In the late 80's, quantum tunneling was suggested for biologic reactions 
involving electron and hydrogen transfer [25,26]. This theory goes beyond 
TST, since light quantum particles, as hydrogen or an electron, can reach the 
product state without visiting the TS, but passing through the barrier. This 
phenomenon occurs when the probability of finding the particle in the reactant 
state, RS, is the same as in the product state, PS. Tunneling has a mass 
dependency and favors lighter isotopes.  

In 90's, the existence of a so-called low-barrier hydrogen bonds (LBHBs) in 
proteins was postulated for enzyme catalysis [27–29]. This kind of HBs are 
formed when the pKa of the electronegative heteroatoms is similar, which 
allows them to equally share the hydrogen atom. LBHBs have shorter 
interaction distances than normal hydrogen-bond (less than 2.5 Å), they have 
stronger interaction, and are largely covalent. Furthermore, the active site 
facilitates the formation of low-barrier hydrogen bonds, since, after ligand 
binding, the involved heteroatoms are desolvated, and the dielectric constant 
is lowered (as opposed to bulk water) [30,31]. It was suggested that LBHBs 
can greatly accelerate enzymatic rate of proton transfer in acid-base reactions 
[30].  

In 1996, Bruice et al. [32–35] introduced the term Near Attack 
Conformation (NAC) for reactions in solution, based on quantum- [36] and 
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molecular-mechanics [37] calculations. They later applied this concept for the 
enzymes dehydrogenase, dehalogenase and O-methyltransferase [38]. The 
NAC is a conformation in between RS and TS, closely resembling the last one, 
which an enzyme needs to pass before crossing the reaction barrier. Enzymes 
can accelerate the reaction rate by increasing the fraction of NACs.  

The proposal of a dynamical contribution to enzyme catalysis was put forth 
in the late 1970's [39–42]. It has gained success [43–58] and generated a 
strong debate [53,59–61] between researchers for the past two decades. An 
enzymatic reaction is described through a complex and rugged free energy 
landscape, formed by different states and substates, barriers and transition 
states (Fig 4). The protein samples different conformations from substrate 
binding to product release through motions that range from femtoseconds 
(bond vibration), nanoseconds (loop movement) to milliseconds (active site 
opening-closing). Between these conformational changes, coordinated motions 
within the enzyme–substrate complex are thought to allow the reaction to 
proceed at a much faster rate compared to the reaction in solution. Emerging 
evidence indicates that enzymatic rates may be closely tied to the ability of 
enzymes to sample alternate structures, such that it allows the reactive 
environment to achieve structural and electrostatic complementarity to the TS 
along the reaction [44,45,48–51,54–56,62–65]. 
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Fig 4: Schematic 3D representation of the standard free-energy landscape picturing the 
enzyme reaction. This figure illustrates the complexity of the free-energy landscape characterizing the 
reaction from Michaelis complex (ES) to the enzyme product complex (EP). Picture taken from Benkovic 
et al. [58]. 

In enzyme design a clear understanding of the theory underlying the 
enzymatic catalysis can guide in rationally changing the enzyme structure to 
achieve better activity. Furthermore it helps in explaining how certain 
mutation can affect the enzymatic reaction rate. 
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Cold-adapted enzymes 

Life on earth has evolved to thrive in different temperature ranges, and 
some microorganisms (extremophiles) have adapted to its extremes: from -20, 
arctic sea ice [66], up to 121 ˚C, hydrothermal marine vents [67]. 
Microorganisms can be classified (Fig 5) according to the optimal temperature 
(Topt) for growth: 

• Psychrophile, Topt <15 ˚C 

• Psychrotolerant: Topt 20-30 ˚C 

• Mesophile: Topt 37 ˚C 

• Thermophile: Topt 60 ˚C 

• Hyperthermophile: Topt > 80 ˚C 

Extremophilic organisms have to cope with harsh conditions for survival, and 
have evolved specific mechanisms, from the cellular to the molecular level, to 
be able to grow and survive in thermal equilibrium with the environment. Low 
temperatures challenge microorganism with slow metabolic fluxes, due to the 
lower kinetic energy available, and a higher water viscosity. Microorganisms 
living at high temperatures, instead, have to cope with the instability of 
molecules and cellular compartments, in particular the cellular membrane. 
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Fig 5: Microorganisms classification according to temperature of growth (˚C). 

A key issue with lowering the temperature is the exponential decrease in 
the enzymatic catalytic rates that follows from the Eyring equation in TST 
(Eq. 9). When the temperature is decreased from 37 °C to 0 °C, a 20- to 250-
fold reduction in the enzymatic activity is typically observed [68]. Despite 
what is suggested by TST, CAEs display higher specific catalytic activity, 
when compared to their warm-active counterparts. CAEs achieve a higher 
catalytic efficiency (kcat/KM) by either increasing kcat, at the expense of KM, or 
by optimizing both kinetic parameters. Normally, though, the turnover 
number is increased, and the Michaelis constant is higher than warm-active 
enzymes [68–72]. Their maximal activity is shifted to lower temperatures than 
mesophilic enzymes, resulting in a lower thermostability, and unfolding at 
moderate temperatures. However, it is still not clear whether the 
thermolability is a consequence of higher activity or the lack of evolutionary 
pressure on maintaining stability. It seems reasonable to assume that CAEs 
lost thermostability following random genetic drift during evolution as 
opposed to mesophilic and thermophilic enzymes [73]. In order to achieve 
higher kcat, psychrophilic enzymes decrease ∆H‡ [74] making the reactions less 
temperature-dependent, rather than lowering ∆G‡ instead (Eq. 10). The 
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enthalpic adjustment is however accompanied by a more negative activation 
entropy (T∆S‡), thereby counterbalancing the positive effect of ∆H‡ on the free 
energy of activation. To date, all cold-active enzymes catalyze their reaction 
with a lower activation enthalpy and a more negative activation entropy 
compared to their mesophilic counterparts, thus representing the fingerprint 
of cold-active enzymes. [68–72] 

Cold-adapted enzymes represent a very interesting subject for basic 
research to understand the relationship between stability, structure and 
activity. Furthermore, enzymes active at lower temperatures and with 
increased thermolability, constitute important targets for applications in 
different industrial areas (detergents, food and dairy products, wastewater 
treatment, bioremediation etc. [75,76]). 

The main mechanism for adapting enzymes' structure and reaction to cold 
temperatures is proposed to originate from an increased flexibility of the cold-
active enzymes, either localized in the proximity of the active site or in more 
distant parts of the structure [68,77–80]. No direct evidence has been, though, 
discovered to support this thoery, but it has rather been inferred from 
stability, kinetic and thermodynamic studies. The lower thermostability, 
higher KM (lower substrate affinity) and more negative activation entropy 
would, in fact, suggest a major flexibility of psychrophilic enzymes with 
respect to their mesophilic counterparts [68,81]. Furthermore, a set of 
experimental techniques such as X-ray b-factors [82], hydrogen-deuterium 
exchange [83], fluorescence quenching [84,85], neutron scattering [86] and 
computational ones like molecular dynamics [87–91] have supported these 
hypotheses in certain enzyme families. 

Most of the hypotheses put forth so far for the different families of CAE, 
have tried to find structural and sequence variations able to increase protein 
flexibility. Each enzyme family typically adopts its own strategy to achieve 
psychrophilic features, thus, a common theory for enzyme cold adaptation has 
not yet been formulated. Over the decades a series of possible structural 
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changes have been described (for reviews see [68,74,79–81,92,93]). The most 
obvious one is a decrease of all the stabilizing interactions: salt-bridges, 
hydrogen-bonds and aromatic interactions (π-π, cation-π or dipole-π). In 
particular, CAEs display a lower arginine content (low Arg/(Arg+Lys) ratio), as 
they can make more ionic and polar interactions with the guanidino group 
than lysines (triosephosphate isomerase [94], subtilisin [95], alanine 
dehydrogenase [96], cellulase [97], aminopeptidase [98], chitinase [99], acetate 
kinase [100], β-mannanase [101], subtilisin S41 [95], α-amylase [102], malate 
dehydrogenase [103], phosphoglycerate kinase (PGK) [104], xylanase [105] and 
alkaline phosphatase [106]).  Salt bridges have been shown to be one of the 
main factors affecting protein stability, and several comparative studies, based 
on X-ray structural data, have reported that the number of salt bridges is 
lower in cold-adapted enzymes. Quite interesting is α-amylase case, where the 
mutation of lysines into arginines transforms the cold- into warm-active 
enzyme, increasing thermostability and ∆H‡, while decreasing both kcat and 
KM. [107]. Jónsdóttir et al. showed in a thermophilic subtilisin-like proteinase 
(aqualysin I) that only the key charged residues organized in extensive 
interaction network, are able to act on thermostability [107]. Disruption of six 
salt-bridges by single mutation of ten arginines to alanines in a mesophilic 
elastase, showed importance for stability and activity, but only for certain ion-
pairs [108]. It is important to keep in mind that the strength of electrostatic 
interactions and the hydrophobic effect exhibit also temperature dependence. 
Hydrogen-bonds and ion-pairs become stronger with decreasing temperature, 
while the hydrophobic effect weakens (leading to cold-denaturation) [109]. 
Fewer aromatic interactions are displayed by cold-adapted subtilisin [95], β-
lactamase [110] and α-amylase [111]. 

The hydrophobic core tends to be less compact and presents more cavities, 
thanks to the insertion of less hydrophobic and shorter residues [112–115] 
(lower fraction of large aliphatic residues ((Ile+Leu)/(Ile+Leu+Val) ratio). In 
this way the inner movement of side chains and the distance between amino 
acids increase, leading to scaffold destabilization and weaker hydrophobic 
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effect in folding. Bigger cavities in the core result in an increased accessibility 
to solvent water, and a major "wetting" inside the psychrophilic enzymes than 
the mesophiles [116]. The surface has more extended hydrophobic areas in the 
psychrophilic enzymes, thus decreasing the entropy of water molecules around 
it and surface solvation [99,101]. In certain cases, the surface hydrophilicity is 
increased, often with a larger number of acidic residues [95,117], improving 
interactions with the solvent and by destabilization of negative charges 

repulsion. Uracyl-DNA glycosylase [112], malate dehydrogenase [103], citrate 

synthase [113], cellulase [97] and trypsin [118,119] are characterized by 
marked differences in the electrostatic potential in proximity of the active site 
between cold- and warm-adapted enzymes, suggesting a facilitation in ligand 
binding.  

A broader and more solvent accessible active site cleft favoring substrate-
binding and product release, has been reported [74,81,92]. This is achieved by 
substitution of bulky residues for smaller ones or different conformation of 
binding site loops. Substitution of two alanines and insertion of a loop in the 
active site of a psychrophilic citrate synthase, mimicking the 
hyperthermophilic homolog, did not lead to changes in kcat, but rather the 
affinity for one of the substrates (acetyl-CoA) [120]. Lower content of disulfide-
bridges compared to the warm-adapted homologs has been reported for 
alkaline phosphatase [106] and lysozyme [121]. Quite surprisingly, cold-
adapted α-amylase has two disulfide bridges more than the mesophilic one 
[102]. The mutation into cysteine in the cold-active GH5 cellulase to form an 
extra disulfide-bridge stabilizing a flexible domain, resulted in higher 
thermostability, leaving the kinetic parameters unaltered [122]. In some 
psychrophilic sequences there is a preference for a higher number of glycines 
[80,94], and lower number of prolines [102,103,106,113,123,124] inside loops 
than in the mesophilic homologs. Finally, longer surface loops have also been 
linked to increase flexibility in CAEs, thanks to a major amplitude of 
movement of the elongated part and connected secondary structures 
[97,113,125,126]. For the psychrophilic alpha-amylase and subtilisin S41, a 
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weaker binding of Ca2+ was detected [95,102]. Indeed, mutation of a glutamic 
acid to alanine, near the Ca2+ binding site of a mesophilic alkaline protease, 
decreases the ion affinity and increases kcat and KM [127]. 

Recent simulations of cold- and warm-adapted trypsin suggest that the 
protein rigidity well outside the active site controls the enthalpy – entropy 
balance, and thus the temperature adaptation [128,129]. Single point 
mutations in warm-adapted trypsin, disrupting hydrogen bonding networks 
and making the protein surface softer, was predicted to significantly alter the 
enthalpy – entropy balance, making the enzyme more cold-adapted-like [128]. 
In a very recent work, Isaksen et al. [129]  showed computationally that the 
enthalpy – entropy balance was completely converted to those of cold-adapted 
trypsin, by gradually freezing parts of the surface residues in the warm-
adapted trypsin.  
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Model systems 

3.1.  ββ-α metal dependent endonucleases 

Endonuclease A (EndA) is a non-specific, metal-dependent bacterial 
nuclease which has a periplasmic or extracellular localization, i.e. fully 
exposed to external environment. It cleaves the phosphodiester bond within 
DNA or RNA without any sequence specificity, leaving a 3'-OH and a 5'-P 
product. A divalent cation, mostly Mg2+, is employed for DNA binding, P-O3' 
polarization, and TS phosphoanion/product stabilization. Until now, the 
crystal structures of the homologs EndA from Aliivibrio salmonicida (VsEndA) 
[130], Vibrio cholerae (VcEndA) [131] and vulnificus [132] have been deposited 
in the PDB library.  

EndA shares with other nucleases a ββ-α motif, formed by two antiparallel 
β-strands, and a perpendicular α-helix (Fig 6). The ββ-α motif was first 
described by Kühlmann et al. [133], observing the conservation of this 
supersecondary structure also in the structure of the His-Cys box homing 
endonuclease from Physarum polycephalum (I-Ppoi) [134], the non-specific 
nuclease from Serratia marcescens (Smn) [135], the HNH DNAses Colicin-E7 
and 9 [136,137], and the Endonuclease VII from the bacteriophage T4 
(EndVII) [138]. Kühlmann et al. also called this motif β-finger and lately also 
the name His-finger has been employed. The β-finger was later discovered in 
the crystal structures of the HNH homing endonuclease I-HmuI from Bacillus 
phage SPO1 [139], the restriction endonuclease Hpy99I from Helicobacter 
pylori [140], Nuclease A from Anabaena sp. (NucA) [141], Endonuclease G 
from Streptococcus pneumoniae (EndoG) [142], Endonuclease A from 
Streptococcus pneumoniae (EndA) [143], and restriction endonuclease PacI 
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from Pseudomonas alcaligenes [144]. The ββ-α motif superfamily can be 
divided into three different families: a) His-Cys box nucleases (I-PpoI), b) HNH 
nucleases (colicinE7/9, I-HmuI and Hpy99I) and c) DRGH nucleases (EndA, 
EndoG, NucA, Smn and EndVII). 

 
Fig 6: ββ-α  motif (red) with the conserved asparagine (Asn), coordinating the Mg2+, and 
the histidine (His). VcEndA bound to DNA (ribbons in blue) is represented in the picture. 

The ββ-α motif is located at the center of the active site and it is involved in 
cation binding through a conserved asparagine, and in catalysis through a 
conserved histidine. The phosphodiester bond is cleaved through an acid-base 
mechanism, where a) a histidine abstracts a proton from a water in the bulk 
solvent, b) the hydroxide ion attacks the phosphate in a SN2-like reaction, in 
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line with the P-O3' bond, and c) the leaving O3' oxygen is protonated. The TS 
structure is a trigonal bipyramidal phosphorane. 

3.2.  EndA from Aliivibrio salmonicida  (VsEndA) and 
Vibrio cholerae  (VcEndA) 

VsEndA belongs to the salmon pathogen Aliivibrio salmonicida, which is a 
psychrophilic and halophilic gram-negative bacteria living in the ocean [145]. 
VcEndA is expressed by the notorious Vibrio cholerae (responsible for the 
cholera disease), which instead is a mesophilic and halotolerant (does not need 
NaCl for growth) gram-negative bacteria, preferring brackish/estuarine waters 
[145]. VsEndA displays the classical features of psychrophilic enzymes, with 
higher kcat and KM (5-37 ˚C), and a lower melting temperature (Tm) than 
VcEndA (see Table 1). 

Table 1: Kinetic parameters at 15˚ and 25˚C and temperature of melting (Tm) for VsEndA 
and VcEndA [146].  

 

 

Parameters VsEndA VcEndA 

kcat (s-1) 
15˚ 14.7 3.10 

25˚ 18.5 7.18 

KM (nM) 
15˚ 

 

202 131 

25˚ 169 156 

Tm (˚C) 44.8 52.8 

∆G‡ (kcal!mol-1) 
25˚C 15.72 16.27 

∆H‡ (kcal!mol-1) 
25˚C 7.93 17.63 

T∆S‡ (kcal!mol-1) 
25˚C –7.8 1.36 
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VsEndA has an optimal NaCl concentration for activity of 425 mM and an 
optimal pH of 8.5-9.0. VcEndA instead has an optimum of 175 mM [NaCl] and 
an optimal pH of 7.5-8.0. Regarding the reaction activation parameters, the 
psychrophile follows the CAEs trend, displaying lower ∆H‡ and a more 
negative T∆S‡ than the mesophile [146] (Table 1), while maintaining similar 
∆G‡. 

The structures of VsEndA and VcEndA are composed of 207 and 208 amino 
acids, respectively. In the psychrophile a lysine is inserted in position 52 
(52A), while in the mesophile a proline and an asparagine are inserted in the 
C-terminal. VsEndA and VcEndA display 72% sequence identity (Fig 7), and 
the superimposed PDB structures (on the backbone) have 0.75 Å root mean 
square deviation (rmsd) [130,146].  

 
Fig 7: Sequence alignment of VsEndA (2PU3) and VcEndA (2G7F). The green numbers locate 
the disulfide bridges. The secondary structures are based on VsEndA PDB X-ray (2PU3) [130]. 

Together with the catalytic Mg2+, a Cl- ion is also deeply inserted in the 
protein core and most likely serves a structural role. In the comparison by 
Altermark et al. [130] of the crystal structures of VsEndA (2PU3) and VcEndA 
(2G7F), the most striking difference found was the number of lysines, twelve 
more in the cold-active. Consequently, the isoelectric point pI of VsEndA is 
higher than VcEndA, 9.6 and 8.6 respectively. The authors suggested both a 
possible role for cold- and salt-adaptation for the increased number of 
positively charged residue. In particular, the comparison of the electrostatic 
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surface potential calculated at optimal salt concentration, shows similar 
values. This would suggest that most of the lysines in VsEndA serve to make 
the binding of the negatively charged DNA feasible at higher NaCl 
concentration. 

The number of disulfide bridges, 4, is the same in the two variants. 
Concerning the intramolecular interactions the cold-active enzyme has lower 
number of salt-bridges (–2), and a decreased amount of hydrogen bonds (–10). 
The number of glycines is decreased by one residue in VsEndA (contrary to the 
general findings in the literature), while the prolines are two less in VsEndA, 
although one is located at the second last residue in the C-terminal, and 
should not affect enzyme stability.  
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Computational Methods 

In the next sections the different computational techniques I have employed 
in my project will be introduced. They are divided in two parts, where the first 
describes MD and related methods theory (sections 4.1-4.5). In the section 4.6 
the EVB methodology will be introduced. 

4.1.  Molecular Mechanics 

Molecular Mechanics (MM) allows to calculate in silico energies and 
conformations of molecules by modeling atoms and bonds as ball and spring, 
respectively. Such treatment of molecules with the exclusion of electrons from 
calculations is made possible by the Born-Oppenheimer approximation. This 
assumption decouples, in fact, electronic and nuclear motions, due to the large 
difference in mass and since the electrons rapidly follow the new position of 
the nuclei. MM calculates the ground-state molecular energies based only on 
the position of the nuclei. As such, MM is inherently not suitable for the 
calculation of properties dependent upon the electronic distribution. 

The molecular energy is calculated in MM through empirical or semi-
empirical energy functions depending on the atomic positions of the system rN, 
known as force fields: 
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( 14 )	

The first four terms represent the bonded part of the equation, and calculate 
bond stretching, angle and out of plane bond bending and bond rotation or 
torsion. The harmonic potential is employed for the bond, angles and improper 
torsions, where kb, kθ and kφ are the relative force constants, and b0, θ0 and 

φ0 are the equilibrium values. The periodic torsional potential models the 

energy variation upon bond rotation. Here, Vn is the force constant, n is the 
multiplicity of the function (number of minima in the function), γ the phase 

shift (value of the torsion angle in the minima), and ω the torsion. The non-

bonded part estimates the electrostatic and van der Waals (vdW) interactions 
between atoms separated by more than three bonds, through Coulombic and 
Lennard-Jones (12-6) potentials. In the L-J term, ε ij represents the well 

depth of the interaction potential and σ ij is the collision diameter, i.e. the 

interatomic distance where the interaction energy is zero. The 𝝈𝒊𝒋
𝒓𝒊𝒋

𝟏𝟐
 term 

accounts for the repulsive part of the potential, while the − 𝝈𝒊𝒋
𝒓𝒊𝒋

𝟔
 term for the 

attractive part. Bond, angle and improper terms are considered as 'hard' 
degrees of freedom, as the high values of their force constants makes it 
difficult to deviate from equilibrium values. Torsions and non-bonded terms 
account for most of the variation in the potential energy U(rN).  
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The main force fields for biomolecules are CHARMM [147,148], Amber [149] 
and OPLS [150]. The potential functional form given in Eq. 14 is shared 
among these force fields, but each of them is characterized by additional terms 
accounting for special interactions (e.g. H-bonds). Force fields parameters are 
calibrated against experimental or computational data (QM analysis) of small 
molecules. One key attribute of force fields is their transferability, as their 
parameters are typically calibrated on a small set of molecules, which can then 
be applied to other larger molecules, including proteins, nucleic acids, lipids, 
carbohydrates etc. The final concept defining force fields is atom types. They 
are atom-related and they describe the atom number, hybridization and the 
local environment. Each atom type bears its own parameters.  

4.2.  Molecular Dynamics 

In computational chemistry one of the key interests is finding minima on 
the potential energy surfaces. These minima are usually the most populated 
regions of the surface and here molecules are in their most stable 
conformation. When dealing with large biomolecules, the hypersurface can be 
rugged and can have many different local minima. For properties calculation, 
free energies for example, it is important to sample the phase space in order to 
locate the thermally accessible conformations of a biomolecule. Molecular 
dynamics (MD) is a widespread method to sample the phase space and it has 
been widely employed for studying proteins/enzyme, nucleic acids and 
membranes etc. [151–156].  

MD generates a time dependent trajectory of configurations by numerically 
integrating Newton’s equation of motion (F=ma). This trajectory describes the 
positions and velocities of all the particles in the system at selected points in 
time [157]. By calculating the force acting on atom i (Fi) at time t, the 

acceleration, ai, of atom i can be derived. According to Newton’s second law: 
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where mi is the mass of the given atom. The force, Fi, in Eq. 15 is calculated 
from the negative gradient of the potential energy function, −∇!𝐔𝐩𝐨𝐭, i.e. the 

function from Eq. 14. The atoms acceleration is then combined with velocity 
v(t) and position r(t), at time t, to calculate the position and the velocity at 
time t+δt. The integration proceeds in small timesteps δt during which the 
forces are assumed to be constant. There are different algorithms to integrate 
the equations and the most used ones are the Verlet [158] and the leapfrog 
[159] algorithms. The Verlet method considers the accelerations and positions 
at time t and the positions from the previous step r(t-δt), to calculate the new 
positions r(t+δt): 

 𝑟! 𝑡 + 𝛿𝑡 = 𝑟! 𝑡 + 𝛿𝑡𝑣! 𝑡 +
1
2 𝛿𝑡

!𝑎! 𝑡 +∙∙∙ 
( 16 ) 

 𝑟! 𝑡 − 𝛿𝑡 = 𝑟! 𝑡 − 𝛿𝑡𝑣! 𝑡 +
1
2 𝛿𝑡

!𝑎! 𝑡 −∙∙∙ 
( 17 ) 

These two Taylor expansions that approximate the positions, velocities and 
accelerations, when added give rise to: 

 𝑟! 𝑡 + 𝛿𝑡 = 2𝑟! 𝑡 − 𝑟! 𝑡 − 𝛿𝑡 + 𝛿𝑡!𝑎! 𝑡  ( 18 ) 

The velocities can then be derived as: 

 𝑣(𝑡) = 𝑟! 𝑡 + 𝛿𝑡 − 𝑟! 𝑡 − 𝛿𝑡 /2𝛿𝑡 ( 19 ) 

Since at time t=0 the positions are known, but not the velocities, initial 
velocities are assigned randomly from the Maxwell-Boltzmann distribution, 
P(vi), at a given temperature: 
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𝑃(𝑣!) =
𝑚!

2𝜋𝑘!𝑇
𝑒𝑥𝑝 −

1
2
𝑚!𝑣!!

𝑘!𝑇
 

( 20 ) 

Thanks to statistical mechanics formulations, macroscopic thermodynamics 
properties can be computed from the simulation of a microscopic system. 
These properties are calculated as time averages, since their values fluctuate 
over time, and represent an average over all the microscopic sub-states from 
which the system is composed of: 

 
𝐴!"#$!%# = lim

!→!

1
𝑡 𝐴(𝑟!(𝑡),𝑝!(𝑡))𝑑𝑡

!

!!!
 ( 21 ) 

where Aaverage is the average thermodynamic property over time. In theory, to 
acquire such a value, all the phase space (6N dimensional space formed by 3 
rN and 3 pN) should be sampled. According to the ergodic hypothesis, one can 
assume that the time average can be approximated by an ensemble average 
𝑨 , where an ensemble is a set of replicates of the system: 

 𝐴!"#$!%# = 𝐴 = 𝐴(𝑟! ,𝑝!)𝜌(𝑟! ,𝑝!)𝑑𝑟!𝑑𝑝! ( 22 ) 

where ρ(rN,pN) is the Boltzmann distribution: 

 
𝜌(𝑟! ,𝑝!) = 𝑒

!!(!!,!!) !!!
!  

( 23 ) 

where, for a system of n atoms, rN and pN are the atomic positions and 
momenta, E is the state energy, kB is the Boltzmann constant, and Q is the 
partition function.  

 
𝑄 = 𝑒!!!!

!

!!!

 ( 24 ) 

The ergodic hypothesis assumes that not all the states in the phase space 
contribute equally to Aaverage, but rather the most populated states do. In the 
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computation of 𝑨  is included the Boltzmann distribution to account only for 
the relevant states.  

Eq. 22 can be further simplified in a clearer form: 

 
𝐴 =

1
𝑀 𝐴(𝑟!,𝑝!)

!

!!!

 ( 25 ) 

where ti is the time at the different time step, and M is the total number of 
configurations in the trajectory. 

4.3.  Force field models to represent ions 

It has been estimated that approximately 30–40% of proteins requires one 
or more metal ions to be able to carry out their biological function in cells 
[160,161]. Metal ions have a central role in protein stability/function, folding 
and ligand binding. Furthermore, they are essential factors for the 
stabilization of nucleic acids conformation. Divalent cations (mostly Mg2+) are 
employed by most nucleases for hydrolysis of the phosphodiester bond [162].  

An efficient treatment of metal ions for ligand coordination geometry and 
distances is essential in force fields. In MM, there are multiple ways to model 
metal ions in biomolecules and solution. The main ones are: 

• The bonded model [163,164]; 
• The non-bonded soft-sphere model [165,166];  
• The cationic dummy-atom model [167–170]; 

The bonded model treats the interaction and geometry of metal ions with 
coordinating residues through bond, angle, torsion, electrostatic and vdW 
terms. It has the disadvantage of not allowing geometry interconversion or 
ligand release, and it is characterized by a large number of parameters to 
optimize, which limits transferability. The non-bonded model is the simplest 
one since it treats the interactions simply through Coulombic and vdW terms 
and it does not impose any geometrical constraint. It is described by a point 
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charge and only the Lennard-Jones parameters need to be optimized. The 
main drawback is its inadequacy in simulating multinuclear metal centers 
[169] and in describing transition metals [171]. Finally, the cationic dummy-
atom model defines the metal ion as a metal core surrounded by six cationic 
dummy-atoms, placed along the lines of coordinating dative bonds in an 
octahedral arrangement. Each dummy atom has a charge of +q, a minimal 
portion of the total mass and a negligible vdW potential. The metal core has a 
charge of n-6q (to ensure the total charge is +n), a larger part of the total 
mass and vdW potential. The octahedral geometry is fixed by bond, angle and 
torsion potentials between the dummy-atoms and the metal core. The 
coordination of the ligand is modeled only by the electrostatic interaction of 
the negatively charged atoms with the positively charged dummy-atoms. 

The geometry of the dummy complex itself is kept rigid by the imposition of 
large force constants on the metal−dummy bonds. Overall rotation of the 
dummy-atom around the nucleus is allowed, and no internal forces are 
associated with the rotation, since there are no bonds between the dummy 
complex and the surrounding ligands. 

 
Fig 8: Cationic dummy-atom model. In grey the negatively charged metal core, while in light blue 
the positively charged dummy-atoms. 

Delocalization of the ion charge away from the center is advantageous in the 
case of multi-nuclear metal centers, as it prevents excessive repulsion between 
the metal centers. The parameters are generally optimized through free 
energy perturbation and molecular dynamics (FEP/MD) to reproduce the 
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experimental or QM derived hydration free energy and radial distribution 
functions (RDF) in aqueous solution (M-O distances). In our case, the 
parameters had to be adapted from OPLS-AA to CHARMM. In fact, in these 
two force fields the definition of the L-J potential is different. 

For OPLS-AA: 

 
U!!!(!"#$) =

A!"
r!"!"

−
B!"
r!"!

 ( 26 ) 

where the geometric parameters Aij and Bij are equal respectively to 4εσ12 and 4εσ6. Aij and 

Bij are combined by geometric rule Xij = (XiiXjjj)1/2. In CHARMM instead the L-J potential 

is: 

 
U!!! !"#$%% = ε!"

!!"#!"

!!"

!"
−

!!"#!"

!!"

!
  ( 27 ) 

where ε ij is given by the geometric rule, while Rminij, which is equal to σij, by the 

arithmetic rule (Rminij = [Rmini+Rminj]/2). 

4.4.  Methods for comparing ensembles similarity 

4.4.1. Principal Component analysis (PCA) 

Principal Component Analysis (PCA), or Essential Dynamics, is a 
multivariate statistical method applied to MD trajectories to reduce the 
number of dimensions describing the system dynamics [172]. PCA separates 
the configurational space sampled by MD in two subspaces: an essential one 
formed by few degrees of freedom and consisting of anharmonic motions, and 
one physically constrained subspace, considered less relevant for the protein 
dynamics. The essential subspace consists of a set of collective motions 
characterized by low frequency modes, i.e. large and slow conformational 
changes, as opposed to high frequency modes, i.e. local vibrations.  

The trajectory is described by a set of vectors x(t), where x is a 3N-
dimensional column vector representing the Cartesian coordinate of a system 
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formed by N atoms. In order to exclude overall translational and rotational 
motion, all the different configurations are fitted to a reference structure 
(which can be the first one or an average). The symmetric covariance matrix C 
(3Nx3N) of the positional deviations can then be calculated from:  

 
𝐶!" =  

1
𝑠  𝑥!(𝑡)− 𝑥! (𝑥!(𝑡)− 𝑥! )! 
!!!

!!!

 

 

( 28 ) 

where S is the total number of configurations in the trajectory, while xi and xj 

are the Cartesian coordinate for atom i and j. The brackets < > represent the 
average over time. By diagonalization of the covariance matrix of the Cα 
displacement, the essential dynamics of the simulation is obtained: 

 𝐶 =  𝑇Λ𝑇! 
( 29 ) 

where T is a matrix of column eigenvectors (η i) and Λ  is the diagonal matrix 

containing the corresponding eigenvalues. If S > 3N there will be in total 3N 
eigenvalues. Each eigenvalue is a representation of the mean squared 
displacements of atoms along the corresponding eigenvector. If one plots the 
eigenvalues against the respective eigenvectors (scree plot), one can see that 
few eigenvectors have high eigenvalues. This means that most of the system 
variation is contained in the first few eigenmodes. 

The trajectory x(t) can be projected on the eigenvectors giving rise to the 
principal components: 

 𝑝(𝑡) = 𝑇!𝑥(𝑡) 

 

( 30 ) 

where p(t) are the new rotated coordinates and TT  is the matrix containing 
the eigenvectors. The projection can be done on single eigenvectors visualizing 
the corresponding eigenmode. 

PCA is often employed for comparing the sampling of different ensembles 
belonging to the same system or to a similar one: multiple replicas, apo versus 
holo enzyme, open versus closed conformation, wild-type versus mutant 
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proteins etc. In fact, the ensembles to compare must have the same number of 
atoms for the covariance matrix and overall 3D geometry similarity.  

The root mean square inner product (rmsip) can be used to measure the 
degree of overlap between the essential subspaces of two ensembles [173]. The 
inner product between the first ten eigenvectors is normally computed: 

 
𝑟𝑚𝑠𝑖𝑝 =

1
10 𝜂!𝜂!

!
!"

!!!

!"

!!!

!
!

 

 

 ( 31 ) 

where η i and η j  are the eigenvectors of the two ensembles. This value can 

range from 0 (when there is no correlation in the sampled phase space) to 1 
(for completely overlapping simulations).  

4.4.2. Clustering-based Ensemble Similarity (CES) and 
the Dimensionality-Reduction-based Ensemble Similarity 
(DRES) 

Two different methods can be employed to calculate the overlap between 
two ensembles generated by MD, namely the Clustering-based Ensemble 
Similarity (CES) and the Dimensionality-Reduction-based Ensemble 
Similarity (DRES) [174]. At the basis of these two methods there is the 
estimation of the probability density of conformations sampled by two 
trajectories. The advantage of comparing probability distributions, as opposed 
to covariance matrices of atomic positional deviations, is that they not only can 
suggest if the conformations between two ensembles are similar, but also 
whether they occur at the same frequency. 

Their algorithms consist of two steps: first the probability densities are 
derived and subsequently they are compared to define the similarities between 
the ensembles. The difference between the two probability distributions is 
calculated using distance measures, derived from information theory. The CES 
and DRES methods differ in the first step only. CES employs an Affinity 
Propagation (AP) clustering [175] algorithm to separate the conformations in 
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different clusters according to similarity. The Cα RMSD is used as criterion for 
comparison of the different structures of MD trajectories. The number of 
clusters is determined by the value k, also known as preference, which 
constitutes the likelihood of a conformation to act as a cluster centre (or 
exemplar). The preference value k is set equal for all conformations, so that 
they are all likely to become centre of the cluster. When k is set as the total 
number of structures for an ensemble, each conformation will be part of its 
own cluster. On the contrary, a value equal to zero means that all 
conformations will belong to the same cluster. The algorithm is initialized by 
setting all the data points as exemplar and then it iteratively selects the 
optimal exemplar and assigns them the other data points based on similarity. 
The final clusters population for an ensemble is taken as the probability 
density over the discrete number of clusters. The main limitations of the CES 
methods are that differences between structures in the same cluster are not 
taken into account, as well as similarity between those in different clusters. 
The DRES methodology employs the Stochastic Proximity Embedding (SPE) 
[176] to embed the ensemble conformational space in a lower dimensional 
subspace, while maintaining the similarity between different conformations. 
Since it is a stochastic algorithm, it should be run multiple times to assess the 
validity of the results. SPE represents each ensemble conformation as a d-
dimensional vector and seeks a collection of vectors where the pairwise 
Euclidean distance (dij) between the vectors resembles the Cα RMSD (rij) of 
the represented structures. The method starts by initializing the d-
dimensional vectors and by iteratively refining them, randomly picking two 
vectors and adjusting their d-coordinates to get dij ≈ rij. The coordinates are 
optimized by minimization of the "stress" function: 

 S =  
(d!" − r!")! / r!"

r!"
 

( 32 ) 

If rij  > rc (RMSD cutoff defining local neighbors: 1.5 Å) and dij ≥  r ij, meaning 
nonlocal neighbors far on the d-dimensional map, the coordinates are kept and 
new points on the map are taken. If rij ≤ rc or if rij > rc and dij < rij the 
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coordinates are updated. Finally, a Kernel Density Estimation (KDE) [176] is 
employed to get the densities underlying d-dimensional subspace. 

Given two ensembles (or statistical populations) A and B, the distance 
between their corresponding density functions pA and pB (derived from CES or 
DRES) can be computed through the Kullback-Leibler divergence [177]: 

 𝐷!"(𝑝!,𝑝!)  =  𝑝!(𝑥)𝑙𝑜𝑔
𝑝!(𝑥)
𝑝!(𝑥)

𝑑𝑥 
( 33 ) 

where DKL(pA,pB) is always positive and it is equal to zero only in case 
pA=pB. The main problem with this distance measure is that it is not 
symmetric and so DKL(pA,pB) ≠ DKL(pB,pA). In order to have a symmetric 

measure the Jensen-Shannon divergence is preferable: 

 𝐷!"(𝑝!,𝑝!) = 0.5(𝐷!"(𝑝!, (𝑝!,𝑝!)/2)+ 𝐷!"(𝑝! , (𝑝!,𝑝!)/2) ( 34 ) 

Both CES and DRES employ the DJS (Eq.( 34 ). The values span from 0 to 
log(2), where a 0 value means that the two distributions are identical. The 
software Encore is capable to carry out such analyses [178].  

4.5.  Protein Structure Network (PSN) analysis 

The 3D structure of proteins is governed by non-bonded interactions 
(together with bonded ones) between side-chain/backbone atoms such as 
hydrogen bonds, salt-bridges, hydrophobic and aromatic interactions. These 
interactions influence protein stability/dynamics and their evolution is 
involved in phenomena such as folding/unfolding, ligand binding, amino acid 
substitutions, protein-protein interactions, allostery etc. Graph Theory has 
been extensively applied to characterize the overall interaction networks of 
proteins [179] in different types of studies: protein structural comparison 
[180], conformational transitions , drug discovery [181], structural adaptation 
to temperature [182], folding theory [183], allosteric regulation [184,185], 
protein-protein binding [186]. The advantage of employing Graph Theory to 
analyze biomolecular structures is the simplification of the complex 3D 
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organization into a mathematical framework, retaining all the connectivity 
information. This representation in the form of an adjacency matrix, keeping 
trace of interacting residues, allows analysis using an arsenal of network 
based mathematical concepts. 

This mathematical framework treats protein residues as nodes (elements or 
vertices) and their non-bonded interactions as edges (connections). Two 
vertices vi and vj are defined as adjacent if there exists an edge eij connecting 
them, while two edges are adjacent if they share a common node. The degree 
of a vertex vi, degi, denotes the number of vertices adjacent to it. Simple 
graphs are employed for the study of protein topologies, since there is no need 
for multiple edges between two vertices, as opposed to multigraphs. 
Furthermore, the graph is often weighted, meaning that edges are 
discriminated giving different weights to each of them. The weight is related 
to the strength, which can be expressed with different interaction measures: 
frequency of occurrence or energy interaction. Finally, the distance between 
two nodes, l ij,  is defined in terms of number of edges connecting the two 
vertices. PSN analysis can be carried out on X-ray structures or NMR 
ensembles, but equilibrium (or average) properties are obtained from the 
study of ensembles generated by MD or Monte Carlo simulations, which 
explore the phase space of thermally accessible protein states. 

In Graph Theory proteins are described as "small-world" networks, 
characterized by short average path length between each amino acid, 
mediated by key residues with high connectivity. This concept was theorized 
by Watts and Strogatz [187] and named by analogy with the small-world 
phenomenon, also known as six degrees of separation. In graph formality, 
these key residues are defined as hubs, i.e nodes with a high degree degi. 

These hubs have been found to be hotspots for stability [182], protein folding 
[188], allostery [189] and protein-protein interactions [186], since they 
constitute central connections mediating the short path lengths between other 
vertices. 



40 

 

Together with hubs other network parameters defining topological 
organization can be studied: clusters, cliques, communities and 
communication Paths [190]. A connected set of nodes in a network is referred 
as a cluster (Fig 9b). Cliques are instead defined as a set of n nodes, where 
each node is connected to each other (Fig 9c). The conjunction of cliques 
through common nodes creates a community. Finally, communication paths 
are employed to see which is the shortest (by number of edges) route 
connecting two residues. The study of this parameter is particularly of interest 
in the case of allostery, where conformational change in one domain can 
induce variations in other parts of the protein. Also, the study of the effect 
induced by mutations over shortest paths can give insightful findings related 
to the role of certain amino acid substitutions. 

 
Fig 9: Different network parameters that can be studied to define the topological organization of a 
protein: a) hub, b) cluster, c) clique and d) community. 

In the case of cold adaptation, comparison of protein networks from 
homologs with different temperature optima, i.e psychrophilic vs mesophilic-
thermophilic, can give fundamental insight into structural adaptation to 
temperature changes. For example, clusters of hydrophobic residues in the 
protein core or on the surface, as well as clusters of salt-bridges, were found to 
affect protein stability. 

There are different available software for studying PSN in biomolecules, as 
WORDOM [191], Vishgraph [190], Bio3d [192], GraProStr [193], NAPS [194], 
Cytoscape [195] etc. 
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4.6.  Empirical Valence Bond (EVB) 

EVB is a semi-empirical methodology that can be employed to calculate free 
energy profiles for reactions in solutions and enzymes [196,197]. It is 
calibrated to the energetics of a reference reaction (the equivalent uncatalyzed 
reaction in solution), where the data can come from experimental analysis or 
Quantum mechanical (QM) calculations. In particular, this technique is 
employed to study enzyme catalysis by computing the effect of the 
surroundings over the chemical reaction when bringing the reacting fragments 
from water to the enzyme. Normally the reaction energetics is computed by 
QM methods, such as Density Functional Theory (DFT) for a small model 
system. When dealing with whole proteins, the calculations become too 
computationally expensive for QM methods. EVB is then an affordable 
solution to account for the effect of the entire surroundings (Protein+Solvent) 
over the reacting fragments. 

The EVB approach uses MD for sampling and employs the Free Energy 
Perturbation (FEP) technique to drive the reaction from reactant to product, 
passing through the transition state. As in Valence Bond (VB) theory, the 
reaction is described by a set of diabatic (or resonance) states, representing 
reactant, intermediates and product structures. By mixing this states the 
reaction potential energy surface (PES), and more importantly the Transition 
State, (TS) can be obtained. The energy of each state i is represented on the 
diagonal elements (Hii) of the EVB Hamiltonian matrix, and is given by the 
force field function in Eq. 35: 

 𝐻!!  =  𝜀! = 𝛼!"#! + 𝑈!"#,!!! + 𝑈!",!!! + 𝑈!",!"! + 𝑈!!!  ( 35 ) 

where the constant term α igas  is the gas-phase energy of diabatic state i, 

with all the fragments at infinite separation. The term Ubnd,rr represents the 
bonded interactions within the reacting atoms (bond, angles, torsions and 
impropers). In order to model bond formation and breaking, the Morse 
potential [198] is chosen for the reacting fragments, while for the rest of the 
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system the normal harmonic potential is employed. The non-bonded potentials 
Unb,rr, Unb,rs and Uss estimate the electrostatic and van der Waals 
interactions within the reacting atoms (rr), between the reacting fragments 
and the surrounding atoms (rs) and within the surroundings (ss). The off-
diagonal term Hij, representing the adiabatic mixing, is descripted either by a 
constant or an exponential function of the distances between reacting atoms in 
Eq. 36: 

 𝐻!" = 𝐻!" = 𝐴!"𝑒 !!!"!!"  
( 36 ) 

where rij is the distance between a pair of selected atoms (usually atoms 
involved in bond forming/breaking) and Aij  and μ ij are parameters to fit on 

experimental or QM data. The off-diagonal Hij and the gas α i parameters are 

calibrated on the reference reaction free energies, and then are kept constant 
also in the enzyme simulations. 

The adiabatic ground state energy Eg  and the corresponding eigenvector cg 
are obtained by solving the secular equation: 

 𝐻!"#𝑐! = 𝐸!𝑐! 

 

( 37 ) 

The free energy function, ∆g, is obtained by sampling the reactant state 
with MD simulation. In order to adiabatically drive the system to the product 
state through the TS, Free Energy Perturbation (FEP) needs to be coupled 
with MD. By using a mapping potential εm, which is composed by the EVB 

diagonal potentials, the system can be driven from reactant (ε1) to product 

state (ε2,) through transition-state, by the linear combination in Eq. 38: 

 𝜀! = 𝜀!(1− 𝜆!)+ 𝜀!𝜆!     (0 ≤ 𝜆! ≤ 1) 

 

( 38 ) 

where the factor λm is changed in n steps from 0 to 1. When λm  = 0, the 

mapping potential match the reactant state and at 1 the product state. 
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The free energy ∆G(λm) associated with changing the factor λm  from 0 to 

1 is calculated through Eq. 39: 

 
𝛥𝐺(𝜆!) = 𝛿𝐺(𝜆! → 𝜆!!!)

!!!

!

 

 

( 39 ) 

The free energy on the ground state potential surface, ∆G(x), along the 
coordinate x, can then be calculated using FEP-umbrella sampling (FEP-US) 
in Eq. 40: 

 𝛥𝐺(𝑥) = 𝛥𝐺(𝜆!)− 𝑅𝑇 ln 𝛿(𝑥′− 𝑥) ∙ 𝑒𝑥𝑝{−[𝐸!(𝑥′)− 𝜀!(𝑥′)]/𝑅𝑇} ! ( 40 ) 

The reaction coordinate x  corresponds to the energy gap (∆ε = ε1 - ε2) 

between the valence bond states. 

4.6.1. Calculation of activation parameters 

Often the study of enzymatic reaction cannot be limited to free energies (as 
for cold-active reactions), but the ∆G‡ needs to be further decomposed in 
enthalpic and entropic contribution (Eq. 10). This can be done experimentally 
by calculating the reaction rate at different temperatures, and then by plotting 
1/T versus ∆G‡/T (Fig 10).  
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Fig 10: Example of Arrhenius plot. The thermodynamics of VsEndA (blue) and VcEndA (black) are 
compared. Figure from paper III. 

The points in the plot are then connected together by linear regression and the 
∆H‡ value is derived from the line slope: 

 ∆𝐻‡ =
(𝑇!!! − 𝑇!! )(∆𝐺!

‡ ∙ 𝑇!!! − ∆𝐺‡ ∙ 𝑇!! )!
!!!

(𝑇!!! − 𝑇!! )!!
!!!

 ( 41 ) 

while ∆S‡ is calculated as follows: 

 

 

 ∆𝑆‡ = ∆𝐺‡ ∙ 𝑇!! − ∆𝐻‡ 𝑇!!  ( 42 ) 
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5   
 
Summary of the papers 

In the following section I will describe the main results from the papers in 
this thesis and I will outline the story line that connects them together. 

The main goal of my PhD has been to seek the structural features that 
make VsEndA adapt to cold temperatures by means of MD and EVB 
simulations. As already stated in the Introduction, the most solid finding 
discovered in cold adaptation theory is that the lower activation enthalpy is 
responsible for counteracting the exponential decrease of kcat with lowering the 
temperature. For this reason, we were particularly interested in those amino 
acid mutations able to change the balance ∆H‡ / ∆S‡.  

To study enzyme cold adaptation we chose the psychrophilic and mesophilic 
endonuclease A, VsEnda and VcEndA, as model systems. Altermark et al. 
[146] and Niiranen et al. [199] characterized experimentally both VsEndA and 
VcEndA, collecting physiochemical properties and three crystal structures of 
the apo enzymes (2PU3 for VsEndA [130] and 2G7F/2G7E [146] for VcEndA).  

Our starting point (paper I) was to carry out multiple sequence alignment 
(MSA) between VsEndA and closely related sequence homologs from both 
mesophilic and psychrophilic/psychrotolerant organisms. The goal was to 
isolate common amino acid substitutions within the 
psychrophilic/psychrotolerant sequences and at the same time to exclude 
substitutions caused by genetic drift or common with other mesophilic 
homologs. The standard procedure for sequence analysis is to align the studied 
protein with few homologs whose X-ray structure has been solved. By 
expanding the MSA with homologous sequences characterized by sparse 
identity scores, we have shown that the data are more statistically meaningful 
and clear. It should be noted that MSA can just be a preliminary and 
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approximate analysis, due to the inherent uncertainties associated with 
multiple subtypes for single microorganism and the unrefined classification of 
microorganisms according to Topt. Nevertheless, the amino acid substitutions 
T120V, I141S and A166S (from VcEndA to VsEndA) displayed clear 
psychrophilic trends in this analysis (Fig 11), where the ones in positions 120 
and 166 are located in the enzyme core, while 141 on loop3 is solvent-exposed. 
Secondly, we characterized the dynamical behavior of the two homologs by 
moving the systems with MD simulations. The RMSF profiles (Fig 14) 
showed that there were not significant rigidity/flexibility differences between 
the two enzymes (further discussions will follow in the next section). Finally, 
the study of the interaction network underlying the trajectories of the two 
systems was characterized with PSN analysis. The residues V120 (threonine 
in the mesophile) and A166 (serine in the psychrophile) form two hydrophobic 
hubs in the core of VsEndA and VcEndA, respectively. T120V in particular 
modulates the interaction pattern of Y43, which is also involved in binding the 
Mg2+ coordinating residue E79. The threonine in VcEndA creates an 
alternative hydrogen bond acceptor, possibly affecting the ion binding and/or 
catalysis. Two clusters of salt-bridges, centered on Arg222 and 225, are 
present in the mesophile and can possibly explain the increased rigidity of its 
C-terminal compared to that of VsEndA.  
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Fig 11: Multiple sequence alignment of psychrophilic, psychrotolerant and mesophilic 
homologs sequences of VsEndA. The sequences of psychrophilic, psychrotolerant and mesophilic 
enzymes are highlighted in turquoise, blue and black, respectively. The hand icon marks the amino acid 
substitutions selected in this study, whereas the pin marks those analyzed by Niiranen et al. [199]. The 
green numbers highlight the disulfide bridges. The sequences are ranked by sequence identity. Figure 
from paper I. 
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In the second paper, a successful EVB model was created for the reaction of 
VcEndA, which was able to reproduce the activation free energy of the 
simulated reactions. Since the protein structure was available only in the apo 
form, the reactant structures with enzyme-DNA complex had to be generated. 
The atomic coordinates for DNA were taken from the crystal structure of the 
homing endonuclease I-Ppoi (1CZ0 [200]), as suggested by the QM/MM work of 
Bueren-Calabuig et al. on Vvn [201]. This endonuclease shares only the ββ-α 
motif with EndA, but nevertheless the two active sites are perfectly 
superimposable with respect to the reacting fragments geometries and 
distances. To be able to reproduce a double coordination of the reactive 
phosphate to the Mg2+ (through O3' and OP1) the classical non-bonded ion 
model had to be dismissed in favor of the dummy-atom model [168]. QM 
optimizations of the reactant state and transition state revealed that the 
reaction mechanism proceeds through a concerted proton donation from 
nucleophilic water to the basic His80, attack of the OH- on the phosphate and 
O3' release. Li et al. [132] suggested a different reaction mechanism for EndA, 
based on the crystal structure of Vvn. In their view the reactive phosphate was 
binding the Mg2+ only with the non-bridging oxygen OP1. We tested this 
hypothesis by EVB simulations and we showed that single coordination of the 
magnesium ion, through OP1, was not catalytically likely, since the computed 
activation free energies were between 40 and 60 kcal/mol.  

In the last paper, we tested the EVB model to calculate the experimental 
activation parameters, ∆H‡ and ∆S‡, for VsEndA and VcEndA. An Arrhenius 
plot was computed in silico by simulating the reaction at eight different 
temperatures, from 275K to 310K, and deriving ∆S‡ and ∆H‡ (as descripted in 
section 4.6.1 of the Methods).  The models were indeed able to determine the 
activation parameters and, most importantly, showed for VsEndA a lower 
activation enthalpy and entropy than for VcEndA. Several mutations were 
then tested in silico for both systems: N71K (also experimentally mutated, 
with kinetic data available), T120V and S141I. The only mutation able to 
affect the activation parameters was S141I, partially "transforming" the cold- 
in warm-active enzyme and vice versa (Fig 12). Finally, the hypothesis of 
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Isaksen et al. [128,129] on "surface softness" and its effect on thermal 
adaptation was examined in VsEndA. By decreasing the radius of the 
simulated spheres and gradually constraining the outer parts of the enzyme, 
we were also able to show that the dynamics of the protein surface can tune 
the ∆H‡/∆S‡ balance. Indeed, with a simulated sphere of radius 20 Å the 
psychrophilic activation parameters were almost completely converted to the 
mesophilic one (Fig 12).  

 

 
Fig 12: Activation parameters computed by in silico Arrhenius plots. ∆G‡, ∆H‡ and ∆S‡ for 
wild-type (WT), reduced radius (Vs-25Å and Vs-20Å) and for mutation S141I in VsEndA (Vs) simulations. 
In the case of VcEndA (Vc), the ∆G‡, ∆H‡ and ∆S‡ are represented for wild-type (WT) and mutation I141S 
simulations. Figure from paper III. 
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6   
 
Discussion 

In this section the main contributions from my PhD work will be examined 
in depth and will be correlated to other studies on cold adaptation from the 
literature. 

Structural mechanisms determining enzymes cold adaptation. It 
is important to emphasize again that there is no common structural 
mechanism between the different enzymes classes to face lower temperatures. 
There are, however, trends that are shared between different protein families. 
This lack of homogeneity, in terms of adaptation, can only partially be 
explained by the evolutionary divergence of the different class of enzymes, but 
it is also affected by other factors. For instance, the enzymatic function 
dictates certain structural adjustments and discards others. In the case of 
EndA, a positively charged surface is required for binding the negatively 
charged DNA, and the psychrophilic variant has a more positive electrostatic 
surface [130]. This feature is achieved through extra lysines, and a positive 
imbalance of this residue has not yet been reported in the literature for other 
cold-adapted enzymes. The psychrophilic alkaline protease subtilisin S41, on 
the contrary, expresses eleven aspartic acids more than the mesophilic 
homolog, achieving in this way a lower pI and a more negative surface [95]. 
The same is observed for the cold-active cellulase, which displays a higher 
negatively charged surface due to a lower content of arginine/lysine and a 
higher number of aspartic acids (especially in the linker loop between the 
catalytic domain and the cellulose binding module) [97].  

In the case of enzymes coordinating ions for structural stability or catalysis, 
the psychrophilic homologs are distinguished by a lower binding affinity than 
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mesophiles, as in the case of α-amylase [102] and subtilisin S41 [95]. 
Endonuclease A features, indeed, both a structural Cl- and a catalytic Mg2+, 
but unfortunately no ion binding assessment has been carried out to compare 
the affinity between VsEndA and VcEndA [146,199].  

Another factor affecting the selection of the structural mechanism for low 
temperatures is the number of domains or monomers building a protein. In 
fact, in multidomain or multimeric enzymes the different properties are often 
located at the interface between monomers or domains in cold- and warm-
adapted variants (citrate synthase [113], isocitrate dehydrogenase [202] and 
cellulase [97]).  

Finally, enzymes with multiple environmental adaptations prove to be the 
most enigmatic and difficult cases to study, since two or more adaptational 
pressures act synchronously and distinguishing the respective factors becomes 
challenging. VsEndA and VcEndA belong to this class of proteins since they 
are at the same time psychrophilic/mesophilic and halophilic/halotolerant. 
Thus, the amino acid substitutions between the two homologs are caused 
either by temperature and/or salt adaptation. Altermark et al. [130], in 
particular, discussed the increased number of lysines in VsEndA compared to 
VcEndA, arguing that an increased positively charged electrostatic surface 
enables VsEndA to bind DNA at higher salt-condition. However, a possible 
role in cold adaptation was not excluded. When studying enzymes adapted to 
different environments careful attention must be paid in the selection of the 
optimal experimental and computational analyses to distinguish the two 
phenomena.  

Lower content of salt-bridges in CAEs. One structural mechanism is 
frequently encountered in many cold-adapted enzymes (but not common to all) 
is a lower content of arginines and salt-bridges than their mesophilic 
counterparts. An increased number of ion-pair networks has been linked to the 
higher thermostability of warm-adapted enzymes, rather than to kinetic 
constants [74]. VsEndA has indeed four arginines less than VcEndA and it 
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lacks two salt-bridges compared to the warm-active variant [130]. In 
particular, two ion-pair networks located in the C-terminal of VcEndA are 
suggested to affect the thermostability of the mesophile. RMSF analysis 
pointed to a lower flexibility of this region in VcEndA (Fig 14). Furthermore, 
MD simulations of VsEndA mutated in the C-terminal (N179E, Q222R and 
K226E) to carry the salt-bridges anchoring two domains together in VcEndA, 
showed a decreased RMSF in this region with respect to the wild-type enzyme. 

It is important to highlight the importance of carrying out MD simulations 
for studying salt-bridge networks, since as pointed out by Olufsen et al. [203] 
structural analysis on X-ray structures can be misleading. The crystallization 
conditions can, in fact, affect presence and geometry of ionic interactions. 

Increased flexibility in CAEs. The main theory accounting for cold 
adaptation has been suggested to be an increased global or local flexibility of 
psychrophilic compared to mesophilic enzymes. Feller et al., in particular, 
attributed this property to the active site [81,93]. Despite this simple and clear 
hypothesis, no direct experimental proof has been published so far. H/D 
exchange [83,204] and fluorescence quenching [98,123,205] are the preferred 
techniques to compare psychrophilic and mesophilic enzymes flexibility, but 
they cannot conclude if there is a difference in flexibility itself. That is, both 
analyses test the accessibility of the enzyme core to a fluorophore (fluorescence 
quenching) or to deuterium oxide (D2O, H/D exchange). The degree of 
permeability of these chemical probes is not a direct evidence of protein 
dynamics. A more definitive proof may be obtained by NMR relaxation data, 
but unfortunately, due to the protein length limitation for this technique, only 
studies on cold-shock proteins [206] are available nowadays.  

Siglioccolo et al. [82] compared the normalized B-factors in a set of X-ray 
structures from psychrophilic, mesophilic and thermophilic enzymes, 
concluding that the first shows increased static flexibility. We studied the B-
factors from the PDB structures of VsEndA (2PU3) [130] and VcEndA (2G7F) 
[146] (normalizing the values according to Siglioccolo et al. [82] formula) and 
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concluded that no meaningful and correct comparison could be conducted (Fig 
13). In fact, part of the B-factor profile of the warm-adapted EndA was 
increased compared to that of the cold-adapted one, and, most importantly, the 
shape of the two plots were not matching. That is, the flexibility profiles of 
homolog proteins should have an overall similar outline, except few regions 
with different peaks height. X-ray structures analysis can be inexact, since 
comparison of PDB entries with different crystallization procedure and 
resolution can produce experimental artifacts not related to flexibility. 

 
Fig 13: Normalized b-factors profiles for the PDB crystal structures of VsEndA [130] and 
VcEndA [131].  The b-factors have been normalized according to the formula by Siglioccolo et al. [82]: 
B'=(B-<B>)/σB. B' is the normalized value, <B> is the average one and σB is the standard deviation. 

Contrary to experimental techniques, MD simulations give the opportunity 
to directly evaluate enzyme dynamics and to compare the flexibility between 
different systems. In our case, MD simulations and RMSF analysis of the 
homologs VsEndA and VcEndA did not display any increased flexibility of the 
active site. Moreover, globally the dynamics of the two variants was very  



 

 

55 

similar and it is very difficult to state that VsEndA is more flexible than 
VcEndA. Nevertheless, both have regions with modest differences in RMSF 
values (Fig 14). VcEndA shows higher peaks close to the active site on α1 (+ 
0.3 Å), α3-6 (+ 0.4 Å) and loop3 (+ 0.2 Å). VsEndA is, on the contrary, more 
flexible (+ 0.2 Å) in a large part of the profile at the C-terminal, although 
distant to the active site.  

 
Fig 14: RMSF profiles for the MD simulations of VsEndA (blue) and VcEndA (red). A) The 
RMSF profiles are averaged over three simulations per enzyme. The shaded area around the RMSF 
profile represents the standard deviation. The black line is difference in values between VsEndA and 
VcEndA (RMSF[Vs]-RMSF[Vc]). B,C) The RMSF is plotted on the 3D structure of VsEndA (B) and 
VcEndA (C) with the putty representation in Pymol. 

These results are in contradiction to the general theory, which describe 
CAEs as more flexible than the mesophilic homologs in order to adapt the 
activity to low temperature. Feller et al. [68,81,93], in particular, located the 
increased flexibility to the active site of psychrophilic enzymes.  

In order to discuss RMSF profiles, it is important to define a threshold 
where a region can be said effectively to be more flexible than the other. 
Indeed, in our analysis most of the differences are below 0.1 Å and the largest 
one (in VcEndA) is 0.4 Å. Papaleo et al. [90], instead, found in trypsin the 
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largest fluctuations to be 0.1 Å, while Isaksen et al [128,129] defined the 
highest RMSF to be around 0.5 Å in trypsin. Furthermore, it is important to 
keep in mind that the comparison of RMSF profiles is affected by MD 
simulation schemes, trajectory length and RMSF calculation procedure. Most 
of the studies, even recent ones, of cold adaptation carried out MD simulations 
from few ns (particularly early one) to few dozens ns [207]. In such short 
trajectory lengths it is difficult to observe major conformational changes. In 
our case, simulations needed at least 10-20 ns to equilibrate, resulting in 
broad conformational changes reflected in a RMSD jump from 1 to 1.5 Å. 
Moreover, each system replicate (4 in total) lasted 500 ns. Simulation length 
above 100 ns is therefore preferable to characterize full protein flexibility 
scale.  

Surface softness tunes ∆H‡/∆S‡. Isaksen et al. [128,129] proposed a 
different theory than flexibility for the catalytic adaptation to low 
temperatures. Here, the surface "softness" is responsible for tuning the 
balance between ∆H‡ and ∆S‡ in the reaction of trypsin. The term softness is 
not related to the concept of structural flexibility, but rather to the change of 
potential energy (∆U‡) along the reaction coordinate (from reactant to 
transition state). The activation enthalpy can in fact be decomposed into 
different terms: 

 ∆𝐻‡ = ∆𝑈!!
‡ + ∆𝑈!"

‡ + ∆𝑈!!
‡  ( 43 ) 

where the subscripts r represents the reacting fragments and s the 
surroundings (including both protein and solvent atoms). Isaksen et al. [128] 
suggested that the potential energy for the interactions of the active site 
surroundings (∆U‡ss), is weaker for the cold-active enzyme than the warm-
active. This potential energy variation can be seen as a force constant placed 
over the reactive fragments surroundings, which it "softer" in the cold-adapted 
enzyme than the warm-adapted, resulting in a lower ∆H‡. This hypothesis was 
computationally proved by freezing atoms outside the catalytic site in the EVB 
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calculations. By imposing positional force constants on the cold-adapted 
trypsin surface, the activation enthalpy and entropy were increased, 
resembling the warm-adapted trypsin. Also in the case of the EndA homologs 
we discovered that the potential energy of the surroundings, ∆U‡ss, was 
decreased in the psychrophile compared to the mesophile. Freezing the outer 
parts of the enzyme indeed made the calculated ∆H‡ and ∆S‡ closer to the 
values in VcEndA, corroborating the hypotheses that the rigidity of the surface 
can influence the reaction free energies. Furthermore, the substitution I141S 
was the only one tested able to transform the activation parameters of 
VsEndA towards those of VcEndA and vice versa. The residue in position 141 
is located on the enzyme surface, on the contrary of position 71 and 120, which 
were the other substitutions assessed by EVB simulations that are located in 
the active site and the enzyme core, respectively. 

The origin of the catalytic power of EndA. The last point of this 
discussion is not directly related to cold adaptation, but is a comment on the 
main findings on the EndA reaction mechanism from paper II. In the last 
decade there has been a heated debate between researchers supporting 
dynamical effect in catalysis and those supporting the reorganization theory 
hypothesis [52,53,60]. In the case of endonucleases VsEndA and VcEndA (also 
Vvn) we provide strong evidence that the origin of the enzyme catalytic power, 
as opposed to the reference reaction, lies in the electrostatic stabilization of 
the P-O3' bond by the Mg2+ ion. EVB calculated activation free energies, with 
sub-optimal coordination of the magnesium ion with PO4- without the leaving 
oxygen in 3', are almost matching the barrier of the reaction in water. As 
pointed out by Warshel et al. [13], the catalytic effect by ions accounts for the 
reorganization energy theory that he postulated earlier. In fact, the cost of 
positioning and orienting the cationic dipole is already paid upon folding of the 
endonuclease. 
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7   
 
Concluding Remarks 

The study of cold-adapted enzymes can give valuable answers to three key 
points in enzyme design and protein engineering, which is the relationship 
between structure and 1) activity, 2) thermostability and 3) the connection 
between activity-flexibility-thermostability. The knowledge of how to change 
the 3D conformation of enzymes in order to improve their reaction rate or 
stability is of immense importance for biotechnological applications. In this 
thesis we have however concentrated on the structural feature that enable 
VsEndA to adapt its activity to low temperatures. In particular the focus was 
on those substitutions able to alter the ∆H‡/∆S‡ balance.  

Based on MD simulations and multiple sequence alignment, we were able to 
pinpoint amino acid substitutions possibly linked with thermal adaptation. 
PSN and RMSF analyses furthermore allowed us to suggest structural effects 
related to this residues change. EVB calculations showed that the enzyme 
surface rigidity is responsible for decreasing the activation enthalpy in 
VsEndA compared to VcEndA, as in the case of trypsin [128,129]. Our 
hypothesis was further corroborated by substitution of the solvent exposed 
residue in position 141. In silico mutation of these residue in VsEndA with the 
residue present in VcEndA and in the opposite direction, resulted in the 
largest variation of the activation parameters. Currently, the surface rigidity 
theory has been evaluated only in the cases of endonuclease A and trypsin. In 
order to corroborate this assumption, additional test cases need to be found 
and assessed. 

EVB proved to be a unique tool in calculating activation parameters in 
enzyme reactions, a feature nowadays lacking in other in silico methods. In 
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fact QM and QM/MM techniques despite being more accurate, lack the 
sampling power of the PES needed for calculations of such macroscopic values. 
There are several cases in the literature where this methodology has been 
applied to successfully compute ∆H‡ and ∆S‡ for biocatalysis [128,129,208,209]. 
EVB proves to be very useful for studying cold-adapted reaction, since they are 
characterized by a different activation enthalpy and entropy balance and 
simulations of mutant enzyme can highlight the effect on the activation 
parameters.  

In order to finally validate our in silico findings mutational studies should 
be carried out in VsEndA/VcEndA for the amino acid substitution S141I. 
Finally further analysis should be carried out to highlight and test other 
possible sequence substitutions in EndAs able to affect thermostability and/or 
catalysis.  
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