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In this paper we make several observations on the Gram-
Charlier and Edgeworth series, which aremethods for mod-
eling and approximating probability density functions. We
present a simplified derivation which highlights both the
similarity and the differences of the series expansions, that
are often obscured by alternative derivations. We also in-
troduce a reformulation of the Edgeworth series in terms
of the complete exponential Bell polynomials, whichmake
both series easy to implement and evaluate. The result is
a significantly more accessible methodology, in the sense
that it is easier to understand and to implement. Finally,
we alsomake a remark on the Gram-Charlier series with a
gamma kernel, providing a novel and simple expression for
its coefficients.
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1 | INTRODUCTION
The Gram-Charlier and Edgeworth series expansions provide attractive alternatives when it comes to probability
density function (PDF) estimation. They combine the simplicity of fitting a two-parameter PDFwith the flexibility of
correcting for higher order moments, often resulting in fast and accurate approximations.

Abbreviations: CF, characteristic function; FT, Fourier transform; IID, independent and identically distributed; PDF, probability den-
sity function; RV, random variable.

1



2 BRENN AND ANFINSEN

The series expansionmethods were introduced in the late 19th and early 20th century (Chebyshev, 1860; Gram,
1883; Thiele, 1889; Chebyshev, 1890; Thiele, 1903; Edgeworth, 1905; Charlier, 1905, 1906), and their history is
summarized in (Wallace, 1958) and (Hald, 2000). The methods can be derived in terms of orthogonal polynomials
(Kendall et al., 1994), but it is also possible to retrieve the PDF from the characteristic function (CF) (Lévy, 1925; Lukacs,
1970), as in (Wallace, 1958; Blinnikov andMoessner, 1998).

Traditionally, the series expansions used thenormalianPDFas thekernel almost exclusively, but (Kendall et al., 1994)
mentioned other possibilities and (Gaztanaga et al., 2000) presented an explicit expression for the Gram-Charlier series
with a gamma PDF kernel. A tool which was not available to Gram, Charlier, Edgeworth etc. are the Bell polynomials,
named after Eric Temple Bell, who introduced them under the name partition polynomials in (Bell, 1927). Among other
things, they can be used to retrieve moments from cumulants (Pitman, 2002; Rota and Shen, 2000). Thiele, who
introduced the cumulants in (Thiele, 1889), certainly mastered their relationship with themoments, but naturally did
not have access to the Bell polynomials. Instead, he gave a recursion formula to compute cumulants frommoments
(Hald, 2000).

Today, polynomials like those named after Bell or Kummer (Kummer, 1837; Daalhuis, 2010) are readily available
online and inmathematics software. The implication that using these polynomials to express the Gram-Charlier and
Edgeworth series allows for easier and faster implementation, as demonstrated in (Withers andNadarajah, 2009, 2015).

This paper is organized as follows. In Section 2 we briefly account for the necessary theoretical background,
includingmoments, cumulants, CF, Bell polynomials and the traditional way of deriving the Gram-Charlier and Edge-
worth series. In Section 3we present our derivation of the sameGram-Charlier and Edgeworth series with the novel
application of the Bell polynomials in this context. Wemake an observation on the Gram-Charlier series around the
gamma kernel in Section 4 and present our conclusions in Section 5.

2 | THEORETICAL BACKGROUND

2.1 | TheHermite Polynomials and the Normal Distribution
The nth probabilists’ Hermite polynomialHn (x ) is defined in terms of the derivatives of the standardized (zeromean,
unit variance) normal PDFφ(x ) = (2π)−1/2e−x2/2, namely

(−Dx )nφ(x ) = Hn (x )φ(x ), (1)

where Dx = d/dx is the differential operator and the factor (−1)n ensures that the leading coefficient of Hn (x ) is 1
(Kendall et al., 1994). For arbitrarymean µ and variance σ2, we define

φ(x ; µ,σ) = 1
√
2πσ

exp
{
− (x − µ)

2

2σ2

}
=
1

σ
φ

( x − µ
σ

)
, (2)

and letting y = (x − µ)/σ we see that Dy = σ−1Dx , i.e.

(−Dx )nφ(x ; µ,σ) = 1

σn
Hn

( x − µ
σ

)
φ(x ; µ,σ). (3)

We can nowworkwith the standardizedφ(x ) during the derivations for brevity and use (3) to generalize to arbitrary
kernel mean and variance. The Hermite polynomials are orthogonal with respect the normal PDF in the sense that
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(Kendall et al., 1994)
∞∫
−∞

Hk (x )Hn (x )φ(x )dx =
{
n! ; k = n ,

0 ; k , n .
(4)

2.2 | The Gram-Charlier Series with the Normal Kernel
Suppose now that the random variable (RV)X has unknown PDF fX (x ), which can be written in terms of the derivatives
of the normal PDF, i.e.

fX (x ) =
∞∑
n=0

anHn (x )φ(x ), (5)

where we used (1). To find the coefficients an , wemultiply both sides withHk (x ), integrate from −∞ to +∞, swap the
order of integration and summation, and use the orthogonal property from (4) to get

∞∫
−∞

fX (x )Hk (x )dx =
∞∫
−∞

∞∑
n=0

anHk (x )Hn (x )φ(x ) = ann! , (6)

an =
1

n!
∞∫
−∞

fX (x )Hn (x )dx . (7)

Since Hn (x ) is a polynomial in x , the coefficients an must be a linear combination of the moments µν = E{X ν } of X .
(Kendall et al., 1994) lists the first few coefficients both in terms of themoments and in terms of the cumulants, with the
latter representation presented in (13).

2.3 | The Gram-Charlier Series with the GammaKernel
Let the gamma distribution PDFwith shapeφ and scale β be denoted

γ(x ;φ, β ) = βφ+1xφe−βx /Γ(φ + 1) (8)

for x ≥ 0. The generalized Laguerre polynomial of degree n and orderφ is implicitly defined as (Szeg, 1939)

L
(φ)
n (x )γ(x ;φ) = 1

n!Dn [xnγ(x ;φ)] , (9)

where we take γ(x ;φ) to mean that β = 1 for brevity, which is easily generalized by replacing x with βx as the argument
of both L(φ)n (x ) and γ(x ;φ). The Laguerre polynomials have an orthogonality property1 analogous to (4), namely

∞∫
0

L
(φ)
n (x )L

(φ)
k
(x )γ(x ;φ)dx =


Γ(n + φ + 1)

Γ(n + 1)Γ(φ + 1) ; k = n ,

0 ; k , n .
(10)

1This is found in terms of binomial coefficients in (Szeg, 1939), with (Fowler, 1996) providing a generalization to non-integer arguments. This can also be
generalized by replacing x with βx on the left hand side in (10), leaving the right hand side unchanged.
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From (Kendall et al., 1994) and (Gaztanaga et al., 2000) we know that a PDF fX (x )which is zero for negative x , can be
written as

fX (x ) =
∞∑
n=0

anL
(φ)
n (βx )γ(x ;φ, β ) , (11)

where the coefficients an are found the sameway as in Section 2.2, giving

an =
n!

n∏
i=1
(φ + i )

∞∫
0

fX (x )L(φ)n (βx )dx , (12)

which clearly is a linear combination of themoments ofX by the same reasoning as in Section 2.2. The first few terms of
the series is given in (14).

2.4 | The Edgeworth Series

For the RVX with unknown PDF fX (x ), its CFΨX (t ) is the FT of fX (x ) (Kendall et al., 1994), that is

ΨX (t ) ≡ F[fX (x )](t ) =
∞∫
−∞

e i t xfX (x )dx = E{e i t X } , (16)

where j is the imaginary unit, the expectation E{·} is with respect to x and t is a transform variable. The cumulant
generating function is defined as

logΨX (t ) , (17)

fX (x )=
[
1+

κ3

6σ3
H3

( x − µ
σ

)
+
κ4

24σ4
H4

( x − µ
σ

)
+

κ5

120σ5
H5

( x − µ
σ

)
+
κ6+10κ

2
3

720σ6
H6

( x − µ
σ

)
+
κ7+35κ3κ4
5040σ7

H7

( x − µ
σ

)
+ · · ·

]
φ(x ; µ,σ)
(13)

fX (x )=
[
1 +

(
− β 3µ3
(φ + 1)(φ + 2)(φ + 3) + 1

)
L
(φ)
3 (βx ) +

(
β 4µ4

(φ + 1) · · · (φ + 4) −
4β 3µ3

(φ + 1)(φ + 2)(φ + 3) + 3
)
L
(φ)
4 (βx ) + · · ·

]
γ(x ;φ, β )
(14)

fX (x ) =φ(x ; µ,σ) + 1

r 1/2

[
λ3

6σ3
H3

( x − µ
σ

)]
φ(x ; µ,σ) + 1

r

[
λ4

24σ4
H4

( x − µ
σ

)
+

λ23
72σ6

H6

( x − µ
σ

)]
φ(x ; µ,σ) (15)

+
1

r 3/2

[
λ5

120σ5
H5

( x − µ
σ

)
+
λ3λ4

144σ7
H7

( x − µ
σ

)
+

λ33
1296σ9

H9

( x − µ
σ

)]
φ(x ; µ,σ) +O

(
1

r 2

)



BRENN AND ANFINSEN 5

i.e. the natural logarithm of the CF. The cumulants κX ,ν , ν ∈ Ú>0 can, if they all exist, be retrieved from

logΨX (t ) =
∞∑
ν=1

κX ,ν
(i t )ν
ν! . (18)

We letΨφ (t ) denote the CF ofφ(x ) (Bryc, 2012). Using (17) and (18), we canwrite the CFs ofX and the normal kernel as

ΨX (t ) = exp
{ ∞∑
ν=1

κX ,ν
(i t )ν
ν!

}
, (19)

Ψφ (t ) = exp
{ ∞∑
ν=1

κφ,ν
(i t )ν
ν!

}
. (20)

These can be combined into

ΨX (t ) = exp
{ ∞∑
ν=1

[κX ,ν − κφ,ν ]
(i t )ν
ν!

}
Ψφ (t ). (21)

As (Wallace, 1958) notes, it is possible to retrieve the Gram-Charlier series at this point by using the power series
expansion of exp{·}, sorting the terms by their power of (−Dx ), and applying (1). Instead, Edgeworth assumed that the
nearly-normal RVX was a standardized sum

X =
1
√
r

r∑
i=1

Zi − µ
σ
, (22)

where the RVs Z1, Z2, . . . , Zr are independent and identically distributed (IID), each with mean µ, variance σ2 and
higher order cumulants κZ ,ν = σνλν . The dimensionless λν will simplify the following derivation, and the properties of
the cumulants gives (Hald, 2000)

κX ,ν =
λν

r
ν
2 −1
, ν ≥ 3 . (23)

Since the mean and variance equal the first and second order cumulant, standardized X implies κX ,ν − κφ,ν = 0 for
ν = 1, 2. Unique to the normal distribution is the property that κφ,ν = 0 [ ν ≥ 3 (Hald, 2000), giving

κX ,ν − κφ,ν =


0 ; ν = 1, 2 ,
λν

r
ν
2 −1

; ν ≥ 3 . (24)

Inserted into (21), this yields

ΨX (t ) = exp
{ ∞∑
ν=3

λν

r
ν
2 −1
(i t )ν
ν!

}
Ψφ (t ). (25)

The PDF ofX can be retrieved via the inverse FT (Wallace, 1958) as

fX (x ) = exp
{ ∞∑
ν=3

λν

r
ν
2 −1
(−D)ν
ν!

}
φ(x ). (26)
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Using the power series representation of the exponential function

exp{x } =
∞∑
m=0

xm

m! , (27)

we can collect the terms according to their power of r −1/2 (instead of (−Dx )) to get the Edgeworth series, presented in
(15). It has been found to be superior to the Gram-Charlier series both with few terms and asymptotically (Blinnikov
andMoessner, 1998).

2.5 | The Bell Polynomials
Named in honor of Eric T. Bell who introduced them as partition polynomials in (Bell, 1927), the partial exponential Bell
polynomials are defined as (Mihoubi, 2008)

Bn,r (x1, x2, . . . , xn−r+1) =
∑
Ξr

n!
n−r+1∏
m=1

1

jm !
( xm
m!

) jm
, (28)

where the sum is over the set Ξr of all combinations of non-negative integers j1, . . . , jn which satisfy j1 + 2j2 + · · · + (n −
r + 1)jn−r+1 = n − r + 1 and r = j1 + k2 + · · · + jn−r+1 . The nth complete exponential Bell polynomial, which wewill refer
to from here simply as the Bell polynomial, is the sum

Bn (x1, . . . , xn ) =
n∑
r=1

Bn,r (x1, x2, . . . , xn−r+1) . (29)

The first Bell polynomials are

B0 =1 , (30)
B1(x1) = x1 , (31)

B2(x1, x2) = x21 + x2 , (32)
B3(x1, x2, x3) = x31 + 3x1x2 + x3 , (33)
B4(x1, . . . , x4) = x41 + 6x

2
1x2 + 4x1x3 + 3x

2
2 + x4 , (34)

B5(x1, . . . , x5) = x51 + 10x
3
1x2 + 15x1x

2
2 + 10x

2
1x3 + 10x3x2 + 5x4x1 + x5 , (35)

B6(x1, . . . , x6) = x61 + 15x
4
1x2 + 20x

3
1x3 + 45x

2
1x

2
2 + 15x

3
2 + 60x1x2x3 + 15x

2
1x4 + 10x

2
3 + 15x2x4 + 6x1x5 + x6 . (36)

The Bell polynomials satisfy (Mihoubi, 2008)

exp
{ ∞∑
ν=1

xν
t ν

ν!
}
=
∞∑
n=0

Bn (x1, . . . , xn )
t n

n! . (37)

Awell-known use of this result is to retrieve the nth order moment from all cumulants up to order n through (Rota and
Shen, 2000)

µn = Bn (κ1, . . . , κn ). (38)
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3 | REMARKS ON THE GRAM-CHARLIER AND EDGEWORTH SERIES EXPAN-
SIONS AROUND THE NORMAL KERNEL

Wenow present our approach to the derivation of the Gram-Charlier and Edgeworth series. We focus on the similarity
of the series by doing asmuch of the derivation along a single track before splitting in the last step to arrive at the two
individual series, clearly emphasizing their differences. Our approach reveals a new andmore compact representation
of the Edgeworth series.

3.1 | TheDouble Infinite Sum
We start by pointing out that themoment representation of the CF,

ΨX (t ) =
∞∑
ν=0

µν
(i t )ν
ν! , (39)

is not fit to relateΨX (t ) andΨφ (t ), sinceΨX (t )/Ψφ (t ) becomes a ratio of sums. By using the cumulant representation
instead, we obtain (21), which by use of (27) can be expanded into

ΨX (t ) =
∞∑
m=0

[ ∞∑
ν=1
[κX ,ν − κφ,ν ] (i t )

ν

ν!
]m

m! Ψφ (t ) . (40)

This reduces the exponential sum into a double sum of polynomials in (i t ), which will turn into a tractable expression to
which we can apply (1). Like in the transition from (25) to (26), the inverse FT can be applied to produce

fX (x ) =
∞∑
m=0

[ ∞∑
ν=1
[κX ,ν − κφ,ν ] (−Dx )

ν

ν!
]m

m! φ(x ) . (41)

3.2 | The Gram-Charlier Series
It is perhaps a bit laborious, but not difficult to sort the terms by their power ν of (−Dx ) and truncate the sum to get the
Gram-Charlier series, or by their power of r −1/2 to get the Edgeworth series, as pointed out in (Wallace, 1958).

We strongly support the proposal from (Withers and Nadarajah, 2009) to use the Bell polynomials as a simple and
concise way of sorting the terms in the Gram-Charlier series. In practice, this amounts to applying (37) to (21), that is

ΨX (t ) =
[ ∞∑
n=0

Bn (κX ,1 − κφ,1, . . . , κX ,n − κφ,n )
(i t )n
n!

]
Ψφ (t ) , (42)

where it must be stressed that (38) is not in general valid for the cumulant differences, i.e.

Bn (κX ,1 − κφ,1, . . . , κX ,n − κφ,n ) , µX ,n − µφ,n . (43)

ForX standardized (zeromean, unit variance), κX ,1 − κφ,1 = κX ,2 − κφ,2 = 0 as before and since κφ,n = 0 [ n ≥ 3 (Section
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2.4), we have

ΨX (t ) =
[
1 +

∞∑
n=3

Bn (0, 0, κX ,3, . . . , κX ,n )
(i t )n
n!

]
Ψφ (t ). (44)

Eqs. (30) through (36) demonstrate the extreme benefit of this simplification: TheBell polynomials of order zero through
six have 30 terms in total, but x1 = x2 = 0 results in only six non-zero terms. The inverse FT and (3) now gives the
Gram-Charlier series explicitly as

fX (x ) =
[
1+
∞∑
n=3

Bn (0, 0, κX ,3, . . . , κX ,n )
n!σn Hn

( x − µ
σ

)]
φ(x ; µ,σ), (45)

fromwhich (13) is easily computed.

3.3 | The Edgeworth Series
In this section, we present a novel approach to deriving the Edgeworth series expansion approximation of the PDF.2
It is more intuitive than previous derivations, but also reveals a new and simpler expression for the series, using the
complete exponential Bell polynomials.

Starting from (25), we can view this as a power series in r −1/2 instead of (i t ) by shifting the counting index ν → ν + 2

to get

ΨX (t ) = exp
{ ∞∑
ν=1

λν+2(
r 1/2

)ν (i t )ν+2(ν + 2)!
}
Ψφ (t ) = exp


∞∑
ν=1

ãν

(
r −1/2

)ν
ν!

 Ψφ (t ) , (46)

where

ãν =
λν+2(i t )ν+2
(ν + 1)(ν + 2) . (47)

We can again apply (37), since the coefficients ãν do not depend on r , giving

ΨX (t ) =

∞∑
n=0

Bn (ã1, . . . , ãn )

(
r −1/2

)n
n!

 Ψφ (t ) . (51)

Since ãn is a power of (i t ), Bn (ã1, . . . , ãn ) is a polynomial in (i t ) andwe can apply the inverse FT to get the Edgeworth
series

fX (x ) =
1 +

∞∑
n=1

Bn (a1, . . . , an )

(
r −1/2

)n
n!

 φ(x ; µ,σ) , (52)

2In (Withers and Nadarajah, 2009, 2015), the authors applied the partial exponential Bell polynomials to the Edgeworth series expansion approximation of
the cumulative distribution function and its derivatives of all orders, thus arriving at a very general result. We presently focus only on the PDF, arriving at a
different expression.
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where (−Dx ) has replaced (i t ) in an compared to ãn , that is

an =
λn+2(−Dx )n+2
(n + 1)(n + 2) . (53)

We have included a definition which circumvents the use of coefficients in (48), where we also recovered the cumulants
bymultiplying all λ’s with their corresponding powers of r . Simply using (3) recovers the workable expression (15). We
have also reproduced the expressions for the Edgeworth series from (Blinnikov andMoessner, 1998) for comparison
(alternative 1),3 and from (Withers andNadarajah, 2015) (alternative 2).4

4 | A REMARK ON THE GRAM-CHARLIER SERIES EXPANSION AROUND THE
GAMMA KERNEL

4.1 | The Gram-Charlier SeriesWith Arbitrary Kernel
Letting θ(x ) be an arbitrary PDFwith corresponding CFΨθ (t ). Now, if all its cumulants κθ,n exist,5 (42) becomes

ΨX (t ) =
[ ∞∑
n=0

Bn (κX ,1 − κθ,1, . . . , κX ,n − κθ,n )
(i t )n
n!

]
Ψθ (t ) . (54)

Provided the inverse FT of (i t )nΨθ (t ) is permitted for all n ∈ Ú≥0, the PDF fX (x ) can be retrieved as

fX (x ) =
[
1 +

∞∑
n=1

Bn (κX ,1 − κθ,1, . . . , κX ,n − κθ,n )
(−Dx )n
n!

]
θ(x ) , (55)

where (−Dx )nθ(x )must be evaluated in the sameway as (1) forφ(x ).

Proposed: fX (x ) =
[
1 +

∞∑
n=1

1

n!Bn
(
κ3(−Dx )3

6
,
κ4(−Dx )4

12
, . . . ,

κn+2(−Dx )n+2
(n + 1)(n + 2)

)]
φ(x ; µ,σ) (48)

Alternative 1:

fX (x ) =

[
1 +

∞∑
n=1

∑
Ξn

1

σn+2r
Hn+2r

( x − µ
σ

) n∏
m=1

1

jm

(
κm+2
(m + 2)!

) jm ]
φ(x ; µ,σ)

Ξn =

{
(j1, . . . , jn ; r ) : jm ∈ Ú≥0,

n∑
m=1

mjm = n, r =
n∑

m=1

jm

} (49)

Alternative 2:

fX (x ) =

[
1 +

∞∑
n=1

r −n/2

n!
n∑
k=1

Hn+2k (x )Bn,k
(
ηn,k

) ]
φ(x ; µ,σ)

ηn,k =

{
κj+2r

j /2

σ j+2(j + 1)(j + 2)
: j = 1, 2, . . . , n − k + 1

} (50)

3Wehave altered the representation slightly compared to (Blinnikov andMoessner, 1998) to account for our nomenclature, allow arbitrarymean and variance,
and a slight simplification with respect to σ like the one in (Pastor et al., 2014). Note that the set Ξn is the union of the sets Ξr for r ∈ {1, 2, . . . , n } from
Section 2.5.
4We have also altered this representation with respect to notation. Note that the j th element in the set ηn,k is the same for any choice of n and k such that
n − k + 1 ≥ j .
5If themoments all exist, then so do the cumulants (Sundt et al., 1998).
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This result was presented in (Withers andNadarajah, 2015), where the authors also defined the generalizedHermite
polynomials as [θ(x )]−1(−Dx )nθ(x ), with the case θ(x ) = φ(x ) reducing to the usual Hermite polynomials, as evident in
(1).

4.2 | The GammaKernel
A natural question is nowwhether the approach from Section 3.2 can be applied when the kernel is the gamma PDF.
That is, is there an alternative approachwhich gives the same result as in Section 2.3? Simply put, the answer is no. To
retrieve the PDF in (55) we required that the inverse FT can be applied to (i t )nΨθ (t ), but this is not the case with the
gamma kernel, as Dnxγ(x ) is discontinuous at x = 0 for high enough n .6

Fundamentally, this is an example of the limitations of these classical series expansions when it comes to approxi-
mating non-negative RVs. The problem comes directly form attempting to apply the FT to a function with support on
(0,∞). We show in (Brenn andAnfinsen, 2017) that better suitedmethods exist which are based on theMellin transform.

Here instead, wewill provide a simpler formula for the coefficients an in (12) by using the confluent hypergeometric
function of the first kindM (a ; b ; x ), also known as the Kummer function, after themanwho introduced it in (Kummer,
1837). It is defined in (Daalhuis, 2010) as

M (a ; b ; x ) =
∞∑
k=0

a(a + 1) · · · (a + k − 1)x k
b(b + 1) · · · (b + k − 1)k ! , (56)

and the same reference provides the relationship with the Laguerre polynomials as

M (−n ;φ + 1; x ) =
n∑
k=0

n(n − 1) · · · (n − k + 1)(−1)k x k
(φ + 1)(φ + 2) · · · (φ + k )k !

=
(φ + 1)(φ + 2) · · · (φ + n)

n! L
(φ)
n (x ).

(57)

To our knowledge,M (·) has not been applied to theGram-Charlier serieswith gamma kernel, perhaps not surprising
given the limited attention the series has received. We now propose a new formula for the coefficients, by using (57) in
(12) resulting in

an =

∞∫
0

fX (x )M (−n ;φ + 1; βx )dx = E{M (−n ;φ + 1; βx )} (58)

an =
n∑
k=0

µk
n(n − 1) · · · (n − k + 1)(−1)k β k
(φ + 1)(φ + 2) · · · (φ + k )k ! . (59)

In plain text the coefficients are just the expectation ofM (−n ;φ + 1; βx ), computed by replacing the powers of x with
the (empirical) moments. Choosingφ, β such that a1 = a2 = 0,7 we get

an =
(n − 1)(n − 2)

2
+

n∑
k=3

µk
n(n − 1) · · · (n − k + 1)(−1)k β k
(φ + 1)(φ + 2) · · · (φ + k )k ! , (60)

6Formally, applying the inverse FT to the CF of the gamma distribution, Ψγ (t ), is not permitted because (i t )nΨγ (t ) is not integrable for high enough n , as∫
Ò |(i t )

nΨγ (t ) |dt < ∞ is not satisfied.
7In practice, this amounts to using themethod ofmoments estimates resulting from solving µ1 = (φ + 1)/β , µ2 = (φ + 1)(φ + 2)/β2 forφ, β with the first and
second order empirical moments replacing µ1, µ2 .
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where the factor (n − 1)(n − 2)/2 is the result of the choices forφ, β that satisfy a1 = a2 = 0. The novel and compact
representation of the Gram-Charlier series expansion around the gamma kernel is

fX (x ) =
[
1 +

∞∑
n=3

E{M (−n ;φ + 1; βx )}L(φ)n (βx )
]
γ(x ;φ, β ). (61)

5 | CONCLUSION
Wehave presented new and compact expressions for the Edgeworth series expansions of the normal kernel, and the
Gram-Charlier series expansion of the gamma kernel. Compared to the previously available expressions, we have used
the complete exponential Bell polynomials in the formulation of the Edgeworth series, with resulting simplifications.
The availability of these polynomials in mathematical softwaremeans that practically anyone seeking to implement
these series expansions will has immediate access to them. Using them also highlights the combinatorial relationships
present in the series, which stems from the use of cumulants.

These expressionwere presented by using a new andmore intuitive approachwhen deriving the Gram-Charlier
and Edgeworth series. Our approach highlight the shared foundations of these two series expansions, and conveys in a
clear and concise manner the assumptions andmathematical manipulations leading to each of them. This approach
also revealed a highly significant simplification in the Edgeworth series, which is by far themost used of themethods
discussed in this paper.

Regarding the Gram-Charlier series with gamma kernel, we used the Kummer function to reduce complexity in the
computation of the coefficients, thus drastically reducing the effort required to implement themethod.
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