
Faculty of Science and Technology
Department of Mathematics and Statistics

On the Ewald-Oseen scattering formulation for linear
and nonlinear transient wave scattering

—
Anastasiia Kuzmina
MAT-3900 Master's Thesis in Mathematics ... May 2017

Contents

Introduction 3

1 Toy models 7
1.1 The first toy model . 7

1.1.1 The EOS formulation . 7
1.1.2 Numerical implementation of the first toy problem 14

Solving of the test problem . 14
Central Finite Difference method 15

Polynomial approximation 15
Modified Euler method . 16
Lax-Wendroff method . 19
ODE solver . 22

Numerical solution of the first toy problem 27
1.2 The second toy model . 29

1.2.1 The EOS formulation . 31
1.2.2 Numerical implementation of the Second toy model 42

2 2D scattering problem 47
2.1 The EOS formulation . 48

Conclusion 69

A Test problem. Python3 code 71

B The first toy model. Python3 code 79

C The second toy model. Python3 code 83

References 87

1

2 CONTENTS

Introduction

Boundary integral formulations are well known in all areas of science and technology and
leads to highly efficient numerical algorithms for solving partial differential equations.
Their utility are in particular evident for scattering of waves from objects located in an
unbounded space. For these situations, one whole space dimension is taken out of the
problem by reducing the solution of the original PDEs to the problem of an integral
equation located on the boundaries of the scattering objects.

However, this reduction rely on the use of Green’s functions and is therefore only
possible if the PDEs are linear. For computational reasons one is also usually restricted
to situations where the Green’s functions are given by explicit formulas, and this rules out
most situations where the materials are inhomogeneous. Since many problems involves
inhomogeneous materials with a nonlinear response, boundary integral methods have
appeared to be of limited utility in computational science. Adding to this the somewhat
advanced mathematical machinery that is needed to formulate PDEs in terms of boundary
integral equations, it is perhaps not hard to understand why the method is not all that
popular.

Domain-based methods, like the finite difference method and the finite element method,
on the other hand, appears to be of much wider utility. Their simple formulation and
wide applicability to many types of PDEs, both linear and nonlinear, has made them
extremely popular in the scientific computing community. In the context of scattering
problems they do, however, have problems of their own to solve. These problems are of
two quite distinct types.

The first type of problem is related to the fact that, frequently, the scattering objects
represents abrupt changes in material properties as compared to the properties of the
surrounding homogeneous space. This abrupt change leads to PDEs with discontinuous or
non-linear coefficients. Such features are hard to represent accurately using finite element
or finite difference methods. The favoured approach is to introduce multiple, interlinked
grids, that are adjusted so that they conform to the boundaries of the scattering objects.
Generating these grids, that are tailored to the possibly complex shape of the scattering
objects, linking them together in a correct way and designing them in such a way that
the resulting numerical algorithm is accurate and stable, is a whole separate science with
its own journals and conferences. The approach has been developed over many years and

3

4 CONTENTS

in general works quite well, but it certainly adds to the implementational complexity of
these methods.

The second type of the problem is related to the fact that one can’t grid the domain
where the scattering objects are located for the simple reason that in almost all situations
of interest this domain is unbounded. This problem is of course well known in the research
community and the way it is resolved is to grid a computational box that is large enough
to contain all scattering objects of interest. This can easily become a very large domain,
leading to a very large number of degrees of freedom in the numerical algorithm. However,
most of the time, the part of the numerical algorithm linked to this domain has a simple
structure for which it is possible to design very fast implementations if the structure is
taken into account. However, the introduction of the finite computational box in what
is really a unbounded domain leads to the box in such a way that it is fully transparent
to waves. This is not an easy thing to achieve, most approaches one can think of will
in one way or another introduce an inhomogeneity that will partly reflect waves hitting
the boundary. This problem was first solved in a fully satisfactory manner for the case of
scattering of electromagnetic waves. The domain based method of choice for electromag-
netic waves is the Finite Difference Time Domain method(FDTD) [4], [10], [11]. This is,
as the name indicate, the finite difference method, but a method that has been designed
to take into account the very special structure of Maxwell’s equation. The removal of
reflections from the the finite computational box was achieved by the introduction of a
Perfectly Matched Layer(PML) [2], [5]. This amounts to adding a narrow layer of a spe-
cially constructed artificial material to the outside the computational box. The PML is
however only perfectly transparent to wave propagation if the grid has infinite resolution.
For any finite grid there is still a small, but nonzero, reflection from the boundary of the
computational box. This can be reduced by making the PML thicker, but this leads to
more degrees of freedom and thus an increasing computational load. However, overall
PML works well, and certainly much better than anything that came before it. There is
no doubt that the introduction of PML was a breakthrough.

The use of PML was closely linked to the special structure of Maxwell’s equations.
However, it was soon realized that the same effect could be achieved by complexifying the
physical space outside the computational box and analytic continuing the fields into this
complex spatial domain. Significantly, this realization made the benefits of a reflectionless
boundary condition available to all kinds of scattering problems. However, the use of
these reflexionless boundary conditions certainly leads to an increased computational load,
increased implementational complexity and also to numerical stability issues that needs
to be resolved. It is at this point worth recalling that the boundary of the computational
box is not part of the original physical problem and that all the added implementational
complexity and computational cost is spent trying to make it invisible after choice of a
domain method forced us to put it there in first place.

What we propose in this paper is to only apply the domain-based method inside each

CONTENTS 5

scattering object. Firstly, this will reduce the size of the computational grid enormously
since we now only need to grid the inside of the scattering objects. Secondly, our ap-
proach makes it possible to use different computational grids for each scattering objects
that is tailored to their geometric structure, without having to worry about the inherent
complexity caused by letting the different grids meet up. Thirdly, it makes the introduc-
tion of a large computational box, with its artificial boundary, redundant. In this way
the computational load is reduced by a large amount and we rid of the implementational
complexity and instabilities associated with the boundary of the computational box.

However, the domain based method resrticted to the inside of each scattering object
requires field values on the boundaries of the scattering object in order to be able to prop-
agate the fields forward in time. These boundary values will be supplied by a boundary
integral method derived from a space-time integral formulation of the PDEs one are seek-
ing to solve. This boundary integral method will take into account all the scattering and
rescattering of the solution to the PDEs in the unbounded domain outside the scattering
objects. Since the boundary integral method takes the radiation condition at infinity into
account explicitly, no finite computational box with its artificial boundary is needed.

This kind of idea for solving scattering problems was to out knowledge first proposed
in 1972 by Pattanayak and Wolf [6] for the case of electromagnetic waves. They discussed
their ideas in the context of a generalization of the Ewald-Oseen optical extinction theorem
and we will, because of this, refer to our method as the Ewald-Oseen Scattering(EOS)
formulation.

However, the paper of Pattanayak and Wolf only discussed stationary linear scattering
of electromagnetic waves and they therefore did their integral formulation in frequency
space. This approach is not the right one when one is interested in transient scattering
from objects that are in general inhomogeneous and have a possibly nonlinear response.
What is needed for our approach is a space-time integral formulation of the PDEs of
interest.

In the first chapter of this work we implement our EOS formulation for two different
1D scattering problems. Both cases can be thought of as toy models for the scattering of
electromagnetic waves. This should not be taken to mean that only models that in some
way is related to electromagnetic scattering can be subject to our approach, it merely
reflects our particular interest in electromagnetic scattering. The way we see it, there
is only one essential requirement for our method to be applicable, and that is that it
must be possible to derive an explicit integral formulation for the PDEs of interest. This
means that at some point one needs to find the explicit expression for a Green’s function
for some differential operator related to our PDEs. In general, it is difficult to find
explicit expressions for Green’s function belonging to nontrivial differential operators.
However, the Green’s function needed for our EOS formulation will always be of the
infinite, homogeneous space type, and explicit expressions for such Green’s functions can
frequently be found.

6 CONTENTS

The goal of this master thesis is twofold:

1. Firstly, the candidate is going to create a numerical implementation of the EOS
formulation for the two toy models. For both models, the numerical implementations
should be tested using a method known as artificial sources. This method has
probably been around for a long time but apart from an application to the Navier-
Stokes equations [3] we are not aware of any published work using this method. The
method is based on the simple observation that you add arbitrary source terms to
any system of PDEs the any function is a solution for some choice of the source.
Adding a source term typically only introduce a trivial modification to whichever
numerical method used to solve the PDEs. This essentially means that for any PDE
of interest we can design particular functions to test various critical aspects of the
numerical method related to numerical stability and accuracy.

2. Secondly, the candidate will develop the EOS formulation for the following system
of PDEs

∂tϕ = µ(∂yψ + i∂xψ) + f(x, y, t)

∂tψ = ν(∂yϕ− i∂xϕ) + g(x, y, t)

implement the EOS formulation numerically and test the implementation using an
artificial source test.

So in the first chapter of this work we will discuss two 1D-space toy models. We will
determine the EOS formulation for both of toy models. For the first model we will try
to solve test problem by several numerical methods: Central Finite Difference method,
Modified Euler method, Lax-Wendroff method and by ODE solver which is in Python
scientific library. After choosing more accurate and stable method we will use it to solve
both toy models.

In the second part of this work we are going to only discuss EOS formulation for the
2D scattering problem.

All calculations were made using programming language Python3, a computer alge-
bra system Wolfram Mathematica and using Intel(R) Atom(TM) CPU N570 clocked at
1.66GHz.

Chapter 1

Toy models

1.1 The first toy model

Our first toy model is

ϕt = vϕx + j + js

ρt = −jx
jt = (α− βρ)ϕ− γj

(1.1)

Where ϕ = ϕ(x, t) – ”electric field”, j = j(x, t) – ”current density”, ρ = ρ(x, t) – ”charge
density”. These quantities are analogues for the corresponding quantities in the Maxwell
equations. We observe that the second equation in the model (1.1) is a 1D version of the
equation of continuity from electromagnetics. The charge density and current density will
be assumed to be confined to an interval [a0, a1] on the real axis whereas ϕ is a continuous
field defined on the whole real axis. The interval [a0, a1] is the analogue of a compact
scattering object in the electromagnetic situation. The function js(x, t) is a fixed source,
that has its support in a compact set in the interval x > a1. The parameters α, β and γ
are constants and the function

v =

{
c1 x ∈ [a0, a1]

c2 otherwise

is the propagation speed for the field.
Graphical representation of (1.1) is shown on Figure 1.1

1.1.1 The EOS formulation

In order to derive the EOS formulation for the model (1.1), we will firstly need a space-
time integral identity involving the operator

L = ∂t − c∂x

7

8 CHAPTER 1. TOY MODELS

x

t

js(x ,t)

ϕ t=c2ϕx+ jsϕ t=c2ϕx ϕ t = c1ϕx+ j
ρt =− jx
jt = (α−βρ)ϕ−γ j

a0 a1

Figure 1.1: Graphical representation of the first toy model. The blue ellipse represents
the source js(x, t) outside the domain bounded by x = a0 and x = a1.

where c is some constant.∫
S×T

dx dtLϕψ =

∫
S×T

dx dtL(ϕt − cϕx)ψ

=

∫
S×T

dx dtLϕtψ −
∫
S×T

dx dtcϕxψ

=

∫
S

dxψϕ

∣∣∣∣t1
t0

−
∫
T

dtϕψ

∣∣∣∣x1
x0

−
∫
S×T

dx dtϕ(ψt − cϕψx)

So we have integral identity∫
S×T

dx dt

[
Lϕψ − ϕL†ψ

]
=

∫
S

dxψϕ

∣∣∣∣t1
t0

−
∫
T

dtϕψ

∣∣∣∣x1
x0

(1.2)

where L† = −∂t + c∂x is the formal adjoin of L and where S = (x0, x1) and T = (t0, t1)
are open space and time intervals.

The second item we need in order to derive the EOS formulation for the model (1.1),
is the advanced Green’s function for the operator L†. This is a function G = G(x, t, x′, t′)
which is solution to the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′) (1.3)

and that vanish when t > t′.
We use the one dimensional Fourier transform in x to solve the initial value problem

for G(x, t, x′, t′). Let the Fourier transform of G(x, t, x′, t′) be denoted by g(λ, t, x′, t′).
Then

g(λ, t, x′, t′) =
1√
2π

∫ +∞

−∞
dxeiλxG(x, t, x′, t′) (1.4)

1.1. THE FIRST TOY MODEL 9

To obtain an equation for g(λ, t, x′, t′) we multiply (1.4) by
1√
2π
eiλx and integrate from

−∞ to +∞. Using

1√
2π

∫ +∞

−∞
dxeiλxf (n)(x) = −(iλ)nF (λ), n = 1, 2..

we obtain the equation.

−∂g(λ, t, x′, t′)

∂t
+ cλg(λ, t, x′, t′) =

1√
2π

∫ +∞

−∞
dxeiλxG(x, t, x′, t′)δ(t− t′)δ(x− x′)

=
1√
2π
eiλx

′
δ(t− t′)

(1.5)

Also g(λ, t, x′, t′) satisfies the condition g(λ, 0, x′, t′) = 0.

(
e−icλtg(λ, t, x′, t′)

)
t

= − 1√
2π
eiλx

′
e−icλtδ(t− t′)

= − 1√
2π
eiλx

′
e−icλt

′
δ(t− t′)

g(λ, t, x′, t′) =
1√
2π
eicλ(t−t

′)eiλx
′
Θ(t′ − t)

So

G(x, t, x′, t′) =
1√
2π

∫ +∞

−∞
dλe−iλxg(λ, t, x′, t′)

=
1√
2π

∫ +∞

−∞
dλe−iλx

1√
2π
eicλ(t−t

′)eiλx
′
θ(t′ − t)

=
1

2π
θ(t′ − t)

∫ +∞

−∞
dλeiλ(x

′−x)eicλ(t−t
′)

= θ(t′ − t)δ(x′ − x+ c(t′ − t))

(1.6)

where θ is the Heaviside step function with θ(x) = 1 for x > 0 and zero otherwise.
We will now apply the integral identity (1.2) to each space interval (−∞, a0), (a0, a1)

and (a1,+∞). For the function ψ we will substitute the advanced Green’s function (1.6)
and ϕ will be the solution to the equation

ϕt = vϕx + j + js (1.7)

with vanishing initial condition ϕ(x, t0) = 0. We thus have a problem where all solutions
are purely source-generated.

10 CHAPTER 1. TOY MODELS

First interval (−∞, a0) we let ψ be the Green’s function

ψ = G2(x, t, x
′, t′) = θ(t′ − t)δ(x′ − x+ c2(t

′ − t)) (1.8)

According to the already described properties of j and js, the function ϕ = ϕ2 is in the
interval (−∞, a0) a solution to the equation

ϕ2t = vϕ2x

m
Lϕ2 = 0

(1.9)

Inserting (1.8), (1.9) and S = (−∞, a0) into the integral identity (1.2), using the initial
condition and the fact that the Green’s function is advanced, we get for x in (−∞, a0)∫ a0

−∞

∫ t

t0

dx dt

[
Lϕ2G2 − ϕ2L

†G2

]
=

∫ a0

−∞
dxϕ2G2

∣∣∣∣t
t0

− c2
∫ t

t0

dtϕ2G2

∣∣∣∣a0
−∞

ϕ2(x, t) = c2

∫ t

t0

dt′ϕ2(x
′, t′)G2(x

′, t′, x, t)

∣∣∣∣a0
−∞

= c2

∫ t

t0

dt′ϕ2(x
′, t′)θ(t− t′)δ(x− a0 + c2(t− t′))

− c2 lim
x′→−∞

∫ t

t0

dt′ϕ2(x
′, t′)θ(t− t′)δ(x− x′ + c2(t− t′))

= c2

∫ t

t0

dt′ϕ2(a0, t
′)δ(x− a0 + c2(t− t′))

(1.10)

after interchanging the primed and unprimed variables. The last equality sign follows
because x− x′ + c2(t− t′) > 0 when x′ < x for all t′ in the integration interval (t0, t).

For the second integration interval, (a0, a1), we let ψ be the Green’s function

ψ = G1(x, t, x
′, t′) ≡ θ(t′ − t)δ(x′ − x+ c1(t

′ − t)). (1.11)

According to our specifications, the function ϕ = ϕ1 is in the interval (a0, a1)

ϕ1t = vϕ1x + j

m
Lϕ1 = j

(1.12)

with vanishing initial conditions. Inserting (1.11), (1.12) and S = (a0, a1) into the inte-
gral identity (1.2), using the initial condition and the fact that the Green’s function is
advanced, we get for x in (a0, a1)∫ a1

a0

∫ t

t0

dx′ dt′
[
Lϕ1G1 − ϕ1L

†G1

]
=

∫ a1

a0

dx′ϕ1G1

∣∣∣∣t
t0

− c1
∫ t

t0

dt′ϕ1G1

∣∣∣∣a1
a0

1.1. THE FIRST TOY MODEL 11

ϕ1(x, t) = c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′))

− c1
∫ t

t0

dxt′ϕ1(a0, t
′)δ(x− a0 + c1(t− t′))

+

∫ a1

a0

∫ t

t0

dx′ dt′j(x′, t′)δ(x− x′ + c1(t− t′))

(1.13)

after interchanging primed and unprimed variables. The last equality sign follows because
x− a0 + c1(t− t′) > 0 for all t′ in the integration interval when a0 < x < a1.

Finally, for the third integration interval (a1,+∞) we let ψ be the Green’s function

ψ = G2(x, t, x
′, t′) ≡ θ(t′ − t)δ(x′ − x+ c2(t

′ − t)) (1.14)

According to the properties of j and js, the function ϕ is in the interval (a1,∞) the
solution to the equation

ϕ2t = vϕ2x + js

m
Lϕ2 = js

(1.15)

with vanishing initial conditions. Inserting (1.14), (1.15) and S = (a1,∞) into the inte-
gral identity (1.2), using the initial conditions and the fact that the Green’s function is
advanced, we get for x in (a1,∞)∫ +∞

a1

∫ t

t0

dx′ dt′
[
Lϕ2G2 − ϕ2L

†G2

]
=

∫ +∞

a1

dx′ϕ2G2

∣∣∣∣t
t0

− c2
∫ t

t0

dt′ϕ2G2

∣∣∣∣+∞
a1

ϕ2(x, t) = c2 lim
x′→+∞

∫ t

t0

dt′ϕ2(x
′, t′)δ(x− x′ + c2(t− t′))

− c2
∫ t

t0

dt′ϕ2(a1, t
′)δ(x− a1 + c2(t− t′))

+

∫ +∞

a1

∫ t

t0

dx′ dt′jsδ(x− x′ + c2(t− t′))

=

∫ +∞

a1

∫ t

t0

dx′ dt′jsδ(x− x′ + c2(t− t′))

(1.16)

after interchanging primed and unprimed variables. The third terms vanish because
x − a1 + c2(t − t′) > 0 for all t′ in the integration interval when x > a1. The second
term vanish because x − x′ + c2(t − t′) < 0 for all fixed x > a1, t > t0 and all t′ in the
integration interval (t0, t) when x′ is large enough.

12 CHAPTER 1. TOY MODELS

We now investigate the limit of there integral identities as x approach the boundary
points {a0, a1} of the open interval (a0, a1) from inside the interval and outside the interval.
This will give us four equations for the four boundary values

ϕ1(a0, t), ϕ2(a0, t), ϕ1(a1, t), ϕ2(a1, t)

However, by assumption, acceptable solutions of the toy model are continuous across the
boundary points {a0, a1}. We therefore also have the two additional equations

ϕ2(a0, t) = ϕ1(a0, t)

ϕ1(a1, t) = ϕ2(a1, t)
(1.17)

So we have four unknown boundary values and six linear equations. The problem is thus
overdetermined and we would not normally expect there to be any nontrivial solutions.

On the other hand, the first of the equations in the toy model determine the function
ϕ uniquely on the whole real axis in terms of the source j + js and the vanishing initial
conditions. The function satisfy, by construction, the integral identities whose limits
yielded the overdetermined system. So the overdetermined linear system does in fact
have a solution.

There is a more direct way to see why the overdetermined system will have a solution.
Let us consider the inside of the scattering object, thus x ∈ (a0, a1). Here, the field ϕ1 is
determined in terms of the current j(x, t), and the boundary value ϕ1(a1, t) by identity
(1.13)

ϕ1(x, t) =

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′))

(1.18)

Natively, one would expect that we will get an equation determining the unknown bound-
ary value ϕ1(a1, t), by taking the limit of (1.18) as x approach a1 from below. However,
this would make the field inside the scattering object independent of the outside source,
which from a scattering point of view must be patently wrong. After all, it is the outside
source js(x, t) which determine the field both outside and inside the scattering object.
If this source is turned off the field would sipmly be zero everywhere. Note that if we
actually take the limit of (1.18) we get the equation

ϕ1(a1, t) = 0,

which leaves the boundary value entirely arbitrary. If we analyse the rest of the overde-
termined system in the same way, we find that one more equation for the boundary data
is redundant

1.1. THE FIRST TOY MODEL 13

ϕ1(a0, t) = lim
x→a0

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1 lim
x→a0

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′))

=
1

c1

∫ a1

a0

dx′j(x′, t− x′ − a0
c1

)θ(a0 − x′ + c1(t− t′))

+ ϕ1(a1, t−
a1 − a0
c1

)δ(a0 − a1 + c1(t− t′))

(1.19)

ϕ2(a0, t) = c2 lim
x→a0

∫ t

t0

dt′ϕ2(a0, t
′)δ(x− a0 + c2(t− t′))

= −ϕ2(a0, t) = 0

(1.20)

ϕ2(a1, t) = lim
x→a1

∫ +∞

a1

dx′
∫ t

t0

dt′js(x
′, t′)δ(x− x′ + c2(t− t′))

=
1

c2

∫ +∞

a1

dx′js(x
′, t− x′ − a1

c2
)θ(a1 − x′ + c2(t− t0))

(1.21)

and thus the four unknown boundary values are uniquely determined by the following
four equations

ϕ1(a0, t) =
1

c1

∫ a1

a0

dx′j(x′, t− x′ − a0
c1

)θ(a0 − x′ + c1(t− t′))

+ ϕ1(a1, t−
a1 − a0
c1

)θ(a0 − a1 + c1(t− t′))
(1.22)

ϕ2(a1, t) =
1

c2

∫ +∞

a1

dx′js(x
′, t− x′ − a1

c2
)θ(a1 − x′ + c2(t− t0)) (1.23)

ϕ2(a0, t) = ϕ1(a0, t)

ϕ1(a1, t) = ϕ2(a1, t)

We emphasize the fact that we end up with an overdetermined system of linear equa-
tions for the boundary values because this is a generic outcome when we derive the EOS
formulation for any given system of PDEs.

14 CHAPTER 1. TOY MODELS

This problem has been recognized by the research community in the context of space-
time boundary integral formulation for the Maxwell equations, and a simple fix has been
invented to resolve it.

Observe that equation (1.23) determine the value of the field at the boundary point
a1 in terms of the given source js, and the equation (1.22) determine the value of the field
at the boundary point a0 in terms of the current j which by definition is located inside
the interval (a0, a1).

Equations (1.1) restricted to the open interval (a0, a1) together with the integral iden-
tities (1.22), (1.23) define the EOS formulation for toy model 1.

1.1.2 Numerical implementation of the first toy problem

Solving of the test problem

Before to solve original problem (1.1) let us consider test linear boundary problem

ϕt = cϕx + j + f1(x, t), a0 < x < a1, 0 < t < T

ρt = −jx + f2(x, t)

jt = αϕ− γj + f3(x, t)

(1.24)

with zero initial conditions and boundary conditions ϕ(a0, t) = f(t) and ϕ(a1, t) = g(t)
by different methods and to choose the most suitable one for this problem.

Actually original problem is delay problem because ϕ(t, a0) depends on values of j(x, t)
in previous time points. But it is difficult to find exact solution to delay system and
compare it with numerical solution, so we are going to solve system of PDE.

We use exact boundary conditions for function ϕ because in original problem we have
expressions for this function on the boundaries and know nothing about boundary values
neither for function ρ or j.

We can choose exact solution for this problem (1.24) to find functions f1(x, t), f2(x, t)
and f3(x, t).

Let us take the next exact solution to the problem (1.24)

ϕ(x, t) = e−10(x+2t−7)2

ρ(x, t) = −0.1e−10(x+2t−7)2

j(x, t) = 0.1e−10(x+2t−7)2
(1.25)

Then we can find that

f1(x, t) = ((20c− 40)(x+ 2t− 7)− 0.1)e−10(x+2t−7)2

f2(x, t) = 2(x+ 2t− 7)e−10(x+2t−7)2

f2(x, t) = (−4(x+ 2t− 7)− α + 0.1γ)e−10(x+2t−7)2
(1.26)

1.1. THE FIRST TOY MODEL 15

We are going to solve this problem by Central Finite Difference method (CD), Modified
Euler method (ME), Lax-Wendroff method (LW) and by ODE solver which called odeint

from Python3 library for scientific computing SciPy.

Central Finite Difference method First method is finite difference method because
this method is the most popular and simple to realize. We will use Central Finite Differ-
ence rule for time and space derivative. We introduce a uniform spacetime grid (xk, ti)
where xk = a0 + kdx, k = 0, . . . , N + 1 and ti = idt, i = 0, . . . ,M where x0 = a0,

xN+1 = a1, dx =
a1 − a0
N + 2

. The solution will only be computing at the grid points.

The expressions for numerical solution at the grid points are

ϕi+1
k = c

dt

dx
(ϕik+1 − ϕik−1) + 2 dt(jik + f1(xk, ti)) + ϕi−1k

ρi+1
k = − dt

dx
(jik+1 − jik−1) + 2 dtf2(xk, ti) + ρi−1k

ji+1
k = 2 dt(αϕik − γjik + f3(xk, ti)) + ji−1k

(1.27)

Polynomial approximation We need values of ρ on the boundaries a0 and a1, but
we cannot calculate them by usual way using Central Finite Difference method because
we need values of j in outside points, which we do not have. So we need another way to
find boundary values of ρ.

Let us take the polynomial approximation of function U(x)

U(x) = a0 + a1(x− xk) + a2(x− xk)2 +O(x3)

. Then the x-derivative is

Ux(x) = a1 + 2a2(x− xk)

Ux(xk) = a1

If we have points xk, xk+1, xk+2, then xk+1 − xk = dx, xk+2 − xk = 2 dx, then we can get
linear system

U(xk) = a0

U(xk+1) = a0 + a1 dx+ a2 dx2

U(xk+2) = a0 + 2a1 dx+ 4a2 dx2

with two unknown variables a1 and a2. If we solve this system we find that

Ux(xk) = a1 =
−3U(xk) + 4U(xk+1)− U(xk+2)

2 dx
(1.28)

16 CHAPTER 1. TOY MODELS

for the left boundary. Analogously we can construct system for the right boundary, but
now we have points xk, xk−1, xk−2 and xk−1 − xk = − dx, xk−2 − xk = −2 dx

U(xk) = a0

U(xk−1) = a0 − a1 dx+ a2 dx2

U(xk−2) = a0 − 2a1 dx+ 4a2 dx2

If we solve this system we find that

Ux(xk) = a1 =
3U(xk)− 4U(xk−1) + U(xk−2)

2 dx
(1.29)

for the right boundary.

Now we can use these two special rules (1.28) and (1.29) to calculate values of function
ρ on the boundaries

ρi+1
0 = − dt

dx
(−3ji0 + 4ji1 − ji2) + 2 dtf2(x0, ti) + ρi−10

ρi+1
N+1 = − dt

dx
(3jiN+1 − 4jiN + jiN−1) + 2 dtf2(xN+1, ti) + ρi−1N+1

(1.30)

Actually Central Finite Difference method in time and space (Leap-Frog) [7] is a two-
level scheme, requiring records of values at time steps ti and ti−1 to get values at time
step ti+1. This is clear from expressions (1.27). So we need two initial conditions at t = t0
and t = t1. For original problem (1.1) it doesn’t matter because the solution stays zero or
close to zero for several first time steps. But for problem (1.24) we need one more initial
condition, which we can find from known exact solution.

So let us see now on Figures 1.2–1.4 the numerical solution of the problem (1.24) and
compare them with exact solution in several time points.

In this test T = 12, a0 = −3, a1 = 3, c = 0.5, α = γ = 0.1, dt = 0.01, dx = 0.01.
We can see that Central Finite Difference method solution overlaps exact solution

perfectly until the signal gone. After the signal gone there are some oscillations around
zero which possibly come from the numerical scheme. Also we can see artefact in solution
to ρ on the left boundary. The first point grows up linearly. The nature of this artefact
needs additional investigation and we are not going to do it in this work.

Modified Euler method Let us now apply Modified Euler (ME) method to the given
test problem (1.24). Modified Euler method is an example of 2nd order Runge-Kutta
method [9]. If we have initial value problem

yt = f(t, y)

1.1. THE FIRST TOY MODEL 17

Figure 1.2: Exact (blue) solution and numerical (green) solution of test problem (1.24)
for ϕ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left), t = 11
(lower right). Horizontal axis is x.

Figure 1.3: Exact (blue) solution and numerical (green) solution of test problem (1.24)
for ρ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left), t = 11
(lower right). Horizontal axis is x.

18 CHAPTER 1. TOY MODELS

Figure 1.4: Exact (blue) solution and numerical (green) solution of test problem (1.24)
for j(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left), t = 11
(lower right). Horizontal axis is x.

the scheme of ME method takes form

K1 = hf(ti, yi)

K2 = hf(ti+1, yi +K1)

yi+1 = yi +
K1 +K2

2

where h is time step, ti = ih, i = 0, . . . , n.

If we apply this scheme, Central Finite Difference rule to x-derivatives and polynomial
approximation for the boundary values from the previous section to the test problem we

1.1. THE FIRST TOY MODEL 19

get the next scheme

Kϕ
1 = dt(

c

2 dx
(ϕik+1 − ϕik−1) + jik + f1(xk, ti))

Kϕ
2 = dt(

c

2 dx
(ϕik+1 − ϕik−1) + jik + f1(xj, ti+1))

ϕi+1
k = ϕik +

Kϕ
1 +Kϕ

2

2

Kρ
1 = dt(− 1

2 dx
(ϕik+1 − ϕik−1)i+ f2(xk, ti))

Kρ
2 = dt(− 1

2 dx
(ϕik+1 − ϕik−1) + f2(xj, ti+1))

ϕi+1
k = ϕik +

Kρ
1 +Kρ

2

2
Kj

1 = dt(αϕik − γjik + f3(xk, ti))

Kj
2 = dt(αϕik − γ(jik +Kj

1) + f3(xk, ti+1))

ji+1
k = jik +

Kj
1 +Kj

2

2

where i, k, ti, xk are the same as for Central Finite Difference method which was described
before.

So let us see now on Figures 1.5–1.7 the numerical solution of the problem (1.24) and
compare them with exact solution in several time points.

In this test T = 12, a0 = −3, a1 = 3, c = 0.5, α = γ = 0.1, dt = 0.01, dx = 0.01.

We can see that this method is unstable for the given problem and instability appears
after the signal.

Lax-Wendroff method The next method which we are going to use is Lax-Wendroff
method. This is finite difference method for first order equations. The Lax-Wendroff
method can be used to approximate equations for ϕ and ρ from (1.24) by an explicit
difference equation of a second-order accuracy.

Consider the problem (1.24) where c is a constant. By Taylor’s expansion,

ϕik = ϕ(ti + dt, xk) = ϕik + dt(ϕt)
i
k +

dt2

2
(ϕtt)

i
k + . . .

ρik = ρ(ti + dt, xk) = ρik + dt(ρt)
i
k +

dt2

2
(ρtt)

i
k + . . .

where xk = a0 + k dx and ti = i dt, i = 0, 1, 2, . . . , k = 0, 1, 2,

20 CHAPTER 1. TOY MODELS

Figure 1.5: Exact (blue) solution and Modified Euler (green) solution of test problem
(1.24) for ϕ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

Figure 1.6: Exact (blue) solution and Modified Euler (green) solution of test problem
(1.24) for ρ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

1.1. THE FIRST TOY MODEL 21

Figure 1.7: Exact (blue) solution and Modified Euler (green) solution of test problem
(1.24) for j(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

The differential equation can now be used to eliminate the t-derivatives

ϕi+1
k = ϕik + dt(cϕx + j + f1(x, t))

i
k +

dt2

2
(cϕxt + jt + f1t(x, t))

i
k

= ϕik + dt(cϕx + j + f1(x, t))
i
k +

dt2

2
(cϕtx + (αϕ− γj + f3(x, t)) + f1t(x, t))

i
k

= ϕik + dt(cϕx + j + f1(x, t))
i
k +

dt2

2
(c(cϕx + j + f1(x, t))x

+ (αϕ− γj + f3(x, t)) + f1t(x, t))
i
k

= ϕik + dt(cϕx + j + f1(x, t))
i
k +

dt2

2
(c2ϕxx + cjx + cf1x(x, t)

+ (αϕ− γj + f3(x, t)) + f1t(x, t))
i
k

for ϕ and for ρ

ρi+1
k = ρik + dt(−jx + f2(x, t))

i
k +

dt2

2
(−jxt + f2t(x, t))

i
k

= ρik + dt(−jx + f2(x, t))
i
k +

dt2

2
(−jtx + f2t(x, t))

i
k

= ρik + dt(−jx + f2(x, t))
i
k +

dt2

2
(−(αϕ− γj + f3(x, t))x + f2t(x, t))

i
k

= ρij + dt(−jx + f2(x, t))
i
k +

dt2

2
(−αϕx + γjx − f3x(x, t) + f2t(x, t))

i
k

22 CHAPTER 1. TOY MODELS

Finally, the replacement of the x-derivatives by central-difference approximations gives,
to terms in dt2, the explicit difference equation

ϕi+1
k = ϕik + dt

(c

2 dx

(
ϕik+1 − ϕik−1

)
+ jik + f1(xk, ti)

)
+

dt2

2

(
c2

1

dx2
(ϕik+1 − 2ϕik + ϕik−1) + c

1

2 dx
(jik+1 − jik−1)

+ αϕik − γjik + cf1x(xk, ti) + f3(xk, ti)
)

ρi+1
k = ρik + dt

(
− 1

2 dx

(
jik+1 − jik−1

)
+ f2(xk, ti)

)
+

dt2

2

(
− α

2 dx
(ϕik+1 − ϕik−1) +

γ

2 dx
(jik+1 − jik−1)

+ f2t(xk, ti)− f3x(xk, ti)
)

(1.31)

Also we need special formulas for calculation of ρt on the boundaries

ρi+1
0 = ρi0 + dt

(
− 1

2 dx

(
− 3ji0 + 4ji1 − ji2

)
+ f2(x0, ti)

)
+

dt2

2

(
− α

2 dx
(−3ϕi0 + 4ϕi1 − ϕi2) +

γ

2 dx
(−3ji0 + 4ji1 − ji2

)
+ f2t(x0, ti)− f3x(x0, ti)

)
ρi+1
N+1 = ρiN+1 + dt

(
− 1

2 dx

(
3jiN+1 − 4jiN + jiN−1

)
+ f2(xN+1, ti)

)
+

dt2

2

(
− α

2 dx
(3ϕiN+1 − 4ϕiN + ϕiN−1) +

γ

2 dx
(3jiN+1 − 4jiN + jiN−1

)
(1.32)

Also we will use Central Finite Difference method to calculate values of j(x, t) in points
of grid, so

ji+1
k = 2 dt(αϕik − γjik + f3(xk, ti)) + ji−1k

Now we can apply this numerical method to solve problem (1.24) for the same example
functions like before. On Figures 1.8 – 1.10 we can see numerical solutions to (1.24)
compare to the exact solutions. They overlap perfectly until the signal gone.

In this test T = 12, a0 = −3, a1 = 3,c = 0.5, α = γ = 0.1, dt = 0.01, dx = 0.01.
Again we can see the artefact on the left boundary in solution to ρ, which possibly

appears because of the same nature as before in Central Finite Difference method solution.

ODE solver In this paragraph we are going to apply ODE solver odeint from Python
library SciPy [1]. This ODE solver integrates a system of ordinary differential equa-
tions and solves ordinary differential equations using Isoda from the FORTRAN library
odepack. So we need to rewrite our problem (1.24) to system of ODE.

1.1. THE FIRST TOY MODEL 23

Figure 1.8: Exact (blue) solution and Lax-Wendroff numerical (green) solution of test
problem (1.24) for ϕ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6
(lower left), t = 11 (lower right). Horizontal axis is x.

Figure 1.9: Exact (blue) solution and Lax-Wendroff numerical (green) solution of test
problem (1.24) for ρ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6
(lower left), t = 11 (lower right). Horizontal axis is x.

24 CHAPTER 1. TOY MODELS

Figure 1.10: Exact (blue) solution and Lax-Wendroff numerical (green) solution of test
problem (1.24) for j(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6
(lower left), t = 11 (lower right). Horizontal axis is x.

Let us introduce space grid x0, . . . , xN+1, where x0 = a0, xN+1 = a1. Also let

ϕ = (ϕ1, . . . , ϕN)

ρ = (ρ0, . . . , ρN+1)

j = (j0, . . . , jN+1)

where ϕi = ϕ(t, xi), i = 1, . . . , N , ρk = ρ(t, xk), jk = j(t, xk), k = 0, . . . , N + 1. We didn’t
include ϕ0 = ϕ(t, x0) and ϕN+1 = ϕ(t, xN+1) to system as unknown functions because
they are known from boundary conditions.

Also to rewrite the problem (1.24) to ODE system we need to change x - derivatives by
approximations. Let us use Central Finite Difference rule for ϕx, jx and special polynomial
approximation of jx for ρt(t, a0) and ρt(t, a1) as before in Central Finite Difference method.

Now we can rewrite the problem as

ϕ
t

= M1ϕ+ j + f
1
(t)

ρ
t

= M2j + f
2
(t)

j
t

= αϕ− γj + f
3
(t)

where f
1
(t) = (f1(x1, t), . . . , f1(xN , t)), f i(t) = (fi(a0, t), fi(x1, t), . . . , fi(xN , t), fi(a1, t)),

1.1. THE FIRST TOY MODEL 25

Figure 1.11: Exact (blue) solution and odeint numerical (green) solution of test problem
(1.24) for ϕ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

i = 2, 3, M1 is N ×N matrix

M1 =
c

2 dx

0 1 0 0 . . .
−1 0 1 0 . . .

.

0 . . . −1 0 1
0 . . . 0 −1 0

and M2 is (N + 2)× (N + 2) matrix

M2 =
1

2 dx

3 −4 1 0 . . . 0

1 0 −1 0
...

0 1 0 −1
...

...
. 0

0 . . . 0 1 0 −1
0 . . . 0 −1 4 −3

Let us now apply the constructed scheme and use system as argument to odeint. In

this test T = 12, a0 = −3, a1 = 3, c = 0.5, α = γ = 0.1, dt = 0.01, dx = 0.05. We take
dx = 0.05 instead of dx = 0.01 because the ODE solver works slow and the process of
calculations takes several hours. We can see on Figures 1.11 – 1.13 solutions to the (1.24)
by odeint. There are some artefacts in solution of ρ on the both boundaries. Actually

26 CHAPTER 1. TOY MODELS

Figure 1.12: Exact (blue) solution and odeint numerical (green) solution of test problem
(1.24) for ρ(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

Figure 1.13: Exact (blue) solution and odeint numerical (green) solution of test problem
(1.24) for j(x, t) in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left),
t = 11 (lower right). Horizontal axis is x.

1.1. THE FIRST TOY MODEL 27

Table 1.1: Compare of numerical solutions

Method
Maximum difference

Process time (sec)
ϕ ρ j

CD 0.005377 0.000655 0.000626 47.213
LW 0.005022 0.003481 0.000565 178.616

odeint 0.007259 0.076554 0.000626 2764.312

artefact on the left boundary appeared in CD and LW methods. Possibly artefact on the
right boundary appears because of the similar problem.

Let us now compare process time and maximum difference of numerical solutions which
were founded by Central Finite Difference method, Lax-Wendroff method and ODE solver
from exact solution. We need to remind that for Central Finite Difference method and
Lax-Wendroff method we used dx = 0.01 and for odeint we used dx = 0.05 because of
slow process of calculations.

Also we didn’t include Modified Euler method because we saw that it is unstable.

We didn’t include difference between exact solutions and numerical methods on the
boundaries because of artefacts. So in Table 1.1 we compare difference only inside the
domain.

We can see that Central Finite Difference method and Lax-Wendroff method are more
accurate, but they have big difference in ρ. But also Lax-Wendroff method is more stable
than Central Finite Difference method [7]. On Figure 1.14 we can see exact solution,
numerical solution by Central Finite Difference method and numerical solution by Lax-
Wendroff of test problem (1.24) with parameters T = 12, a0 = −3, a1 = 3, dx = 0.05,
dt = 0.01, c = 2 for ϕ in several time points. We can see that for the same parameters
Central Finite Difference method solution has oscillations unlike solution by Lax-Wendroff
method.

Solution by ODE solver is less accurate because we used dx = 0.05 instead of dx = 0.01
but unfortunately this solver too slow to take another value. So we are going to use Lax-
Wendroff method to solve original Toy model (1.1).

Numerical solution of the first toy problem

In this section we are going to apply Lax-Wendroff numerical method to model (1.1).

Let us first rewrite numerical scheme which we used for test problem by taking c = c1

28 CHAPTER 1. TOY MODELS

Figure 1.14: Exact (blue) solution, Central Finite Difference method numerical solution
(green) and Lax-Wendroff method numerical solution (red) of test problem (1.24) for ϕ
in time points t = 2 (upper left), t = 4 (upper right), t = 6 (lower left), t = 11 (lower
right). Horizontal axis is x.

and f1(x, t) = f2(x, t) = f3(x, t) = 0

ϕi+1
k = ϕik + dt

(c1
2 dx

(
ϕik+1 − ϕik−1

)
+ jik

)
+

dt2

2

(c21
dx2

(ϕik+1 − 2ϕik + ϕik−1) +
c1

2 dx
(jik+1 − jik−1)

+ (α− βρik)ϕik − γjik
)

ρi+1
k = ρik + dt

(
− 1

2 dx

(
jik+1 − jik−1

))
+

dt2

2

(β

2 dx
(ρik+1 − ρik−1)ϕik −

1

2 dx
(α− βρik)(ϕik+1 − ϕik−1)

+ γ
1

2 dx
(jik+1 − jik−1)

)

(1.33)

1.2. THE SECOND TOY MODEL 29

and special rules for calculation values of ρt on the boundaries

ρi+1
0 = ρi0 + dt

(
− 1

2 dx

(
− 3ji0 + 4ji1 − ji2

))
+

dt2

2

(β

2 dx
(−3ρi0 + 4ρi1 − ρi2)ϕi0

− 1

2 dx
(α− βρi0)(−3ϕi0 + 4ϕi1 − ϕi2)

+
γ

2 dx
(−3ji0 + 4ji1 − ji2)

)
ρi+1
N+1 = ρiN+1 + dt

(
− 1

2 dx

(
3jiN+1 − 4jiN + jiN−1

))
+

dt2

2

(β

2 dx
(3ρiN+1 − 4ρiN + ρiN−1)ϕ

i
N+1

− 1

2 dx
(α− βρiN+1)(3ϕ

i
N+1 − 4ϕiN + ϕiN−1)

+
γ

2 dx
(3jiN+1 − 4jiN + jiN−1)

)

(1.34)

Also we will use Central Finite Difference method to calculate values of j(x, t) in points
of grid, so

ji+1
k = 2 dt

(
(α− βρik)ϕik − γjik

)
+ ji−1k

Let for example take
js(x, t) = ae−b(x−x0)

2

e−c(t−t0)
2

where a = 2, b = c = 10, x0 = 10 and t0 = 4. Also we take T = 12, a0 = −3, a1 = 3,
dt = 0.01, dx = 0.01, α = β = γ = 0.1, c1 = 1.4, c2 = 2. Numerical solution of the
First toy problem with described parameters is on Figures 1.15 – 1.17 Again we can see
artefact on the left boundary of ρ.

1.2 The second toy model

Our second toy model is

ϕt = µ(x)ψx + j + js

ψt = ν(x)ϕx

ρt = −jx
jt = (α− βρ)ϕ− γj

(1.35)

Where ϕ = ϕ(x, t) is the ”electric field”, ψ = ψ(x, t) is the ”magnetic field”, j = j(x, t) is
the ”current density”, ρ = ρ(x, t) is the ”charge density”. These quantities are analogues
to the corresponding quantities in the Maxwell equation. The charge density and current

30 CHAPTER 1. TOY MODELS

Figure 1.15: Numerical solution of model (1.1) for ϕ in time points t = 8 (upper left),
t = 9 (upper right), t = 10 (lower left), t = 12 (lower right). Horizontal axis is x.

Figure 1.16: Numerical solution of model (1.1) for ρ in time points t = 8 (upper left),
t = 9 (upper right), t = 10 (lower left), t = 12 (lower right). Horizontal axis is x.

1.2. THE SECOND TOY MODEL 31

Figure 1.17: Numerical solution of model (1.1) for j in time points t = 8 (upper left),
t = 9 (upper right), t = 10 (lower left), t = 12 (lower right). Horizontal axis is x.

density will be assumed to be confined to an interval [a0, a1] on the real axis whereas the
fields ϕ and ψ are continuous on the whole real axis. This interval is, like for the first toy
model, the analogue of a compact scattering object in the electromagnetic situation. The
function js(x, t) is a given source that has support on a compact set in the interval x > a1.
The parameters α, β and γ are constant inside the interval [a0, a1] and ero outside. The
functions µ(x) and ν(x) are ”material” parameters analogous to electric and magnetic
susceptibilities in the electromagnetic case.

µ(x) =

{
µ1 x ∈ [a0, a1]

µ2 x /∈ [a0, a1]

ν(x) =

{
ν1 x ∈ [a0, a1]

ν2 x /∈ [a0, a1]

Graphical representation of the Second Toy model is shown on Figure 1.18.

1.2.1 The EOS formulation

In order to derive the EOS formulation for model (1.35), we will firstly need a space-time
integral identity involving the matrix operator

L =

(
∂t −µ∂x
−ν∂x ∂t

)
(1.36)

32 CHAPTER 1. TOY MODELS

x

t

js(x ,t)

ϕt = μ1 ψx+ j
ψt = ν1ϕx

ρt =− j x

j t = (α−βρ)ϕ−γ j

a0 a1

ϕ t = μ2 ψx+ js
ψt = ν2ϕx

ϕ t = μ2 ψx

ψt = ν2ϕx

Figure 1.18: Graphical representation of the second toy model. The blue ellipse represents
the source js(x, t) outside the domain bounded by x = a0 and x = a1.

where µ, ν are constants. The operator (1.36) acts on vector valued functions in the usual
way and we can write the first two equations from (1.35) in the compact form

L

(
ϕ
ψ

)
(x, t) =

(
j + js

0

)
(x, t) (1.37)

Let A =

(
A11 A12

A21 A22

)
is a matrix of functions A(x, y, t)

∫
S×T

dxdtAL

(
ϕ
ψ

)
=

∫
S×T

dxdt

(
A11(ϕt − µψx) + A12(−νϕx + ψt)
A21(ϕt − µψx) + A22(−νϕx + ψt)

)
=

∫
S×T

dxdt

(
−ϕ∂tA11 + µψ∂xA11 + νϕ∂xA12 − ψ∂tA12

−ϕ∂tA21 + µψ∂xA21 + νϕ∂xA22 − ψ∂tA22

)
+

∫
S

dx

(
A11ϕ+ ψA12

A21ϕ+ ψA22

) ∣∣∣∣t
t0

+

∫
T

dt

(
−µψA11 − νϕA12

−µψA21 − νϕA22

) ∣∣∣∣x1
x0

=

∫
S×T

dxdtL†A

(
ϕ
ψ

)
+

∫
S

dxA

(
ϕ
ψ

) ∣∣∣∣t
t0

+

∫
T

dtB

(
ϕ
ψ

) ∣∣∣∣x1
x0

So we have integral identity∫
S×T

dxdt

[
AL

(
ϕ
ψ

)
− L†A

(
ϕ
ψ

)]
=

∫
S

dxA

(
ϕ
ψ

) ∣∣∣∣t1
t0

−
∫
T

dxB

(
ϕ
ψ

) ∣∣∣∣x1
x0

(1.38)

where S = (x0, x1) and T = (t0, t1) are open space and time intervals and where ϕ and ψ
are smooth functions on the space-time interval S×T . Also A = A(x, t) is a 2× 2 matrix
valued function

A =

(
A11 A12

A21 A22

)

1.2. THE SECOND TOY MODEL 33

L† is the formal adjoint to the operator L, and acts on the matrix valued function A
in the following way

L†A =

(
−∂tA11 + ν∂xA12 µ∂xA11 − ∂tA12

−∂tA21 + ν∂xA22 µ∂xA21 − ∂tA22

)
(1.39)

B is the 2× 2 matrix valued function

B =

(
−νA12 −µA11

−νA22 −µA21

)
(1.40)

The second item we need in order to derive the EOS formulation for model (1.35), is the
advanced Green’s function for the operator L†. This is a 2 × 2 matrix valued function
G(x, t, x′, t′) that satisfy the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′)I (1.41)

and that vanish for t > t′. In (1.41), I is the 2× 2 identity matrix.
Using (1.39) in (1.41) we have the following system of four equations for the compo-

nents G.

∂tG11 − ν∂xG12 = −δ(t− t′)δ(x− x′)
∂tG12 − µ∂xG11 = 0

∂tG21 − ν∂xG22 = 0

∂tG22 − µ∂xG21 = −δ(t− t′)δ(x− x′)

(1.42)

We use the one dimensional Fourier transform in x to solve the initial value problem for
1.42. Let the Fourier transform of Gij be denoted by gij(λ, t, x

′, t′). Then we get system

∂tg11 − νλg12 = − 1√
2π
eiλxδ(t− t′)

∂tg12 − µλg11 = 0

∂tg21 − νλg22 = 0

∂tg22 − µλg21 = − 1√
2π
eiλxδ(t− t′)

(1.43)

If we solve system 1.43 we get

G11 =
1

2
θ(t′ − t)

[
δ(x′ − x+

√
µν(t− t′))− δ(x′ − x−√µν(t− t′))

]
G12 =

1

2

√
µ

ν
θ(t′ − t)

[
δ(x′ − x+

√
µν(t− t′))− δ(x′ − x−√µν(t− t′))

]
G21 =

1

2

√
ν

µ
θ(t′ − t)

[
δ(x′ − x+

√
µν(t− t′)) + δ(x′ − x−√µν(t− t′))

]
G22 =

1

2
θ(t′ − t)

[
δ(x′ − x+

√
µν(t− t′))− δ(x′ − x−√µν(t− t′))

]
(1.44)

34 CHAPTER 1. TOY MODELS

So we have

G(x, t, x′, t′) = −θ(t
′ − t)
2c

{
(
c µ
ν c

)
δ(x− x′ + c(t− t′))

+

(
c −µ
−ν c

)
δ(x− x′ − c(t− t′))}

(1.45)

where c2 = µν. This is analogue to the corresponding identity for the speed of light in
electromagnetics.

We will now apply the integral identity (1.38) to each space interval (−∞, a0), (a0, a1),
(a1,∞) with A equal to the advances Green’s function (1.45) and where ϕ and ψ are
solutions to the system

ϕt = µ(x)ψx + j + js

ψt = ν(x)ϕx
(1.46)

with vanishing initial conditions ϕ(x, t0) = ψ(x, t0) = 0.
For the first interval, (−∞, a0), we let A be the Green’s function

G2(x, t, x
′, t′) = −θ(t

′ − t)
2c2

{
(
c2 µ2

ν2 c2

)
δ(x− x′ + c2(t− t′))

+

(
c2 −µ2

−ν2 c2

)
δ(x− x′ − c2(t− t′))}

(1.47)

According to the described properties of j and js, the function ϕ = ϕ2, ψ = ψ2 solves, in
the interval (−∞, a0), the system

ϕ2t = µ2ψ2x

ψ2t = ν2ϕ2x

m

L

(
ϕ2

ψ2

)
= 0

(1.48)

Inserting (1.47), (1.48) and S = (−∞, a0) in the integral identity (1.38), using the initial
conditions and the fact that the Green’s function is advanced, we get fo x in the interval
(−∞, a0). ∫

S×T
dxdt{G2L

(
ϕ2

ψ2

)
(x, t)− L†G2

(
ϕ2

ψ2

)
(x, t)} =∫

S

dxG2

(
ϕ2

ψ2

)
(x, t)

∣∣t1
t0

+

∫
T

dtB2

(
ϕ2

ψ2

)
(x, t)

∣∣a0
−∞

1.2. THE SECOND TOY MODEL 35

So after interchanging primed and unprimed variables(
ϕ2

ψ2

)
(x, t) = −

∫ t1

t0

dt′B2(a0, t
′, x, t)

(
ϕ2

ψ2

)
(a0, t

′)

+ lim
R→−∞

∫ t1

t0

dt′B2(R, t
′, x, t)

(
ϕ2

ψ2

)
(R, t′)

(1.49)

The function B2 is from (1.40)

B2(x
′, t′, x, t) = −θ(t− t

′)

2
{
(
c2 µ2

ν2 c2

)
δ(x− x′ + c2(t− t′))

+

(
−c2 µ2

ν2 −c2

)
δ(x− x′ − c2(t− t′))}

(1.50)

From (1.50) it is evident that the last term in (1.49) vanish. This is because for large
R the argument of the delta function does not charge sign in the interval of integration.
Inserting the expression (1.50) into (1.50) and changing to variable defining the argument
of the delta function in the two integrals, we get that for x in (−∞, a0)(

ϕ2

ψ2

)
(x, t) = −

∫ t1

t0

dt′B2(a0, t
′, x, t)

(
ϕ2

ψ2

)
(a0, t

′)

=
1

2

(
c2 µ2

ν2 c2

)∫ t1

t0

dt′δ(x− a0 + c2(t− t′))
(
ϕ2

ψ2

)
(a0, t

′)

=
1

2c2

(
c2 µ2

ν2 c2

)
θ(x− a0 + c2(t− t′))

(
ϕ2

ψ2

)
(a0, t+

x− a0
c2

)

(1.51)

For the second interval, (a0, a1), we let A be the Green’s function

G1(x, t, x
′, t′) = −θ(t

′ − t)
2c1

{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
c1 −µ1

−ν1 c1

)
δ(x− x′ − c1(t− t′))}

(1.52)

According to the described properties of j and js, the functions ϕ = ϕ1, ψ = ψ1 solves,
in the interval (a0, a1), the system

ϕ1t = µ1ψ1x + j

ψ1t = ν1ϕ1x

m

L

(
ϕ1

ψ1

)
=

(
j
0

) (1.53)

36 CHAPTER 1. TOY MODELS

Inserting (1.52), (1.53) and S = (a0, a1) in the integral identity (1.38), using the initial
conditions and the fact that the Green’s function is advanced, we get fo x in the interval
(a0, a1).

∫
S×T

dxdt{G1L

(
ϕ1

ψ1

)
(x, t)− L†G1

(
ϕ1

ψ1

)
(x, t)} =∫

S

dxG1

(
ϕ1

ψ1

)
(x, t)

∣∣t1
t0

+

∫
T

dtB1

(
ϕ1

ψ1

)
(x, t)

∣∣a1
a0

So after interchanging primed and unprimed variables

(
ϕ1

ψ1

)
(x, t) =

∫
S×T

dx′dt′G1(x
′, t′, x, t)

(
j
0

)
(x′, t′)

−
∫ t1

t0

dt′B1(a1, t
′, x, t)

(
ϕ1

ψ1

)
(a1, t

′)

+

∫ t1

t0

dt′B1(a0, t
′, x, t)

(
ϕ1

ψ1

)
(a0, t

′)

(1.54)

The function B1 is from (1.40)

B1(x
′, t′, x, t) = −θ(t− t

′)

2
{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
−c1 µ1

ν1 −c1

)
δ(x− x′ − c1(t− t′))}

(1.55)

Inserting (1.52) and (1.55) into (1.54), we get after changing variables to the arguments

1.2. THE SECOND TOY MODEL 37

in the delta functions that for x in (a0, a1)(
ϕ1

ψ1

)
(x, t) =

1

2c21

(
c1 −µ1

−ν1 c1

)
∫ x

a0

dx′θ(c1(t− t0)− (x− x′))
(
j
0

)
(x′, t− x− x′

c1
)

+

(
c1 µ1

ν1 c1

)
∫ a1

x

dx′θ(c1(t− t0)− (x′ − x))

(
j
0

)
(x′, t− x′ − x

c1
)

+
1

2c1

(
c1 µ1

ν1 c1

)
θ(c1(t− t0)− (a1 − x))(

ϕ1ψ1

)
(a1, t−

a1 − x
c1

)

− 1

2c1

(
−c1 µ1

ν1 −c1

)
θ(c1(t− t0)− (x− a0))(

ϕ1ψ1

)
(a1, t−

x− a0
c1

)

(1.56)

For the third interval, (a1,∞), we let A be the Green’s function

G2(x, t, x
′, t′) = −θ(t

′ − t)
2c2

{
(
c2 µ2

ν2 c2

)
δ(x− x′ + c2(t− t′))

+

(
c2 −µ2

−ν2 c2

)
δ(x− x′ − c2(t− t′))}

(1.57)

According to the described properties of j and js, the function ϕ = ϕ2, ψ = ψ2 solves, in
the interval (a1,∞), the system

ϕ2t = µ2ψ2x + js

ψ2t = ν2ϕ2x

m

L

(
ϕ2

ψ2

)
=

(
js
0

) (1.58)

Inserting (1.57), (1.58) and S = (a1,∞) in the integral identity (1.38), using the initial
conditions and the fact that the Green’s function is advanced, we get fo x in the interval

38 CHAPTER 1. TOY MODELS

(a1,∞).

∫
S×T

dxdt{G2L

(
ϕ2

ψ2

)
(x, t)− L†G2

(
ϕ2

ψ2

)
(x, t)} =∫

S

dxG2

(
ϕ2

ψ2

)
(x, t)

∣∣t1
t0

+

∫
T

dtB2

(
ϕ2

ψ2

)
(x, t)

∣∣∞
a1

So after interchanging primed and unprimed variables

(
ϕ2

ψ2

)
(x, t) =

∫
S×T

dx′dt′G2(x
′, t′, x, t)

(
js
0

)
(x′, t′)

− lim
R→∞

∫ t1

t0

dt′B2(R, t
′, x, t)

(
ϕ2

ψ2

)
(R, t′)

+

∫ t1

t0

dt′B2(a1, t
′, x, t)

(
ϕ2

ψ2

)
(a1, t

′)

(1.59)

The function B2 is from (1.40)

B2(x
′, t′, x, t) = −θ(t− t

′)

2
{
(
c2 µ2

ν2 c2

)
δ(x− x′ + c2(t− t′))

+

(
−c2 µ2

ν2 −c2

)
δ(x− x′ − c2(t− t′))}

(1.60)

Since the arguments of the delta functions in B2 does not change sign in the interval of
integration for R big enough, the second term in (1.59) will vanish. Inserting (1.57) and
(1.60) into the remaining terms of (1.59), we get after changing variables to the arguments
in the delta functions that for x in (a1,∞)

(
ϕ2

ψ2

)
(x, t) =

(
ϕi
ψi

)
(x, t)

− 1

2c2

(
−c2 µ2

ν2 −c2

)
θ(c2(t− t0)− (x− a1))(

ϕ2

ψ2

)
(a1, t−

x− a1
c2

)

(1.61)

1.2. THE SECOND TOY MODEL 39

where ϕi and ψi are fields that are entirely determined by the given source js(
ϕi
ψi

)
(x, t) =

∫
S×T

dx′dt′G2(x
′, t′, x, t)

(
js
0

)
(x′, t′)

=
1

2c22

(
c2 −µ2

−ν2 c2

)
∫ x

a1

θ(c2(t− t0)− (x− x′))
(
js
0

)
(x′, t− x− x′

c2
)

+
1

2c22

(
c2 µ2

ν2 c2

)
∫ ∞
x

θ(c2(t− t0)− (x′ − x))

(
js
0

)
(x′, t− x′ − x

c2
)

(1.62)

Taking the limit of the integral identities (1.51), (1.56) and (1.61) as x approach the
boundary points {a0, a1} from inside and outside the interval (a0, a1) we get(

ϕ2

ψ2

)
(a0, t) =

1

2c2

(
c2 µ2

ν2 c2

)(
ϕ2

ψ2

)
(a0, t)

m(
c2 −µ2

−ν2 c2

)(
ϕ2

ψ2

)
(a0, t) = 0

(1.63)

(
ϕ1

ψ1

)
(a0, t) =

1

2c21

(
c1 µ1

ν1 c1

)
∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))
(
j
0

)
(x′, t− x′ − a0

c1
)

+
1

2c1

(
c1 µ1

ν1 c1

)
θ(c1(t− t0)− (a1 − a0))

(
ϕ1

ψ1

)
(a1, t−

a1 − a0
c1

)

+
1

2c1

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a0, t)

m(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))
(
j
0

)
(x′, t− x′ − a0

c1
)

+

(
c1 µ1

ν1 c1

)
θ(c1(t− t0)− (a1 − a0))

(
ϕ1

ψ1

)
(a1, t−

a1 − a0
c1

)

(1.64)

40 CHAPTER 1. TOY MODELS

(
ϕ1

ψ1

)
(a1, t) =

1

2c21

(
c1 −µ1

−ν1 c1

)
∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j
0

)
(x′, t− a1 − x′

c1
)

− 1

2c1

(
−c1 µ1

ν1 −c1

)
θ(c1(t− t0)− (a1 − a0))

(
ϕ1

ψ1

)
(a0, t−

a1 − a0
c1

)

+
1

2c1

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t)

m(
c1 −µ1

−ν1 c1

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j
0

)
(x′, t− a1 − x′

c1
)

−
(
−c1 µ1

ν1 −c1

)
θ(c1(t− t0)− (a1 − a0))

(
ϕ1

ψ1

)
(a0, t−

a1 − a0
c1

)

(1.65)

(
ϕ2

ψ2

)
(a1, t) =

(
ϕi
ψi

)
(a1, t)−

1

2c2

(
−c2 µ2

ν2 −c2

)
m(

c2 µ2

ν2 c2

)(
ϕ2

ψ2

)
(a1, t) = 2c2

(
ϕi
ψi

)
(a1, t)

(1.66)

Continuity of the fields at the boundary points {a0, a1}, gives us two additional equations(
ϕ2

ψ2

)
(a0, t) =

(
ϕ1

ψ1

)
(a0, t) (1.67)(

ϕ1

ψ1

)
(a1, t) =

(
ϕ2

ψ2

)
(a1, t) (1.68)

Altogether we have six linear equations for the four vectors(
ϕ2

ψ2

)
(a0, t),

(
ϕ1

ψ1

)
(a0, t),

(
ϕ1

ψ1

)
(a1, t),

(
ϕ2

ψ2

)
(a1, t)

Thus our system is overdetermined and contains equation that are reduntant. Mathemat-
ically this is reflected in the fact that the determinant of the matrices(

cj ±µj
±νj cj

)
, j = 1, 2 (1.69)

1.2. THE SECOND TOY MODEL 41

are all zero. For the first toy model it was obvious which two equations were redundant,
here it is not immediately clear which equations we can remove, and this will also be the
case when we write down the EOS formulation for more general systems of PDEs, like,
for example, Maxwell equations.

For the system (1.63) - (1.66), it is not very hard to identify the redundant equations,
but will rather introduce a different approach that is in general quite useful when working
with the EOS formulations of PDEs. This is the method that has been used by the
research community that calculate electromagnetic scattering from linear homogeneous
scattering objects using a time dependent integral formulation of Maxwell’s equations.
The reason why this method has been used for the Maxwell equations has not been
clearly stated in the research literature, it has rather taken the form of a trick that is
needed in order achieve stability and accuracy for the numerical implementation of the
boundary formulation of the electromagnetic scattering.

The point is that even though the system (1.63) - (1.66) is singular we know from its
construction that it has a solution which consists of the boundary values coming from the
unique solution to the scattering problem (1.46).

In terms of linear algebra the situation is that for two singular matrices A and B, the
system

Ax = b1

Bx = b2

(1.70)

has a solution, x. Let us assume that there are numbers a and b such that

det(aA+ bB) 6= 0

Given (1.70) it is clear that x is a solution to the linear system

(aA+ bB)x = b1 + b2 (1.71)

and since the system (1.71) is nonsingular, x is the unique solution to the system. Finding
numbers such that aA+ bB is nonsingular is in general not difficult.

Let us apply the approach to the system (1.63) - (1.66). Simply adding together the
equations give us a matrix(

c2 −µ2

−ν2 c2

)
+

(
c1 µ1

ν1 c1

)
=

(
c1 + c2 µ1 − µ2

ν1 − ν2 c1 + c2

)
and

det

(
c1 + c2 µ1 − µ2

ν1 − ν2 c1 + c2

)
= 2c1c2 + µ2ν1 + µ1ν2

which is nonzero since all the numbers νi, µi, ci are positive by assumption. In a similar
way, adding together (1.65) and (1.66) will result in a nonsingular system. Thus, from

42 CHAPTER 1. TOY MODELS

the singular system (1.63) - (1.66) we get the nonsingular system(
c1 + c2 µ1 − µ2

ν1 − ν2 c1 + c2

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))
(
j
0

)
(x′, t− x′ − a0

c1
)

+θ(c1(t− t0)− (a1 − a0))
(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0
c1

)

(1.72)

(
c2 + c1 µ2 − µ1

ν2 − ν1 c2 + c1

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j
0

)
(x′, t− a1 − x′

c1
)

−θ(c1(t− t0)− (a1 − a0))
(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0
c1

)

+2c2

(
ϕi
ψi

)
(a1, t)

(1.73)

The system (1.72), (1.73), which determine the boundary values of the fields in term of
the internal and external currents, together with the partial differential equations (1.35),
restricted to the interior of the interval (a0, a1), defines the EOS formulation for the toy
model 2.

1.2.2 Numerical implementation of the Second toy model

In this section we are going to apply Lax-Wendroff numerical method to model (1.35).
Let us first describe numerical scheme

ϕi+1
k = ϕik + dt

(µ1

2 dx

(
ψik+1 − ψik−1

)
+ jik

)
+

dt2

2

(c21
dx2

(ϕik+1 − 2ϕik + ϕik−1) + (α− βρik)ϕik − γjik
)

ψi+1
k = ψik + dt

(ν1
2 dx

(
ϕik+1 − ϕik−1

))
+

dt2

2

(
ν1
(µ1

dx2
(ψik+1 − 2ψik + ψik−1) +

1

2 dx
(jik+1 − jik−1)

))
ρi+1
k = ρik + dt

(
− 1

2 dx

(
jik+1 − jik−1

))
+

dt2

2

(β

2 dx
(ρik+1 − ρik−1)ϕik −

1

2 dx
(α− βρik)(ϕik+1 − ϕik−1)

+ γ
1

2 dx
(jik+1 − jik−1)

)

(1.74)

1.2. THE SECOND TOY MODEL 43

and special rules for calculation values of ρt on the boundaries

ρi+1
0 = ρi0 + dt

(
− 1

2 dx

(
− 3ji0 + 4ji1 − ji2

))
+

dt2

2

(β

2 dx
(−3ρi0 + 4ρi1 − ρi2)ϕi0

− 1

2 dx
(α− βρi0)(−3ϕi0 + 4ϕi1 − ϕi2)

+
γ

2 dx
(−3ji0 + 4ji1 − ji2)

)
ρi+1
N+1 = ρiN+1 + dt

(
− 1

2 dx

(
3jiN+1 − 4jiN + jiN−1

))
+

dt2

2

(β

2 dx
(3ρiN+1 − 4ρiN + ρiN−1)ϕ

i
N+1

− 1

2 dx
(α− βρiN+1)(3ϕ

i
N+1 − 4ϕiN + ϕiN−1)

+
γ

2 dx
(3jiN+1 − 4jiN + jiN−1)

)

(1.75)

Also, we will use Central Finite Difference method to calculate values of j(x, t) in
points of grid, so

ji+1
k = 2 dt

(
(α− βρik)ϕik − γjik

)
+ ji−1k

Let for example take
js(x, t) = ae−b(x−x0)

2

e−c(t−t0)
2

where a = 2, b = c = 10, x0 = 6 and t0 = 4. Also, we take T = 12, a0 = −3, a1 = 3,
dt = 0.01, dx = 0.01, α = β = γ = 0.1, µ1 = 1.4, µ2 = 2, ν1 = 1 and ν2 = 1. Numerical
solution of the Second toy problem with described parameters is on Figures 1.19 – 1.21
Again we can see artefact on the left boundary of ρ which possibly is reason of oscillations
in solutions for ϕ, ρ and j.

44 CHAPTER 1. TOY MODELS

Figure 1.19: Numerical solution of (1.35) of problem (1.35) for ϕ (blue) and ρ (green)
in time points t = 8 (upper left), t = 9 (upper right), t = 10 (lower left), t = 12 (lower
right). Horizontal axis is x.

Figure 1.20: Numerical solution of (1.35) for ρ in time points t = 8 (upper left), t = 9
(upper right), t = 10 (lower left), t = 12 (lower right). Horizontal axis is x.

1.2. THE SECOND TOY MODEL 45

Figure 1.21: Numerical solution of (1.35) for j in time points t = 8 (upper left), t = 9
(upper right), t = 10 (lower left), t = 12 (lower right). Horizontal axis is x.

46 CHAPTER 1. TOY MODELS

Chapter 2

2D scattering problem

We consider the scattering problem

∂tϕ = µ(∂yψ + i∂xψ) + f(x, y, t)

∂tψ = ν(∂yϕ− i∂xϕ) + g(x, y, t)
(2.1)

where µ = µ(x, y), ν = ν(x, y). Eventually we want to do a boundary formulation for the
geometry shown on Figure 2.1.

Observe that (2.1) imply f = g = 0 that

∂ttϕ = µ(∂t∂yψ + i∂t∂xψ)

= µ(∂y∂tψ + i∂x∂tψ)

= µ(∂y(ν(∂yϕ− i∂xϕ)) + i∂x(ν(∂yϕ− i∂xϕ)))

= µν(∂yyϕ− i∂yxϕ+ i∂xyϕ+ ∂xxϕ)

= µν(∂yyϕ+ ∂xxϕ)

This is the 2D wave equation. In a similar way we show that ψ also satisfy the 2D wave

x

y

μ0,ν0

μ1,ν1

μ0,ν0

f (x , y , t), g(x , y , t)

Figure 2.1: Geometry of the given 2D scattering problem.

47

48 CHAPTER 2. 2D SCATTERING PROBLEM

equation.

∂ttψ = µ(∂t∂yϕ− i∂t∂xϕ)

= ν(∂y∂tϕ− i∂x∂tϕ)

= ν(∂y(µ(∂yψ + i∂xψ))− i∂x(µ(∂yψ + i∂xψ)))

= µν(∂yyψ + i∂yxψ − i∂xyψ + ∂xxψ)

= µν(∂yyψ + ∂xxψ)

Our ultimate goal is to investigate the scattering of electromagnetic waves from metals.
This will involve the Maxwell equations and these have of course wave solutions.

2.1 The EOS formulation

In order to derive the EOS formulation for the problem (2.1), we will firstly need a space-
time integral identity involving the matrix operator

L =

(
∂t −µ(i∂x + ∂y)

−ν(i∂x − ∂y) ∂t

)
(2.2)

where µ and ν are constants. The operator (2.2) acts on vector valued functions in the
usual way and we can write the system (2.1) in the compact form

L

(
ϕ
ψ

)
(x, y, t) =

(
f
g

)
(x, y, t) (2.3)

In order to get a boundary formulation of this equation we need an integral identity.
Let S = X × Y = (x0, x1) × (y0, y1) be a domain in the plane and let T = (t0, t1) is

time interval. Then we have∫
S×T

dxdydtA
(
L

(
ϕ
ψ

))∗
=

∫
S×T

dxdydt

(
A11 A12

A21 A22

)(
∂tϕ

∗ − µ(∂y − i∂x)ψ∗
−µ(∂y + i∂x)ϕ

∗ + ∂tψ
∗

)
=

∫
S×T

dxdydtL†A

(
ϕ
ψ

)∗
+

∫
S

dxdyA ·
(
ϕ
ψ

)∗ ∣∣∣∣t1
t0

+

∫
T

dt

∫
S

dxdy∇ ·
(
B ·
(
ϕ
ψ

)∗)
So we have integral identity∫

S×T
dxdydt

[
A
(
L

(
ϕ
ψ

))∗
− L†A

(
ϕ
ψ

)∗]
=

∫
S

dxdyA ·
(
ϕ
ψ

)∗ ∣∣∣∣t1
t0

+

∫
T

dt

∫
S

dxdy∇ ·
(
B ·
(
ϕ
ψ

)∗) (2.4)

2.1. THE EOS FORMULATION 49

where ϕ and ψ are smooth functions on the space-time interval S × T . Also, A = A(x, t)
is a 2× 2 matrix valued function

A =

(
A11 A12

A21 A22

)
L† is the formal adjoint to the operator L, and acts on the matrix valued function A in
the following way

L†A =

(
−∂tA11 + ν(i∂x + ∂y)A12 µ(−i∂x + ∂y)A11 − ∂tA12

−∂tA21 + ν(i∂x + ∂y)A22 µ(−i∂x + ∂y)A21 − ∂tA22

)
(2.5)

and B = (Bijk) is a 3-tensor

B111 = −iνA12, B121 = −iνA22,

B211 = −νA12, B221 = −νA22,

B112 = iµA11, B122 = iµA21,

B212 = −µA11, B222 = −µA21,

The second item we need to derive the EOS formulation for the problem (2.1) is the
advanced Green’s function for the operator L†:

L†G(x, y, t, x′, y′, t′) = δ(t)δ(x)δ(y)I (2.6)

Using (2.5) and (2.6) we have the following system of four equations for the components
of G.

∂tG11 − ν(i∂x + ∂y)G12 = −δ(t)δ(x)δ(y)

∂tG12 − µ(i∂x + ∂y)G11 = 0

∂tG21 − ν(i∂x + ∂y)G22 = 0

∂tG22 − µ(i∂x + ∂y)G21 = −δ(t)δ(x)δ(y)

(2.7)

The two first and the two last equations can be solve separately. We use the Fourier
transform in x, y and t to solve the initial value problem for 2.7.

ϕ̂(kx, ky, ω) =

∫ ∞
−∞

dx dy dtϕ(x, y, t)e−i(kxx+kyy−ωt)

ϕ(kx, ky, ω) =
1

8π3

∫ ∞
−∞

dkx dky dωϕ̂(kx, ky, ω)ei(kxx+kyy−ωt)

50 CHAPTER 2. 2D SCATTERING PROBLEM

Using these two transforms on the two first equations we get

iωĜ11 − ν(kx − iky)Ĝ12 = 1

iωĜ12 + µ(kx + iky)Ĝ11 = 0

m[
iω −ν(kx − iky)

µ(kx + iky) iω

]
︸ ︷︷ ︸

M

[
Ĝ11

Ĝ12

]
=

[
1
0

]

detM = −(ω2 − µν(k2x + k2y)) = −(ω2 − c2k2)

where k = (k2x + k2y)
1
2 , c2 = µν.[
Ĝ11

Ĝ12

]
=

−1

ω2 − c2k2

[
iω ν(kx − iky)

−µ(kx + iky) iω

] [
1
0

]
Then we can find that

Ĝ11(kx, ky, ω) =
−iω

ω2 − c2k2

Ĝ12(kx, ky, ω) =
µ(kx + iky)

ω2 − c2k2

Also, we can find G11(x, y, t) and G12(x, y, t) like

G11(x, y, t) =
1

8π3

∫ ∞
−∞

dkx dkyg11(kx, ky, t)e
i(kxx+kyy)

G12(x, y, t) =
1

8π3

∫ ∞
−∞

dkx dkyg12(kx, ky, t)e
i(kxx+kyy)

where

g11(kx, ky, t) =

∫ ∞
−∞

dω
−iω

ω2 − c2k2
e−iωt

g12(kx, ky, t) =

∫ ∞
−∞

dω
µ(kx + iky)

ω2 − c2k2
e−iωt

We want to find the advanced Green’s function and use the contour shown on Figure 2.2
Thus

g11(kx, ky, t) =

∫ ∞
−∞

dω
−iω

ω2 − c2k2
e−iωt

g12(kx, ky, t) =

∫ ∞
−∞

dω
µ(kx + iky)

ω2 − c2k2
e−iωt

2.1. THE EOS FORMULATION 51

ω

Cε
−iε

Figure 2.2: Contour which is used to find the advanced Green’s function for problem (2.1)

The denominator in g11 and g12 has zeros on the real axis at ±kc. Therefore, by Cauchy

g11 = g12 = 0 t > 0

For t ≤ 0 we close the contour in the upper halfplane and how the two poles, z = ±kc, of
the integrands are inside the contour. By Cauchy we get

g11(kx, ky, t) = 2πi

(
−i(−kc)
2(−kc)

e−i(−kc)t +
−i(kc)
2(kc)

e−i(kc)t

)

= π

(
eikct + e−ikct

)

g12(kx, ky, t) = 2πi

(
µ(kx + iky)

2(−kc)
e−i(−kc)t +

µ(kx + iky)

2(kc)
e−i(kc)t

)

= −πµ(ikx − ky)
ck

(
eikct − e−ikct

)

⇒ g11(kx, ky, t) = πθ(−t)

(
eikct + e−ikct

)
= 2πθ(−t) cos(kct)

g12(kx, ky, t) = −πµ(ikx − ky)
ck

θ(−t)

(
eikct − e−ikct

)

=
2πµ(kx + iky)

ck
θ(−t) sin(kct)

52 CHAPTER 2. 2D SCATTERING PROBLEM

k

θ

x

Figure 2.3: Introducing polar coordinates to find G11(x, t).

⇒ G11(x, y, t) =
1

8π3

∫ ∞
−∞

dkx dky2πθ(−t) cos(kct)ei(kxx+kyy)

=
θ(−t)
4π2

∫
R2

dk cos kcteik·x

We introduce polar coordinates with axis centered on x like on Figure 2.3 where r = ||x||,
k = ||k||

⇒ G11(x, t) =
θ(−t)
4π2

∫ 2π

0

dθ

∫ ∞
0

dk cos(kct)eikr cos θ

=
θ(−t)
4π2c

∂t

∫ 2π

0

dθ

∫ ∞
0

dk sin(kct)eikr cos θ

=
θ(−t)
4π2c

∂t

∫ 2π

0

dθ

∫ ∞
0

dk
1

2i

(
eik(r cos θ+ct) − eik(r cos θ−ct)

)

=
θ(−t)
8π2ic

∂t

∫ 2π

0

dθ

(
I(r cos θ + ct)− I(r cos θ − ct)

)

where

I(y) =

∫ ∞
0

dkeiky

This is a divergent integral. We introduce the regularized integral

Iε(y) =

∫ ∞
0

dkeik(y+iε), ε > 0

and observe that

I(y) = lim
ε→0

Iε(y)

Evidently

Iε(y) =
1

i(y + iε)
eik(y+iε)

∣∣∣∞
0

=
i

y + iε

2.1. THE EOS FORMULATION 53

Defining

J±ε =

∫ 2π

0

dθIε(r cos θ ± ct)

we have then

J±ε =

∫ 2π

0

dθ
i

r cos θ ± ct+ iε

Let z = eiθ, dθ =
−i dz

z
, cos θ =

1

2
(z + z−1)

⇒ J±ε =

∮
S1

dz

z(
r

2
(z + z−1)± ct+ iε)

=

∮
S1

2 dz

rz2 + 2(±ct+ iε)z + r

where S1 is the unit circle. This integral can be solved using Cauchy. Observe that the
poles of the integrand in the complex plane occur when

p(z) = rz2 + 2(±ct+ iε)z + r

Observe that

p(z) = 0⇔ z2 + αz + 1 = 0, α =
2(±ct+ iε)

r

Let z1, z2 be the two roots of p. Then from the theory of polynomials we have

z1z2 = 1

Let z1 = r1e
iθ1 , z2 = r2e

iθ2

⇒ r1r2e
i(θ1+θ2) = 1

⇒ r1 =
1

r2
, θ1 = −θ2

Therefore either both poles of the integrand is on S1 or exactly one pole is inside S1.
In order to write down formulas for the poles we must choose a branch of the complex

square root. We choose to put the branch cut along the negative real axis.
Let f(z) be the unique square root defined by

f(z) =
√
|z|ei

θ
2 , where − π 6 θ < π

The other square root corresponding to this branch cut is then −f(z).

54 CHAPTER 2. 2D SCATTERING PROBLEM

Let us first consider J±ε . The two poles are

z+1 (ε) =
1

r
(c|t| − iε+ f(c2t2 − r2 − ε2 − 2ic|t|ε))

z+2 (ε) =
1

r
(c|t| − iε− f(c2t2 − r2 − ε2 − 2ic|t|ε))

Mathematical analysis show that z+2 is inside the unit circle. Let z+(ε) = z+2 (ε).
For J−ε the two poles are

z−1 (ε) =
1

r
(−c|t| − iε+ f(c2t2 − r2 − ε2 + 2ic|t|ε))

z−2 (ε) =
1

r
(−c|t| − iε− f(c2t2 − r2 − ε2 + 2ic|t|ε))

We now find that z−1 (ε) is inside the unit circle. Let z−(ε) = z−1 (ε).
In summary for J±ε we have exactly one pole inside S1 given by

z+(ε) =
1

r
(c|t| − iε− f(c2t2 − r2 − ε2 − 2ic|t|ε))

z−(ε) =
1

r
(−c|t| − iε+ f(c2t2 − r2 − ε2 + 2ic|t|ε))

Observe that

2rz±(ε) + 2(∓ct+ iε) = ∓2f(c2t2 − r2 − ε2 ∓ 2ic|t|ε)

Cauchy now give

J±ε = 2πi

(
2

∓2f(c2t2 − r2 − ε2 ∓ 2ic|t|ε)

)
=

∓2πi

f(c2t2 − r2 − ε2 ∓ 2ic|t|ε)

Because of the presence of the branch cut on the negative real axis the limits of J±ε
will depend on the sign of c2t2 − r2.

i) c2t2 − r2 > 0

Then c2t2−r2−ε2∓2ic|t|ε are on the right halfplane and thus away from the branch
cut.

J±ε −→
∓2πi√
c2t2 − r2

J+
ε − J−ε −→

−4πi√
c2t2 − r2

2.1. THE EOS FORMULATION 55

ii) c2t2 − r2 < 0

Then c2t2 − r2 − ε2 ∓ 2ic|t|ε are on each side of the branch cut along the negative
real axis.

J±ε −→
2π√

|c2t2 − r2|
J+
ε − J−ε −→ 0

These two results can be collected into

J+
ε − J−ε −→ −4πi

θ(c2t2 − r2)√
c2t2 − r2

This gives finally the following expression for G11

G11(x, t) =
θ(−t)
2πc

∂t
θ(c2t2 − r2)√
c2t2 − r2

Let us next find G12

G12(x, y, t) = − 1

8π3

∫ ∞
−∞

dkx dky
2πiµ(−ky + ikx)θ(−t)

ck
sin(kct)ei(kxx+kyy)

= −θ(−t)iµ
4π2c

∫
R2

dk sin(kct)
−ky + ikk

k
eik·x

= −θ(−t)iµ
4π2c

∫ 2π

0

dθ

∫ ∞
0

dkk sin(kct)(− sin θ + i cos θ)eikr cos θ

=
θ(−t)iµ
4π2c2

∂t

∫ 2π

0

dθ

∫ ∞
0

dk cos(kct)(− sin θ + i cos θ)eikr cos θ

=
θ(−t)µ
8π2c2

∂t

∫ 2π

0

dθ

(∫ ∞
0

dkeik(r cos θ+ct) +

∫ ∞
0

dkeik(r cos θ−ct)

)
(− sin θ + i cos θ)

=
θ(−t)µ
8π2c2

∂t

∫ 2π

0

dθ(− sin θ + i cos θ)

(
I(r cos θ + ct)− I(r cos θ − ct)

)

where I(y) =
∫∞
0

dkeiky.
The same regularizations as before for G11 leads to integrals

J±ε = −
∫ 2π

0

dθ
cos θ + i sin θ

r cos θ ± ct+ iε

56 CHAPTER 2. 2D SCATTERING PROBLEM

and z = eiθ, dθ =
−i dz

z
, cos θ =

1

2
(z + z−1) and sin θ =

1

2i
(z − z−1)

J±ε =

∮
S1

i dz

z

1
2
(z + z−1) + 1

2i
(z − z−1)

1
2
r(z + z−1)± ct+ iε

= 2i

∮
S1

dz
z

rz2 + 2(±ct+ iε)z + r

The poles inside S1 are the same as when we calculated G11. Cauchy gives

J±ε = 2πi

(
2iz±(ε)

2rz±(ε+ 2(±ct+ iε))

)

= −4π

1
r

(
± c|t| − iε∓ f(c2t2 − r2 − ε2 ∓ 2ic|t|ε)

)
∓2f(c2t2 − r2 − ε2 ∓ 2ic|t|ε)

i) c2t2 − r2 > 0

J±ε −→
2π

r

ct−
√
c2t2 − r2

∓
√
c2t2 − r2

J+
ε + J−ε −→

4π

r

ct−
√
c2t2 − r2√

c2t2 − r2

ii) c2t2 − r2 < 0

J±ε −→ −
2π

r

cti+
√
|c2t2 − r2|√

|c2t2 − r2|

J+
ε + J−ε −→ −

4π

r

cti+
√
|c2t2 − r2|√

|c2t2 − r2|

G12(x, t) = −θ(−t)µ
8π2c2

∂t

4π

r

ct−
√
c2t2 − r2√

c2t2 − r2
, c2t2 − r2 > 0

−4π

r

cti+
√
|c2t2 − r2|√

|c2t2 − r2|
, c2t2 − r2 < 0

= −θ(−t)µ
2πc2

∂t
ct−
√
c2t2 − r2

r
√
c2t2 − r2

θ(c2t2 − r2)

2.1. THE EOS FORMULATION 57

Let us next turn to G21 and G22. They solve the system

−∂tG22 + µ(∂y − i∂x)G21 = δ(x− x′)δ(y − y′)δ(t− t′)
−∂tG21 + ν(∂y + i∂x)G22 = 0

This system turns into the system for G11 and G12 if we let x→ −x, µ↔ ν. Therefore,

G21(x, t) = −θ(−t)ν
2πc2

∂t
ct−
√
c2t2 − r2

r
√
c2t2 − r2

θ(c2t2 − r2)

G22(x, t) =
θ(−t)
2πc

∂t
θ(c2t2 − r2)√
c2t2 − r2

therefore we finally have

G(x, t) =

[
G11(x, t) G12(x, t)
G21(x, t) G22(x, t)

]
= θ(−t)∂tθ(c2t2 − r2)

[
p(x, t) µq(x, t)
νq(x, t) p(x, t)

]
where

p(x, t) =
1

2πc
(c2t2 − ||x||2)−1/2

q(x, t) = − 1

2πc2
ct−

√
c2t2 − ||x||2

||x||
√
c2t2 − ||x||2

Let us now consider the following geometry shown on Figure 2.4 S is characterized at
the linear level by µ, ν and SR by µ0, ν0. The source is located inside SR×T . Eventually
we will let R→∞.

Our general integral identity is∫
D×T

dx′ dy′ dt′

(
A
(
L

(
ϕ
ψ

))∗
− L†A

(
ϕ
ψ

)∗)

=

∫
D

dx′ dy′A

(
ϕ
ψ

)∗ ∣∣∣∣∣
t1

t0

+

∫
T

dt′
∫
∂D

dl′n ·B ·
(
ϕ
ψ

)∗
where the 3-tensor B was described before.

Let us choose A = G and apply the integral identity inside S × T .
Our equations are

L

(
ϕ
ψ

)
(x′, y′, t′) = 0

L†G(x′, y′, t′, x, y, t) = δ(x′ − x)δ(y′ − y)δ(t′ − t)I

58 CHAPTER 2. 2D SCATTERING PROBLEM

Figure 2.4: Graphical representation of the given scattering problem (2.1). S is charac-
terized at the linear level by µ, ν and SR by µ0, ν0. The source is located inside SR × T .

(
ϕ
ψ

)
(x, y, t) =

∫
S

dx′ dy′

(
G∗(x′, y′, t1, x, y, t)

(
ϕ
ψ

)
(x′, y′, t1)

−G∗(x′, y′, t0, x, y, t)
(
ϕ
ψ

)
(x′, y′, t0)

)

−
∫
T

dt′
∫
∂S

dlx′n(x′, y′) ·B∗(x′, y′, t′, x, y, t) ·
(
ϕ
ψ

)
(x′, y′, t′)

Assuming as usual that all fields are generated by the source and the fact that we are
using an advanced Green’s function the expressions.

(
ϕ
ψ

)
(x, y, t) = −

∫
T

dt′
∫
∂S

dlx′n(x′, y′) ·B∗−(x′, y′, t′, x, y, t) ·
(
ϕ
ψ

)
−

(x′, y′, t′),

(x, y, t) ∈ S × T

where a ”-” subscript means that the limit of the quantity is taken from inside the bound-
ary ∂S × T . Similarly, for a ”+” meaning the limit is from outside a boundary

2.1. THE EOS FORMULATION 59

Applying the integral identity to SR × T we get(
ϕ
ψ

)
(x, y, t) =

∫
D×T

dx′ dy′ dt′G0(x
′, y′, t′, x, y, t)

(
f
g

)
(x′, y′, t′)

+

∫
T

dt′
∫
∂S

dlx′n ·B∗0+(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
+

(x′, y′, t′)

−
∫
T

dt′
∫
∂SR

dlx′n ·B∗0−(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
−

(x′, y′, t′)

We let R → ∞ for finite T . Then the last term vanish because B is generating from
matrix elements Gij(x

′, y′, t′, x, y, t) and these goes to the zero as ||x− x′|| → ∞(
ϕ
ψ

)
(x, y, t) =

∫
R2×T

dx′ dy′ dt′G0(x
′, y′, t′, x, y, t)

(
f
g

)
(x′, y′, t′)

+

∫
T

dt′
∫
∂S

dlx′n ·B∗0+(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
+

(x′, y′, t′)

=

(
ϕ
ψ

)(i)

(x, y, t)

+

∫
T

dt′
∫
∂S

dlx′n ·B∗0+(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
+

(x′, y′, t′)

A index ”0” on B refer to the fact that G and as a consequence B depends on µ, ν,
whose values in SR × T are µ0, ν0.

From the definition of G we have

G(x′, y′, t′, x, y, t) = θ(t− t′)∂Ug(x′ − x, y′ − y, U)
∣∣∣
U=t′−t

= −θ(t− t′)∂tg(x′ − x, y′ − y, t′ − t)

and since B is constructed from the matrix elements of G we have

B(x′, y′, t′, x, y, t) = θ(t− t′)∂tb(x′, y′, t′, x, y, t)

60 CHAPTER 2. 2D SCATTERING PROBLEM

for some 3-tensor b.∫
T

dt′
∫
∂S

dlx′n(x′, y′) ·B∗−(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
−

(x′, y′, t′)

=

∫
∂S

dlx′n(x′, y′) ·
∫ t1

t0

dt′θ(t− t′)∂tb(x′, y′, t′, x, y, t)

·
(
ϕ
ψ

)
−

(x′, y′, t′)

=

∫
∂S

dlx′n(x′, y′)

·
∫ t1

t0

dt′
(
∂t
(
θ(t− t′)b(x′, y′, t′, x, y, t)

)
− ∂tθ(t− t′)b(x′, y′, t′, x, y, t)

)
·
(
ϕ
ψ

)
−

(x′, y′, t′)

= ∂t

∫ t

t0

dt′
∫
∂S

dlx′n(x′, y′) · b(x′, y′, t′, x, y, t) ·
(
ϕ
ψ

)
−

(x′, y′, t′)

−
∫
∂S

dlx′n(x′, y′) ·
∫ t1

t0

dt′δ(t− t′)b(x′, y′, t′, x, y, t) ·
(
ϕ
ψ

)
−

(x′, y′, t′)

But b contains θ(c2(t− t′)2 − ||x− x′||2) = 0 when t = t′ then last term is zero.

→ ∂t

∫ t1

t

dt′
∫
∂S

dlx′n(x′, y′) · b(x′, y′, t′, x, y, t) ·
(
ϕ
ψ

)
−

(x′, y′, t′)

Therefore, the fundamental integral identities can be written as(
ϕ
ψ

)
(x, t) = −∂t

∫ t

t0

dt′
∫
∂S

dlx′n(x′) · b(x′, t′,x, t)

·
(
ϕ
ψ

)
−

(x′, t′), (x′, t′) ∈ S × T(
ϕ
ψ

)
(x, t) =

(
ϕ
ψ

)(i)

(x, t) + ∂t

∫ t1

t0

dt′
∫
∂S

dlx′n(x′) · b0(x′, t′,x, t)

·
(
ϕ
ψ

)
−

(x′, t′), (x′, t′) ∈ (R2 × S)× T

(2.8)

We must now let x approach ∂S from inside and outside S.

2.1. THE EOS FORMULATION 61

x

x '

x ' '

∂ S

Figure 2.5: Denote a generic point in S by x′′.

Denote a generic point in S by x′′

Thus (
ϕ
ψ

)
(x′′, t) = −∂t

∫ t

t0

dt′
∫
∂S

dlx′n(x′) · b(x′, t′,x′, t)

·
(
ϕ
ψ

)
−

(x′, t′)

Let now x be a point on ∂S (Figure 2.5).
The integrand will be a singular function of x′ as x→ x′′ but this singularity is weak

and we will see that all expressions we encounter will be well defined as improper integrals.
From how this limiting procedure is implied whenever we write integrals. The bound-

ary integral equations are thus(
ϕ
ψ

)
(x, t) = −∂t

∫ t

t0

dt′
∫
∂S

dlx′n(x′) · b(x′, t′,x, t)

·
(
ϕ
ψ

)
(x′, t′)(

ϕ
ψ

)
(x, t) =

(
ϕ
ψ

)(i)

(x, t) + ∂t

∫ t

t0

dt′
∫
∂S

dlx′n(x′) · b0(x′, t′,x, t)

·
(
ϕ
ψ

)
(x′, t′), (x, t) ∈ ∂S × T

where we have assumed that

[
ϕ
ψ

]
is continuous across ∂S × T

(
ϕ
ψ

)
−

(x′, t′) =

(
ϕ
ψ

)
+

(x′, t′), (x′, t′) ∈ ∂S × T

We will in the following assume that ∂S is smooth clearly the generalization to piece-
wise smooth is simple.

62 CHAPTER 2. 2D SCATTERING PROBLEM

If ∂S = ∪ni=1ci where each ci is smooth we merely write∫
∂S

=
n∑
i=1

∫
ci

We will mainly consider simple boundaries in our calculations and therefore assume
that the boundary is parametrized by some known function γ(s)

γ : [a, b]→ R2, γ([a, b]) = ∂S

Define

U(s, t) =

(
ϕ
ψ

)
(γ(s), t), U (i)(s, t) =

(
ϕ
ψ

)
(γ(s), t)

A(s′, t′, s, t) = n(γ(s′)) · b(γ(s′), t′, γ(s), t)||γ′(s′)||
B(s′, t′, s, t) = n(γ(s′)) · b0(γ(s′), t′, γ(s), t)||γ′(s′)||

U(s, t) = −∂t
∫ t

t0

dt′
∫ b

a

ds′A(s′, t′, s, t) · U(s′, t′)

U(s, t) = U (i)(s, t) + ∂t

∫ t

t0

dt′
∫ b

a

ds′F (s′, t′, s, t) · U(s′, t′)

We must now discretize our system.
Introduce

αi = a+ i∆s, i = 0, . . . , n, ∆s =
b− a
n

Ii = [αi−1, αi]

si =
1

2
(αi + αi−1) = a+ (i− 1

2
)∆s, i = 1, . . . , n

Also introduce

U i(t) = U(si, t), U
(i)
i (t) = U (i)(si, t)

Ai(s
′, t′, t) = A(s′, t′, si, t), Bi(s

′, t′, t) = B(s′, t′, si, t)

Then

U i(t) = −∂t
∫ t

t0

dt′
n∑
j=1

∫
Ij

ds′Ai(s
′, t′, t) · U(s′, t′)

U i(t) = U
(i)
i (t)

+ ∂t

∫ t

t0

dt′
n∑
j=1

∫
Ij

ds′Bi(s
′, t′, t) · U(s′, t′)

2.1. THE EOS FORMULATION 63

If n is large enough ∆s is so small that U(s′, t′) vary little over Ij and can therefore
to a good approximation be taken outside the integral

⇒ U i(t) = −
n∑
j=1

∂t

∫ t

t0

dt′Mij(t
′, t) · U j(t

′)

U i(t) = U
(i)
i (t)

+
n∑
j=1

∂t

∫ t

t0

dt′Nij(t
′, t) · U(t′)

where

Mij(t
′, t) =

∫
Ij

ds′Ai(s
′, t′, t)

Nij(t
′, t) =

∫
Ij

ds′Bi(s
′, t′, t)

Let us next introduce a timegrid tk = t0 + k∆t, k = 1, 2,
Let Jk = [tk−1, tk] and let (∂t)k be a discrete approximation to the derivative at tk.

Also define
Uk
i = U i(tk), U

(i)k
i = U

(i)
i (tk)

then

Uk
i = −

n∑
j=1

(∂t)k

k∑
l=1

∫
Jl

dt′Mij(t
′, tk) · U j(t

′)

Uk
i = U

(i)k
i

+
n∑
j=1

(∂t)k

k∑
l=1

∫
Jl

dt′Nij(t
′, tk) · U j(t

′)

Clean up hese expressions by defining

Mkl
ij =

∫
Jl

dt′Mij(t
′, tk)

=

∫
Jl

dt′
∫
Ij

ds′Ai(s
′, t′, tk)

Nkl
ij =

∫
Jl

dt′Nij(t
′, tk)

=

∫
Jl

dt′
∫
Ij

ds′Bi(s
′, t′, tk)

64 CHAPTER 2. 2D SCATTERING PROBLEM

Then

Uk
i = −(∂t)k

k∑
l=1

n∑
j=1

Mkl
ij · U l

j

Uk
i = U

(i)k
i + (∂t)k

k∑
l=1

n∑
j=1

Nkl
ij · U l

j

where we assume U j(t
′) vary little over the small interval Jl.

Recall that the integrands have a term of the type

(c2(t− t′)2 − ||γ(s)− γ(s′)||2)−1/2

Then when computing the matrix elements we are lead to integrals of the type

αklij =

∫
Jl

dt′
∫
Ij

ds′(c2(t− t′)2 − ||γ(s)− γ(s′)||2)−1/2

θ(c2(t− t′)2 − ||γ(s)− γ(s′)||2)
(2.9)

Different approximations for the matrix elements must be used depending on whether the
integrand is singular inside Jl × Ij or not.

If it is not singular we can simply use the approximation

Mkl
ij ≈ ∆t∆sAi(sj, tl, tk)

Nkl
ij ≈ ∆t∆sBi(sj, tl, tk)

(2.10)

If the integrand is singular we must use different approximating formulas depending on
whether (i, k) = (j, l) or not and what the geometry of the singularity look at.

We can use an automatic test to find (j, l) for the given (i, k) for which integrand (2.9)
has singularity. For example we can use Python3 function:

def t e s t (i , k) :
s i n g l i s t = []
for j in range (1 , np . s i z e (s)) :

for l in range (1 , np . s i z e (t)) :
try :

INT = quad (lambda t t :
quad (lambda s s :
Hvs (c ∗∗2∗(t [k]− t t)∗∗2
− (gamma(s [i])− gamma(s s))∗∗2)/
np . s q r t (c ∗∗2∗(t [k]− t t)∗∗2
− (gamma(s [i]) − gamma(s s))∗∗2) ,

2.1. THE EOS FORMULATION 65

s [j −1] , s [j] , epsabs = ds , l i m i t = 1 0) [0] ,
t [l −1] , t [l] , epsabs = dt , l i m i t = 2)

except ZeroDiv i s i onErro r :
s i n g l i s t . append ([np . nan , j , l])
#Div i s i on by zero error

i f (INT [0] == np . i n f) :
s i n g l i s t . append ([np . in f , j , l])
#In f i n i t y r e s u l t o f i n t e g r a t i o n

return s i n g l i s t

where tt is t′, ss is s′, gamma is γ(s), quad(func,a,b) – a Python3 function to integrate
from scipy.integrate library, Hvs(x) – Heaviside function:

Hvs = lambda x : 0 . 5∗ (np . s i gn (x)+1)

Function test(i,k) returns list of pairs (j, l) where integral has singularity. It is not
fast, but it can be improved by using another integration function, another programming
language or more powerful processor.

Let us first assume that there is a singularity in Ij × Jl and (i, k) 6= (j, l).
Introduce new coordinates

t′ = tl − η∆t

s′ = sj + ξ∆s
(2.11)

where η ∈ [0, 1], ξ ∈ [−1
2
, 1
2
]. Then

c2(tk − t′)2 − ||γ(si)− γ(s′)||2

≈ c2(tk − tl)2 − ||γ(si)− γ(sj)||2 + 2c2(tk − tl)∆tη
+ 2γ′(sj)(γ(si)− γ(sj))∆sξ

= aklij + bklη + cijξ

(2.12)

where

aklij = c2(tk − tl)2 − ||γ(si)− γ(sj)||2

bkl = 2c2(tk − tl)∆t 6= 0

cij = 2γ′(sj)(γ(si)− γ(sj))∆s

(2.13)

then

αklij = −∆t∆s

∫ t

0

dη

∫ 1
2

− 1
2

dξ(aklij + bklη + cijξ)
− 1

2

θ(aklij + bklη + cijξ)

(2.14)

66 CHAPTER 2. 2D SCATTERING PROBLEM

1

η

0
0

−
1
2

1
2

ξ

A

a+bη+c ξ≥0

Figure 2.6: Geometry of the case when (i, k) 6= (j, l) and the integrand (2.9) has singularity
inside Ij × Jl.

Let us simplify the notation by removing the indices i, j, k, l that are constant during
this derivation.

Let us consider the case represented on Figure 2.6

α = −∆t∆s

∫
A

dη dξ(a+ bη + cξ)−
1
2

This is an 2D improper integral since a+ bη+ cξ = 0 on the lover boundary of A, but the
improper integral converge as we will see.

The lower boundary is given by

η = −a
b
− c

b
ξ ≡ η(ξ)

then

α = −∆t∆s

∫ 1
2

− 1
2

dξ

∫ 1

η(ξ)

dη(a+ bη + cξ)
1
2

= −2

b
∆t∆s

∫ 1
2

− 1
2

dξ(a+ bη + cξ)
1
2

∣∣∣∣∣
1

η(ξ)

= −2

b
∆t∆s

∫ 1
2

− 1
2

dξ(a+ b+ cξ)
1
2

= − 4

3bc
∆t∆s(a+ b+ cξ)

3
2

∣∣∣∣∣
1
2

− 1
2

=
4∆t∆s

3bc

(
(a+ b− 1

2
c)

3
2 − (a+ b+

1

2
c)

3
2

)

(2.15)

Let us next look at the situation there is a singularity in Ij × Jl and (i, k) = (j, l).

2.1. THE EOS FORMULATION 67

1

η

0
0

−
1
2

1
2

ξ

A
η=−aξ

η
2
−a2

ξ
2
≥0

η=
a ξ

Figure 2.7: Geometry of the case when (i, k) = (j, l) and the integrand (2.9) has singularity
inside Ij × Jl.

Using the same variables as before we now get

c2(tk − t′)2 − ||γ(si)− γ(s′)||2

≈ c2∆t2η2 − ||γ′(si)||2∆s2ξ2

= c2∆t2(η2 − a2i ξ2), a =
||γ′(si)||∆s

c∆t

(2.16)

Dropping indices we are lead to an integral

α = −∆s

c

∫ 1

0

dη

∫ 1
2

− 1
2

dξ(η2 − a2ξ2)−
1
2 θ(η2 − a2ξ2) (2.17)

Let us consider the geometric situation shown on Figure 2.7

68 CHAPTER 2. 2D SCATTERING PROBLEM

α = −∆s

c

∫
A

dη dξ(η2 − a2ξ2)−
1
2

= −2∆s

c

∫ 1
2

0

dξ

∫ 1

aξ

dη(η2 − a2ξ2)−
1
2

η = aξx, dη = aξ dx

= −2∆s

c

∫ 1
2

0

dξ

∫ 1
aξ

1

dx(x2 − 1)−
1
2

= −2∆s

c

∫ 1
2

0

dξ ln(x+
√
x2 − 1

∣∣∣ 1
aξ

1

= −2∆s

c

∫ 1
2

0

dξ ln(
1

aξ
+

√
1

aξ
− 1)

= −2∆s

c

∫ 1
2

0

dξ ln
(1

aξ
(1 +

√
1− a2ξ2)

)
= −2∆s

c

∫ 1
2

0

dξ
(
− ln a− ln ξ + ln(1 +

√
1− a2ξ2)

)
= −2∆s

c

(
− 1

2
ln a− (ξ ln ξ − ξ)

∣∣∣ 12
0

+

∫ 1
2

0

dξ ln(1 +
√

1− a2ξ2)
)

= −2∆s

c

(1

a
sin−1(

a

2
)− 1

2
ln
a

2
+

1

2
ln(1 +

√
1− a2

4
)
)

(2.18)

Equations (2.1) restricted to the S together with the integral identities (2.8) define
the EOS formulation for the given 2D scattering problem.

Conclusion

In this thesis work we discussed two 1D scattering problems and one 2D scattering prob-
lem. For every problem was constructed EOS formulation. For both of the 1D scattering
problems were made numerical implementation using Python3. Before numerical solu-
tion of toy models we solved test problem to choose more stable and accurate numerical
method. The test problem was solved by using several methods: Central Finite Difference
method, Modified Euler method, Lax-Wendroff method and by using ODE solver odeint
from library for scientific calculations of Python3.

We found that in every solution of test problem by using different methods has an
artefact in solution for ρ(x, t) on the left boundary of the domain. Possibly oscillations
of solutions for ϕ(x, t) and j(x, t) on the left boundary appeared because of this artefact
in ρ(x, t). To understand the nature of this artefact and to fix this problem we need to
do additional research.

This work doesn’t comprise numerical implementation of 2D scattering problem, so
this is also subject for the futher research.

69

70 CHAPTER 2. 2D SCATTERING PROBLEM

Appendix A

Test problem. Python3 code

import numpy as np
import s c ipy as sp
from s c ipy import i n t e g r a t e
from s c ipy . i n t e g r a t e import ode int

dt = 0.01 #time s t ep
dx = 0.05 #space s t ep
T = 12 #time maximum
X = 3 #boundary va lue
c = 2
alpha = 0 .1
gamma = 0.1
b = 10

t = np . l i n s p a c e (0 ,T,T/dt+1)
x = np . l i n s p a c e (−X,X,2∗X/dx + 2)

exactph i = lambda t , x : np . exp(−b∗(x + 2∗ t − 7)∗∗2)
e x a c t j f = lambda t , x : 0 .1∗np . exp(−b∗(x + 2∗ t − 7)∗∗2)
exactrho = lambda t , x : −0.1∗np . exp(−b∗(x + 2∗ t − 7)∗∗2)

j 1 = lambda t , x : ((20∗ c − 40)∗ (x + 2∗ t − 7) − 0 . 1)
∗np . exp(−10∗(x + 2∗ t −7)∗∗2)

j 2 = lambda t , x : 2∗(x + 2∗ t − 7)∗np . exp(−10∗(x + 2∗ t −7)∗∗2)
j 3 = lambda t , x : (−4∗(x + 2∗ t − 7) − alpha + 0.1∗gamma)

∗np . exp(−10∗(x + 2∗ t −7)∗∗2)

#Centra l F in i t e D i f f e r ence method
CDphi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

71

72 APPENDIX A. TEST PROBLEM. PYTHON3 CODE

CDrho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
CDj = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

for i in range (np . s i z e (t)) :
CDphi [i] [0] = exactph i (t [i] , x [0])
CDphi [i] [−1] = exactph i (t [i] , x [−1])

for j in range (np . s i z e (x)) :
CDphi [0] [j] = exactph i (t [0] , x [j])
CDphi [1] [j] = exactph i (t [1] , x [j])
CDrho [0] [j] = exactrho (t [0] , x [j])
CDrho [1] [j] = exactrho (t [1] , x [j])
CDj [0] [j] = e x a c t j f (t [0] , x [j])
CDj [1] [j] = e x a c t j f (t [1] , x [j])

for i in range (1 , np . s i z e (t)−1):
for j in range (1 , np . s i z e (x)−1):

CDphi [i +1] [j] = c∗dt/dx∗(CDphi [i] [j +1]
− CDphi [i] [j −1])
+ 2∗dt ∗(j 1 (t [i] , x [j]) + CDj [i] [j])
+ CDphi [i −1] [j]

CDrho [i +1] [j] = −dt/dx∗(CDj [i] [j +1]
− CDj [i] [j −1]) + 2∗dt∗ j 2 (t [i] , x [j])
+ CDrho [i −1] [j]

CDj [i +1] [j] = 2∗dt ∗(alpha∗CDphi [i] [j]
− gamma∗CDj [i] [j]
+ j3 (t [i] , x [j]))+ CDj [i −1] [j]

j=0
CDrho [i +1] [j] = −dt/dx∗(−3∗CDj [i] [j] + 4∗CDj [i] [j +1]

− CDj [i] [j +2]) + CDrho [i −1] [j]
+ 2∗dt∗ j 2 (t [i] , x [j])

CDj [i +1] [j] = 2∗dt ∗(alpha∗CDphi [i] [j] − gamma∗CDj [i] [j]
+ j3 (t [i] , x [j])) + CDj [i −1] [j]

j=−1
CDrho [i +1] [j] = dt/dx∗(−3∗CDj [i] [j] + 4∗CDj [i] [j −1]

− CDj [i] [j −2]) + CDrho [i −1] [j]
+ 2∗dt∗ j 2 (t [i] , x [j])

CDj [i +1] [j] = 2∗dt ∗(alpha∗CDphi [i] [j] − gamma∗CDj [i] [j]

73

+ j3 (t [i] , x [j])) + CDj [i −1] [j]

#Lax−Wendroff method
LWphi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
LWrho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
LWj = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

for i in range (np . s i z e (x)) :
LWrho [0] [i] = exactrho (0 , x [i])
LWj [0] [i] = e x a c t j f (0 , x [i])
LWphi [0] [i] = exactph i (0 , x [i])

j 1 d t = lambda t , x : 0 .5/ dt ∗(j 1 (t+dt , x) − j 1 (t−dt , x))
j1 dx = lambda t , x : 0 .5/ dx∗(j 1 (t , x+dx) − j 1 (t , x−dx))
j 2 d t = lambda t , x : 0 .5/ dt ∗(j 2 (t+dt , x) − j 2 (t−dt , x))
j2 dx = lambda t , x : 0 .5/ dx∗(j 2 (t , x+dx) − j 2 (t , x−dx))
j3 dx = lambda t , x : 0 .5/ dx∗(j 3 (t , x+dx) − j 3 (t , x−dx))

for i in range (1 , np . s i z e (t)) :
LWphi [i] [−1] = exactph i (t [i] , x [−1])
LWphi [i] [0] = exactph i (t [i] , x [0])

for i in range (np . s i z e (t)−1):
for j in range (1 , np . s i z e (x)−1):

LWphi [i +1] [j] = LWphi [i] [j] + dt ∗ (0 . 5∗ c/dx∗(LWphi [i] [j +1]
− LWphi [i] [j −1]) + LWj[i] [j]
+ j1 (t [i] , x [j]))+ 0 . 5∗ (dt ∗∗2)∗ (((c/dx)∗∗2)∗ (LWphi [i] [j +1]
− 2∗LWphi [i] [j] + LWphi [i] [j −1]) + c∗ j 1 dx (t [i] , x [j])
+ 0 .5∗ c/dx∗(LWj[i] [j +1]− LWj[i] [j −1])
+ alpha∗LWphi [i] [j] − gamma∗LWj[i] [j]
+ j 1 d t (t [i] , x [j]) + j3 (t [i] , x [j]))

LWrho [i +1] [j] = LWrho [i] [j] + dt ∗(−0.5/dx∗(LWj[i] [j +1]
− LWj[i] [j −1]) + j2 (t [i] , x [j]))
+ 0 . 5∗ (dt∗∗2)∗(− alpha ∗0 .5/ dx∗(LWphi [i] [j +1] − LWphi [i] [j −1])
+ 0.5∗gamma/dx∗(LWj[i] [j +1] − LWj[i] [j −1])
− j 3 dx (t [i] , x [j]) + j 2 d t (t [i] , x [j]))

LWj[i +1] [j] = LWj[i −1] [j] + 2∗dt ∗(alpha∗LWphi [i] [j]
− gamma∗LWj[i] [j]+ j3 (t [i] , x [j]))

74 APPENDIX A. TEST PROBLEM. PYTHON3 CODE

j = −1
LWj[i +1] [j] = LWj[i −1] [j] + 2∗dt ∗(alpha∗LWphi [i] [j]
− gamma∗LWj[i] [j]+ j3 (t [i] , x [j]))
LWrho [i +1] [j] = LWrho [i] [j] + dt ∗(−0.5/dx∗(3∗LWj[i] [j]
− 4∗LWj[i] [j −1] + LWj[i] [j −2]) + j2 (t [i] , x [j]))
+ 0 . 5∗ (dt∗∗2)∗(− alpha ∗0 .5/ dx∗(3∗LWphi [i] [j]
− 4∗LWphi [i] [j −1] + LWphi [i] [j −2])
+ 0.5∗gamma/dx∗(3∗LWj[i] [j]
− 4∗LWj[i] [j −1] + LWj[i] [j −2]) − j 3 dx (t [i] , x [j])
+ j 2 d t (t [i] , x [j]))

j = 0
LWj[i +1] [j] = LWj[i −1] [j] + 2∗dt ∗(alpha∗LWphi [i] [j]
− gamma∗LWj[i] [j]+ j3 (t [i] , x [j]))

LWrho [i +1] [j] = LWrho [i] [j] + dt ∗(−0.5/dx∗(−3∗LWj[i] [j]
+ 4∗LWj[i] [j +1] − LWj[i] [j +2]) + j2 (t [i] , x [j]))
− 0 . 5∗ (dt∗∗2)∗(− alpha ∗0 .5/ dx∗(−3∗LWphi [i] [j]
+ 4∗LWphi [i] [j +1] − LWphi [i] [j +2])
+ 0.5∗gamma/dx∗(−3∗LWj[i] [j]
+ 4∗LWj[i] [j +1] − LWj[i] [j +2]) − j 3 dx (t [i] , x [j])
+ j 2 d t (t [i] , x [j]))

#Modif ied Euler method
MEphi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
MErho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
MEj = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

for i in range (np . s i z e (x)) :
MErho [0] [i] = exactrho (0 , x [i])
MEj [0] [i] = e x a c t j f (0 , x [i])
MEphi [0] [i] = exactph i (0 , x [i])

for i in range (1 , np . s i z e (t)) :
MEphi [i] [−1] = exactph i (t [i] , x [−1])
MEphi [i] [0] = exactph i (t [i] , x [0])

for i in range (np . s i z e (t)−1):
for j in range (1 , np . s i z e (x)−1):

75

K1 = dt ∗ (0 . 5∗ c/dx∗(MEphi [i] [j +1] − MEphi [i] [j −1])
+ MEj [i] [j] + j1 (t [i] , x [j]))

K2 = dt ∗ (0 . 5∗ c/dx∗(MEphi [i] [j +1] − MEphi [i] [j −1])
+ MEj [i] [j] + j1 (t [i +1] , x [j]))

MEphi [i +1] [j] = MEphi [i] [j] + 0 . 5∗ (K1+K2)

K1 = dt ∗(−0.5/dx∗(MEj [i] [j +1] − MEj [i] [j −1])
+ j2 (t [i] , x [j]))

K2 = dt ∗(−0.5/dx∗(MEj [i] [j +1] − MEj [i] [j −1])
+ j2 (t [i +1] , x [j]))

MErho [i +1] [j] = MErho [i] [j] + 0 . 5∗ (K1+K2)

K1 = dt ∗(alpha∗MEphi [i] [j] − gamma∗MEj [i] [j]
+ j3 (t [i] , x [j]))

K2 = dt ∗(alpha∗MEphi [i] [j] − gamma∗(MEj [i] [j]+K1)
+ j3 (t [i +1] , x [j]))

MEj [i +1] [j] = MEj [i] [j] + 0 . 5∗ (K1+K2)

j = −1
K1 = dt ∗(alpha∗MEphi [i] [j] − gamma∗MEj [i] [j]

+ j3 (t [i] , x [j]))
K2 = dt ∗(alpha∗MEphi [i] [j] − gamma∗(MEj [i] [j]+K1)

+ j3 (t [i +1] , x [j]))
MEj [i +1] [j] = MEj [i] [j] + 0 . 5∗ (K1+K2)

K1 = dt ∗(−0.5/dx∗(3∗MEj [i] [j] − 4∗MEj [i] [j −1]
+ MEj [i] [j −2]) + j2 (t [i] , x [j]))

K2 = dt ∗(−0.5/dx∗(3∗MEj [i] [j] − 4∗MEj [i] [j −1]
+ MEj [i] [j −2]) + j2 (t [i +1] , x [j]))

MErho [i +1] [j] = MErho [i] [j] + 0 . 5∗ (K1+K2)

j = 0
K1 = dt ∗(alpha∗MEphi [i] [j] − gamma∗MEj [i] [j]

+ j3 (t [i] , x [j]))
K2 = dt ∗(alpha∗MEphi [i] [j] − gamma∗(MEj [i] [j]+K1)

+ j3 (t [i +1] , x [j]))
MEj [i +1] [j] = MEj [i] [j] + 0 . 5∗ (K1+K2)

K1 = dt ∗(−0.5/dx∗(−3∗MEj [i] [j] + 4∗MEj [i] [j +1]
− MEj [i] [j +2]) + j2 (t [i] , x [j]))

76 APPENDIX A. TEST PROBLEM. PYTHON3 CODE

K2 = dt ∗(−0.5/dx∗(−3∗MEj [i] [j] + 4∗MEj [i] [j +1]
− MEj [i] [j +2]) + j2 (t [i +1] , x [j]))

MErho [i +1] [j] = MErho [i] [j] + 0 . 5∗ (K1+K2)

#ODE so l v e r
ODEphi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
ODErho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
ODEj = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
Nx = np . s i z e (x)
M = [[0] ∗ (Nx−2) for i in range (Nx−2)]
for i in range (1 ,Nx−2):

M[i −1] [i] = 0 .5/ dx
M[i] [i −1] = − 0 .5/ dx

for i in range (np . s i z e (x)) :
ODErho [0] [i] = exactrho (0 , x [i])
ODEj [0] [i] = e x a c t j f (0 , x [i])
ODEphi [0] [i] = exactph i (0 , x [i])

for i in range (1 , np . s i z e (t)) :
ODEphi [i] [−1] = exactph i (t [i] , x [−1])
ODEphi [i] [0] = exactph i (t [i] , x [0])

def f (y , t) :
Y = y

d e r i v e s = []

d e r i v e s . extend ([0 . 5 ∗ c/dx∗(Y[1] − exactph i (t , x [0]))
+ Y[2∗Nx−1] + j1 (t , x [1])])

for i in range (1 ,Nx−2):
d e r i v e s . extend ([c∗M[i] [0] ∗Y[0] + Y[2∗Nx−1+i]

+ j1 (t , x [i + 1])])
for j in range (1 ,Nx−2):

d e r i v e s [i] = d e r i v e s [i] + c∗M[i] [j]∗Y[j]

d e r i v e s [−1] = d e r i v e s [−1] + 0.5∗ c/dx∗ exactph i (t , x [−1])

d e r i v e s . extend ([−0.5/ dx∗(−3∗Y[2∗Nx−2]
+ 4∗Y[2∗Nx−1] − Y[2∗Nx])
+ j2 (t , x [0])])

77

d e r i v e s . extend ([−0.5∗(Y[2∗Nx] − Y[2∗Nx−2])/dx +
j2 (t , x [1])])

for i in range (1 ,Nx−2):
d e r i v e s . extend ([−M[i] [0] ∗Y[2∗Nx−2+i] +

j2 (t , x [i + 1])])
for j in range (1 ,Nx−2):

d e r i v e s [Nx+i −1] = d e r i v e s [Nx+i −1]
− M[i] [j]∗Y[j−1+2∗Nx]

d e r i v e s [−1] = d e r i v e s [−1] − 0 .5/ dx∗Y[−1]
d e r i v e s . extend ([−0.5/ dx∗(3∗Y[−1] − 4∗Y[−2] + Y[−3])

+ j2 (t , x [−1])])

d e r i v e s . extend ([alpha∗ exactph i (t , x [0]) − gamma∗Y[2∗Nx−2]
+ j3 (t , x [0])])

for i in range (Nx−1):
d e r i v e s . extend ([alpha∗Y[i] − gamma∗Y[i +2∗Nx−1]

+ j3 (t , x [i + 1])])
d e r i v e s . extend ([alpha∗ exactph i (t , x [−1]) − gamma∗Y[−1]

+ j3 (t , x [−1])])
return d e r i v e s

#I n i t i a l v a l u e s
y0 = ODEphi [0] [1 : −1]+ODErho[0]+ODEj [0]

pso ln = ode int (f , y0 , t)

for i in range (np . s i z e (t)) :
for j in range (1 ,Nx−1):

ODEphi [i] [j] = pso ln [i] [j −1]
for j in range (Nx) :

ODErho [i] [j] = pso ln [i] [j+Nx−2]
ODEj [i] [j] = pso ln [i] [j+Nx∗2−2]

78 APPENDIX A. TEST PROBLEM. PYTHON3 CODE

Appendix B

The first toy model. Python3 code

import numpy as np

Hvs = lambda t : 0 . 5∗ (np . s i gn (t)+1) #Heav i s ide func t i on

a0 = −3 #l e f t boundary
a1 = 3 #r i g h t boundary
dx = 0.05 # space s t ep
dt = 0.01 # time s t ep
T = 12 # Time maximum
alpha = 0 .1
beta = 0 .1
gamma = 0.1

t = np . l i n s p a c e (0 ,T,T/dt+1)
x = np . l i n s p a c e (a0 , a1 , (a1−a0)/ dx+2)

c1 = 1 .4
c2 = 2

#source func t i on
a = 2
b = 10
c = 10
x0 = 10
t0 = 4
j s = lambda x , t : a∗np . exp(−b∗(x−x0)∗∗2)∗np . exp(−c ∗(t−t0)∗∗2)

phi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

79

80 APPENDIX B. THE FIRST TOY MODEL. PYTHON3 CODE

rho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
j f = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
#in t e g r a t i o n formula f o r the r i g h t boundary
xnew = np . l i n s p a c e (3 ,1000 ,997/ dx+1)
for i in range (1 , np . s i z e (t)) :

phi [i] [−1] = 1/ c2∗ i n t e g r a t e . simps (Hvs (a1−xnew+c2∗ t [i])
∗ j s (xnew , t [i]−(xnew − a1)/ c2) , xnew , dx)

for i in range (np . s i z e (t)−1):
for j in range (1 , np . s i z e (x)−1):

phi [i +1] [j] = phi [i] [j] + dt ∗ (0 . 5∗ c1/dx∗(phi [i] [j +1]
− phi [i] [j −1]) + j f [i] [j])+ 0 . 5∗ (dt ∗∗2)
∗ (((c1/dx)∗∗2)∗ (phi [i] [j +1]− 2∗phi [i] [j]
+ phi [i] [j −1])
+ 0.5∗ c1/dx∗(j f [i] [j +1]− j f [i] [j −1])
+ (alpha − beta∗ rho [i] [j]) ∗ phi [i] [j]
− gamma∗ j f [i] [j])

rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(j f [i] [j +1]
− j f [i] [j −1]))
+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]∗0 . 5 / dx∗(rho [i] [j +1]
− rho [i] [j −1])
− (alpha − beta∗ rho [i] [j]) ∗ 0 . 5 / dx∗(phi [i] [j +1]
− phi [i] [j −1])
+ 0.5∗gamma/dx∗(j f [i] [j +1] − j f [i] [j −1]))

j f [i +1] [j] = j f [i −1] [j] + 2∗dt ∗ ((alpha
− beta∗ rho [i] [j]) ∗ phi [i] [j] − gamma∗ j f [i] [j])

j = −1
j f [i +1] [j] = j f [i −1] [j] + 2∗dt ∗ ((alpha
− beta∗ rho [i] [j]) ∗ phi [i] [j]
− gamma∗ j f [i] [j])
rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(3∗ j f [i] [j]
− 4∗ j f [i] [j −1]
+ j f [i] [j −2]))+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]
∗0 .5/ dx∗(3∗ rho [i] [j]
− 4∗ rho [i] [j −1] + rho [i] [j −2]) − (alpha
− beta∗ rho [i] [j])
∗0 .5/ dx∗(3∗ phi [i] [j]− 4∗phi [i] [j −1] + phi [i] [j −2])

81

+ 0.5∗gamma/dx∗(3∗ j f [i] [j] − 4∗ j f [i] [j −1] + j f [i] [j −2]))

j = 0
j f [i +1] [j] = j f [i −1] [j] + 2∗dt ∗ ((alpha
− beta∗ rho [i] [j]) ∗ phi [i] [j]
− gamma∗ j f [i] [j])

t i = int ((t [i +1] − 1/ c1 ∗(a1−a0))/ dt)

phi [i +1] [j] = Hvs (a0−a1+c1∗ t [i +1])∗ phi [t i] [−1] +
1/ c1∗dx ∗ ((Hvs (c1∗ t [i +1])∗ j f [i + 1] [0]
+ Hvs (a0−a1+c1∗ t [i +1])∗ j f [int ((t [i +1]
− 1/ c1 ∗(a1−a0))/ dt)] [−1]) /2
+ np .sum(Hvs (a0−x [k]+c1∗ t [i +1])∗ j f [int ((t [i +1]
− 1/ c1 ∗(x [k]−a0))/ dt)] [k]
for k in range (1 , np . s i z e (x))))

rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(−3∗ j f [i] [j]
+ 4∗ j f [i] [j +1]
− j f [i] [j +2]))+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]
∗0 .5/ dx∗(−3∗ rho [i] [j] + 4∗ rho [i] [j +1]− rho [i] [j +2])
− (alpha − beta∗ rho [i] [j]) ∗ 0 . 5 / dx∗(−3∗phi [i] [j]
+ 4∗phi [i] [j +1] − phi [i] [j +2]) + 0.5∗gamma/dx
∗(−3∗ j f [i] [j]
+ 4∗ j f [i] [j +1]− j f [i] [j +2]))

82 APPENDIX B. THE FIRST TOY MODEL. PYTHON3 CODE

Appendix C

The second toy model. Python3 code

import numpy as np

Hvs = lambda t : 0 . 5∗ (np . s i gn (t)+1) #Heav i s ide func t i on

def ind (i) :
i f i <0:

return (0)
else :

return (i)

a0 = −3 #l e f t boundary
a1 = 3 #r i g h t boundary
dx = 0.05 # space s t ep
dt = 0.01 # time s t ep
T = 12 # Time maximum
alpha = 0 .1
beta = 0 .1
gamma = 0.1

t = np . l i n s p a c e (0 ,T,T/dt+1)
x = np . l i n s p a c e (a0 , a1 , (a1−a0)/ dx+2)

Nx = np . s i z e (x)
Nt = np . s i z e (t)

m1 = 1 .4
m2 = 2

83

84 APPENDIX C. THE SECOND TOY MODEL. PYTHON3 CODE

n1 = 1
n2 = 1
c1 = np . s q r t (m1∗n1)
c2 = np . s q r t (m2∗n2)

#source func t i on
a = 2
b = 10
c = 10
x0 = 6
t0 = 4
j s = lambda x , t : a∗np . exp(−b∗(x−x0)∗∗2)∗np . exp(−c ∗(t−t0)∗∗2)

phi = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
p s i = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
p h i i = [0] ∗ np . s i z e (t)
p s i i = [0] ∗ np . s i z e (t)
rho = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]
j f = [[0] ∗ np . s i z e (x) for i in range (np . s i z e (t))]

xnew = np . l i n s p a c e (a1 ,1000 ,(1000− a1)/ dx+1)
for i in range (1 , np . s i z e (t)) :

p h i i [i] = 0 .5/ c2∗ i n t e g r a t e . simps (Hvs (np . s i gn (c2∗ t [i]
− (xnew − a1)))∗ j s (xnew , t [i]−(xnew − a1)/ c2) , xnew , dx)
p s i i [i] = n2/c2∗ p h i i [i]

A0 = np . array ([[c1+c2 , m1−m2] , [n1−n2 , c1+c2]])
A1 = np . array ([[c1+c2 , m2−m1] , [n2−n1 , c1+c2]])
A0s = np . array ([[c1 ,m1] , [n1 , c1]])
A1s = np . array ([[c1 ,−m1] , [−n1 , c1]])

for i in range (1 , Nt−1):
for j in range (1 ,Nx−1):

phi [i +1] [j] = phi [i] [j] + dt ∗ (0 . 5∗m1/dx∗(p s i [i] [j +1]
− p s i [i] [j −1]) + j f [i] [j])
+ 0 . 5∗ (dt ∗∗2)∗ (((c1/dx)∗∗2)∗ (phi [i] [j +1]
− 2∗phi [i] [j] + phi [i] [j −1])
+ (alpha − beta∗ rho [i] [j]) ∗ phi [i] [j] − gamma∗ j f [i] [j])

p s i [i +1] [j] = p s i [i] [j] + dt ∗ (0 . 5∗ n1/dx

85

∗(phi [i] [j +1]
− phi [i] [j −1])) + 0 . 5∗ (dt ∗∗2)∗(n1∗(m1∗(1/dx)∗∗2
∗(p s i [i] [j +1]
− 2∗ p s i [i] [j] + p s i [i] [j −1]) + 0 .5/ dx∗(j f [i] [j +1]
− j f [i] [j −1])))

rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(j f [i] [j +1]
− j f [i] [j −1]))
+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]∗0 . 5 / dx∗(rho [i] [j +1]
− rho [i] [j −1])
− (alpha − beta∗ rho [i] [j]) ∗ 0 . 5 / dx∗(phi [i] [j +1]
− phi [i] [j −1])
+ 0.5∗gamma/dx∗(j f [i] [j +1] − j f [i] [j −1]))

j f [i +1] [j] = 2∗dt ∗ (alpha − beta∗ rho [i] [j])
∗phi [i] [j]
− 2∗dt∗gamma∗ j f [i] [j] + j f [i −1] [j]

j = −1
j f [i +1] [j] = 2∗dt ∗(alpha − beta∗ rho [i] [j]) ∗ phi [i] [j]
− 2∗dt∗gamma∗ j f [i] [j] + j f [i −1] [j

rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(3∗ j f [i] [j]
− 4∗ j f [i] [j −1]
+ j f [i] [j −2]))+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]∗0 . 5 / dx
∗(3∗ rho [i] [j]
− 4∗ rho [i] [j −1] + rho [i] [j −2]) − (alpha
− beta∗ rho [i] [j]) ∗ 0 . 5 / dx∗(3∗ phi [i] [j]− 4∗phi [i] [j −1]
+ phi [i] [j −2]) + 0.5∗gamma/dx∗(3∗ j f [i] [j] − 4∗ j f [i] [j −1]
+ j f [i] [j −2]))

INT1 = dx ∗ (0 . 5∗ (Hvs (c1∗ t [i +1] − (a1−a0))
∗ j f [ind (int ((t [i +1]
− (a1−a0)/ c1)/ dt))] [0] + Hvs (c1∗ t [i +1])∗ j f [i +1][−1])
+ np .sum(Hvs (c1∗ t [i +1] − (a1 − x [k])) ∗ j f [ind (int ((t [i +1]
− (a1−x [k]) / c1)/ dt))] [k] for k in range (1 ,Nx−1)))

INT11 = 1/ c1 ∗(np . dot (A1s , [INT1 , 0]))
INT12 = Hvs (c1∗ t [i +1] − (a1−a0))
∗np . dot(−A1s , [phi [ind (int ((t [i +1]

86 APPENDIX C. THE SECOND TOY MODEL. PYTHON3 CODE

− (a1−a0)/ c1)/ dt))] [0] , p s i [ind (int ((t [i +1]
− (a1−a0)/ c1)/ dt))] [0]])

B1 = INT11+INT12+2∗c2∗np . array ([p h i i [i +1] , p s i i [i +1]])

phi [i +1][−1] , p s i [i +1][−1] = np . l i n a l g . s o l v e (A1 , B1)

j = 0
j f [i +1] [j] = 2∗dt ∗(alpha − beta∗ rho [i] [j]) ∗ phi [i] [j]
− 2∗dt∗gamma∗ j f [i] [j] + j f [i −1] [j]

rho [i +1] [j] = rho [i] [j] + dt ∗(−0.5/dx∗(−3∗ j f [i] [j]
+ 4∗ j f [i] [j +1]
− j f [i] [j +2]))+ 0 . 5∗ (dt ∗∗2)∗(beta∗phi [i] [j]∗0 . 5 / dx
∗(−3∗ rho [i] [j]
+ 4∗ rho [i] [j +1] − rho [i] [j +2]) − (alpha
− beta∗ rho [i] [j]) ∗ 0 . 5 / dx∗(−3∗phi [i] [j]+ 4∗phi [i] [j +1]
− phi [i] [j +2]) + 0.5∗gamma/dx∗(−3∗ j f [i] [j]
+ 4∗ j f [i] [j +1]− j f [i] [j +2]))

INT0 = dx ∗ (0 . 5∗ (Hvs (c1∗ t [i +1])∗ j f [i + 1] [0] + Hvs (c1∗ t [i +1]
− (a1−a0))∗ j f [ind (int ((t [i +1] − (a1−a0)/ c1)/ dt))] [− 1])
+ np .sum(Hvs (c1∗ t [i +1] − (x [k] − a0))∗ j f [ind (int ((t [i +1]
− (x [k]−a0)/ c1)/ dt))] [k] for k in range (1 ,Nx−1)))

INT01 = 1/ c1 ∗(np . dot (A0s , [INT0 , 0]))
INT02 = Hvs (c1∗ t [i +1] − (a1−a0))
∗np . dot (A0s , [phi [ind (int ((t [i +1]
− (a1−a0)/ c1)/ dt))] [−1] , p s i [ind (int ((t [i +1]
− (a1−a0)/ c1)/ dt))] [− 1]])

B0 = INT01+INT02
phi [i + 1] [0] , p s i [i + 1] [0] = np . l i n a l g . s o l v e (A0 , B0)

References

[1] SciPy.org. 2017. scipy.integrate.odeint – SciPy v0.18.1 Reference Guide. [ON-
LINE] Available at: https://docs.scipy.org/doc/scipy-0.18.1/reference/

generated/scipy.integrate.odeint.html. [Accessed 3 May 2017].

[2] J. Berenger. A perfectly matched layer for the absorption of electromagnetic waves.
Journal of computational physics, 114(2):185, 1994.

[3] H. F. C. Brehm. Immersed interface method for solving the incompressible Navier-
Stokes equations with moving boundaries. 49th AIAA Aerospace Science meeting In-
cluding the New Horizons Forum and Aerospace Science Exposition 2011, 2011.

[4] A. T. et. al. Computational Electrodynamics: the Finite-Difference Time Domain
Method, 3rd Ed. Artech House Publishers, 2005.

[5] S. Gedney. An anisotropic perfectly matched layer absorbing media for the truncation
of FTDT lattices. IEEE Transactions on Antennas and Propagation, 44(12):1630,
1996.

[6] D. N. Pattanayak and E. Wolf. General form and new interpretation of the Ewald-
Oseen extinction theorem. Optics communications, 6(3):217, 1972.

[7] L. Rezolla, Numerical Method for the Solution of partial differential equations, Lecture
Notes for the COMPSTAR School on Computational Astrophysics, 8-13/02/10, Caen,
France, 2011.

[8] G.D. Smith, Numerical Solution of partial differential equations: Finite Difference
Methods, Brunel University, 3d ed., Clarendon Press, Oxford, 1986.

[9] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, University of Ox-
ford, Cambridge University Press,2003.

[10] A. Taflove. Application of the finite-difference time-domain method to sinusoidal
steady state electromagnetic penetration problems. IEEE Transaction on Electromag-
netic Compatibility, 22(3):191, 1980.

87

88 REFERENCES

[11] K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s
equation in isotropic media. IEEE Transaction on Antennas and Propagation,
14(3):302, May 1966.

