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Abstract
Lungs sounds has been used as a diagnostic tool for centuries. The usefulness
of listening to lung sounds, or pulmonary auscultation, as a definite diagnostic
method has been diminished by advances in medical imaging such as chest
X-Ray, but these advanced methods also bring a higher monetary and time
cost. In addition, when the severity of pulmonary conditions changes, audible
symptoms change immediately, while x-ray imaging does not show the same
immediate change. The stethoscope is still used as a screening method and has
great potential for use in continuous monitoring, as it is a simple, non-invasive,
and low cost method. Therefore, lung sounds are still important today, and
there is a need for better training tools, and automatic analysis methods that
can be integrated with stethoscopes to advance the technology of one of the
most common medical tools today.

As a part of Tromsøundersøkelsen, researchers are now recording lung sounds
to create a gold standard database of lung sounds and categorizing them based
on occurrences of abnormal sounds. They are investigating the validity of
pulmonary auscultation as a diagnostic method.

Earlier approaches have achieved good results in this field, but have lacked a
large dataset and gold standard to validate performance in a general setting of
clinical data. We present our approach to automatically analyze lung sounds,
and classify abnormal sounds found in audio files of recorded breathing. We
employed signal processing andmachine learning techniques and implemented
an analysis pipeline to perform the classification. We achieved a cross-validated
F1-score of 83.5% using a Support Vector Machine performing classification on
window excerpts containing Crackles from recordings of breathing. We also
did preliminary evaluation the classification for Wheezes, and found a F1-score
of 64.6%.

With our pipeline we have also implemented a GUI for a web application that
we can deploy as a working prototype. We believe that with this approach we
have created a basis for a core technology, that can be integrated with mobile
platforms to serve as a home monitoring device, training tool or medical
equipment.
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1
Introduction
Physicians routinely listen to lung sounds through stethoscopes during general
examinations or when patients indicate respiratory distress. Such lung aus-
cultations are an important method for physicians in decisions on treatment
and referral for X-ray. However, auscultation is a subjective method and im-
proper treatment and referrals accumulate an increased time and monetary
cost. Training physicians is a challenging task because of varying perception
of sound and lack of common terminology, though the latter have come more
into focus for pulmonary experts. As a consequence of these challenges, better
tools for training are required and a gold standard of abnormal lung sounds is
greatly needed.

Training physicians using such tools, would help them to more accurately
diagnose and decide a course of treatment and referral. A better set of tools
for detecting abnormal lung sounds could also be used for self-monitoring by
patients during treatment.

In this thesis we present our approach to Automatically analyzing lung sounds
to detect abnormal sounds, and our tools that could aid physicians in training
themselves to recognize these abnormal lung sounds.

1
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1.1 Background
Here we describe the data extraction methods, and data classification methods
that the doctors use in order to achieve a gold standard of categorized lung
sounds. Even though there are typically additional patient information, our
domain in this thesis will be audio.

1.1.1 The Tromsø Study
The Tromsø Study, or Tromsøundersøkelsen in Norwegian, is a repeated epi-
demiological study that has been conducted periodically since 1974, and has
seen in total 40 051 different people participating. [Jacobsen et al., 2012] The
original aim of the study was to discover reasons behind and combat high mor-
tality due to cardiovascular diseases in Norway. Later the study has extended
its scope to include for example respiratory diseases, from which the new gold
standard dataset of lung sounds is being built. The Tromsø Study takes place
each 5-6 years, currently the 7th round.

In Tromsøundersøkelsen, prof. Hasse Melbye and MD. Juan Carlos Aviles
Solis are collecting lung sounds from over 3000 participants. From each of
the participants, the investigators collect a total of 6 recordings, sequentially
recorded at 6 different places on the torso. When recording lung sounds, the
researchers use a stethoscope with a fitted microphone in the tubing. The 6
recordings are taken from two locations on the upper front of the torso, two on
the upper back, and two on the lower back of the torso. All files are captured
in Wave (.wav) format at 44,100 Hz sampling rate.

This accumulates to a repository of 18 000 individual recordings of lungs,
all taken within a clinical setting and with the possibility to link with other
data such as health records. Data is recorded in a setting that is close to
what General Practitioners encounters when performing routine examinations,
which is possibly a noisy environment.

1.1.2 Abnormal Lung Sounds
The goal of the lung sound study is to investigate how accurate lung sounds
are as biomarkers for diagnosing, monitoring and treating lung diseases. Lung
auscultation is one of the simplest non-invasive screening for lung disease, or
other diseases that afflict lungs as part of the symptoms such as congestive heart
failure. Therefore, it is a quick and cheap way of screening patients. However,
audible symptoms are prone to subjectivity of the investigator. Therefore,
investigating the validity of the stethoscope (and lung auscultation) as a
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diagnostic method for lung disease is important, but also the creation of tools
that can aid in both training and screening using auscultation. The study focus
on the two most common abnormal lung sounds, Crackles and Wheezes, and
creating a gold standard with expert classified abnormal sounds.

Crackles (also referred to as Rales or Crepitations in earlier research) are short
explosive clicking or crackling sounds that occur due to opening of small airways,
with a short duration often ranging between 5-40 ms. They can occur in most
places of the lung, and can be present in one (unilateral crackles) or both lungs
(bilateral crackles) simultaneously. Basal crackles are used to describe crackles
that originate from the bottom of the lungs.

Crackles can be divided into several main types depending on the characteristic
of the sound; coarse, medium and fine, as well as wet or dry. Fine crackles
are often soft, high pitched and short, while coarse are louder, lower pitched,
and last longer. Most commonly crackles can be heard during an inspiratory
phase, and depending on the type, either late or early. Coarse crackles tend to
occur in early inspiratory phase, while fine crackles occur in late inspiratory
phase.

Crackles can also occur in healthy lungs, but a persistent presence of crackles
indicate opening of small airways and small cavities (alveoli) in the lungs
being collapsed by fluid, exudate, or lack of aeration during expiration. These
symptoms often occur in patients with pneumonia, pulmonary fibrosis, acute
bronchitis and other conditions. [Forgacs, 1978] Crackles are also very subtle
sounds, so a microphone that is rubbing over cloth and chest hair,might actually
produce similar sounds.

Wheezes are continuous musical sounds, which can last up to a whole inspira-
tion or expiration cycle. They are usually caused by air being forced through
small paths due to obstructions in airways, creating a whistling sound. Wheezes
can be heard detected over the whole chest as well as the trachea, which
have proven to be a good method of detecting wheezes in asthma patients.
[Sanchez et al., 1993, Pasterkamp et al., 1997]

As with the crackles, wheezes can vary a lot from person to person, and
the sound depends on cause, severity and auscultation method and location.
Wheezes can be indications of respiratory conditions such as asthma attacks
and different types of allergies that causes narrowing or obstruction of airways.
Wheezing can also occur in healthy lungs when the airflow velocity increases
during physical exercise.

Lung sounds are difficult to define in a general sense, because of its inherent link
to anatomy and condition, which also makes training challenging. As Murphy
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put it in his paper Auscultation of the lung: past lessons, future possibilities
[Murphy, 1981] when talking about the lungs sonic signal:

This signal can be seen to vary with recording site, flow rate, lung
volume, body position, and various breathing manoeuvres. It is
likely that the sound changes with growth, development, and age,
as well as with minimal environmental insults. The signal is so
complex and varies so much that it appears at times to be random
or unpredictable. It is more likely, however, that the sonic signal
reflects the underlying anatomy and pathophysiology.

1.1.3 Gold Standard
A gold standard in medical terminology, refers to a diagnostic test, which can be
bothwith orwithout restrictions, that is the best available (most definite). While
in Machine Learning, a gold standard usually refers to a manually annotated
training set or test set. Gold standards are useful to evaluate if classification
in Machine Learning is general enough in comparison to a base truth.

When classifying lung sounds for the gold standard, a team of three doctors
categorize each audio file individually. Then if all agree, the file is categorized as
the agreed class. If there is disagreement between the individual classification,
the file is saved for an agreement meeting, where all doctors meet and discuss
the possible category. If an agreement can be reached, the file is stored on
record as the agreed class, otherwise, it is discarded. At the time of writing,
the experts have manually classified about 2500 audio files.
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Figure 1.1: Doctors agreement protocol for lung sounds

Our goal is to develop an approach for automatic analysis of these sounds, using
the gold standard. An automatic analysis system can summarize and utilize
the knowledge this large repository holds. While medical tests often need a
high amount of Specificity (True Negative Rate) and Sensitivity (True Positive
Rate). For a test to be called a Gold Standard Test, it has to be the best available.
[Kanchanaraksa, 2008] While our results are similar to other studies of the
same nature, the access to a gold standard of about 18 000, this study is the
first of its kind to encompass such a large scope. [Gurung et al., 2011]

1.1.4 Machine Learning
We believe that machine learning is the best choice for an automated analy-
sis. Machine learning have become a standard in data analysis tasks, both in
the cases of large amounts of data and non-trivial pattern recognition in com-
plex data. It is also cost efficient, scalable (somewhat) and have the potential to
achieve near expert-level precision in classification tasks. [Jordan and Mitchell, 2015]
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There are three types of general machine learning approaches; supervised,
unsupervised and reinforced. For a task where there are two clear classes
(and the goal is to classify data), we use a supervised approach. In order to
implement a supervised machine learning algorithm, we first need to generate
a labelled training set. Labelled training sets are sets of data were we know
which class they belong to. Using this knowledge it is possible to generate a
model that represents the statistically significant features of the data.

When we have a set of data with labels for two or more classes, it is possible
to train a model to either recognize all three classes, or train two models to
recognize one positive and negative class (binary classification). We chose to
use the latter, due to the difference in duration of the two abnormal sounds.
Finding wheezes within a window of 90 ms would be very hard to achieve and
finding crackles in 3 second windows would be equally difficult.

1.2 Approach
There are several challenges in creating and training a machine learning model
for classification of abnormal lung sounds:

1. A large amount of representative data is required to develop and
validate machine learning models. More data makes it more likely that
the data is representative of the general case. And it reduces the risk of
over-fitting models and it becomes more robust against outliers. In cases
where data is scarce it is usual to generate synthetic samples. Though the
disadvantage of synthetic data is that it may not be correct in regards to
the real world, especially for audio, which is statistically non-stationary.

2. Generate a labelled training set to use with a supervised learning
algorithm. The audio files that are used in this project are already labelled
as either containing crackles or not, but we also want to find individual
crackles in each file. Therefore, we need to extract individual crackles
from audio files at a finer granularity, this reduces the amount of normal
data and emphasizing abnormal samples.

3. Preprocess the files to be classified in the same way that the training
data has been pre-processed. Reduce the size of each classification task
and more accurately pinpoint locations of the abnormal lung sounds
within a given audio file.

4. Find and extract features from the data. We need to find features
that represents our data while reducing the number of dimensions that
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our classifier has to consider. This is due to the curse of dimensionality,
which entails that generalizing something correctly becomes exponen-
tially harder as the dimensionality of the data (or feature set) increases.
[Domingos, 2012]

5. Select, tune and train a classifier using our training set to create a
model that is able to perform accurate and precise predictions on new
data.

6. Validate our model using cross validation to measure specificity and
sensitivity, and the expert classified gold standard from the Tromsø study,
to evaluate classification accuracy on clinical data.

7. Create a usable interface to infer classes for unseen data, and provide
a visual representation of the results to an end user.

To the extent of our knowledge, we have not seen any related work that is
able to fulfil all these requirements. In related work we often see that lung
sounds are a niche field, which is mostly of interest to medical researchers.
Doctors today have also questioned the usefulness of the stethoscope in di-
agnosis, as Gupta explains in his article The stethoscope: The iconic medical
tool [Gupta et al., 2016] In machine learning very few engineers and machine
learning specialists are exposed to these kind of problems, and tend to favor
the more popular problems such as image classification, speech recognition
and recommender systems. Another reason that lung sounds have not been
directly adopted in machine learning is that there has never been a good gold
standard to train and evaluate classification. Other machine learning tasks
draw from popular available databases such as ImageNet (images), MNIST
(handwritten digits), NimStim (facial expressions). However, there are inter-
est in the field as seen with the thesis A framework for automated heart and
lung sound analysis using a mobile telemedicine platform, which are currently
undergoing tests in India, [Kuan, 2010] and the successful start-up EKO Core
Stethoscope. [Wong, 2015]

This work builds on our previous study, Pulmonary Crackle Detection using
Signal Processing and Machine Learning [Grønnesby, 2015], we developed a
method for classifying crackles in audio files. The method we used were based
on two main features, Statistical moments in wavelet decomposition and Short
Time Fourier Transform, and using two SVM classifiers, one for each feature
type. Though a little unmotivated, the reason we used two classifiers were that
our features did not give a clear separation, so each classifier would partake
in a voting scheme. Subsequently we assumed that our features were not
descriptive enough of our data, and that a separation between the classes was
hard to distinguish. A lot of the previous work was heavily dependent on our
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classifiers recovering for features with an exaggerated number of dimensions
without adding information.

1.3 Proposed Solution
Our approach is outlined in the following list:

1. From the time since our previous study, even more data have been
gathered. Furthermore, more of the gathered data have been manually
classified, so the amount of data to evaluate our approach have been
increased as well. However, we use a subset of the gold standard as
an early benchmark in evaluation, and save major evaluation for future
work.

2. We have increased our training set, with a new Data Annotation Tool that
simplifies the process of generating labelled training samples. Where we
previously had 37 crackle samples and 61 normal samples, we have now
increased the respective amounts to 178 and 208 each. In addition, we
have also annotated 22 wheeze samples to begin preliminary tests for
wheeze detection.

3. We have improved upon the crackle detection from the previous work.
Exploring new features and simplifying the classification process. To
alleviate this problem, we have reduced the dimensions in favor of a
higher number of features. From having 3 different high dimensional
feature types, resulting in a vector with more than 300 dimensions,
we have selected 5 different feature types of only 1 dimension each,
resulting in a vector with only 5 dimensions. This requires a less complex
classifier such as K-Nearest Neighbor (KNN), subsequently this decreases
our training time as well.

4. Training is performed in the same way as our previous study, but required
time have decreased due to lower dimensions in our feature vectors. This
makes our pipeline more responsive through our GUI.

5. We have done evaluations on classifying Wheezes, and have found some
preliminary results. Wheezes, as opposed to Crackles, are lasting,melodic
and continuous sounds. Features that work for crackles may not be
applicable to wheezes directly due to this difference.

6. In addition, we have improved and further developed our front-end,
incorporating a waveform display and audio player embedded in the
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page. This allows researchers to review their data quickly, and also
correct any errors that might occur in classification.

1.4 Evaluation
We evaluate our implemented pipeline by cross-validation, in addition we
have also evaluated our pipeline on a subset of the gold standard lung sound
database. We found a Precision of 85.5% ±6.1 and a Recall of 83.6% ±10.2,
giving a F1-score of 83.5% ±3.6. In our tests on full audio files we found that
our classifier was able to classify 14 of 23 crackle files as containing crackles, and
186 of 247 as not containing crackles (normal). The results on full audio files
are not as accurate as per window, which indicates that we need to correlate
the windows that are being classified to the audio file itself.

1.5 Contributions
We make the following contributions:

• Description of a Machine Learning based approach to preprocessing,
feature engineering, classifying and representing two different abnormal
lung sounds, Crackles and Wheezes.

• A pipeline for fast analysis of lung sound audio files containing lung
sounds and a web based front end GUI for presenting analysis results in
a readable manner for doctors and medical students.

• Evaluation using a subset of the, to our knowledge, largest epidemiologi-
cal dataset of expert annotated lung sounds.

1.6 Conclusion
In conclusion our results show that the approach has acceptable sensitivity and
high specificity, for individual windows, and we believe with the completion of
our future work that we can achieve close to the same accuracy for full audio
files as well. Together with completion of our future work, we believe that our
core technology has applications in devices such as mobile devices, medical
equipment or as a web api. Various use cases ranging from self-monitoring by
patients, training of medical staff and students and automatic monitoring in
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medical equipment.



2
Methods
In this chapter we motivate and describe the methods used in our approach. To
complete our challenges, we have to complete the following steps: Generating
a training set, Preprocessing Audio files, Feature Selection and Selection and
Training of a Classifier.

2.1 Training Set Generation
We divide our data into three classes; normal, crackle orwheeze. While the gold
standard has been classified by 3 experts, only one expert has classified each
individualwindowof the training set. Our training set contains smallerwindows
from the classified parts of the gold standard. The reason we have chosen to
extract smaller, shorter windows is because of the large amount of information
audio file contains. Therefore, we believe searching for events (crackles or
wheezes) that last either between 5-30 milliseconds or between 0.5-3 seconds
in 15 seconds of audio is counter-intuitive. We believe that this is reminiscent
of a Needles-in-Haystack Problem. [Moreland and Truemper, 2009]

Therefore, we further manually label smaller windows containing the three
classes we are looking for. To aid the manual labelling, we implemented a data
exploration tool (Figure 2.1). Each audio file lasts for about 15 seconds, and
contains normal breathing as well as crackles. So we had to extract smaller
excerpts, or windows, from these files and save them as individual files. For

11
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crackle samples we have used a size of 4096 samples per file, or 92 ms. This
will guarantee that the windows we label as crackles contains at least one or
more whole crackles, since coarse and fine crackles typically lasts between
5-30 ms [Sovijarvi et al., 2000]. Each of the windows overlap by 50% with the
previous window, so if a crackle occurs on the edge of a window, it will be
contained in the next window. Figure 2.2 shows this process of manual labelling
of windows.

The same procedure is applied to wheezes, but the window size is bigger since
wheezes typically last for orders of magnitude longer. We chose to use 131 072
samples per window, which is about 2.97 sec. To have a consistent size when
classifying wheezes, we also extracted normal samples with the same amount
of samples.

As of now, we have two training sets. The first is the Gold Standard from
Tromsø 7, and the second is from the inter-observer pilot study conducted
prior to Tromsø 7. [Aviles-Solis et al., 2015] We chose to only use data from
the Tromsø 7 study, since the dataset from the pilot study had already been
edited to highlight the abnormal lung sounds. As we will discuss later in this
chapter, all features are scaled using a standard scaler, so variations within the
training set might produce a skewed scale when fitting the scaler.
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Figure 2.1: Data annotation tool. By sliding a window along the signal, smaller win-
dows can be examined and saved

Generating a lot of training data is a time consuming task, but we chose to
do this manually to a better ensure that our training set contains only true
positive samples.



2.1 TRA IN ING SET GENERAT ION 13

Annotator

Full Audio Files
x260

Gold 
Standard
Blueprint

Data From Tromsø 7

Data Annotation Tool

Training Set Generation

Crackle 
Windows

Normal
Windows

Wheeze 
Windows

Normal
Windows

x175 x208

Training Set

Window Duration: ~92ms (4096 Samples)

Window Duration: ~2.97s (131 072 Samples)

x22 x17

Figure 2.2: Training set generation with a single annotator
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2.2 Preprocessing
Every audio file in our repository consists breathing recorded over approxi-
mately two respiratory cycles, lasting on average 15 seconds. These audio files
are sampled at 44 100 Hz, equivalent to the sampling rate of Compact Discs.
When recording digital audio, 44,100 Hz has become the preferred sampling
rate due to the Nyquist-Shannon sampling theorem, which is a fundamental
bridge between continuous-time signals and discrete-time signals (often called
analog and digital signals respectively).

Theorem 2.2.1. A sampled waveform contains all the information without any
distortions, when the sampling rate exceeds twice the highest frequency contained
in the sampled waveform.

Since the abnormal sounds of interest occur between 50 - 2400 Hz, we have
the option to down-sample the audio files quite a bit, but have chosen not
to. The features we have chosen to use does not require heavy computation,
so therefore we want to keep the samples as close to their original format
as possible. We consider feature extraction to be part of the preprocessing
steps, so the only preprocessing done before feature extraction is windowing
of full audio files. The training set is already windowed, and does not require
windowing. Figure 2.3 shows windows applied to an audio file.

The different feature types are outlined in the next section.
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Figure 2.3: Windowing of an audio file with overlapping windows (50%), using a
sliding window of 4096 samples (crackles) or 131 072 samples (wheezes)
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2.3 Feature Selection
In this section we will present some of the features that we have evaluated in
our approach. Throughout our study we have evaluated some features that did
not end up in our pipeline due to inconclusive results. These alternate features
are summarized in the section Alternate Features. Additional features for other
types of learning (such as deep learning) is explained in Chapter 5, Related
Work.

We evaluated each of our features individually to get an idea of how well they
will perform as single feature vectors. The results are presented in the Results
& Evaluation section. We have evaluated the same features for both crackles
and wheezes and found that they are not universally applicable (see Chapter 4
Evaluation and Section Future Work in Chapter 5, Conclusion).

2.3.1 Time Domain Features
We chose to find features that are both dependent on the time domain and the
frequency domain, since both are important for classification of Wheezes and
Crackles. Crackles may be more dependent on the time domain rather than
the frequency domain, due to its short-lasting explosive nature. We collected
the features described below from the time domain. These features, as with
the MFCC are on a per window basis, meaning the features are calculated on
4096 samples or 92ms of audio. Each audio file will be divided into around
300 windows for Crackles. Wheezes have a longer window and therefore, we
collect about 8 windows per file at a rate of 131 072 samples per window or
2.97ms. The time domain features are calculated directly on the audio without
any prior transformation.

Variance
The variance within a time series, or any vector for that matter, is defined as a
measure of the spread of a distribution.

In our case the distribution is audio amplitudes over time. Our evaluation
and results have shown that crackle windows have more variance than nor-
mal windows due to their explosive nature. Normal windows may vary more
in terms of zero crossing rate, but the spread is higher for crackles as they
usually contain more power, or have a higher amplitude, than normal breath-
ing. The variance is related to Shannon’s entropy which have been used to
locate heart sounds for the purpose of eliminating these from lung sounds.
[Yadollahi and Moussavi, 2006]
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Range
The simplest features of our feature set, is the maximum value of the audio file
subtracted from the minimum value of the audio file. This gives us a certain
range for each audio file, and since crackles have an explosive popping noise,
we believe the range of crackle windows will be higher than normal breathing.
Note that this feature is highly dependent feature scaling, as it is highly sensitive
to noise and other artefacts that may cause sudden high amplitudes in the
audio. The formula for the range of a signal S gives us:

R(S) = |Max(S) −Min(S)|

Sum of Simple Moving Average
While Simple Moving Average is closely related to stock market price fluctua-
tions, it can be applied to a signal as well. The sum will give an indication of
how much the signal is changing over the course of the time it lasts. We have
used two different granularity levels of this feature. The coarse version looks
at all 4096 samples as one signal, while the fine version calculates the value
for smaller sub-windows of 800 samples each, sliding 100 samples at a time.
The fine version only keeps the window with the highest amount of change.
Calculating the Sum of Simple Moving Average for a full sized window is done
according to the following formula:

SMAcoarse (Siд) =
len(Siд)∑
n=1

|Siдn−1 − Siдn |

And to apply the same formula to smaller windows and selecting the window
with maximum change, we divide the window into n smaller sub-windows and
apply the same formula:

SMAf ine (Siд) = Max(SMAcoarse (win1), SMAcoarse (win2), ..., SMAcoarse (winn))

2.3.2 Frequency Domain Features
While the time domain features are extracted from a window of a signal,
which we do not transform prior to extraction, frequency domain features
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are calculated on frequency spectrum magnitudes. We obtain the frequency
spectrum magnitudes by calculating a Fast Fourier Transform and only keeping
the real parts of the coefficients (absolute values) or by using a Short Time
Fourier Transform to calculate spectrograms.

Spectrum Mean
Themean value of the spectrum gives us an indication of the central tendency in
the frequency domain. Crackles that occur in breathing often carry more power
in higher frequencies. The center of the power distribution would naturally
have a higher value for any windows containing crackles, though we have
observed that this is a tendency rather than a rule.

2.3.3 Feature Scaling
Audio data is non-stationary and fluctuating, so each recording might have
a slightly different sound, lower gain, noise etc. To deal with this we need
to scale our features, standardizing each feature category across all training
samples. Using a standard scaler, we are able to achieve this. Outliers and
divergence between training samples are minimized through this process, and
brings all features to a standard scale compared with other samples. This is
especially important with classifiers such as KNN, as they calculate distance
metrics between points to determine class membership. Any outliers as a result
of unscaled data will have an impact on classification accuracy. Attaining poor
accuracy because we do not scale our features is bad enough, but attaining
a good accuracy because features are not scaled properly is a much bigger
concern. So scaling all features to a common scale based on the training set is
done for all audio files.
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2.3.4 Summary

Audio Windows
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Feature Vectors

Figure 2.4: Each window is represented by a 5-dimensional feature vector.

We chose to keep the five preceding features (Figure 2.4 shows our final feature
vector), which have proven to be equally as good as our old features, with fewer
dimensions. [Grønnesby, 2015] We want to use as few dimensions as possible
due to the Curse of Dimensionality. A term coined by Bellman [Bellman, 1957]
and explained in terms of machine learning by Keogh et al. as:

For machine learning problems, a small increase in dimensionality
generally requires a large increase in the numerosity of the data,
in order to keep the same level of performance for regression,
clustering, etc. [Keogh and Mueen, 2011]

Since we have a training set of 173 and 208 samples, we want to stay be-
low 10 dimensions. With each dimension added, the amount of training data
needed

2.4 Alternative Features
We have tested some additional features, and have some preliminary results.
But these are at a too early stage to be integrated or we did not find any
conclusive results that they would increase classification precision.
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MFCC
The Mel Frequency Cepstral Coefficients is a technique for feature extrac-
tion that has seen great success in speech and music recognition, and is a
part of almost all modern applications in these fields [Logan et al., 2000]
[Hasan et al., 2004]. The algorithm for computing the MFCC of an audio signal
uses the following steps:

1. Framing the signal

2. Compute the Discrete Fourier Transform (DFT) for each window

3. Apply the Mel-filterbank to convert frequency to the Mel-scale

4. Take the Log amplitude of the Mel-scaled spectrum

5. Compute the Discrete Cosine Transform on the Mel-scaled Log ampli-
tudes

To understand what we gain from using the MFCC transform, we need to
explore each step individually. Audio signals are nonstationary, meaning their
statistical properties change over time. Therefore, when framing a signal into
smaller chunks we are able to analyze a signal that is approximately stationary.
Then applying the fourier transform to each of these chunks creates a spectro-
gram of the signal. This spectrogram denotes spectral content of the signal in
the Hertz scale, so applying the Mel-filterbank converts the Hertz values into
the Mel-Scale. The Mel-Scale is a perceptual scale of pitch; which models pitch
closer to what humans perceive rather than actual Hertz values. Further, taking
the Log amplitude of the Mel-scaled spectrum gives a power spectral density
estimation, which shows the energy of the different frequency bins. Lastly we
compute the Discrete Cosine Transform of the log power spectrum as if the log
spectrum were a signal. Normally these types of transformations are used in
data compression (audio, imaging and video), and to obtain the original signal
we would apply the Inverse Fourier Transform. However, when we compute the
Discrete Fourier Transform in the second step, only absolute values are kept,
which means phase information is lost. Therefore, we use the Discrete Cosine
Transform, rather than the Inverse Fourier Transform. The resulting coefficients,
the MFCC, is a cepstral representation of the audio clip. A cepstrum contains
information about the rate of change at different spectrum bands, which would
be the Mel-spaced frequency bins.

MFCCs have been the state-of-the-art standard in speech recognition for a long
time, and it has applications in Music Information Retrieval as well. Due to the
nature of crackles, being short explosive sounds, lasting less than 100 ms, the
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MFCC might not be directly applicable. In addition, the MFCC are susceptible
to changes in loudness.

The MFCC have historically been used with sequence classifiers such as Hidden
MarkovModels, so its usefulness is somewhat dependent on the type of classifier.
They are also meant to model a large vocabulary in speech recognition, while
our classification problem is binary. Moreover, the MFCC can have quite a few
dimensions depending on the signal frame size, so they cannot be used directly
in classifiers where careful feature engineering is required.

2.4.1 Spectrogram Image Analysis
In the article The detection of crackles based on mathematical morphology in
spectrogram analysis. [Zhang et al., 2015] The authors investigated a method
of classifying crackles based on a generated spectrogram using image analysis
techniques. The authors found in their experiments that a crackle often leaves
an elliptical pattern in the spectrogram, from which features can be extracted.
We replicated this method by calculating the spectrogram of a signal using the
short time fourier transform, and using a histogram equalization to increase
the contrast of the spectrogram. Further we used thresholding to normalize
each value to either 0 or 1. Though we were able to replicate the spectrogram
processing techniques, we were unable to find the elliptical structure of the
crackle present in our experiments.

We can see one of the main problems we encountered using this approach in
Figure 2.5 is that we can see something that resembles an elliptical pattern,
but a very similar pattern also occurs in files that the experts have classified as
a normal. Without access to the actual data used in the study it is very hard to
compare exactly to what the Zhang et al. have done. Using a wavelet decompo-
sition to compute the spectrogram, as they did in their study, rather than the
short time fourier transform might give a better frequency resolution.
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Figure 2.5: Comparison of two signals with accompanying spectrogram plots and
histogram normalized spectrogram. Left: Crackle,Right: Normal Breathing
(Noisy)

2.5 Breathing Cycle Detection
We have done some experiments with detecting the breathing cycle of an audio
file. Since most crackles happen at an inspiratory phase and wheezes at an
expiratory phase, determining the breathing cycle could help eliminate false
positives. By restricting the area where our pipeline searches for abnormal
sounds we would eliminate possible false positives that happen in between
breathing cycles. To do this we have implemented a method by looking at the
smoothed root mean square of the signal. We smooth the signal by convolving
it, and then look for the minima of the resulting RMS curve. This presents an
issue though, since we are looking for global minima, it is natural that these
are located either at the start or at the end of the signal. As we can see in
Figure 2.6, there are one local minima at the start of the signal, and four at the
end. So for us to make this method feasible for breathing cycle detection, we
would need to restrict the location of the global minima, using local minimas
instead. It could be as simple as saying that the minima cannot be located
within the X first or last samples of the signal, though it is not a very elegant
solution. Another way to do this would be to use a Parzen Window (Kernel
Density Estimation), in order to estimate the probability density function of
a part of the signal. Then comparing the different estimates to find the parts
with the lowest or highest distributions to find breaks between breathing cycles
or find the peaks in inspiratory or expiratory cycle.
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Figure 2.6: Waveform with the RMS curve plotted in red. The black vertical lines are
the minimas of the RMS curve.

2.6 Classifier
In our evaluation we have evaluated 3 classifiers. In our experiments we found
that the SVM performed best on our features. We used K-Nearest Neighbors
and AdaBoost (Decision Trees) for comparison.

2.6.1 K-Nearest Neighbor
The K-nearest Neighbors (KNN) method is a non-parametric, lazy method used
in both regression and classification. It is non-parametric in the sense that it
does notmake any assumptions about the structure of the underlying data, such
as Gaussian distribution or linear separability. And it is lazy since it does not
require any training step. In KNN classification, class membership of an unseen
data point is determined by the k closest training samples in the feature space.
Using a distance metric such as Euclidean, Manhattan, Mahalanobis, the KNN
labels new points based on the majority of the nearest points (see Appendix A
for common distance metrics).
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Figure 2.7: KNN with k=3 (solid line), the new green point would be labelled an
orange square. For k=5 (dotted line), the point would be labelled as a
blue circle.

The selection of k is dependent on the data, while a small value for k can give
very distinct boundaries between two classes, and be useful if the data have
very small margins (which is our case, see Figure 4.3) but it also affected by a
noisy (irrelevant) features. For larger values of k, the classifier becomes more
robust against noise, but some of the distinction between classes will be lost.
[Peterson, 2009]

Dynamic Time Warping
A type of distance metric called dynamic time warping could be paired with
the KNN to work better for signals that differ in time and speed. Which for
Crackle detection may be an advantage, and for Wheeze detection (which
vary more than Crackles in durations) may have an even bigger impact. The
main problem with using dynamic time warping is that the operation has a
complexity of O(m2) for two signals of lengthm, and since KNN already have a
classification complexity of O(n2) forn training samples, classification becomes
time consuming. For simple feature vectors as the ones we use, dynamic time
warping does not perform much better than simpler distance metrics such
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as Euclidean Distance. But if we used raw audio data in KNN, dynamic time
warping could give a much better result, but would take an increased amount
of time to compute.

For the dynamic time warping to have a desired effect, the signal should be
a time-dependent series, rather than just our statistical summary features. It
would be possible apply dynamic time warping to the MFCC vectors, and using
the distance itself as a feature. However, the larger the vectors compared are,
the longer time it will take to compute the signal similarity. [Müller, 2007,
Ding et al., 2008]

2.6.2 Adaptive Boosting and Decision Trees
AdaBoost, or Adaptive Boosting, is a method of chaining together a number of
weaker classifiers to obtain a new classifier that is the weighted average of
the weaker classifiers. With a sufficient number of iterations, the error of the
final classifier can become quite low, although, there is a certain danger of
over-fitting. [Schapire et al., 1998]

The basic idea of AdaBoost is to have an optimally constructed classifier, that
satisfies the function:

f (x) = siдn{F (x)}

where

F (x) =
K∑
k=1

αkΦ(x)

where Φ(x) is the base classifier, which returns a binary class label. K denotes
the number of classifiers being boosted, and α is the weight associated with
the kth weak classifier. Finding the α is done through iterative, or stepwise,
optimization of m steps, where Fm−1(x) is the previous, optimized iteration.
So to compute the optimal values for step m, we would compute the cost
function:

αm = arдminJ (α)
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where

J (α) =
N∑
i=1

exp(−yi (Fm−1(xi ) + αΦ(xi )))

While stepwise optimization is usually suboptimal compared to direct optimiza-
tion, direct optimization of trees is a highly complex task, and often impossible
to carry out. [Theodoridis and Koutroumbas, 2009, p. 231–232]

Decision Trees is a common classifier to use with AdaBoost. Which we tried to
employ in our project, but it has a high training time compared to SVMs, and
does not increase the overall accuracy of the classification.

2.6.3 Support Vector Machines
Support Vector Machines or SVMs [Boser et al., 1992] are a type of linear clas-
sifiers, much in the same fashion as linear perceptrons where two classes, c1
and c2 are assumed to be linearly separable by a hyperplane:

f (x) = wTx +w0 = 0 f (x)
{
c1, i f wTx > 0
c2, i f wTx < 0

Finding a hyperplane is the training step of the linear perceptron, but the
problem is that there is no way to know if the hyperplane separates the two
classes by an equally large margin. [Theodoridis and Koutroumbas, 2009, p.
93] This is where the Support Vectors of the SVM are important. By minimizing
the cost function of the parameters w,w0 so that:

minimize J (w,w0) ≡ 1
2
|w |2

subject to yi (wTxi +w0) ≥ 1, i = 1, 2, ...,N

We obtain the maximum margin between the two respective classes, with
equal length to the hyperplane. [Theodoridis and Koutroumbas, 2009, p. 120–
121] However, not all classification problems are linearly separable, there might
often be a few samples of classes that are non-separable. To deal with this
problem we can introduce slack variables, ξ , so that we ignore a certain amount
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of samples within the support vector margins, or misclassified samples. The
different constraints are given by:

yi [wTx +w0] ≥ 1 − ξi

Where ξi = 0 for correctly classified samples, 0 < ξi < 1 for correctly classified
samples within the margins and ξi > 1 for incorrectly classified samples.

By modifying the cost function so that we include ξ and using a positive
constant C to control the influence of the slack variables:

J (w,w0, ξ ) = 1
2
|w |2 +C

N∑
i=1

I (ξi ) I (ξi )
{

1, ξi > 0
0, ξi = 0

The C parameter can be determined through Grid Search by fitting different
values for C to different classifiers and selecting the highest scoring classifier.
The C parameter trades of the size of the margin with the amount of incor-
rectly classified samples or samples within the margins of the support vectors.
[Theodoridis and Koutroumbas, 2009, p. 124–125]

There is also the case of SVMs where it is not desirable to find linear separations
of data, and that a non-linear separation would be advantageous. The way that
SVMs solve this problem is by means of Kernel Functions. Kernel Functions are
functions that can produce a mapping where:

x ∈ Rl → Rk

Where the vectors are mapped into a new k-dimensional space, which allows
mappings in infinite dimensional spaces, if it is required. At first glance, this
would imply that the complexity increases, since k is a higher dimensional
space than the input space l . However, according to:

yTi yj = (xTi x j )2

The inner product of pairwise vectors in the new higher dimensional space
is expressed as a function of the inner product of the corresponding vectors
in the original feature space. [Theodoridis and Koutroumbas, 2009, p. 198–
200]
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As for different mappings, also referred to as Kernels, we have found that the
Radial Basis Function Kernel have given the highest classification accuracy (For
a list of the most common Kernel Functions see Appendix B).



3
Design andImplementation
Our implemented pipeline is available through a web interface; we use a Flask
back-end script to perform analysis on audio files uploaded to the server. The
pipeline itself is implemented in Python 2.7 using, amongst others, the popular
machine learning library Scikit Learn [Pedregosa et al., 2011]. We chose to use
Python and Sklearn due to its flexibility and ease of use. Using Sklearn we can
evaluate different classifiers with minimal changes to implementation because
all classifiers have the same call convention, and by using Polymorphism it
integrates seamlessly with our pipeline. The pipeline is portable across different
operating systems, provided that Python 2.7 and the required libraries are
available. Our pipeline runs single-threaded on a single computer with basic
hardware or a virtual machine. Due to low execution time there is no need for
a distributed implementation. But if the computational requirements increase,
for example implementing a Deep Learning algorithm (see future work) we
might look into libraries such as Theano, a math library for transparent GPU
computations [Bergstra et al., 2010, Bergstra et al., 2011] or MLlib, machine
learning library running on top of the cluster computing framework Apache
Spark. [Zaharia et al., 2010, Meng et al., 2015]

Low execution times for our pipeline is vital in order to have a responsive
interface, that can actually be used in order to do analysis on the fly.

29
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Figure 3.1: Software stack of our system.
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3.1 Pipeline
The pipeline consists of four modules: Main, Preprocessor, Classifier and Fron-
tend. In addition there are a few utilities to simplify interaction with the file
system, generating a training set etc.

Main Runtime provides an interface to submit audio files for analysis. The
main runtime instantiates all other modules and handles all full sized audio
files, providing a simple abstraction for other modules.

The Preprocessor is divided into three modules, one base classifier which
implements all common functionality between wheezes and crackles, and one
specialized classifier for each class. The main difference between these two
classes is the size of the analysis windows. Each of the preprocessors needs
to be instanced and has to process a training set in order for it to be fully
initialized. The reason is that both preprocessors use a standard scaler module
which needs to be fitted before it can be used on new data.

The Classifier implements training and inference of the classification algorithm
itself. Upon initializing the classifier, it can be run in three different modes:
train, metric, load. In Train mode the classifier will collect the training set and
use the referenced preprocessor (with a fitted standard scaler) to collect all
features from the training set. When the training set is obtained, the classifier
will train the assigned machine learning algorithm and persist the classifiers
data to disk. Metrics mode will run 100 cycles of training and validating the
classifier of choice. When splitting the training set, 70% is randomly sampled
and used for training, while the remaining 30% is used to validate the classifier.
The F1-score of the classifier is calculated using the validation part of the
training set at each iteration. After the 100 cycles we calculate the average and
standard deviation of the F1-score.
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Figure 3.2: Initialization process of the pipeline. The preprocessor must be initialized
before the classifier, since the Standard Scaler must be fit on the training
set.
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3.2 Frontend
Our frontend library built around the flask http library and the jinja2 templat-
ing engine. The frontend provides an access-point and interface for general
practitioners to upload and analyze audio files of lung sounds. The page is
built using the Bootstrap framework for the visual representation, Dropzone.js
for file uploading and Wavesurfer.js to generate waveforms and integrating an
audio player in the browser. We believe that for our solution to be useful we
need to provide a good user interface, that satisfies the needs for all research
collected in Tromsø 7. Therefore, the Frontend prototype have been developed
with requests from our collaborators at Tromsø 7.

Figure 3.3: Upload page, has the ability to upload a number of files simultaneously.
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Figure 3.4: Results page, with a summary at the top of the page and an integrated
audio player for each file. Numbers are for example purposes.

We can see that the classification and results sections of the front end (Figure
3.3 and 3.4), that users are able to upload files to the server. These files can
then be analyzed by clicking the Analyze Audio button (Figure 3.3) and the
user will be redirected to the results section after a few seconds, depending
on how many files are uploaded at the same time. On the results page, the
user is presented with a summary of all files analyzed and how many crackles
or wheezes were detected. Below the summary, the user can go through each
file and listen to the audio file in real time from the browser. We also plan
to annotate the waveforms, in another color, marking where the abnormal
findings are located.
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3.3 Libraries
To implement such a system, we are dependent on a number of libraries to
simply our implementation. The main libraries are listed here with a short
description:

Scikit-Learn is an extensive machine learning library built with Python. It
implements most of the commonmachine learning algorithms, feature selection
and data transformation functions. We use this library mainly for the machine
learning algorithms and validation of our classifiers.

Librosa is a python library for audio and music analysis. We use this library for
calculating the fourier transform, short time fourier transform and the MFCC.
It also supports calculating Spectral Centroids.

Flask has been one of the more popular lightweight http libraries for Python.
Although it is not as extensive as Django, it has a much simpler interface and
requires much less code in order to work properly. Although most of this is
subject to opinion, we chose to use Flask because it is a library we are familiar
with.

Numpy is the most complete scientific computation library available for Python.
Implementing most common methods from Linear Algebra, Statistics and pro-
vides n-dimensional arrays/matrices. Most scientific libraries for Python use
Numpy to some extent.

Scipy is another library for scientific computation such as numpy, but also
provides signal processing techniques.

3.4 Prototype Deployment
We ran our prototype using cProfiler for Python, and on a machine with the
following specs:

Windows 10 Pro 64-bit
Intel Core i5-4570s @ 2.90GHz (4 Physical Cores)
6Gb RAM Python 2.7.9

Our initialization process consumed about 1.44 seconds, including sequential
grid search of 64 SVM parameter combinations (192 fits). For deployment this
process can be run separately and the resulting classifier and scaler can be saved
to disk for later use with a user interface (one of the options of the classifier).
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When classifying audio files, our pipeline used 1.08 seconds to preprocess and
classify 319 windows of audio, when classifying crackles. So not accounting
for network latency, it would take little over 1 second to analyze one audio file
and report it back through our Web interface.

Our prototype is ready to deploy to a virtual machine. While it could work
with any server that have support for CGI (Common Gateway Interface) scripts,
we think that the best solution would be to use a Linux VM using Apache.
Assuming that there is no performance change from Windows to Linux (which
there may be), what we gain from using a Linux VM instead of a Windows VM
is ease of use. Working with CGI scripts within Windows IIS is significantly
harder than with Apache. The VM does not need to have high specs, as a 1-2
cores, 4-6 GB of ram and about 80GB of disk space should be sufficient.

An additional feature that our collaborators at the Tromsø 7 have requested is
the possibility to export results from our front-end. Since all the data is available
both server and client side, we believe this could be integrated in before
deployment of the prototype, either as plain text, or in a CSV format.



4
Evaluation
Our methodology for testing our pipeline is divided in two parts, the first part
is cross validation of the classifier, using the training data and splitting it into a
train-test data set. We evaluated the 5 dimensional feature vector (See section
Summary in Methods), both with and without the MFCC vectors.

4.1 Crackle Results
We first tested each feature type individually to see which has the highest
indication of separation between classes. Each of the features was tested by
running a train-validate cycle 100 times, and then averaging the F1-score across
all cycles. The train-validate split is done on the training set which contains only
windows. We have collected 175 crackle windows and 208 normal windows.
Each cycle splits the training set into 70% training and 30% validation, then
each training cycle runs a grid search to tune parameters. It is important to
note that parameter tuning through Grid Search requires an internal cross-
validation to score classifiers for each of the parameter combinations. The
grid search is a 3-fold cross-validation on the 70% used for training and after
the best-effort parameter tuning is performed, the classifier is refitted with
the whole 70% of the training data. When the classifier is trained, it is then
validated by predicting the last 30% of the training set, or the validation part,
for which the F1 score, precision and recall is calculated and the whole process
is then repeated.
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Precision, or Positive Predictive Value, is the measure of how many samples
labelled as positive, where true positives. A high precision shows how well the
classifier are able to correctly label data. Recall (also referred to as Sensitivity)
is the amount of positive samples that the classifier recognized, that is the true
positive rate. Recall shows how sensitive the classifier is to positive samples, and
how many positive samples we can expect the classifier to miss. The F1-score
is the harmonic mean between the two preceding measurements, and gives an
indication of overall classification accuracy.

0 10 20 30 40 50 60 70 80 90 100

Average F1-Score

Variance

Range

Sum of SMA 
(Coarse)

Sum of SMA 
(Fine)

Spectrum Mean

Univariate Feature Scores

KNN

SVM

Figure 4.1: Average F1 scores for individual features, vertical line marks the random
guess F1-score.

We can see thatmost of the F1-scores for each feature scores between 60% - 70%,
which is not a great score, but it is better than random guess. So theoretically
we should be able to combine these features to get a better separation in a
higher dimensional space. The Scatter Matrix, Figure 4.3, gives an overview of
how much separation there are between the normal and crackle classes. While
there is separation between classes, there is also overlap between the two
classes. The results from the Linear SVM (Table 4.1) supports this observation,
since it shows a high precision, but low recall due to the overlap of samples,
and not an obvious linear separation.
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Figure 4.2: A scatter matrix of the 5 feature dimensions of the training data. Blue points are Normal samples and Yellow points are Crackle
samples. The Diagonal shows a Gaussian Kernel Density estimation
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After testing each individual feature on its own, we also ran a cross-validation
cycle using all features. All classifiers are compared to a dummy classifier which
votes according to a given strategy. We chose to compare with the Stratified
voting strategy, where the classifier votes proportional to the number of samples
in each class.

Table 4.1: Comparison of classifier performance on crackles
Classifier Precision Recall F1-Score
SVM (RBF) 85.6 ±6.1 83.6 ±10.2 83.5 ±3.6
KNN 84.4 ±6.9 82.3 ±11.3 82.5 ±4.7
AdaBoost (Decision Tree) 82.7 ±5.2 81.8 ±8.3 81.9 ±4.5
Linear SVM 88.7 ±6.7 67.3 ±8.6 76.0 ±5.4
Dummy Classifier (Stratified) 49.7 ±7.7 49.7 ±7.4 49.5 ±6.8

From the table above we can see that on average, the SVM is the best performing
classifier. And running grid search for each cycle, the SVM classifier tends to
favor a Radial Basis Function Kernel and a C parameter between 1000 and
2000. So extrapolating from our experiments we believe the SVM is our best
choice.

After selecting the SVM as our best performing classifier, we evaluated it on
270 full sized audio files, where a file would be classified as having a significant
amount of crackles if the number of positive windows surpasses 30. Out of
these audio files, there are 23 containing crackles and 247 containing normal
breathing, so a very uneven distribution between classes. As we can see from
the confusion matrix (Table 4.2), even with a very high threshold, we have a
Recall of 60,8%, a Precision of 18.6% and an F1-score of 6.3%. The results are
significantly lower than on individual windows, we discuss the possible causes
and solutions to this in the next section (Discussion).

Table 4.2: Confusion Matrix in classifying full audio files
Crackles Normal

Crackles 14 9
Normal 61 186
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Figure 4.3: A scatter matrix of the 5 feature dimensions of the training data. Blue points are Normal samples and Red points are Wheeze
samples. The Diagonal shows a Gaussian Kernel Density estimation
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4.2 Wheeze Results
We also tested the features with the preliminary training set for wheezes to
get an overview of how well the features perform for wheezes as well.

We ran the evaluations with an SVM, since this was the best performing
classifier for crackles. The evaluations were performed in the same manner as
with crackles; running a train-validate cycle 100 times with different training
set folds. Due to having few wheeze samples in the training set, the results
might not be as conclusive as for crackles.

Table 4.3: Results with an SVM using an RBF kernel
Classifier Precision Recall F1-Score
SVM (RBF) 64.8 ±19.0 74.3 ±20.8 63.7 ±24.8

The results vary a lot, and the scores are generally not much better than random
guess. We believe that this is due to the nature of wheezes and how they differ
from crackles.

4.3 Front End
While we have not conducted a formal user study, the design of the front end
is based on inputs from our collaborators at the Tromsø study. The front end
works as intended to our knowledge, and the GUI itself is responsive as well.
We have not done any load testing for the front end yet.

4.4 Discussion
While our results for crackles are generally good on a per window basis, we
have not seen the same results for wheezes, which we believe is due to the
fundamental differences in both duration and characteristics between the two
abnormal sounds.

4.4.1 Class Imbalance
In practice, only about 5% of all audio data contains abnormal lung sounds.
This presents a natural class imbalance between abnormalities and normal
breathing. Since we divide input audio files into 300 windows for 15 seconds
of audio in crackle analysis and 8 windows in wheeze analysis. From our
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results we have achieved a F1-score of 83.5% in cross validation. Which is an
acceptable result on its own, but looking at the analysis pipeline, as many as
300 windows may be classified individually for each audio file. This means
that after 100 windows, there is a high chance that some windows will be false
positives. So to accurately predict the contents of an audio file, without having
a high threshold for amount of crackles, the F1-score of window classification
would have to be close to 100%.

4.4.2 Correlation
The way our pipeline performs classification, we treat the windows as inde-
pendent. The pipeline sees the 319 windows from an audio file as individual,
independent classification tasks. We believe this is the reason that our experi-
ments on full audio files have not produced the same accuracy that we have
seen in cross-validation. This is a weakness of the per-window-classification ap-
proach, andwe believe that it could be used in conjunction with a meta-analysis
either as part of the preprocessing step, or a post classification step.

So as we talked about earlier in the Methods chapter, breathing cycle detection
can help to narrow down the area of interest as a preprocessing (or postpro-
cessing) step, and therefore also the number of valid windows to classify. Since
we know that crackles and wheezes are related to breathing cycle, correlating
the findings of the classifier can be beneficial to classification accuracy.

4.4.3 Wheeze Features
While crackles generally have short duration and a very distinctwave in the time-
domain, wheezes does not show the same characteristics. Wheezes contain a
lot more information in the spectral domain, with a sound that is reminiscent of
whistling, instead of short pops. Wheezes also have a much longer duration than
crackles, so each window of for wheeze analysis is 32 times larger than each
crackle window. Therefore, we believe that features from the spectral domain
will work better for wheezes, compared to the crackle focused features that we
have used in our approach. Wheezes have a higher amount of sustained energy
in the lower frequency spectrum, and one approach could be to correlate time
and frequency to compare energy densities. We believe that Parzen windows
or other kernel density estimations is one approach that we could test in future
work.





5
Related Work
Machine learning has become a highly popular field, due to the increasing
power of modern computer hardware, and the decreasing cost of the aforemen-
tioned hardware. With more computing power, both scientific communities
and corporations are able to model much more complex decision-support
and recommendation systems. While machine learning algorithms such as
K-Nearest Neighbor does not require a high amount of time to train, more
complex classifiers such as SVMs, ensemble methods and deep networks. With
lots of dedicated hardware, the training time can be reduced and each model
optimized, and then the best model can be chosen and deployed on smaller
hardware such as mobile phones.

5.1 Echonest
Echonest is an example of music recommender systems that use features and
machine learning methods to determine and sort different genres of music. This
sorting is based on simple features such as energy, loudness, tempo, dancability
etc. Genres that have similar features are clustered closer together, enabling
recommendations based on distance. In their research they have come up with
a way of fingerprinting songs. [Schindler and Rauber, 2012]
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5.2 Deep Neural Networks & Deep Learning
The first research that modelled Artificial Neural Networks (ANN) was from
Warren McCulloch and Walter Pitts in 1943, with their paper A Logical Calculus
of Ideas Immanent in Nervous Activity. [McCulloch and Pitts, 1943] Though
there were some research into ANNs through the 1950s and 1960s, limited
computing power prevented experimentation with large ANNs. Nearly 15 years
later with the invention of the Backpropagation algorithm, research into ANNs
became popular again. However, ANNs gave away to simpler classifiers such
as SVMs, which outperformed ANNs in both accuracy and training time. The
way that ANNs worked was using simple Perceptron Units in one or two hidden
layers and using weighted connections to an input and an output layer (Figure
5.1). Running networks with more hidden layers was usually infeasible, again
due to limited computational power.

Input Layer

Hidden Layer

Output Layer

Weighted
Connections

Weighted
Connections

Infered State

Figure 5.1: Artificial Neural Network

Now in the 21st century, research into ANNs have again become popular, but
in the form of Deep (Neural) Networks and Deep Learning. Deep Learning is a
technique of hierarchical machine learning using multiple layers of non-linear
processing. One of the successful approaches to Deep Learning have been with
Deep Networks, which have become a re-branding or buzzword for Artificial
Neural Networks. Deep Neural Networks are basically ANNs with multiple
hidden layers,which presents the opportunity of creatingmore complexmodels
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of non-linear structures, but also increases the time and space complexity of
training models in the same way ANNs were limited by in earlier research.
The reason optimization problems in Deep Neural Networks have a high time
complexity is due to its iterative nature in training.

5.2.1 AlphaGo
Recent popularity in Deep Learning, and Google (Deep Mind) spearheading
the research with their AlphaGo program, it seems that many future classifica-
tion and recommender tasks may be solved by Deep Learning.[Wang et al., ]
AlphaGo’s application in playing the game of Go, may be reminiscent of IBMs
Deep Blue Chess Computer, that beat the reigning champion Gerry Kasparov
in 1997.[Campbell et al., 2002] There is a key difference from the Deep Blue
breakthrough in 1997 and the win that we saw from AlphaGo this year, and it is
the general complexity of the problem. While Deep Blue had the opportunity
to calculate a number of moves and choosing an optimal solution, this type of
brute force search would be infeasible for a game such as Go. A full sized Go
playing board has a game-tree complexity of approximately 10360. So the way
that AlphaGo were able to play Go, was to learn from a database of Go games,
imitating other players, then playing against earlier generations of itself. It
uses a Monte Carlo tree search to find moves based on the knowledge it had
learned through its training process. What this means is that the program has
a general intuition of the game it is playing.

Deep Mind researchers have stated that the AlphaGo can learn a number of
processes other than games as well. This is where the interest from the field
of medicine comes into play, Zhang et al. have presented an idea of applying
AlphaGo to problems in medicine. [Zhang, 2016] A lot of problems in medicine,
such as lung sounds, often requires experience and intuition that is not present
in rule-based computer systems.

5.2.2 Distributed Deep Networks
One of the ways that AlphaGo can be trained within a reasonable amount of
time, is the architectural and methodical advances that have made in distribut-
ing machine learning problems. In his paper Large Scale Distributed Deep Net-
works [Dean et al., 2012], Jeff Dean et al. lays out the ground work for distribut-
ing deep networks across a cluster of nodes, and facilitating training using two
approaches, Downpour SGD and Sandblaster L-BFGS. Andrew Ng and Jeff Dean
have also applied neural networks in unsupervised learning to recognize higher-
level concepts from YouTube videos. [Le, 2013] Geoffrey Hinton, who is often
named as the Godfather of Deep Learning, have worked on Neural Networks for
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decades, and have published many advances in training [Hinton et al., 2006]
and applications of Deep Networks. [Krizhevsky et al., 2012]

Using Deep Auto-encoders together with a Deep Network have shown great
promise in the field of speech recognition, one major advantage is that it takes
away the need for hand crafted feature engineering. [Deng et al., 2010]

5.3 Lung Sound
With all the research going into Deep Learning, and the advances that are being
made, it seems that it might become a new standard for learning and modelling
non-linear problems, where large amounts of data is available. Our dataset
consists of close to 18,000 individual recordings of lung sounds, although we
have only worked on a much smaller subset of the data to create our model,
a Deep Learning approach might actually be feasible with the full dataset
available.

We see that many of the related works on lung sound classification have
achieved good results, but do not fulfil all the challenges we believe is important
for creating a feasible approach that can be used to support researchers and
employees in the medical fields.

5.4 Eko Devices
The company Eko Devices have created a Bluetooth connected stethoscope,
their Eko Core device, with an accompanying iOS app, for which they have
submitted a pending patent. [Wong, 2015] Their mobile app facilitates record-
ing from the Bluetooth connection and it can push audio to their cloud based
storage. Another side of their app is related to telemedicine, in the form of live
streaming audio to physicians.

While they have some form of comparison to a lung sound database, which is
stated as one of the last claims of their patent application, there is no detailed
description of it. However, this claim is one of the last of their patent, and
they do not emphasize that this is one of their core claims. Furthermore, with
devices such as the Eko Core, there are possibilities to deploy solutions to
mobile devices and that our approach can be used in conjunction with such
devices.
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5.5 Thesis, MiT
In the thesis A Framework for Automated Heart and Lung Sound Analysis Using a
Mobile Telemedicine Platform, Katherine L. Kuan focuses on a diagnosis system
that includes lung sound analysis. They have created an end system that can
be deployed with low costs. To our knowledge, they are in a testing phase of
their system and that they have an increasing database of lung sounds.





6
Conclusion
In this thesis we presented and motivated our approach for automatic classi-
fication of lung sounds. Based on the large dataset and gold standard from
the Tromsø 7 project we have implemented a pipeline utilizing signal pro-
cessing techniques and machine learning to classify abnormal lung sounds in
audio recorded from lungs. We have created an interface for our classification
pipeline, and a pipeline that is fast enough to perform real time classification
of data.

We cross-validated our approach, and we showed that we have viable results
in classifying individual windows for crackles, and that we need another set
of features for wheezes. However, the results are not accurate enough per
audio file, but we know that abnormal sounds are correlated with respiratory
phases, and that we plan to use this in future work to increase the accuracy in
classification of audio files.

Together with Future Work (next section), we believe that we could develop
a core technology for use in mobile devices and medical equipment. Some
of the use cases that we have mentioned involves self-monitoring by patients,
automatic adjustment in medical equipment such as respirators, training tools
for medical professionals and students.
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6.1 Future Work
We want to implement a meta-analysis that utilizes our implemented approach
to detect crackles and wheezes in correlation with the breathing cycles found
in the audio files. We believe that this may further increase the accuracy of our
approach. Applying deep learning to the problem could also be an interesting
approach, since this have been theorized to be the new standard in Machine
Learning. Convolutional Neural Networks have had great success in image
classification, and work by applying different transforms to an image, could
have some applications in audio as well. Classifying spectrogram images is also
an approach which could be explored.

Convolutional Neural Networks would also save a lot of work in feature engi-
neering, as the feature selection process itself takes place within the network
in the form of the different kernel convolution. While Deep Networks and Deep
Learning techniques can handle a large number of dimensions in input data,
and can train accurate models often using only raw data as input, for instance
all pixels of an image. They also require a large amount of training samples to
achieve this. Up to now, the gold standard has about 2500 audio files, which
means applying Deep Learning to lung sounds may become viable in the near
future. However, the class imbalance mentioned in discussion means that there
are few positive samples compared to negative.

With our pipeline, other types of sounds could be integrated as well. Heart
sounds could potentially be integrated in our pipeline, as well as annotation
of respiratory phase.
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Appendix A: DistanceMetrics
A few of the most common distance metrics between two vectors ~x and ~y of
length n:

Euclidean
E(~x , ~y) = √(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2
Manhattan
M(~x , ~y) = |x1 − y1 | + |x2 − y2 | + ... + |xn − yn |

Chebyshev
C(~x , ~y) =max(|x1 − y1 |, |x2 − y2 |, ..., |xn − yn |)

Mahalanobis
Mahalanobis requires a covariance matrix S and a vector of means µ.

Mh(~x , ~y, S, ~µ) = √((~x − ~µ)TS−1(~x − ~µ))
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Appendix B: KernelFunctions
A list of common kernel functions used in SVMs

Linear
K(x , z) = xTy + c

Radial Basis Function
K(x , z) = exp(− |x − z |

2

σ 2 )

Polynomial
K(x , z) = (xT < +1)q , q > 0

Sigmoid
K(x , z) = tanh(αxTy + γ )
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Appendix C: IncludedSource Code
The source code that is included in this thesis is structured in the following
way:

1 / s r c
2 |
3 | − / C l a s s i f i e r
4 |
5 |− / audio
6 |− / c l a s s i f i e r
7 |− / data <− conta ins the t r a i n i n g s e t s
8 |− / preproces sor
9 |− AudioSort ing . py

10 |− Config . py
11 |− IOManager . py
12 |− Main . py <− s e t up in met r i c s mode
13 |
14 | − /Frontend−s e r ve r
15 |
16 |− / l i b <−− p i pe l i n e implementation goes here
17 |− / s t a t i c
18 |− / templates
19 |− / user_data
20 |− app . py

The source code itself is not open-source, since the University of Tromsø has a
commercial interest in this project, but it will be made open-source at a later
time.
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