UiT Faculty of Science and Technology
Department of Computer Science

THE ARCTIC
UNIVERSITY o g . . .
OF NORWAY Unified Detection System for Automatic, Real-Time, Accurate
Animal Detection in Camera Trap Images from the Arctic
Tundra

Havard Thom
INF-3981 Master’s Thesis in Computer Science ... June 2017

frrrrrrrrrrnnnnrnnnrrnrnrnnrrrnnrnrrngd TETET R LR B LN LT irarrercrererercrererereneiereret
/II/II/I/II/I/II/I/II/I/II/II/I/II/I/I IIlllIllIllllIllllIlllllllIllllIllllIllIllllIllllIlllllllIlll
PELEEEETEELEE i ir i i i 7 ir i i iiid BEpi it it ittt riririri i e nene e nre g
HIETLLLnnernninnrnennrniniieleiieegig lIIlllIIlllIllIllllIIlllIlllllllIllllIllllIllIllllIllllIlllll
R NNy
HIETLLLLreneneinrnenelirriiereieiiell lIIlIIIllIIIllIIIllIllIIIllIIIllIIIlIIlIIIIllIIIllIlIlIIlIIIIll
POLTEEETEETEEEL L i i i i it i i i ir AL r i i it i i i i i i e (111
HHLINLLLrenenrinineneriinerereieeey IIIJ
RNy yy IIIIIIfﬂ/lIIIC/ 1

Jrebaradnaiiiny I IMNMMIMMMMIMMNMNMNMNNNNN‘NMMMNNninimn‘i‘fjddnaa
Jrrpaspiadianiiaiiaaiaiiniiii i IIIIMIMIMIUVNMUINMUENIINIMINIINIIINMUUIG
0y i IIIINIMINMMINNMMINNMNNNNInnnnnnIni llllllllll 147
i 107 llllllllllllllllllll I J 1 100002 Hu I
vorbanrrrbbbnaiain I IINININ g 1”1 Illlllllllllllll
arrsraiaiiiIiI g llIllllIIIlllllllllllllllllllllllllll n llllllllllllll Jarsniniaiiinnnnng
verbanrarbiinoioy i MIMMIMIMMMIMMMMIMINMVINVNMMVMMVNMMINNNMMmnmninnnaa
RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllllllllllllllll llllllllllllllllllllll
verbaaaraebaiir v MMMMIMIMIMIMMIMMIMIMINMIMIVIMIMINIVNIMMIMMIT
rarsaaiaiinIng ll
iy I
QIR NIl
llllllllllll'llll lllllllllllllllllllllll l'll'llllllllll'llllll'll'llllll'll'llllll'llllllllllll'lllllllllll

~
"~
Q
o
~
o~
~
~::~
:~.
S
-~y
~
S
~
~
~
~
~
~
3
-
~
~
y .

~
o

[/
Q0000 J00 000

" """'
L LY l"""""'l""""'l"""'l""""'l""""'l"""'l""""'l""""""'-
LU 'Wl""1rWl""""ll"'l""'l'l""ll'l'l""""'"""""""""ll"""l"'

w 'l'll'l'"'II'l'"'l'lI'l'"'l'Wl'"'l'lI"'"'l'lI'l'"'lI"""l'll'l""l"l"" " Serenany
17 J00000000000000000000000000R 000000000 RARARARARARARARRNNNARARARANNNARARARRINRARAGAIRNGNNNGAGNGNI
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

This thesis document was typeset using the UiT Thesis IKTEX Template.
© 2017 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract

A more efficient and effective approach for detecting animal species in digital
images is required. Every winter, the Climate-ecological Observatory for Arctic
Tundra (COAT) project deploys several dozen camera traps in eastern Finn-
mark, Norway. These cameras capture large volumes of images that are used
to study and document the impact of climate changes on animal populations.
Currently, the images are examined and annotated manually by ecologists,
hired technicians, or crowdsourced teams of volunteers. This process is ex-
pensive, time-consuming and error-prone, acting as a bottleneck that hinders
development in the COAT project.

This thesis describes and implements a unified detection system that can
automatically localize and identify animal species in digital images from camera
traps in the Arctic tundra. The system unifies three state-of-the-art object
detection methods that use deep Convolutional Neural Networks (CNNs),
called Faster Region-based CNN, Single Shot Multibox Detector and You Only
Look Once v2. With each object detection method, the system can train CNN
models, evaluate their detection accuracy, and subsequently use them to detect
objects in images.

Using data provided by COAT, we create an object detection dataset with 8ooo
images containing over 12000 animals of nine different species. We evaluate
the performance of the system experimentally, by comparing the detection
accuracy and computational complexity of each object detection method. By
experimenting in an iterative fashion, we derive and apply several training
methods to improve animal detection in camera trap images. These training
methods include custom anchor boxes, image preprocessing and Online Hard
Example Mining.

Results show that we can automatically detect animals in the Arctic tundra
with 94.1% accuracy at 21 frames per second, exceeding the performance of
related work. Moreover, we show that the training methods are successful,
improving animal detection accuracy by 6.8%.

Acknowledgements

First and foremost, I would like to thank my head-advisor Associate Professor
John Markus Bjgrndalen for providing guidance, support, and feedback when-
ever I needed it throughout this thesis. Appreciation is also extended to my
co-advisors, Professor Otto Anshus and Professor Alexander Horsch for sharing
their knowledge and constructive feedback.

Furthermore, I want to thank the people involved in the COAT project for their
help and for the opportunity to work on an interesting project.

I want to express my sincerest gratitude to my fellow students and friends,
Frode Opdahl, Johan Ravn, Preben Bruvold Johansen, Kasper Utne, Simen
Bakke, Nicolai Bakkeli and Tim Teige. Thank you for all your help and for five
great years both inside and outside of the university. You will be missed!

Finally, I want to thank my family and my girlfriend for always being encour-
aging and supportive of me, with special thanks to my grandparents Arne and
Elsa.

Contents

Abstract i
Acknowledgements iii
List of Figures vii
List of Tables ix
List of Code Listings xi
List of Abbreviations xiii
1 Introduction 1
1.1 Problem Definition 3
1.2 Contributions. 4
1.3 Outline e 4

2 Object Detection 7
2.1 Convolutional Neural Networks 8
2.1.1 Architecture, 8

2.1.2 Training i e e e 9

2.1.3 Transfer Learning 10

2.2 Region-based Convolutional Neural Networks 10
2.2.1 Region Proposal Network 13

2.3 Single Shot Detectors 14

3 Related Work 17
4 Training Methods 19
4.1 Dataset Preparation 19
4.1.1 Animal Bounding Box Annotation 21

4.1.2 Training and Validation Imagesets 22

4.1.3 Dataset Format Conversion 23

4.2 Custom Anchor Boxes with k-means Clustering 24

Vi

CONTENTS
4.3 Image Preprocessing 27
4.4 Online Hard Example Mining 28
Design and Architecture 31
5.1 SystemDesign 31
5.2 Convolutional Neural Network Architectures 34
Implementation 37
6.1 Open Source Frameworks 38
Evaluation 41
7.1 Experimental Platform 41
7.2 Experimental Design 42
7.3 Detection Metricso oo 44
74 Results 46
Discussion 57
8.1 Detecting Small Animals 57

8.2 Model Deployment for Animal Detection in the Arctic Tundra 59

Conclusion 61
9.1 Future Work o v v i i e 62

Bibliography 65

List of Figures

2.1 Illustration of a CNN architecture.. 9
2.2 Tllustration of the Fast R-CNN method. 11
2.3 Illustration of the Faster R-CNN method. 12
2.4 Tlustrationof the RPN. 13
2.5 Tllustration of the YOLOv2 method. 15
2.6 Illustration of the SSD method. 16
4.1 Example images from the COAT dataset. 20
4.2 Custom vs. default anchor boxes effectiveness graph. 26
4.3 Tllustration of custom and default anchor boxes. 26
4.4 lustration of the OHEM technique. 29
5.1 Design of our unified detection system. 32
5.2 Overview of the CNN architectures used by each object detec-

tionmethod. L L L 36
7.1 Example Precision-Recall curve for a single class. 45
7.2 Precision-Recall curve for SSD model with default low resolu-

tion and default anchor boxes. 46
7.3 Precision-Recall curve for SSD model with default low resolu-

tion and custom anchor boxes. 48
7.4 Precision-Recall curve for SSD model with custom high reso-

lution and custom anchor boxes. 50
7.5 Comparison of detections from SSD and YOLOv2 models in

OUr XPETiments. v v v v v v v e e e e e e e e e 51
7.6 Comparison of detections from Faster R-CNN models in our

eXPeriments.« .t v vt e e e e e 52
7.7 Training time for each object detection model. 54
7.8 Maximum GPU memory usage when training each object de-

tectionmodel. L L Lo 54
7.9 Maximum RAM usage when training each object detection

model. 54

7.10 Detection time on one image for each object detection model. 56

vii

viii

LIST OF FIGURES

7.11 Maximum GPU memory usage when detecting with each ob-
jectdetectionmodel. 56

7.12 Maximum RAM usage when detecting with each object detec-
tionmodel. 56

List of Tables

4.1
4.2
4.3

5.1

7.1
7.2
7.3
7.4

Baitcam class distribution.
Baitcam object distribution.
Baitcam validation set distribution.

Number of weight parameters in the CNNs used by each ob-
ject detectionmethod

Overview of input image sizes used in our experimentation. .
Results with default low resolution and default anchor boxes.
Results with default low resolution and custom anchor boxes.
Results with custom high resolution and custom anchor boxes.

22

List of Code Listings

4.1 Implementation of k-means clustering to find custom anchor
boxes for a set of bounding boxes.

Xi

List of Abbreviations

AP Average Precision

CNN Convolutional Neural Network

coAT Climate-ecological Observatory for Arctic Tundra
coco Common Objects in Context

cPU Central Processing Unit

csv Comma-separated Values

DSSD Deconvolutional Single Shot Detector

EXIF Exchangeable Image File Format

FCN Fully Convolutional Network

FN False Negative

FP False Positive

FPS frames per second

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Competition
I0U Intersection over Union

LMDB Lightning Memory-Mapped Database

MAP Mean Average Precision

Xiii

XiV

LIST OF ABBREVIATIONS

NMS Non-Maximum Suppression

OHEM Online Hard Example Mining

R-CNN Region-based Convolutional Neural Network
R-FCN Region-based Fully Convolutional Network
RAM Random Access Memory

ROI Region of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

Ss Selective Search

ssD Single Shot MultiBox Detector

SVM Support Vector Machine

TP True Positive

voc Visual Object Classes

XML Extensible Markup Language

YOLO You Only Look Once

Introduction

With the climate changes occurring in the world today, it is important to
study and document the impact it has on animals and their environments. The
Arctic tundra in the far northern hemisphere is one of the ecosystems that
are most affected by these changes. Melting of the tundra’s permafrost could
radically change the landscapes and give rise to new ecosystems with unknown
properties [1].

As a response to these realizations, five Fram Centre! institutions developed
the Climate-ecological Observatory for Arctic Tundra (COAT) project. COAT is a
long-term research project with the goal of creating robust observation systems
which enable documentation and understanding of climate impacts on arctic
tundra ecosystems. In autumn 2015 COAT was granted substantial funding,
allowing them to establish a research infrastructure during 2016-2020 [1]. Part
of this infrastructure includes the creation of a real-time animal detection
system, which is presented in this thesis.

To monitor biodiversity in the Arctic tundra, COAT uses the well-known method
of camera traps. This method has revolutionized wildlife ecology over the last
two decades and there are currently tens of thousands of camera traps deployed
around the planet [2][3]. Camera traps are considered far more cost-effective
than direct observations or animal tagging, which are generally extremely
labor intensive and invasive. The remotely activated cameras are equipped

1. http://www.framsenteret.no/english

2 CHAPTER 1 / INTRODUCTION

with motion sensors and infrared flash, which enables them to capture images
of animals in a non-invasive manner. These images can then be used to record
the presence of animals at a site or in some cases suggest the absence of an
animal, which could indicate the arrival of a predatorial species [4].

Every year, COAT deploys several dozen camera traps in eastern Finnmark,
Norway for approximately one month during the winter. The main purpose
of these cameras is to study scavenger populations, with a particular focus
on the arctic fox which is critically endangered in Norway. Warmer winters
are expected to negatively impact arctic fox population through decreased
availability of lemming prey and increased abundance of generalist predators,
such as the red fox [5]. The camera traps are programmed to take a time-lapse
photo every fifth minute during day and night which accumulates to over 300
000 images per year [6]. Collecting such high volumes of images give rise to
Big Data challenges in the ecology field, where usual data tools and practices
might not suffice.

Currently, the images are manually examined and annotated, which is an
extremely tedious approach that requires months of human labor and resources.
This expensive and time-consuming task is often performed by ecologists, hired
technicians, or crowdsourced teams of volunteers [7][8]. There is no doubt
that this workforce could be more useful elsewhere.

The quality of manual annotations also has to be considered, as several psycho-
logical factors affect human performance when sorting objects in visual tasks.
These include short-term memory which has a limit of five to nine objects and
recency effects where new annotations are biased toward the most recently
used labels [9]. Highly repetitive tasks are additionally known to increase
fatigue and boredom, causing more annotation errors [10]. With the large
amounts of image data piling up from camera traps, this slow and error-prone
manual annotation is a bottleneck that hinders development in the ecology
field. The advantages of camera traps are clearly not being fully exploited and
the demand for automated tools to address these issues are present in both
the COAT project and the ecology research community in general.

Previous work presents a system for automatic identification of small mammals
in COAT camera trap images with near-human performance [11]. The system is
a clear improvement over manual identification and a step in the right direction,
but it still has flaws. It does not take into account the possibility of multiple
animal species in one image, being unable to individually localize and identify
each animal. Naturally, this is an important requirement if the system is to
be reliable for animal population studies. It is particularly important when
dealing with images of scavengers such as crows and ravens since they often
tend to travel in pairs or flocks [12].

1.1 / PROBLEM DEFINITION 3

This thesis presents a unified detection system as the next step, with these
challenges in mind. The system unifies three state-of-the-art object detection
methods and is used to automatically localize and identify animals in camera
trap images from the Arctic tundra.

1.1 Problem Definition

In this thesis, we consider the problem of detecting animal species in digital
images from camera traps in the Arctic tundra. We state that it is possible to
create an automatic, real-time, accurate animal detection system using cutting-
edge object detection technology.

The system should be

* automatic by detecting animals in images with minimal human interven-
tion.

* real-time by performing animal detection in images at the same, or a
faster rate, than the camera traps captures and supplies images. We
measure detection speed with frames per second (FPS).

* accurate by correctly localizing and identifying animals in images. We
measure accuracy with Mean Average Precision (MAP) which provides a
single-figure measure of detection quality. A detailed description of the
metric is given in Section 7.3.

To test our statement we present the design and implementation of a unified
detection system that detects scavengers in camera trap images from the
Arctic tundra. We study and describe three state-of-the-art object detection
methods, which are all based on deep Convolutional Neural Networks (CNNs)
and unified through our system. The system can train and evaluate CNN
models with each object detection method that, in turn, can be used to perform
detection on images. We give a detailed description of dataset preparation for
object detection and training methods to improve detection of wild animals in
the Arctic tundra. In our evaluation, we compare the detection accuracy and
speed of each object detection method on our dataset and analyze the effects
of our training methods. Finally, we discuss the work that has been done in
this thesis and suggest future work for our unified detection system.

4 CHAPTER 1 / INTRODUCTION

1.2 Contributions
This thesis makes the following contributions:

* An introduction to CNNs and a description of three state-of-the-art meth-
ods used for object detection in digital images.

* A detailed description of dataset preparation and training methods for
animal detection on real world data gathered from camera traps in the
Arctic tundra.

* An implementation and description of a system that unifies three state-
of-the-art object detection methods.

* A working system for automatic, real-time, accurate animal detection in
camera trap images from the Arctic tundra.

* An evaluation of the system comparing the quality of detections and
computational complexity of three different object detection methods on
our dataset.

1.3 Outline
The thesis is structured into nine chapters including the introduction.

Chapter 2 describes cutting-edge research that has been done in the field of
object detection over the past few years. It gives an introduction to CNNs
and a description of three state-of-the-art detection methods that are
used in our unified detection system.

Chapter 3 presents related work in the field of animal detection, comparing it
to the work done in this thesis.

Chapter 4 details dataset preparation and characteristics, together with train-
ing methods used for animal detection in the Arctic tundra. It covers
challenges and decisions made in bounding box annotation, dataset split,
and data formats. Then moves on to describe techniques used in training,
including custom anchor boxes, image preprocessing and Online Hard
Example Mining (OHEM).

Chapter 5 gives a description and overview of system design and the CNN
architectures used by each object detection method in our system.

1.3 / OUTLINE 5

Chapter 6 describes the implementation and dependencies of our unified
detection system, including modifications and adaptions made to open
source frameworks that are used.

Chapter 7 evaluates the system by comparing the quality of detections and
computational complexity of three different object detection methods on
our dataset, and show the effects of our training methods. It includes
a description of our experimental setup, detection metrics used and
results.

Chapter 8 discusses the process of deriving our training methods and possible
deployment of our unified detection system for animal detection in the
Arctic tundra.

Chapter g concludes the thesis and suggests future work to make improvements
in our unified detection system.

Object Detection

Object detection is the task of localizing and identifying different objects in
digital images or video. It is required in many computer systems and applica-
tions, and has become a fundamental technology in computer science. People
use object detection every day through technologies such as smart phones [13],
industrial robotics [14], and self-driving cars [15].

The research in the field of object detection has made great progress over
the past few years, due to the use of Convolutional Neural Networks (CNNs)
[16]1[17]1[18]. Access to large public datasets from object detection benchmarks
such as The PASCAL Visual Object Classes (voc) Challenge [19] and The
Microsoft Common Objects in Context (COCO) Challenge [20] has also been a
key factor in its development. This chapter will give an introduction to CNNs
and describe three cutting-edge object detection methods that are unified
through the system presented in this thesis. The methods are all based on
CNNs and can be divided into two major categories:

* Region-based Convolutional Neural Networks

* Single Shot Detectors

8 CHAPTER 2 / OBJECT DETECTION

2.1 Convolutional Neural Networks

In 2012, the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
was won by a huge margin, dropping the image classification error record from
26% to 15%. The winning entry presented AlexNet, a “large, deep convolutional
neural network” which revolutionized the field of computer vision [21]. Since
then, CNNs has been regarded as state of the art in machine learning and are
used in companies such as Facebook and Google [22][23]. A CNN can be seen
as a network of learning units that can be trained for a specific task, such as
image classification. The network use training data to learn (e.g. image of an
eagle) and can subsequently output class predictions (e.g. the label “Eagle”)
on new data, forming the basis of automated recognition.

2.1.1 Architecture

CNN s stack multiple layers of feature extractors in a connected structure with
a classification layer at the end. These layers form a complete deep CNN
architecture for image classification. Figure 2.1 show the three main types
of layers in CNN architectures: Convolutional layer, Pooling layer and Fully
Connected layer.

* Convolutional layers primary function is extracting features from the
image. They convolve the input image by sliding over it with a set of
filters (also called kernels or feature detectors), each producing a feature
map of the image which contains key features like edges, lines, shape,
intensity etc. The pixel area or window size of the filters are usually set
to a small number like 3%x3 pixels, while the amount by which the filter
shifts or slides across the image, also known as stride, is set to one or
two pixels. Increasing the number of filters produce more image features,
leading to a network that is better at recognizing patterns in unseen
images, but has the downside of higher computational complexity in
terms of memory usage.

* Pooling layers reduce the spatial dimensions and retain the most dis-
tinct features in the feature maps with a downsampling technique. This
reduces the number of parameters, which in turn reduces the memory
usage of the network, allowing more filters to be added. Additionally,
it makes the convolution process invariant to translation, rotation, and
shifting. Max-pooling and Average-pooling are commonly used. Max-
pooling iterates over the image with a small pixel neighborhood (usually
2x2) and keeps the maximum value within the window. Average-pooling
calculates and keeps the average value of the pixels in the window.

Input image
128x128x3

2.1/ CONVOLUTIONAL NEURAL NETWORKS 9

* Fully Connected layers do the high level reasoning of the features that
are output from the previous convolution and pooling layers. It produces
probabilities for all classes, such as “Eagle, based on how the high-level
features correlate to each particular class. The last fully connected layer
is thus known as the output layer which gives the final class probabilities.

Feature Feature Feature Feature
maps maps maps maps Neurons Neurons
128x128x32 64x64x64 64x64x64 32x32x128 256 256

Convolution Maxpool Convolution Maxpool Flatten Fully
3x3 kernel 2x2 kernel 3x3 kernel 2x2 kernel connected

Figure 2.1: Illustration of a CNN architecture.

2.1.2 Training

A CNN is trained using the backpropagation algorithm, which finds parameters
called weights, that minimizes the error between the ground truth training
labels and the predicted labels. The algorithm can be explained in two steps
that are iterated several times:

* Feedforward (forward pass): A batch of training images are sent through
the cNN which generates a set of predicted labels using its weight pa-
rameters.

* Calculate error and propagate back (backward pass): A loss function
calculates an error measurement between the true training labels and
the predicted labels. This error measurement is thereafter used by an
optimizer that goes backward through the network tweaking the weight
parameters. The optimizer’s job is to minimize the loss function, so the
network can make better predictions in the next feedforward step.

An epoch is defined as one forward pass and one backward pass (one iteration)
of all the training images.

Some commonly used optimizers are Stochastic Gradient Descent (SGD) [24],
RMSprop [25] and Adam [26], which all have parameters that can be tuned to
improve the learning process. The most important parameter is the learning
rate which controls the rate of change in weight parameters during training.

Outputs
2

NN

Fully

connected

10 CHAPTER 2 / OBJECT DETECTION

A high learning rate can change the weights to aggressively, while a small
learning rate can change them too conservatively, resulting in a network that
does not learn.

A problem that occurs when training a neural network model is that it tries
to memorize the training images instead of trying to generalize from the
patterns it observes. This is called overfitting and often happens when the
network is too complex by having too many parameters, making it overreact to
insignificant details in the training data [27]. If the model overfits and loses its
ability to generalize, it will have very poor predictive performance on unseen
test images. Fortunately, there are several techniques developed in order to
minimize overfitting such as soft weight sharing [28] and dropout [29].

2.1.3 Transfer Learning

When working with a small dataset it is common to take advantage of existing
CNNs that are already trained on very large datasets, such as ImageNet which
contain 1.2 million images and 1000 classes [30]. This concept is called transfer
learning, where learning in a dataset is done through the transfer of knowledge
from a related dataset that has already been learned.

The standard practice is to load weights from a pre-trained network trained
on ImageNet, then fine-tune the weights by continuing training with a smaller
dataset. This gives the advantage of exploiting features learned on ImageNet,
while adapting the weights to the new dataset. It is possible to keep some of
the earlier convolution layers fixed during fine-tuning, reducing the possibility
of overfitting from having too many weight parameters.

2.2 Region-based Convolutional Neural
Networks

In 2013, Grishrik et. al. presented Region-based Convolutional Neural Networks
(R-CNNSs), achieving state-of-the-art results on the PASCAL VOC 2012 object
detection challenge using CNNs [31]. Object detection introduces the challenge
of drawing bounding boxes over all of the objects in an image, in addition to
classifying the objects. R-CNN bridged the gap between image classification
and object detection by splitting the process into three general steps: the region
proposal step, the feature extraction step, and the classification step.

2.2 / REGION-BASED CONVOLUTIONAL NEURAL NETWORKS "

R-CNN uses an external region proposal algorithm called Selective Search (Ss)
[32] to generate 2000 class-independent region proposals from each image. SS
find Regions of Interest (Rols) in an image by exploring pixel areas of different
sizes and grouping together adjacent pixels by texture, color, or intensity to
identify objects. These proposals have the highest probability of containing an
object and are sent through a trained CNN to extract a fixed feature vector from
each region. R-CNN adds a set of linear Support Vector Machines (SVMs) at
the end of the CNN to classify whether the region contains an object, and if so
what object. After the region has been classified, the feature vector is also used
in a regression model to obtain more accurate coordinates for the bounding
box. As a final step, a greedy Non-Maximum Suppression (NMS) algorithm is
used to remove bounding boxes that have a significant overlap with each other
and refer to the same object [33].

At the time, R-CNN was the best in terms of detection accuracy but had the
downside of being very slow. It took 84 hours to train on the relatively small
PASCAL voOC 2007 dataset and detection took around 53 seconds per image
[34]. The slow training can be attributed to the complicated training pipeline
where three different models had to be trained separately (the CNN, svM and
regression model). Detection was slow because it required a forward pass of
the CNN for every single region proposal for every single image (2000 forward
passes per image). Grishrik et. al. solved these problems and presented an
improved version of his method in 2015, called Fast R-CNN [34].

Class probabilities

BBox coordinates

ConvNet

| . e |
 —
| Q. Rol projection

Selective
Search

Rol Pooling ECs
Layer

=k

Rol Feature vector

Softmax £—2 Regression §

Figure 2.2: Illustration of the Fast R-CNN method. Region proposals with high object
probability are shown in white bounding boxes.

Fast R-CNN introduces a technique called Region of Interest (ROI) Pooling that
enables shared computations across all 2000 region proposals. Figure 2.2 show
the Fast R-CNN object detection method. Instead of sending region proposals
through the CNN individually, the entire image is used as input to generate a
convolutional feature map. Region proposals from SS are projected onto the

12 CHAPTER 2 / OBJECT DETECTION

feature map and ROI pooling extracts a fixed-length feature vector for each ROI.
The feature vector is subsequently sent through a set of fully connected layers,
then a softmax layer outputs a probability for all object classes, including a
negative “background” class if the region does not contain an object. Bounding
box regression is also integrated in the CNN resulting in a single end-to-end
architecture, mitigating the complicated training procedure in the previous
version.

Training and detection time with Fast R-CNN was reduced to 10 hours and 0.32
seconds respectively, yielding a significant speedup compared to the original R-
CNN. It also achieved better detection accuracy on the PASCAL vOC challenge
by fine-tuning using pre-trained models from ImageNet [34].

Even with all these improvements, there was still one bottleneck remaining -
the external region proposal algorithm. The slowest step in the object detection
method was the SS algorithm that generates potential bounding boxes or ROIs
in the image. A few months after the release of Fast R-CNN, this bottleneck was
removed with the implementation of a novel Region Proposal Network (RPN)
which was presented in the newest and current version, Faster R-CNN.

Rol Pooling
Layer

Figure 2.3: Illustration of the Faster R-CNN method. Region proposals with high object
probability are shown in white bounding boxes.

The Faster R-CNN object detection method is illustrated in Figure 2.3. It shows
that the previous region proposal method has been removed and replaced by
the RPN, which is merged with the Fast R-CNN object detection network. This
gives the benefit of shared computation on the feature map generated by the
initial convolutional layers of the network, allowing nearly cost-free region

2.2 / REGION-BASED CONVOLUTIONAL NEURAL NETWORKS 13

proposals.

Faster R-CNN is based on the deep learning framework Caffe [35], has been
made publicly available [36] and is used in our unified detection system. The
implementation has previously been used as the foundation of several winning
entries in the ILSVRC and Microsoft COCO 2015 competitions and is considered
state of the art in object detection [16]. A more in-depth description of the
RPN is given in the following subsection.

2.2.1 Region Proposal Network

Region proposals is a vital part of object detection. Too many region proposals
increase the chance of False Positives (FPs), e.g. detecting objects that are not
present. While having too few can lead to more False Negatives (FNs), e.g. not
detecting objects that are present. Using the RPN, Faster R-CNN managed to
reduce the number of proposals needed at test time from 2000 to 300, with
little to no difference in detection accuracy [16]. This demonstrates its ability
to find good proposals.

K Anchor Boxes

Convolutional Feature Map

QSoftmaxE

0
"

‘Regression
1

; BBox coordinates

Object probability

Figure 2.4: Illustration of the RPN. Sliding window is shown in yellow and anchor
boxes are shown in red.

The RPN finds region proposals by sliding a window over the shared CNN
feature map as shown in Figure 2.4. Each sliding window is mapped to a lower-
dimensional feature vector, which is subsequently used in a box-regression
layer and a box-classification layer. The regression layer outputs bounding box
coordinates while the classification layer outputs an objectness score, which is

14 CHAPTER 2 / OBJECT DETECTION

the estimated probability of “object” or “not object”.

To generate a multitude of bounding boxes, the RPN simultaneously outputs
K bounding box proposals at each sliding position. These proposals are com-
puted relative to K reference boxes, called anchor boxes. For each proposal,
the regressor computes 4 offset values (xcenter, ycenter, width, height) to its
corresponding anchor box. Using anchor boxes, region proposals can be made
over multiple scales and aspect ratios, while only relying on images and feature
maps of a single scale. The authors of Faster R-CNN hand-picked 9 anchor
boxes to cover the most common object scales and aspect ratios.

2.3 Single Shot Detectors

More recent object detection methods take inspiration from Faster R-CNN and
has made further improvements, achieving better detection accuracy and real-
time detection speed on PASCAL vOC datasets. Single shot detectors provide
object detection in a single shot eliminating the bounding box proposal stage
and the subsequent feature resampling stage found in Faster R-CNN. We use
two popular single shot detectors in our unified detection system, called You
Only Look Once (YOLO) v2 and Single Shot MultiBox Detector (SSD).

YOLOV2 is an object detection method released in late 2016 by Redmon et.
al. [17]. It is implemented on top of Darknet, an open source neural network
framework written in C and CUDA by the same author [37]. The method
predicts bounding boxes, objectness score and object class probabilities with a
region layer that uses features from the entire image in one evaluation, instead
of generating and classifying proposals. All bounding boxes are predicted
across all classes for the image simultaneously, allowing the network get a
global view on all of the objects in the full image [38].

2.3/ SINGLE SHOT DETECTORS 15

y
%
.

A

Class probabilities +
o> Objectness +
BBox coordinates

A A A S T
A A -
AL L A A A A A

AL L R A L L B

Figure 2.5: Illustration of the YOLOV2 method. Refined anchor boxes are shown in
red.

The input image is sent through a convolutional network where it is divided
into an SXS grid as shown in Figure 2.5. If the center of an object falls into a
grid cell, that grid cell is responsible for detecting that object. YOLOv2 adopts
the anchor box scheme from the RPN in Faster R-CNN and makes some small
modifications to predict bounding boxes. Instead of predicting unconstrained
offsets allowing an anchor box to end up anywhere in the image, it predicts
constrained bounding box coordinates relative to the location of the grid cell.
This simplifies the bounding box prediction leading to a more stable network

[17].

To generate additional and more diverse training data, YOLOv2 applies various
transformations to the input images, also known as data augmentation. The
image transformations include random crops, rotations, and hue, saturation,
and exposure shifts [17]. This data augmentation strategy improved detection
accuracy considerably compared to Faster R-CNN, which only use the original
image and a horizontal flip to train.

YOLOV2 outperforms state-of-the-art methods like Faster R-CNN on the PASCAL
VOC 2007 dataset while having real-time detection at an impressive 40 frames
per second (FPS). Its main issue is that it struggles with small objects because
of low input image resolution, resulting in very coarse features for predicting
bounding boxes. Redmon et. al. made small improvements on this issue by
retrieving and merging a larger feature map from early stages of the network
with the later coarser feature map [17].

The SSD method addresses the small object issue in a different way while being
very similar to YOLOV2. Instead of operating on a single-scale feature map, SSD

16 CHAPTER 2 / OBJECT DETECTION

adds several extra convolutional layers to the end of the network and predict
on multi-scale feature maps as illustrated in Figure 2.6.

Extra Convolutional layers

W
(NN
MW
R
R
(AN
TR Wo
| MR) A
.|. .. H |= Class probabilities +
.i == \ H BBox coordinates
ININ W \

Figure 2.6: Illustration of the SSD method. Refined anchor boxes are shown in red.

Detection is done using Multibox layers which compute bounding box offsets
relative to anchor box shapes (called default box in their paper) for each feature
map grid cell in each feature map. SSD adopts the data augmentation strategy
from YOoLOV2 and add techniques to handle objects of multiple scales, including
random crops acting as a “zoom in“ operation and an expansion scheme as
a “zoom out“ operation [18]. It is implemented using Caffe and is released as
open source [39].

YOLOv2 and SSD are very close in terms of detection accuracy and speed
using similar low-resolution input images. It is safe to say that they both
contributed to getting object detection on a new level, achieving reliable and
fast detection.

Related Work

A thorough search of relevant literature show several systems that automate
animal identification in camera trap images, but there are few that focus on
detection, where the animals are localized in addition to being identified.
The scarce research done on wild animal detection frequently use small and
exclusive datasets containing only one or few animal species. It is clear that
larger public camera trap datasets with bounding box annotations and several
animal species are needed for further advancement in the field.

Norouzzadeh et. al. recently presented a system for automatic animal identifi-
cation on the Snapshot Serengeti dataset using deep CNNs [40]. The Snapshot
Serengeti dataset is a large public dataset of wild animals containing 3.2 mil-
lion annotated camera trap images and 48 different animal species [8]. From
757 ooo annotated images that contained an animal, they created a train-
ing set of 707 ooo images, and a test set consisting of the remaining 50000
images. Using a CNN architecture called ResNet-152 [41] they achieved 92%
classification accuracy on their test set, exceeding the performance of previous
methods. This work shows promise in the classification of images with a single
animal, but it does not address the challenge of localizing several animals.
Our system can automatically detect multiple animals and multiple different
species in images, providing more information for reliable animal study and
documentation.

In 2009 Wawerla et. al. described a novel “motion shapelet” algorithm for
automatically detecting wild bears in video frames captured by cameras at the

17

18 CHAPTER 3 / RELATED WORK

arctic circle [42]. The algorithm is an extension of the shapelet features used
for pedestrian detection, described in [43]. They combine several low-level
features into mid-level "motion shapelet” features that are more informative
and descriptive with regard to their object class. For training, they manually
cropped 451 bounding boxes with a bear and 8000 negative bounding boxes
with background from images. Furthermore, they used 405 positive images
containing at least one bear and 16000 negative images not containing bears
as a test set. Their results show that Wawerla et. al. can detect 76% of the
images containing bears at 0.001 false positive images per image examined.
This is similar to our work in detecting animals in camera trap images from
the Arctic tundra, but their experimentation is more focused on detecting the
presence, rather than correctly localizing and counting multiple occurrences
of bears in images. Moreover, they do not use CNNs and only detect two object
classes, “bear” or "not bear“.

A more recent paper by Parham et. al. tackles the problem of zebra detection
in real world images using Faster R-CNN and YOLOV1 [44]. The paper presents
several challenges in animal detection, such as difficult viewpoints of the zebras
and occlusion from multiple overlapping zebras. They create a manually labeled
dataset of 2500 images, containing 3541 bounding boxes of plains zebras and
2672 bounding boxes of Grevy’s zebras. YOLOv1 was the best detector in their
evaluation with a detection accuracy of 55.6% for plains zebras and 56.6% for
Grevy’s zebras. Parham et. al. is closely related to our work in that it compares
Faster R-CNN and YOLOV1 on a dataset containing wild animals. However, we
use a newer, improved version of YOLO in YOLOV2 and additionally use SSD in
our comparison. Our dataset which is described in Chapter 4, can also be seen
as more challenging since it is more imbalanced and contains nine different
animal species, where several are very similar in appearance.

The closest work to ours is that of Zhang et. al., who propose a new method
for animal detection in highly cluttered camera trap images [45]. The method
uses joint deep CNN features and histogram of oriented gradient features
encoded with Fisher vectors to get an efficient feature description for animal
detection. For evaluation, they create a dataset with 8oo camera-trap image
sequences containing 6493 animals of 23 different species. Similar to our
dataset, the images are in both daytime color and nighttime grayscale formats.
Their experimentation compares YOLOV1, Fast R-CNN, Faster R-CNN and the
proposed method, which achieved an average F-measure score of 82.1%. Instead
of developing new detection methods, this thesis show that there is much
potential in experimenting and adapting existing cutting-edge methods to the
animal detection problem.

Training Methods

This chapter describes methods used when training an object detection model
in our system. It covers challenges and decisions made when preparing our
dataset for object detection, including bounding box annotation, dataset split,
and data format. Furthermore, it explains techniques used to improve training
for our specific dataset, including custom anchor boxes, image preprocessing
and Online Hard Example Mining (OHEM).

4.1 Dataset Preparation

The dataset provided by COAT contained 1 849 076 time-lapse images taken
from 2011 to 2016 by their camera traps in Finnmark, Norway. 37 camera traps
was deployed every year, spread out over five different areas: Stjernevann,
Komag, Ifjord, Nyborg and Gaissene. It is important to be aware of these areas
since they will affect how we split our data into training and validation sets
for our experiments. The cameras have an infrared flash so all pictures taken
during the night are without color, while pictures taken during the day are
with color, as seen in Figure 4.1. We decided against splitting night and day
images in separate datasets because we wanted to assess the object detection
methods ability to handle a mixture of greyscale and color images.

19

20 CHAPTER 4 / TRAINING METHODS

(a) Daytime image with an arctic fox. (b) Nighttime image with a red fox.

Figure 4.1: Example images from the COAT dataset. It contains a mixture of color and
greyscale images.

COAT also provided Comma-separated Values (CSV) files with annotations for
half of the images in the dataset. The csV files did not contain any filenames,
only image metadata and animal classifications, so we had to get creative
to find out which images the annotations corresponded to. Fortunately, each
image had metadata stored in Exchangeable Image File Format (EXIF). We
created a Python script to extract the date and time from each image, along
with camera information, to match them with the annotations. This was quite
a time-consuming task because of the number of images to process.

For our object detection task, we were only interested in images containing
animals, so we used the annotations to sort images into folders representing
each class. We will denote our dataset as Baitcam, since the camera traps were
designed to attract scavengers with the use of bait. The initial Baitcam class
distribution can be seen in Table 4.1.

Class Images
ArcticFox 724
Crow 732
WhiteTailedEagle 832
GoldenEagle 2050
Raven 49472 (2050)
RedFox 8870 (2050)
Reindeer 1286
SnowyOwl 56
Wolverine 704
Total 64726

Table 4.1: Initial Baitcam class distribution. It shows the number of images for each
class.

4.1 / DATASET PREPARATION 21

Only 7% of the annotated images contained animals, the rest were either empty
or had bad quality due to environmental or camera factors. The massive amount
of empty images makes sense since the camera traps capture images in 5-minute
intervals, regardless of animal presence. Keep in mind that this distribution
might contain duplicate images since there could be several different animal
species in one image.

To reduce the heavy class imbalance we decided to decrease the majority classes
Raven and RedFox to 2050 images, in line with the GoldenEagle class. The
Baitcam dataset was now ready for the tedious part of our dataset preparation,
bounding box annotation.

4.1.1 Animal Bounding Box Annotation

In order to obtain training and validation data, we manually annotated all
the animals in the Baitcam dataset with ground truth bounding boxes. We
used Labellmg [46] for this task, a graphical annotation tool for labeling object
bounding boxes in images. For each image, the annotations were saved as an
Extensible Markup Language (XML) file in PASCAL vOcC format, the format
used by ImageNet. The XML file stores information for each bounding box
in the image, including class name and bounding box pixel coordinates as
(xmin,ymin,xmax,ymax).

Manual bounding box annotation involved several challenges. Firstly, we had
to be able to correctly identify the animals present in the images. This could be
difficult with animals that are similar such as white-tailed eagles and golden
eagles or ravens and crows. Fortunately, we already sorted the images in class
folders using COATs annotations, which made the identification process much
easier. Secondly, we had to be rational when choosing what animals to include
or exclude from our annotation. Images of animals that was unrecognizable
because of size or position were excluded, while animals that were fully or
partially visible and recognizable was included. The Reindeer class was par-
ticularly hard to annotate because they were often distant from the camera,
making them very small. This is apparent in the number of excluded images
in Table 4.2.

To be consistent in our annotation, we followed the PASCAL vOC guidelines
[47] for bounding box annotation as best we could. Our final Baitcam animal
object distribution after bounding box annotation can be seen in Table 4.2. As
indicated by the initial distribution, the dataset is still quite unbalanced with
Raven being the majority class by far. The number of included and excluded
images shows how the Reindeer class was more challenging to annotate than
the rest.

22 CHAPTER 4 / TRAINING METHODS

Class Objects | Images used | Images not used
ArcticFox 577 535 177
Crow 841 444 44
WhiteTailedEagle 804 396 26
GoldenEagle 2191 1652 108
Raven 4956 1739 244
RedFox 1574 1388 418
Reindeer 643 260 973
SnowyOwl 45 31 1
Wolverine 589 571 107
Multiple Species - 983 -
Total 12220 7999 2098

Table 4.2: Final Baitcam object distribution after bounding box annotation. It shows
the number of objects, images used and images not used for each class.

4.1.2 Training and Validation Imagesets

We split the Baitcam dataset into two parts. A training imageset that contain
images and ground truth annotations used for training a model, and a validation
imageset with images and ground truth annotations used for evaluating the
trained models. By looking at how the model performs on the validation set,
we can reiterate our training methods and try to improve them for the Baitcam
dataset. All images in COATs full dataset, beside the 7999 images in the Baitcam
dataset, can be used to see if the model performs well on new images.

Since we are dealing with stationary time-lapse images taken at a high sampling
rate, it is important to be aware of potential pitfalls when splitting the dataset
into training and validation sets. A common mistake in the dataset split phase
is when close to identical images gets mixed in both the training and validation
set. Getting a correct detection on a validation image that is identical to a
training image is not very useful, and will not help us determine if the network
is generalizing well to unseen images. This could happen if we chose to split
the data randomly and the dataset contained 50 identical images of a sleeping
red fox taken five minutes apart.

Instead, we take a more sensible approach and select validation images for
each class according to the areas in which the camera traps are placed, while
all other images are used as the training set. This means that a sequence of
identical images will not be mixed in the training and validation set since they
will contain images from different areas. Table 4.3 shows the validation set and
the camera trap area that each class was chosen from. We try to balance the
dataset distribution as best we could by choosing areas with 20-30% objects,

4.1 / DATASET PREPARATION 23

Class Objects Camera Trap Area
ArcticFox 113/577 (19.58%) Gaissene
Crow 247/841 (29.37%) Ifjord
WhiteTailedEagle 266/804 (33.08%) Komag
GoldenEagle 575/2191 (26.24%) Stjernevann
Raven 1366/4956 (27.56%) Gaissene
RedFox 289/1574 (18.36%) Komag
Reindeer 150/643 (23.33%) | Stjernevann + Ifjord
SnowyOwl 9/45 (20.00%) Random
Wolverine 140/589 (23.77%) Ifjord + Nyborg
Total 3155/12220 (25.81%)

Table 4.3: Baitcam validation set distribution based on camera trap area. It shows the
number of objects chosen from each class and which camera trap area they
were chosen from.

following the common training/validation split ratio of 75/25%. SnowyOwl
images was chosen randomly because they were only present in the Komag
area. Picking a single camera trap area as the validation set was also considered,
but it would not cover all the classes sufficiently because of varying animal
presence in the different areas.

4.1.3 Dataset Format Conversion

The three object detection methods in our unified detection system require
different data formats when processing the dataset. Faster R-CNN use the
standard PASCAL vocC data format where each image has an XML annotation
file and each imageset (train and validation) is defined by a text file. XML
annotations contain ground truth bounding box information as described in
Section 4.1.1, while an imageset text file list all image filenames in the respective
imageset. These files, along with the images, are used to create a custom image
database and ROI database when training or evaluating a model with Faster
R-CNN.

Since YOLOV2 is implemented on top of the Darknet framework, it requires
data in a different format. Annotations in Darknet are text files instead of
XML, and Darknet imageset files contain absolute paths to images instead of
filenames. Furthermore, Darknet represents bounding box pixel coordinates
as (xcenter,ycenter,width,height) instead of (xmin,ymin,xmax,ymax) and use
pixel coordinates that are normalized between o and 1.

SSD on the other hand, store images and XML annotations in Lightning Memory-
Mapped Databases (LMDBs), which can be more efficiently processed by the

24 CHAPTER 4 / TRAINING METHODS

Caffe framework. Caffe has a tool which can generate LMDBs, by using imageset
files that contain relative paths to the images and XML annotations.

We create two Python scripts as part of our data utilities, to conveniently
convert existing PASCAL vOC imagesets and annotations to the data formats
described above. The conversion scripts require a directory with data in PASCAL
voc format and a label map file which contains the different class labels. After
conversion, the dataset is ready to be used by all three object detection methods
in the system.

4.2 Custom Anchor Boxes with k-means
Clustering

As described in Chapter 2, all of the detection methods in our system use
anchor boxes to make bounding box predictions. While Faster R-CNN and SSD
use hand-picked anchor boxes to accommodate more general sizes and aspect
ratios of objects, YOLOv2 use anchor boxes that are optimized for their PASCAL
VOC training set [17]. By picking good anchor boxes related to the objects in
Baitcam we will make it easier for the networks to make good detections. We
implemented a k-means clustering algorithm with inspiration from Redmon et.
al. [17], to create custom anchor boxes for the objects in the Baitcam training
set.

k-means clustering is an iterative algorithm that attempts to assign data points
into groups, called clusters, such that similar data points are put together
in the same cluster. It makes use of a distance measure, often Euclidean
distance, to generate k optimal cluster center points, called centroids. The best
clusters containing similar data points are found by minimizing the total sum
of distances between the data points and their closest centroid.

We modify the original algorithm by using inverse Intersection over Union
(10U) as our distance measure and the ground truth bounding boxes from the
Baitcam training set as data points. IOU is an evaluation metric used in object
detection measuring an overlap ratio between two bounding boxes. An 10U of
1 indicates that the boxes overlap completely, while an 10U of O means that
the boxes do not overlap at all. A more detailed description of the 10U metric
is given in Section 7.3

Minimizing the inverse IOU is equivalent to maximizing the 10U, so our k-
means algorithm attempts to cluster bounding boxes that are similar in size
and aspect ratio. The effectiveness of the modified algorithm is measured by

OO WN -

4.2 / CUSTOM ANCHOR BOXES WITH K-MEANS CLUSTERING 25

Code Listing 4.1: Implementation of k-means clustering to find custom anchor boxes
for a set of bounding boxes.

import numpy as np

def k_means_anchor_boxes(k, centroids, bboxes, iteration_cutoff=25):
anchor_boxes = []
best_avg_iou = 0
best_avg_iou_iteration = 0
iter_count = 0

while True:
clusters = [[] for _ in range(k)]
clusters_iou = []

for bbox in bboxes:
idx, distance = find_closest_centroid(bbox, centroids)
clusters[idx] .append (bbox)
clusters_iou.append(1l. - distance)

centroids = [np.mean(cluster, axis=0) for cluster in clusters]
avg_iou = np.mean(clusters_iou)
if avg_iou > best_avg_iou:

anchor_boxes = centroids

best_avg_iou = avg_iou

best_avg_iou_iteration = iter_count

if iter_count >= best_avg_iou_iteration + iteration_cutoff:
break

iter_count+=1

return anchor_boxes, best_avg_iou

taking the average of all bounding box 10U to their closest centroid. Code
Listing 4.1 show our k_means_anchor_boxes procedure and how it converges
when the average 10U stops improving. The best average 10U is returned, along
with its respective cluster centroids as our custom anchor boxes.

Figure 4.2 shows the average 10U of all bounding boxes in the Baitcam training
set to their closest anchor box. We compare the default anchor boxes from
YOLOV2 and Faster R-CNN to our custom anchor boxes generated with k-
means clustering. The results show that the algorithm successfully finds anchor
boxes that are optimized for our Baitcam dataset and should improve training
compared to the default anchor boxes. Default anchor boxes for SSD are omitted
from this comparison because it has several sets of anchor boxes with different
scales, depending on the size of each feature map used in training.

26 CHAPTER 4 / TRAINING METHODS

100%

80% - i
5 60% |- YOLO o FasterR-CNN
E) []
@
%
g
< 40%} —

20% |- -

0% I I I I L I I I
1 2 3 4 5 6 7 8 9 10

Number of anchor boxes

Figure 4.2: Custom vs. default anchor boxes effectiveness graph. It shows the average
10U overlap of all bounding boxes in the Baitcam training set to their
closest anchor box.

The relative size difference between our custom anchor boxes and the default
YOLOv2 anchor boxes which are specialized for the PASCAL vOC dataset are
shown in Figure 4.3. We see that the objects in Baitcam are generally very
small with similar aspect ratios, having much more square shapes with some
predominance in width. These characteristic makes sense because the original
Baitcam images have a 4:3 aspect ratio and are very high resolution, causing
most objects to be small-scale. We show the effects of using custom anchor
boxes in our evaluation.

Figure 4.3: Illustration of custom and default anchor boxes. It shows the relative size
of Baitcam custom anchor boxes (white) compared to default YOLOv2
anchor boxes (blue).

4.3 / IMAGE PREPROCESSING 27

4.3 Image Preprocessing

The images in the Baitcam dataset have a large size of 2048 X 1536 X 3 (width
X height X depth) pixels. Previous work shows that cropping the black borders
which contain information like date, time and temperature had a positive effect
on classification accuracy [11]. We follow this strategy and do the same on
Baitcam, resulting in 2043 X 1472 X 3 images. They also need to be resized for
training to be able to fit in memory and to avoid the curse of dimensionality
[48].

Each object detection methods respective framework will resize the input image
to a specified resolution when training. We train with the default low-resolution
setting and a custom high-resolution setting. Since most objects in our images
are very small-scale, we feel that a higher input image resolution would be
beneficial on the Baitcam dataset.

With default resolution, Faster R-CNN train on images where the shorter side
is scaled down to 600 pixels, keeping the image aspect ratio. This means our
Baitcam images are resized to 833 xX600. Whereas YOLOV2 and SSD resize input
images to a fixed square shape of 416 X 416 and 300 X 300 respectively. These
default sizes worked as a reference point for further experimentation.

Training a few Faster R-CNN models with default resolution showed that it was
having a hard time with smaller objects as previously expected. We decided to
investigate the ground truth bounding boxes in the training set and found that
the smallest object size was ~ 20 X 20 pixels. Resizing the image to 833 X 600
would make this object = 8 X 8 pixels, which would only correspond to an
area of ~ 0.5 X 0.5 pixels on the convolutional feature map used by the RPN.
Two options could help detection on small objects in Baitcam: change the CNN
architecture for detection on larger feature maps, or increase the input image
size. We tried both options and found that increasing input image size gave
the best results.

Based on the previously mentioned investigation and some experimentation,
we chose to approximately double the default input image size for each object
detection method. Our custom high-resolution training size is 1644 x 1184
for Faster R-CNN, 832 X 832 for YOLOv2 and 608 X 608 for SSD. We show the
effects of training on default low-resolution and custom high-resolution input
images in our evaluation.

28 CHAPTER 4 / TRAINING METHODS

4.4 Online Hard Example Mining

A problem when training an object detection model is the large imbalance
between the number of ground truth objects and the number of background
regions in an image. OHEM is a technique that works to solve this challenge by
choosing hard ROIs to train on. It is more useful for a model to train on ROIs
that it struggles on than training on easy ROIs containing only background.
This technique is already implemented in the SSD object detection method and
we add the option to use it when training a Faster R-CNN model as well. OHEM
was implemented for Fast R-CNN and achieved significant improvements in
detection accuracy compared to the original implementation [49]. Open source
code of the implementation was made available [50] and we include it in the
Faster R-CNN method in our system with some small adjustments.

A standard Faster R-CNN model is trained on ROI mini-batches extracted from
N = 2 training images that are chosen randomly and uniformly. The mini-
batch consist of 64 ROIs that are uniformly sampled from the object proposals
in each image, giving a total mini-batch size of B = 128. Since foreground
regions are extremely rare compared to background regions, Faster R-CNN
samples the mini-batch as 25% foreground RoOIs and 75% background ROIs. A
ROI is labeled as a foreground object class if it has an 10U overlap of at least 0.5
with a ground truth bounding box in the image. It is labeled as background if
it has an 10U in the interval [0.1, 0.5) with a ground truth bounding box. The
lower threshold is set to 0.1 to avoid pure background examples and behaves
as an approximation to hard negative mining, assuming that regions having
some overlap with the ground truth are more likely to be hard or confusing

[34].

OHEM completely removes the foreground-to-background ratio heuristics and
explicitly choose the ROIs that are most difficult for the mini-batch, making
training more effective and efficient. This is done by adding a read-only copy
of the ROI network, which runs a forward pass on all ROIs proposed by the
RPN as seen in Figure 4.4. At the end of the read-only network, a Hard RO1I
Module picks the B/N RoIs with the highest loss as the mini-batch. These
proposals represent the regions that are hardest to learn for the network.
Subsequently, the mini-batch is sent through the normal forward-backward
pass network for training. The downside of using OHEM is slower training due
to more computation from adding the read-only network. We show the effects
of training Faster R-CNN with OHEM in our evaluation.

4.4 / ONLINE HARD EXAMPLE MINING 29

EFor each Rol
\in Hard mini-batch

Classification loss
Regression loss

ROI Proposals from RPN

Softmax Regression

Rol Pooling FCs

Layer nq> m

-=>ﬂ={>m

Hard ROI Module
Hard mini-batch i

iFor all ROIs (read-only)

Figure 4.4: Illustration of the OHEM technique when training Faster R-CNN. The
forward-pass only network (dashed red) shares weights (grey) with the
forward-backward-pass network (dashed black).

Design and Architecture

This chapter describes the design of our unified detection system with a fo-
cus on three main actions that it can perform. We explain how the system
trains and evaluates an object detection model that, in turn, can be used to
perform detection on new images. Additionally, we show and describe the CNN
architectures used by each object detection method in our system.

5.1 System Design

Figure 5.1 show the design of our system that unifies three different object
detection methods. The dashed boxes with bolded text represent directories
and indicate the system’s directory structure. There are three types of actions
when running the system: train a neural network model, evaluate a trained
model and detect with a trained model. Before starting any of the actions,
the dataset has to be created and prepared as described in Section 4.1. The
resulting Baitcam dataset directory is shown with all subdirectories containing
the necessary data for each object detection method.

31

32 CHAPTER 5 / DESIGN AND ARCHITECTURE

Models directory

Configs directory :

; |

Use

[VGG16 J [VGGlG_reduced] [Darknetlg]

Data utils directory) i i T s
' convert_pascal_2_yolov2.py | | Use Use Use
' — e
| convert_pascal_2_ssd.py Lo - |
i | i k_means_anchor_boxes.py | | { Frameworks directory ‘
‘ | | {pyfaster- | __ feaffe-renn-} | |
Create Symbg\ic link Use Pl Trenn | Call—™ ooy | darknet E
4+ Baitcam dataset directory . L ¥ T T)
/ N call call call
faster_rcnn.py [ssd.py] [yﬂlovz.py}
cal_annotations 4_ T T T
nnotation files (xmi){~ | ! call
: é run.py
- Train (.txt) L [Use |
- Validation (.txt) b
Use Evaluate Train Detect
\
L llcustomfanchorfboxes'i ke Craa Creats o
.. {- Anchor boxes (.txt) ! se Creale reate e
h £ " /'Output directo
Create ; p ry :
L ¥ . i
! Results directory gr;‘rl:f‘i:dﬁ?;c;dy?:ﬂ) :
Camera traps Create Image data : Validation results (txt) |- Training Iog. o
storage { o Resultgraph (Png) 1)0 o boxes (.txt)!
Use
Create
4[visualize_detections.py]*Use Detections (.ixt)

Display

PCBS RAPIDF IRE PRO

Figure 5.1: Design of our unified detection system.

5.1 / SYSTEM DESIGN 33

* Train: The default action for the system is training a model. Through
command-line arguments, it is possible to specify which object detection
method, model and dataset to use, along with the number of training
iterations. These options are added to the default configuration settings
for further use in the system. A custom configuration file from the configs
directory can also be given to override default settings.

The configuration and custom anchor boxes are saved in the output
folder. This allows the system environment to easily be restored in the
evaluate and detect actions. Subsequently, run.py will call a wrapper for
the appropriate object detection method, which in turn calls its respective
framework that loads the selected model and its pre-trained ImageNet
weights, then starts the training process. The wrapper acts as an interme-
diate stage that prepares the training process by initializing frameworks
and creating or adapting model definition files for the given dataset.

During training, the frameworks will print stats to the terminal, including
iteration count and average loss. This output is logged by redirecting
stdout and stderr to a log file that can be used to study the loss trend of
the model. Snapshots of model weights are saved to the output directory
at a user specified iteration interval, along with the final model weights
when training is finished.

* Evaluate: When training is finished, the model can be evaluated on
a validation imageset. Given an output directory, the system will load
settings from the configuration file, the anchor boxes used, and the
trained model weights. The wrapper calls the relevant framework to
load the model and run forward passes on the validation data, creating
a set of output result files (one file for each class). Each result file will
list all detections for its particular class in the following PASCAL voC
format: (image filename, probability score, xmin, ymin, Xmax, ymax).
When all detections have been made, they are compared with ground
truth annotations, giving the detection accuracy of the model. Section 7.3
gives a detailed description of the detection metrics used for evaluating
the models.

* Detect: When the model’s detection accuracy has been deemed satis-
factory, it is ready to be used on new images. Detect needs a directory
containing images and an output directory with the trained model. Sim-
ilar to evaluate, the model is loaded and runs a forward pass on each
image. A text file is created for the image directory where the resulting
detections are saved as: (image path, class label, probability score, xmin,
ymin, xmax, ymax). Afterward, the text file can be used in a visualiza-
tion script that draws the bounding boxes with its respective class and

34 CHAPTER 5 / DESIGN AND ARCHITECTURE

probability score on the image, to be displayed or saved on disk.

Optional command-line arguments can be given for training without a pre-
trained ImageNet model and to specify which GPU to use for training. It is
also possible to set two commonly used object detection thresholds in evaluate
and detect. The first is a confidence threshold, telling the system to only keep
detections with a probability higher than the given threshold. The second
is a NMS threshold used to remove duplicate detections. If several detections
contain the same object and have an 10U overlap higher than the threshold, they
will be suppressed by NMs, only keeping the highest scoring detection.

5.2 Convolutional Neural Network Architectures

Figure 5.2 show an overview of the CNN architectures used by each object
detection method in our system.

As described by Girshick et. al., Faster R-CNN use the very deep VGG16 [51]
as its base network and modifies it by adding the RPN and ROI pooling layer
[16]. It has a total of 13 convolutional layers with filter size 3X3 pixels, and 4
max-pooling layers with filter size 2x2 and stride 2. Each max-pooling filter
divides the spatial dimensions in half, allowing the number of convolutional
filters to be doubled. With default input image size, the network will generate
a 53X38 pixel feature map that is used by both the RPN and ROI pooling layer.
The RoI feature vectors that are extracted from the ROI pooling layer has a
size of 7Xx7, and are used for classification and bounding box regression. Table
5.1 show that Faster R-CNN with VGG16 has 136.8 million weight parameters,
where most of them are in the last fully connected layers.

YOLOV2 is extended from a base network called Darknetig, which has 19
convolutional layers and 5 max-pooling layers [17]. Similar to VGG16, it mostly
uses filter size 3 and doubles the number of filters after every pooling layer.
The base network is extended with 3 additional 3%X3X1024 convolutional layers
at the end, instead of using fully connected layers like VGG16, making it a Fully
Convolutional Network (FCN). Related FCNs has shown state-of-the-art results,
while significantly reducing the number of parameters and computation needed
by the network [52]. This reduction is also apparent in YOLOv2 when comparing
the number of parameters with Faster R-CNN, shown in Table 5.1.

A 1X1X64 pass-through layer is added to include more fine-grained features
from previous layers, as described in Section 2.3. Figure 5.2 shows that the
pass-through layer retrieves and merges features from the final 3x3X512 layer
with the second to last convolutional layer. With default input image size, the

5.2 / CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES 35

network will generate a 13X13 pixel feature map that is used for detection by
the region layer.

SSD is also based on the VGG16 network but is modified to a reduced VGG16.
The fully connected layers are converted to convolutional layers and the last
max pool layer is changed to size 3X3 and stride 1. It is additionally reduced
by subsampling the parameters from the converted fully connected layers
[18]. Table 5.1 show that SSD with VGG16_reduced has the fewest number of
parameters of all the object detection methods used in our system.

As described in Section 2.3, several extra convolutional layers are added to the
end of the SSD network to support multi-scale training. With default input
image size, the network generates multiple feature maps with a size between
38x%38 and 1Xx1 pixels that are used by the multibox layer for object detection,
as shown in Figure 5.2.

Faster R-CNN YOLOv2 SSD
(VGG16) | (Darknet1g) | (VGG16_reduced)
Number of parameters 136.8 50.6 24.8

Table 5.1: Number of weight parameters (millions) in the CNNs used by each object
detection method in our system.

36 CHAPTER 5 / DESIGN AND ARCHITECTURE

Faster R-CNN (VGG16) YOLOV2 (Darknet19) SSD (VGG16_reduced)
Input image (833x600) Input image (416x416) Input image (300x300)
conv3-64 conv3-32 conv3-64
conv3-64 maxpool conv3-64
maxpool conv3-64 maxpool
conv3-128 maxpool conv3-128
conv3-128 conv3-128 conv3-128
maxpool conv1-64 maxpool
conv3-256 conv3-128 conv3-256
conv3-256 maxpool conv3-256
conv3-256 conv3-256 conv3-256
maxpool convl-128 maxpool
conv3-512 conv3-256 conv3-512
conv3-512 maxpool conv3-512
conv3-512 conv3-512 conv3-512 (38x38)
maxpool conv1-256 maxpool
conv3-512 conv3-512 conv3-512
conv3-512 convl1-256 conv3-512
conv3-512 (53x38) conv3-512 (26x26) [conv3-512
— maxpool maxpool
| RPN conv3-1024 conv3-1024
,—J conv1-512 convl-1024 (19x19)
Rol Pooling (7x7) conv3-1024 conv1-256
FC-4096 conv1-512 conv3-512 (10x10)
FC-4096 (7x7) conv3-1024 convl-128
conv3-1024 conv3-256 (5x5) -
Detections | conv3-1024 (13x13) [conv1-128
conv1-64 (13x13) |4 conv3-256 (3x3)
convl-128
conv3-1024 » conv3-256 (1x1) B
conv1-70 (13x13)
Region Layer | Multibox Layer |('
v
| Detections | | Detections |

Figure 5.2: Overview of the CNN architectures used by each object detection method in
our system. The convolutional layer parameters are denoted as conv/[filter
size]-[number of filters] and the fully connected layers are denoted as
FC-[number of neurons].

Implementation

Our unified detection system is based on three open source frameworks used
by the object detection methods described in Chapter 2. We refer to these
frameworks as Py-faster-rcnn, Caffe-rcnn-ssd and Darknet. This chapter will
elaborate on how we implemented the system, along with modifications and
adaptations we made to the frameworks that are used.

We implemented high-level functionality in Python, including a run program
and three wrapper programs that connect each object detection method to the
system. The run program consists of a single main function, which takes care of
setting up the configuration and calling appropriate wrapper procedures. Each
wrapper acts as an intermediate stage between its respective object detection
methods framework and the run program. They have separate procedures
for each system action, along with procedures for creating or changing model
definition files according to the dataset and configuration settings given. The
data utilities and visualization script described in Section 4.1.3, 4.2 and 5.1 was
also implemented in Python.

37

38 CHAPTER 6 / IMPLEMENTATION

6.1 Open Source Frameworks

Caffe is an open source deep learning framework used by both Faster R-CNN
and SsSD. It is developed by The Berkeley Vision and Learning Center in C+ +
with a focus on CNNs, which makes it a popular tool in image analysis [35]. One
of its benefits is the number of pre-trained networks that can be downloaded
from the Caffe Model Zoo [53] and used immediately.

To train and test a CNN, Caffe uses model and solver definition files (.prototxt),
where the CNN architecture, optimizer, and its parameters are specified. It has
three interfaces for training and deploying CNNs, including a command line
interface and a Python interface which are both used in our system.

Faster R-CNN and SSD originally use their own modified versions of Caffe con-
taining several self-implemented CNN layers, such as the ROI pooling layer and
the Multibox layer. Having two versions of Caffe would be very inconvenient,
so we decided to merge them and manually solve the conflicts that arose. This
resulted in a single Caffe framework that can be used by both Faster R-CNN
and SSD in our system, we call it Caffe-rcnn-ssd.

Caffe-rcnn-ssd has the following dependencies:
* Required: BLAS, Boost, protobuf, glog, gflags, hdfs
* Optional: CUDA, cuDNN, OpenCV, Imdb, leveldb

Py-faster-rcnn is the official open source Python implementation of Faster
R-CNN [36] and is used in our system. The following modifications and adap-
tations were made to Py-faster-rcnn:

* The original implementation only supports the PASCAL voc and Mi-
crosoft COCO datasets. We modify it to work with custom datasets that
are prepared and structured like Baitcam as shown in Figure 5.1.

* We adopt its YAML configuration scheme and extend it to be used by all
the detection methods in our system. The configuration defines several
settings, such as input image size, batch size, and options to use custom
anchor boxes or OHEM. Adapting it to all methods was natural since
they use similar settings.

* We implement the ability to use k custom anchor boxes generated by our
k-means clustering utility, instead of using the 9 default anchor boxes
for Faster R-CNN models.

6.1 / OPEN SOURCE FRAMEWORKS 39

* We add the ability to train Faster R-CNN models with OHEM by integrat-
ing the original OHEM implementation which was made for Fast R-CNN
[50].

* We adapt Faster R-CNN model definition files to the Baitcam dataset and
use them in our system.

* We remove everything except the files needed for training, evaluating
and detecting with a Faster R-CNN model.

* The functionality to calculate detection metrics, which are described in
Section 7.3, is found in Py-faster-rcnn. We use this functionality in the
evaluation of all models in our system and extend it to plot and save
precision-recall curves with the pyplot module in Matplotlib.

Py-faster-renn has the following dependencies:

* Required: CUDA, OpenCV, Numpy, Cython, EasyDict, PyYAML and Mat-
plotlib.

Darknet is an open source neural network framework used by YoLOv2 [37]. Itis
written by Joseph Redmon in C and CUDA, with a focus on making it fast with
support for both CPU and GPU computation [54]. Installing Darknet is easy
with only two optional dependencies. It uses CUDA for GPU computation and
OpenCV for supporting a wider variety of image types. To train and test a CNN,
Darknet uses a single model definition file (.cfg), where the CNN architecture,
optimizer, and its parameters are specified.

We use a C+ + compilable version of Darknet in our system [55], which supports
CUDA v8 and OpenCV v3. The following modifications and adaptations were
made to Darknet:

* The original YOLOv2 model definition file is made for the PASCAL voOC
dataset. We modify it to work with custom datasets that are prepared
and structured like Baitcam as shown in Figure 5.1.

* We implement the ability to use k custom anchor boxes generated by our
k-means clustering utility, instead of using the 5 default anchor boxes for

YOLOV2 models.

* We implement functionality in Darknet for our systems detect action,
which is described in Section s5.1.

* We remove everything except the files needed for training, evaluating

40

CHAPTER 6 / IMPLEMENTATION

and detecting with a YOLOvV2 model.

Darknet has the following dependencies:

* Optional: CUDA, cuDNN and OpenCV

We use official SSD open source code [39] to create the model definition files
for ssD in our system. The following modifications and adaptations were made
to this code:

* The original code creates SSD model definition files for the PASCAL voOC

datasets. We modify it to create SSD model definition files for custom
datasets that are prepared and structured like Baitcam as shown in Figure
5.1.

SSD does not use a single set of anchor boxes for training, but rather
multiple, because it exploits multi-scale feature maps. Originally, the code
creates a set of default anchor boxes for each feature map used in the
multibox layer, where each set is responsible for differently scaled objects.
So the first feature map will be responsible for objects with size 10-20%
of the input image, second feature map 20-30% etc. We implement the
ability to create sets of anchor boxes based on k custom anchor boxes
generated by our k-means clustering utility, instead of creating the default
anchor boxes.

Evaluation

This chapter describes the experimental setup and detection metrics used to
evaluate Faster R-CNN, YOLOv2 and SSD models. All models are trained on
the Baitcam training set and evaluated on the Baitcam validation set that
is described in Section 4.1.2. We compare the quality of detections of the
models and see the effects of our training methods described in Chapter 4.
The model’s computational complexity is also measured to see what kind of
resource allocation is needed both in training and in detection.

7.1 Experimental Platform

All experiments were run on two identical desktop computers with the following
specifications: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHzX8, Geforce GTX
1080 8GB GPU @ 1657MHz (2560 CUDA cores) and 32GB DDR4 RAM @
2400MHz. They both ran on Ubuntu 16.04 LTS 64-bit with gcc vs.4.0 compiler
and Python v2.7.12.

We build the caffe-renn-ssd framework in our system with the following depen-
dencies:

* CUDA V8, cuDNN v5.1, OpenCV v3.2.0-dev, Boost v1.58.0.1, protobuf v2.6.1,
glog vo.3.4, gflags v2.1.2, hdfs v1.8.16 and Imdb vo.9.17

41

42 CHAPTER 7 / EVALUATION

We build the py-faster-renn framework in our system with the following depen-
dencies:

* CUDA v8, OpenCV v3.2.0-dev, Numpy v1.12.1, Cython vo.25.2, EasyDict
v1.6, PyYAML v3.12 and Matplotlib v1.5.1

We build the darknet framework in our system with the following dependen-
cies:

* CUDA v8, cuDNN vs.1 and OpenCV v3.2.0-dev

7.2 Experimental Design

We decide not to use identical training parameters for each object detection
method because of their different training schemes. Instead, we follow each
methods default parameters that are optimized for PASCAL vOC datasets and
scale them up or down to better fit the Baitcam dataset. Pre-trained ImageNet
models were used to initialize all of our models. We train with SGD optimizer
using a base learning rate of 0.001, with 0.9 momentum and 0.0005 weight
decay, following [16], [17] and [18].

* All Faster R-CNN models were trained for 100000 iterations, scaled up
from default 70000 iterations used on the smaller PASCAL vOC o7 dataset.
We use default batch size of 2 images and decrease the learning rate by
a factor of 10 at 30%, 60%, and 90% iterations.

¢ All yoLOv2 models were trained for 34250 iterations, scaled down from
default 80200 iterations used on the larger PASCAL vOC o7+12 dataset.
We use default batch size of 64 images and decrease the learning rate by
a factor of 10 at 50% and 75% iterations.

e All ssD models were trained for soooo iterations, scaled down from
default 120000 iterations used on the larger PASCAL vOC o07+12 dataset.
We use default batch size of 32 images and decrease the learning rate by
a factor of 10 at 66% and 83% iterations.

We train a model for each object detection method with default input image
size and default anchor boxes as reference models. Subsequently, we train new
models, progressively applying our training methods to see their effects on the
results. The different training methods are described in Chapter 4 and can be
summarized as: “default low resolution“ vs. "custom high resolution®, "default
anchor boxes“ vs. “custom anchor boxes“ and "no OHEM“ vs. "OHEM". Keep

7.2 / EXPERIMENTAL DESIGN 43

in mind that the "no OHEM“ vs. "7OHEM" option only applies to Faster R-CNN
models as described in Section 4.4.

For sSD and Faster R-CNN models, we keep the input image size used in
training for the evaluation procedure, as in [16] and [18]. For YOLOv2 models,
we double the input image size used in training for the evaluation procedure,
following [17]. The NMS threshold and confidence threshold for post-processing
detections were set to 0.45 and 0.005 respectively. These thresholds were found
to give good results on the Baitcam dataset.

Method ‘ Default low resolution ‘ Custom high resolution
Faster R-CNN 833X600 1684X1184
YOLOv2 416X416 (832X832) 832X832 (1184X1184)
SSD 300X300 608%x608

Table 7.1: Overview of input image sizes used in our experimentation. Parentheses
show size used in the evaluation if it differs from size used in training.

Ten different object detection models is trained and evaluated on the Baitcam
dataset in our experimentation. Due to the number of models to be trained and
time limitations we were not able to apply k-fold cross validation when training
our models. We believe our validation set, as described in Section 4.1.2, gives a
good representation of the Baitdam dataset. Post-training, we did detections
on new images from the COAT dataset and manually went through them to
verify the results, confirming that the models were generalizing well.

To measure the computational complexity of the models we record time usage,
RAM usage and GPU memory usage during training and prediction, since these
are the primary bottlenecks in CNNs [21]. We compare each object detection
method to see their computational differences, and additionally compare all
models in our experiments to see the computational cost of applying our
training methods.

Time used in training and detection was measured with a timer class in our
system. The timer class makes use of Pythons time module to measure the
total time used between a specified start point and end point in the system. In
training, we measure the time it takes for the wrapper to complete its training
procedure. In detection, we measure the time it takes to run a forward pass on
one image, and take the average of 100 detections. RAM usage during training
and detection was recorded with Ubuntu’s system monitor, and GPU memory
usage was recorded with the nvidia-smi command. We did not want to use
profilers that could slow down the system.

44 CHAPTER 7 / EVALUATION

7.3 Detection Metrics

We use Mean Average Precision (MAP) to evaluate the object detection models
in our system. MAP is a detection metric commonly used in modern object
detection challenges such as PASCAL vOcC and Microsoft COCO. It is calculated
as the mean of the Average Precision (AP) for each class, where AP is given by
the area under a precision-recall curve for the detections [19].

Precision is defined as the ratio of True Positive (TP) detections to all detections
and captures how accurate the object detection model is.

TP

Precision = ———
TP + FP

Recall is defined as the ratio of TP detections to ground truth instances and
captures how many relevant detections are found by the object detection
model.

TP

Recall = ——
TP + FN

Typically, precision and recall are inversely related, i.e. as recall increases,
precision falls and vice-versa. A balance between the two is often preferred
and can be found by creating a precision-recall curve.

Creating a precision-recall curve in object detection is done in the following
steps:

* Each detection is assigned to the ground truth bounding box which it
overlaps the most if any overlaps sufficiently. We follow the standard of
PASCAL vocC and consider overlaps with an 10U larger than 0.5 (50%)
to be sufficient [19]. 10U divides the area of overlap by the area of union
between a pair of bounding boxes BBoxs and BBoxg. This yields an
overlap ratio between 0 and 1, where 0 indicates that the boxes do not
overlap at all, and 1 indicates that the boxes fully overlap.

BBoxs N BBoxpg
BBoxs U BBoxpg

IntersectionOverUnion =

* The detection with the highest probability score assigned to each ground
truth bounding box is counted as a TP, while all other detections are
counted as FPs. This point highlights the importance of post-processing

7.3 / DETECTION METRICS 45

detections with NMS to remove redundant detections, since they would
be counted as FPps.

* Precision and recall values are computed for increasingly large subsets
of detections, starting with the highest-scored detection and adding the
remainder in decreasing order of their score. Plotting these precision-
recall pairs as progressively lower-scored detections are included, creates
a precision-recall curve as shown in Figure 7.1.

Highascure Detections Low score

FP FP FP FP ...

1.0

=
T

1

Precision

.
T

0.0 . . - . 1
0.0 0.2 04 0.6 0.8 1.0

Recall

Figure 7.1: Example precision-recall curve for a single class. It shows AP (blue area)
and how TP and FP detections change the curve.

The AP for each object class is measured with the Riemann sum as the true
area under the curve,

AveragePrecision = Z P(k)AR(k)
k=1,...,N

where P(k) is the precision at every possible threshold value, AR(k) is the
change in recall, and k takes on every possible recall value found in the data.
To obtain a high AP score, the object detection model must have precision at
all levels of recall, penalizing models that only gets a subset of detections with
high precision. MAP can then be computed as the mean of the AP for each
class,

46

CHAPTER 7 / EVALUATION

AveragePrecision(q)

Q

Q
MeanAveragePrecision = Z
g=1

where Q is the number of classes.

7.4 Results

Table 7.2 shows the validation results after training models with default low
resolution and default anchor boxes using each object detection method, and
Figure 7.2 shows the precision-recall curve of the SSD model in this table.

Method ‘ mAP ‘ (A)Fox Crow (WT)Eagle (G)Eagle Raven (R)Fox Reindeer SnowyOwl Wolverine
Faster R-CNN | 87.2 97.1 80.2 85.6 95.7 89.0 97.5 46.3 94.3 98.7
YOLOv2 86.4 93.8 78.6 85.5 95.3 88.1 93.6 55.5 90.2 96.9
SSD 87.3 96.8 82.3 88.8 97.1 89.1 97.3 36.2 98.9 99.0
Table 7.2: Results on the Baitcam validation set using each object detection method
with default low resolution and default anchor boxes. It shows AP for each
class and MAP.
Precision-Recall curve
1.0
0.8
_5 0.6+
-4 (A)Fox (AP =0.97)
dé:" Crow (AP = 0.82)
04l (WT)Eagle (AP = 0.89)
(G)Eagle (AP = 0.97)
— Raven (AP = 0.89)
) — (R)Fox (AP =0.97)
02H — Reindeer (AP = 0.36)
— SnowyOwl (AP = 0.99)
— Wolverine (AP = 0.99)
00 1 L I L

0.0

Figure 7.2: Precision-Recall curve for sSD model with default low resolution and

0.2 0.4 0.6 08 1.0
Recall

default anchor boxes.

7.4 [RESULTS 47

From our bounding box annotation, we know that Reindeer, Crow, and Raven
are the most small-scale classes in Baitcam, and it is apparent that all the
models are having a hard time detecting these animals. With such a low input
image size, the smallest objects are scaled down to the degree that they barely
appear on the feature maps generated by the CNNs. This makes it hard for the
model to train and learn the patterns of these small-scale classes, causing it to
make a lot of FP detections as seen with Reindeer on the precision-recall curve
in Figure 7.2. The curve implies that the model is more frequently detecting
reindeer that are not present or misclassifying other animals to be reindeer.
Examples of such detections can be seen in Figure 7.6a.

Table 7.2 show that Reindeer is the hardest class to detect because most reindeer
in Baitcam are far in the background of the images. Crows and ravens are
also very small-scale, and they have the disadvantage of being similar when
it comes to size and features. This means that they have a higher chance of
being wrongly detected as each other. As the majority class, Ravens will most
likely be favored in detection, causing them to have almost 90% AP while
crows have around 80%. The same observation can be made with white-tailed
eagles and golden eagles, where the former class is a minority of the two.
WhiteTailedEagle has an AP of ~85%, while GoldenEagle has the favorable
score at around 95%. This issue is not as noticeable with RedFox and ArcticFox,
which are more easily separated by color in daytime images but can be very
similar in greyscale images taken at night.

We see that MAP is similar across all methods, with SSD having the highest
score of 87.3%, Faster R-CNN having a score of 87.2% and YOLOV2 having the
lowest score of 86.4%. This is unexpected since SSD use significantly lower
resolution than YOLOv2 and Faster R-CNN in evaluation (300X300 vs. 832X832
vs. 833%X600 respectively). The multi-scale training and data augmentation in
SSD are clearly beneficial to a majority of the classes in the Baitcam dataset.
YOLOV2 performs best on the most small-scale class Reindeer, but worse on all
other classes, compared to the other methods. Faster R-CNN is on par with SSD
in terms of MAP, without using their extensive data augmentation strategies.
With this in mind, a point could be made for keeping the aspect ratio of images
when training, to avoid distortions on objects from scaling them to a square
shape.

Table 7.3 shows the validation results after training models with default low
resolution and custom anchor boxes using each object detection method, and
Figure 7.3 shows the precision-recall curve of the SSD model in this table.

Our custom anchor boxes give a modest MAP increase of 0.4% and 1% for Faster
R-CNN and YOLOV2 respectively. MAP for SSD, on the other hand, is decreased
by 0.3%.

48 CHAPTER 7 / EVALUATION

Method ‘ mAP ‘ (A)Fox Crow (WT)Eagle (G)Eagle Raven (R)Fox Reindeer SnowyOwl Wolverine
Faster R-CNN | 87.6 97.1 80.6 86.1 96.2 90.8 96.9 45.0 97.2 98.8
YOLOv2 87.4 96.9 78.0 88.8 96.2 89.7 96.4 55.2 86.6 99.0
SSD 87.0 95.5 70.6 90.8 97.1 89.1 97.3 46.9 98.9 97.3

Table 7.3: Results on the Baitcam validation set using each object detection method
with default low resolution and custom anchor boxes. It shows AP for each
class and MAP.

Precision-Recall curve

0.8+

g 06}
K (A)Fox (AP = 0.95)
dé:" Crow (AP = 0.71)

04l (WT)Eagle (AP =0.91)

(G)Eagle (AP =0.97)
—— Raven (AP =0.89)
— (R)Fox (AP =0.97)
— Reindeer (AP = 0.47)
— SnowyOwl (AP = 0.99)
— Wolverine (AP = 0.97)

00 I | | L
0.0 0.2 04 0.6 0.8 1o

Recall

Figure 7.3: Precision-Recall curve for SSD model with default low resolution and
custom anchor boxes.

Looking at individual class scores for Faster R-CNN and YOLOV2, we see that
AP increases slightly for most classes, compared to Table 7.2. It is clear that
our custom anchor boxes have scales and aspect ratios that are more fitting for
objects in Baitcam than the default anchor boxes. Detection of reindeer did
not improve in these models but got a small AP decrease instead. We know
that our custom anchor boxes are much smaller than the default anchor boxes
and should be more suitable for the Reindeer class. The model is most likely
making more reindeer detections, but these detections are FPs because of the
previously mentioned problems with small-scale objects.

For the sSD model, all classes have similar scores to the default reference model,
except for Crow and Reindeer. Contrary to the other two object detection
methods, our custom anchor boxes in SSD prove effective on the Reindeer
class, which has increased from 36.2% to 46.9% AP. Conversely, Crow has

7.4 / RESULTS 49

decreased by ~11%, which explains the overall MAP decrease. Looking at the
precision-recall curve of the SSD model in Figure 7.3, we see that FP detections
of crows start occurring at earlier levels of recall, compared to the default
reference model in Figure 7.2. Again, the model is making more small-scale
detections, but it has a negative effect on the Crow class. We believe it is
struggling to separate ravens and crows on such low-resolution input images,
therefore detecting more FP crows. The benefits of using custom anchor boxes
are clearly not being fully exploited on low-resolution input images. Figure
7.5a, 7.5b, 7.5¢ and 7.5d show images where our custom anchor boxes help
detecting small objects with SSD and YOLOVv2.

Table 7.4 shows the validation results after training models with custom high
resolution and custom anchor boxes using each object detection method, and
Figure 7.4 shows the precision-recall curve of the SSD model in this table.
The last Faster R-CNN model in the table is trained with OHEM and bolded
numbers highlight our best scores.

Method mAP | (A)Fox Crow (WT)Eagle (G)Eagle Raven (R)Fox Reindeer SnowyOwl Wolverine
Faster R-CNN | 91.5 96.3 85.9 89.9 95.3 94.2 97.4 76.5 89.2 98.8
YOLOv2 92.5 96.4 89.0 86.5 97.1 94.2 97.7 80.0 92.6 99.2
SSD 94.1 98.9 91.1 93.3 98.0 95.1 98.4 72.6 100 99.5
Faster R-CNN | 93.1 96.9 88.1 89.0 96.1 94.1 97.6 82.8 93.6 99.4

Table 7.4: Results on the Baitcam validation set using each object detection method
with custom high resolution and custom anchor boxes. It shows AP for each
class and MAP. The last Faster R-CNN model in the table is trained with
OHEM. Bolded numbers highlight our best scores.

Training with custom high resolution and custom anchor boxes gives a signif-
icant boost in MAP for all object detection methods. Compared to Table 7.3,
Faster R-CNN increased by 3.9% to 91.5%, YOLOV2 increased by 5.1% to 92.5%
and SsD increased by 7.1% to 94.1%. We additionally train Faster R-CNN with
OHEM which further increases its MAP by 1.6% to 93.1%. Like the default
models, SSD is back to having highest MAP while Faster R-CNN with OHEM
and YoLoOv2 follows close behind.

It is clear that our training methods are successful for the object detection
methods in our system, not only for detecting small objects but also across
all classes in the Baitcam dataset. The bolded numbers show that almost all
classes have surpassed 90% AP, with many being close to 100%. Reindeer has
the lowest AP at 82.8%, but it is the class which has improved the most, as
it had only 46.3% AP in the default reference model. The AP gap between
crows/ravens and white-tailed eagles/golden eagles has decreased from ~10%
to ~4%. This shows that more precise ROIs from our custom anchor boxes and
more features from higher input image resolution helps the models separate
similar classes, mitigating the issue with majority classes being favorable in

50 CHAPTER 7 / EVALUATION

Precision-Recall curve
1.0 —

0.8 F

=
[=r]
T

(A)Fox (AP = 0.99)
Crow (AP =0.91)
(WT)Eagle (AP = 0.93)
(G)Eagle (AP = 0.98)
—— Raven (AP = 0.95)
— (R)Fox (AP = 0.98)
— Reindeer (AP = 0.73)
— SnowyOwl (AP = 1.00)
— Wolverine (AP = 0.99)

UU I L L L
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Precision

=
s
T

Figure 7.4: Precision-Recall curve for SSD model with custom high resolution and
custom anchor boxes.

detection.

Looking the precision-recall curve for the SSD model in Figure 7.4, we see that
the Crow class is in line with other classes, confirming our theory that custom
anchor boxes gave more FP Crow detections because of the low-resolution
input image. Furthermore, we see a more balanced curve for the Reindeer class
where FP detections occur at much later levels of recall. Higher resolution
input images combined with custom anchor boxes are clearly beneficial for the
most small-scale objects in Baitcam. Figure 7.5e, 7.5f and 7.6b show images
with detections made by the models with all our training methods applied,
comparing them to the other models in our experiments.

7.4 / RESULTS 51

boxes. boxes.

boxes. boxes.

(e) ssp with custom high resolution and custom anchor(f) YOLOv2 with custom high resolution and custom anchor
boxes. boxes.

Figure 7.5: Comparing detections from SSD and YOLOv2 models with different train-
ing methods.

52 CHAPTER 7 / EVALUATION

PCE85 RAPIDFIRE FPRO

(a) Faster R-CNN with default low resolution and default anchor boxes.
y= () 3= 1 4 LLOI00 A J

PCB85 RaAPIDFIRE FPRO
(b) Faster R-CNN with custom high resolution, custom anchor boxes and OHEM.

Figure 7.6: Comparison of detections from Faster R-CNN models in our experiments.

7.4 / RESULTS 53

Figure 7.7 shows the training time for each object detection model in our
experiments. Training the default models is relatively fast, ranging from 10-19
hours. Applying custom anchor boxes did not have a large impact on training
time, which is expected because we use the same number of anchor boxes as
default and it will therefore not affect the number of operations needed in
the model. Using the default models as reference points, we see that doubling
the input image size increases training time by approximately 200%, 150%
and 300% for Faster R-CNN, YOLOv2 and SSD respectively. Training Faster
R-CNN with OHEM increased training time by 350%. So the boost in MAP
from using higher resolution images and OHEM does require longer training
times, which is a tradeoff that has to be considered when choosing a model for
deployment.

Comparing each object detection method, it is evident that Faster R-CNN has
the lowest training time in all experiments, which makes sense when we look
at the batch size and number of iterations used in training. With a batch
size of 2 and 100 000 iterations, Faster R-CNN only trains on a total of 200
000 images, compared to 2 192 000 (64:34250) for YOLOV2 and 1 600 000
(32:50000) for ssD. Even with such large differences in number of images
processed in training, all object detection methods has similar performance in
MAP, suggesting that the ROI pooling training scheme in Faster R-CNN is more
efficient than the full image training schemes in YOLOv2 and SSD.

Figure 7.8 and 7.9 shows the maximum GPU memory and RAM usage when
training each object detection model in our experiments. For the default res-
olution models, SsSD has the highest GPU memory usage of around 5GB. This
is surprising since it trains on lower image resolution than the other object
detection methods, and it has fewer weight parameters as described in Section
5.2. We believe the high GPU memory usage in SSD is due to using multi-
ple feature maps in training and the expansion data augmentation strategy
that has a 50% chance of enlarging the input image by 4 times its original
size. YOLOV2 and Faster R-CNN has almost identical computational needs of
~3GB and 5.3GB GPU memory for training on low- and high-resolution images
respectively.

The lowest RAM usage during training is at around 500-600 MB for all models
and is held by SSD, as a contrast to its GPU memory usage. This might be due to
the use of LMDBs which lets the Caffe framework load images more efficiently.
Faster R-CNN has a stable RAM usage of ~9oo0 MB while YOLO has the highest
usage at 1-1.8 GB. The differences when training a YOLOv2 model with low
and high resolution indicate that the Darknet framework is less scalable than
the Caffe framework in terms of RAM usage.

54 CHAPTER 7 / EVALUATION
| |
[D Faster R-cnn [l D YoLov2 [l ssD

»

=

é 72 67.1 .
< 53

g 48 |- 44.8 |
& 29.8

=

= 241 188 20 .
< 15.5 —

= 10.2 10.5 15

0 | | | T

Default low resolution Default low resolution Custom high resolution Custom high resolution

Default anchor boxes

Custom anchor boxes Custom anchor boxes Custom anchor boxes
OHEM

Figure 7.7: Training time (hours) for each object detection model in our experiments.

(o

o

o

o
[

32083017

GPU Memory (MB)
) N
S o
S S
S S

0 \

5002

| |
[0 Faster r-cnN [0 YoLov2 [[ssD

5898

5070 538453095216

32083017

Default low resolution Default low resolution Custom high resolution Custom high resolution

Default anchor boxes

Custom anchor boxes Custom anchor boxes Custom anchor boxes
OHEM

Figure 7.8: Maximum GPU memory usage (MB) when training each object detection
model in our experiments.

| |
[0 Faster r-cnn [I yoLov2 [l [ssD

2000/ 1779 |
m

g

S 1095 1093

S 1000 | 221 915 931 905 |

526 601 567
O | | | T

Default low resolution Default low resolution Custom high resolution Custom high resolution
Default anchor boxes

Custom anchor boxes Custom anchor boxes Custom anchor boxes
OHEM

Figure 7.9: Maximum RAM usage (MB) when training each object detection model
in our experiments.

7.4 / RESULTS 55

Figure 7.10 shows the detection time on one image for each object detection
model in our experiments. The default models are faster than the models with
our training methods applied, as suggested by the computational needs in
training. The discrepancies are more stable than in training time, with a 100%
increase in detection time when using low-resolution vs high-resolution input
images, except SSD which had a 200% increase. So doubling the input image
size leads to double the detection time in most cases.

As indicated in Chapter 2, the single shot detectors have a much lower detection
time than Faster R-CNN. Our default SSD model performs detection at 71 frames
per second (FPS), with an average detection time of 0.014 seconds per image.
YOLOV2 has a lower average detection time of 0.036 seconds and Faster R-CNN
is the slowest with 0.136 seconds, corresponding to 27 and 7 FPS. With our
training methods applied, the detection speeds are reduced to 21, 15 and 3
FPS.

Figure 7.11 and 7.12 shows the maximum GPU memory and RAM usage when
detecting with each object detection model in our experiments. We perform
detection with a batch size of 1, resulting in lower computational needs than
in training. Similar to Figure 7.10, the YOLOv2 and Faster R-CNN models have
almost identical GPU memory usage. In contrary to training, SSD has the lowest
GPU memory usage in detection of only ~700-1200 MB. This reinforces our
theory of high GPU memory needs from its data augmentation strategy, which
is not performed in detection.

RAM usage is also quite different in detection compared to training, especially
for YoLOv2 and SSD. Opposite from training, we see that YOLOv2 and SSD has
the lowest and highest RAM requirements of around 600 MB and 1000 MB
respectively. Faster R-CNN has the same RAM usage as in training at ~9oo MB.
The RAM usage is stable for all models in detection, even with higher input
image resolution.

CHAPTER 7 / EVALUATION

56
o)
= 0.3f
o
Q
8
Q [
_E 0.2
c
§e]
5 0.1r
Q
°
A
0

| |
[D Faster r-cnn [l D yoLov2 [l 0 ssD

Default low resolution Default low resolution Custom high resolution Custom high resolution
Custom anchor boxes

Default anchor boxes

Custom anchor boxes

Custom anchor boxes
OHEM

Figure 7.10: Detection time (seconds) on one image for each object detection model
in our experiments. Measured as an average of 100 detections with error

bars showing standard deviation.

4000

GPU Memory (MB)
S
S
S

17621863

709

0

[0 Faster rR-cnn [0 yoLova [l 0 ssD

17621863

723

3602

3025

1173

3602 I

Default low resolution Default low resolution Custom high resolution Custom high resolution

Default anchor boxes

Custom anchor boxes

Custom anchor boxes

Custom anchor boxes
OHEM

Figure 7.11: Maximum GPU memory usage (MB) when detecting with each object
detection model in our experiments.

1500

1000

RAM (MB)

0

995

1859

587

| |
[D Faster r-cnn [l I yoLov2 [l [ssD

863

592

989

872

610

998

878 |

Default low resolution Default low resolution Custom high resolution Custom high resolution

Default anchor boxes

Custom anchor boxes

Custom anchor boxes

Custom anchor boxes
OHEM

Figure 7.12: Maximum RAM usage (MB) when detecting with each object detection
model in our experiments.

Discussion

Our evaluation compared state-of-the-art object detection methods in our
unified detection system and showed the challenge of detecting wild animals in
camera trap images from the Arctic tundra. We worked to solve this challenge
by training several object detection models, investigating their results and
figuring out how to make improvements, in an iterative fashion. This chapter
discusses the process of deriving our training methods and applying them to our
experimentation. The results showed that our training methods were successful,
with certain tradeoffs to consider, which are also discussed in relation to the
COAT project.

8.1 Detecting Small Animals

The published papers on the object detection methods used in our unified
detection system recognize the difficulty of detecting small objects in images
and work toward improving this problem [17][18]. After training our first model
on the Baitcam dataset, it was clear that this would be our main challenge
as well. An easy fix would be to remove the most challenging images with
very small-scale objects from the Baitcam dataset, only demanding reliable
detection of animals that are close to the camera. We did not choose this
approach because it would remove a large portion of images from the already
small Baitcam dataset, and we want an animal detection model that is reliable
for all cases of animals in the Arctic tundra.

57

58 CHAPTER 8 / DISCUSSION

From our research, we knew that anchor boxes played a big part in how well
the model would detect certain objects and was a common factor for all object
detection methods in our system. Since Baitcam had nine different animals,
and several of those animals are similar in size, we believed that custom anchor
boxes which were optimized for the animals in Baitcam would surely improve
detection accuracy. An option was to manually explore the bounding box
annotation data in our Baitcam training set and hard-code anchor box changes
to the object detection methods. We chose another method because we wanted
a more automatic and general solution, which could potentially be used to find
favorable anchor boxes for other datasets and problem areas as well. This goal,
combined with some guidance from Redmon et. al. [17], lead to our k-means
clustering implementation for finding custom anchor boxes.

Applying our custom anchor boxes proved successful in making more small-
scaled detections, but also had an unexpected negative effect because of the
low input image resolution used in each object detection method. All object
detection methods default settings were made for Pascal VOC datasets which
consist of ~500%375 images with a wide range of object scales. The images
in Baitcam have a much larger size of 2043X1472, a majority of our objects
covers below 30% of the full image and our smallest object covers only ~1%.
It was clear that the object detection methods needed adapting to our larger
images.

Our first approach was to exploit larger feature maps from earlier layers in
the CNN, since small-scale objects would have more features retained in these
layers for detection. We modified the Faster R-CNN model definition files and
moved the RPN from the 17th layer to 13th layer in the VGG16 network. This
resulted in a 1-2% MAP increase, at the cost of more GPU memory usage and
longer training times. For YOLOV2, an idea is to remove one of the initial max-
pooling layers making the final feature map 26x26, but we were not able to
experiment with this due to time limitations.

We tried increasing the input image size in addition to using a larger feature
map in Faster R-CNN, but our GPU memory fell short of the CNNs requirements.
Taking a step back, we decided to revert the RPN to the 17th layer and train
solely with a higher resolution input image size and our custom anchor boxes.
This training method increased MAP significantly more than using larger feature
maps, as seen in our results. Consequently, we applied it to all object detection
methods in our experimentation.

Shrivastava et. al. implemented OHEM for the Fast R-CNN object detection
method and showed that it was helpful when dealing with smaller sized objects
[49]. Additionally, our results showed that the SSD model, which uses OHEM,
had the best MAP when training with custom high resolution and custom anchor

8.2 / MODEL DEPLOYMENT FOR ANIMAL DETECTION IN THE ARCTIC TUNDRA 59

boxes, while Faster R-CNN was falling behind. Based on this information we
decided to integrate OHEM from Fast R-CNN into our unified detection system
and apply it to Faster R-CNN as our final training method. This yielded a better
performing Faster R-CNN model in terms of detection accuracy, surpassing
our best YOLOv2 model and achieving best AP for the small-scale Reindeer
class.

8.2 Model Deployment for Animal Detection in
the Arctic Tundra

Our evaluation show that our training methods are successful for Faster R-
CNN, YOLOV2 and SSD, giving a MAP increase on the Baitcam validation set by
5.9%, 6.1% and 6.8% respectively. This increase in quality of detection comes
at the cost of higher computational complexity and hardware requirements
for our detection system. All the models in our experiments have different
computational attributes which can deem them favorable or unfavorable for
deployment in the COAT project.

Based on the GPU memory and RAM requirements during training of all models,
we believe they are best suited for training at a server backend and not on-site
at the camera traps, where hardware is limited. With this in mind, we do not
see GPU memory, RAM and time usage during training to be an obstacle, since
retraining of models could be done continuously at the backend. Additionally,
we believe retraining due to new animals is unlikely, as nine animal classes in
the COAT dataset has been constant over the last six years of capturing images
in Finnmark, Norway.

GPU memory and RAM usage of our models during detection give an indication
of possible deployment on-site at the COAT camera traps. We were particularly
surprised by the SSD models which only require 1.2 GB GPU memory and 1
GB RAM for detection. In the case that these hardware requirements are too
high, there are other possibilities to consider. The camera traps could transmit
images to a server where our unified detection system would perform detection
on said images.

One of COATs goals is to create a real-time detection system. To achieve this,
the models in our system has to be able to perform detection on an image at
the same or faster rate that the camera traps capture images. In our case, the
camera traps take an image every 5 minutes, which means that all our models
surpass this goal by a large margin. The sampling rate of the camera traps
could be increased by a factor of 300 and our slowest model would still be able

60 CHAPTER 8 / DISCUSSION

to perform real-time detection. Based on all previously mentioned points, we
believe our SSD model with the highest MAP of 94.1% is suitable for deployment
in the COAT project, despite its computational complexity.

Conclusion

In this thesis, we have implemented a system that unifies three state-of-the-
art object detection methods for automatic, real-time and accurate animal
detection in camera trap images from the Arctic tundra. We have given a
detailed description of dataset preparation and training methods used for
animal detection. We described and analyzed Faster R-CNN, YOLOv2 and SSD,
comparing their quality of detections and computational complexity on our
Baitcam dataset. Our results show that SSD outperforms the other methods in
both detection accuracy and speed.

Our experimentation showed that detection of small objects in images is one
of the main challenges of animal detection in the Arctic tundra. We worked
towards solving this challenge by deriving and applying our training methods,
achieving significant improvements. Our fastest model can detect scavengers
in the Arctic tundra at 71 FPS with 87.3% MAP. With our training methods, we
achieve 94.1% MAP at 21 FPS. We additionally discussed the process of deriving
our training methods and possible deployment of our unified detection system
for animal detection in the Arctic tundra.

61

62 CHAPTER 9 / CONCLUSION

9.1 Future Work

Several improvements can be made to our unified detection system. A goal
for the future is to port YOLOv2 to Caffe, removing the need for Darknet and
simplifying our system. This could be done by implementing a few CNN layers
used by YOoLOv2 in Caffe, such as the region layer. For further simplification, we
want to remove the use of Caffe’s command line interface, making our system
only rely on Caffe’s Python interface instead.

Caffe2 was newly released as a lightweight and scalable deep learning frame-
work, building on the original Caffe, A long-term goal is to port the object
detection methods to the Caffe2 framework, making it the sole dependency of
our unified detection system.

Adding more object detection methods is a natural development of our sys-
tem, and should be relatively straightforward by creating additional wrapper
programs. A few methods we are interested in is the Region-based Fully
Convolutional Network (R-FCN) [56] and the Deconvolutional Single Shot
Detector (DSSD) [57]. Both have shown state-of-the-art detection accuracy on
the PASCAL voc datasets and the latter was particularly impressive on small
objects.

To further increase MAP for animal detection in camera trap images from the
Arctic tundra, we propose experimenting with different CNN architectures for
the object detection methods. We believe networks such as ResNet101 [41] and
the Inception ResNet v2 [58] would improve detection accuracy compared to
the VGG16 networks which are currently used, but they would require better
hardware than what was used for the experimentation in this thesis. For on-
site camera trap deployment we would like to try MobileNet which has been
shown to achieve VGG16 level accuracy on ImageNet with only 1/30 of the
computational cost and model size [59].

Because of time limitations, we had to quickly implement custom anchor
boxes for SSD and we believe further improvements can be made with more
experimentation. Additionally, we would like to add cropping as a preprocessing
step, since we know that animals in Baitcam rarely exceeds 30% of the image
size. Cropping the input images into smaller patches and training on the patches
would remove the need for our high-resolution input image size, decreasing the
models computational complexity. It would most likely improve detection on
smaller objects as well, since the cropped patches would not need substantial
downscaling like the original images.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Ashild @. Pedersen, A. Stien, E. Soininen, and R. A. Ims, “Climate-
ecological observatory for arctic tundra-status 2016,” Fram Forum 2016,
pp- 36—43, Mar. 2016.

K. K. AF. O’Connell, J.D. Nichols, Camera traps in animal ecology: Methods
and analyses. Springer, Jan. 2011.

R. Steenweg, M. Hebblewhite, R. Kays, J. Ahumada, J. T. Fisher, C. Burton,
S. E. Townsend, C. Carbone, J. M. Rowcliffe, J. Whittington, J. Brodie,
J. A. Royle, A. Switalski, A. P. Clevenger, N. Heim, and L. N. Rich, “Scaling-
up camera traps: monitoring the planet’s biodiversity with networks of
remote sensors,” Frontiers in Ecology and the Environment, vol. 15, no. 1,
pPp- 26—34, 2017.

R. Kays, B. Kranstauber, P. A. Jansen, C. Carbone, M. J. Rowcliffe, T. Foun-
tain, and S. Tilak, “Camera traps as sensor networks for monitoring animal
communities,” LCN, p. 811—818, Oct. 2009.

R. A. Ims, J. U. Jepsen, A. Stien, and N. G. Yoccoz, “Science plan for coat:
Climate-ecological observatory for arctic tundra,” Fram Centre Report
Series 1, p. 98, 2013.

S. Hamel, S. T. Killengreen, J.-A. Henden, N. E. Eide, L. Roed-Eriksen, R. A.
Ims, and N. G. Yoccoz, “Towards good practice guidance in using camera-
traps in ecology: influence of sampling design on validity of ecological
inferences,” Methods in Ecology and Evolution, vol. 4, no. 2, pp. 105-113,
2013.

O. Beijbom, C. J. Tan, S. Chan, T. Treibitz, A. Gamst, B. G. Mitchell,
D. Kriegman, P. J. Edmunds, C. Roelfsema, J. Smith, D. I. Kline, B. P. Neal,
M. J. Dunlap, V. Moriarty, and T. Y. Fan, “Towards automated annotation
of benthic survey images: Variability of human experts and operational
modes of automation.,” PLoS One, vol. 10, p. €0130312, 2015.

65

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Swanson, M. Kosmala, C. Lintott, R. Simpson, A. Smith, and C. Packer,
“Snapshot serengeti, high-frequency annotated camera trap images of 40
mammalian species in an african savanna,” Scientific data, vol. 2, June
2015.

J. S. Evans, Bias in human reasoning - causes and consequences. Essays in
cognitive psychology, Lawrence Erlbaum, 1989.

W. P. Colquhoun, “The effect of a short rest-pause on inspection efficiency,”
Ergonomics, vol. 2, no. 4, pp. 367-372, 1959.

H. Thom, “Automatic rodent identification in camera trap images using
deep convolutional neural networks.” Capstone Project, Dec. 2016.

N. S. Clayton and N. J. Emery, “The social life of corvids,” Current Biology,
vol. 17, no. 16, pp. R652 — R656, 2007.

T.Y.-H. Chen, L. S. Ravindranath, S. Deng, P. V. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,” in
13th ACM Conference on Embedded Networked Sensor Systems (SenSys),
(Seoul, South Korea), Nov. 2015.

P. Tsarouchi, S.-A. Matthaiakis, G. Michalos, S. Makris, and G. Chrys-
solouris, “A method for detection of randomly placed objects for robotic
handling,” {CIRP} Journal of Manufacturing Science and Technology, vol. 14,
pp. 20 — 27, 2016.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316,
2016.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, eds.), pp. 91-99, Curran Associates, Inc.,
2015.

J. Redmon and A. Farhadi, “YOLOgoo0o0: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303—338, 2010.

T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dolldr, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc., 2012.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolu-
tional sequence to sequence learning,” CoRR, vol. abs/1705.03122, 2017.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”

in Proceedings of International Computer Vision and Pattern Recognition
(CVPR 2014), 2014.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient backprop.,” in
Neural Networks: Tricks of the Trade (2nd ed.) (G. Montavon, G. B. Orr,
and K.-R. Miiller, eds.), vol. 7700 of Lecture Notes in Computer Science,
Pp- 948, Springer, 2012.

T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude.” COURSERA: Neural Networks
for Machine Learning, 2012.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

D. M. Hawkins, “The Problem of Overfitting,” Journal of Chemical Infor-
mation and Computer Sciences, vol. 44, no. 1, pp. 1-12, 2004.

S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft
weight-sharing,” Neural Comput., vol. 4, pp. 473—493, July 1992.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J.

Mach. Learn. Res., vol. 15, pp. 1929-1958, Jan. 2014.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “Imagenet
large scale visual recognition challenge,” CoRR, vol. abs/1409.0575, 2014.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2524, 2013.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective search
for object recognition,” International Journal of Computer Vision, 2013.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, pp. 1627-1645, Sept. 2010.

R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” arXiv preprint arXiv:1408.5093, 2014.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks.” https://github.com/
rbgirshick/py-faster-rcnn, 2015. (Date last accessed 18-May-2017).

J. Redmon, “Darknet: Open source neural networks in ¢.” https://github.
com/pjreddie/darknet, 2016. (Date last accessed 18-May-2017).

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640,
2015.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector official open
source code.” https://github.com/weiliu89/caffe/blob/ssd/examples/
ssd/ssd_pascal.py, 2016. (Date last accessed 18-May-2017).

M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, C. Packer, and
J. Clune, “Automatically identifying wild animals in camera trap images

with deep learning,” CoRR, vol. abs/1703.05830, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

J. Wawerla, S. Marshall, G. Mori, K. Rothley, and P. Sabzmeydani,

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_pascal.py
https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_pascal.py

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

“Bearcam: automated wildlife monitoring at the arctic circle,” Mach. Vis.
Appl., vol. 20, no. 5, pp. 303—-317, 2009.

P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning shapelet
features.,” in CVPR, IEEE Computer Society, 2007.

J. Parham and C. Stewart, “Detecting plains and grevy’s zebras in the
realworld,” in 2016 IEEE Winter Applications of Computer Vision Workshops
(WACVW), pp. 1-9, Mar. 2016.

Z. Zhang, Z. He, G. Cao, and W. Cao, “Animal detection from highly
cluttered natural scenes using spatiotemporal object region proposals and
patch verification,” IEEE Transactions on Multimedia, vol. 18, pp. 2079—
2092, Oct. 2016.

Tzutalin, “Labelimg.” https://github.com/tzutalin, 2016. (Date last
accessed 18-May-2017).

M. Everingham and J. Winn, “The pascal visual object classes challenge
2012 (voc2012) annotation guidelines..” http://host.robots.ox.ac.uk/
pascal/VOC/voc2012/guidelines.html, 2012. (Date last accessed 18-May-
2017).

E. Keogh and A. Mueen, Curse of Dimensionality, pp. 257-258. Boston,
MA: Springer US, 2010.

A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-based object
detectors with online hard example mining,” CoRR, vol. abs/1604.03540,
2016.

A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-based
object detectors with online hard example mining.” https://github.com/

abhi2610/0HEM, 2016. (Date last accessed 18-May-2017).

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.

Y. Jia and E. Shelhamer, “Caffe model z0o.” https://github.com/BVLC/
caffe/wiki/Model-Zoo, 2017. (Date last accessed 18-May-2017).

J. Redmon, “Darknet: Open source neural networks in c.” http://

https://github.com/tzutalin
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/guidelines.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/guidelines.html
https://github.com/abhi2610/OHEM
https://github.com/abhi2610/OHEM
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

pjreddie.com/darknet/, 2013—2016.

[55] J. Redmon and P. Sundareson, “Darknet-cpp.” https://github.com/
prabindh/darknet, 2016. (Date last accessed 18-May-2017).

[56] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based
fully convolutional networks,” CoRR, vol. abs/1605.06409, 2016.

[57] C.Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD : Deconvolutional
single shot detector,” CoRR, vol. abs/1701.06659, 2017.

[58] C. Szegedy;, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” CoRR, vol. abs/1602.07261,
2016.

[59] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/11704.04861,
2017.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://github.com/prabindh/darknet
https://github.com/prabindh/darknet

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Contributions
	1.3 Outline

	2 Object Detection
	2.1 Convolutional Neural Networks
	2.1.1 Architecture
	2.1.2 Training
	2.1.3 Transfer Learning

	2.2 Region-based Convolutional Neural Networks
	2.2.1 Region Proposal Network

	2.3 Single Shot Detectors

	3 Related Work
	4 Training Methods
	4.1 Dataset Preparation
	4.1.1 Animal Bounding Box Annotation
	4.1.2 Training and Validation Imagesets
	4.1.3 Dataset Format Conversion

	4.2 Custom Anchor Boxes with k-means Clustering
	4.3 Image Preprocessing
	4.4 Online Hard Example Mining

	5 Design and Architecture
	5.1 System Design
	5.2 Convolutional Neural Network Architectures

	6 Implementation
	6.1 Open Source Frameworks

	7 Evaluation
	7.1 Experimental Platform
	7.2 Experimental Design
	7.3 Detection Metrics
	7.4 Results

	8 Discussion
	8.1 Detecting Small Animals
	8.2 Model Deployment for Animal Detection in the Arctic Tundra

	9 Conclusion
	9.1 Future Work

	Bibliography

