
Faculty of Science and Technology

Department of Mathematics and Statistics

Dirichlet Process Cluster Kernel

—
Tobias Olsen Foslid
STA-3900 Master’s Thesis in Statistics

Abstract

This thesis aims to apply the Dirichlet process mixture model to the cluster kernel
framework. The probabilistic cluster kernel is extended with a Bayesian nonparametric
model to avoid critical parameters within the model. The Dirichlet process cluster kernel
demonstrate advantages compared to the probabilistic cluster kernel in both classifica-
tion and clustering. Additionally, the two dimensional projection using kernel PCA and
the Dirichlet process cluster kernel show compact clusters with a higher degree of cluster
discrimination.

The second main contribution of the thesis is an application of the cluster kernel
methodology in semi-supervised learning. The Dirichlet process cluster kernel demon-
strates a high degree of descriptive representation.

i

Acknowledgements

First I would like to thank my supervisors, Associate Professor Robert Jenssen, Dr.
Filippo Maria Bianchi and Sigurd Løkse for your great advices, ideas and patience
throughout the work on the thesis project. Robert, without your inspiring lectures I
would never have chosen to study machine learning. To Filippo, thank you for the
continuous discussions and helpful comments. Finally thank you to Sigurd for your
mathematical insight into kernels, and trying to pass it onto me. And to all of you,
thank you for not giving up on me, and if you did, for not showing it.

To all my friends (you know who you are); thank you for the continuous coffee breaks.
Without you the thesis would be finished yesterday. I do not think I would have finished
my thesis without the endless discussions, long nights of drinking bears and hanging
out. To Lars: Without you, the office hours would feel empty.

Most of all, thank you to my girlfriend Aina, for supporting me through this crazy
year. I am looking forward to spending more time with you.

Special mentions goes out to my good friend Sigurd, here is your special mention.

iii

Contents

Abstract i

Acknowledgements iii

List of Algorithms ix

List of Figures xi

List of Tables xv

List of Acronyms xvii

Summary of Data Sets xix

1. Introduction 1
1.1. Background . 1
1.2. Aims and Motivation of the Thesis . 2
1.3. Related Work . 3
1.4. Outline of the Thesis . 4

I. Theory, Concepts and Methods 7

2. Kernels, Clustering and Ensemble Clustering 9
2.1. Dimensionality Reduction . 10

2.1.1. PCA . 10
2.2. Kernels . 13

2.2.1. Kernel Methods . 13
2.2.2. Support Vector Machines . 14
2.2.3. Example using Kernel Principal Component Analysis and Support

Vector Machines . 15
2.3. Clustering . 16
2.4. Clustering Methods . 17

2.4.1. K-Means . 18
2.4.2. Spectral Clustering . 19
2.4.3. Kernel K-Means . 20

2.5. Ensemble Clustering . 20
2.5.1. Producing Clustering Ensembles 21

v

Contents

2.5.2. Combining the Evidence . 22
2.5.3. Final Clustering . 23

3. Dirichlet Process Mixture Models 25
3.1. Statistical Distributions . 25

3.1.1. Student’s t-Distribution . 25
3.1.2. Dirichlet Distribution . 26

3.2. Statistical Models . 29
3.2.1. Statistical Inference . 29
3.2.2. Example of Statistical Modeling 29
3.2.3. Bayesian Framework . 30
3.2.4. Conjugate Priors . 31
3.2.5. Example Using Bayesian Inference and Conjugate Priors 32

3.3. Random Processes . 33
3.3.1. Stochastic Process . 33
3.3.2. Dirichlet Process . 34

3.4. Markov Chains . 37
3.4.1. Classification of States . 38

3.5. Markov Chain Monte Carlo Methods . 39
3.5.1. Monte Carlo Method . 39
3.5.2. Example . 40
3.5.3. Constructing Markov Chains . 41

3.6. Bootstrap . 45
3.6.1. Empirical Bootstrap Confidence Intervals 46
3.6.2. Empirical Bootstrap Hypothesis Testing 47

3.7. Gaussian Mixture Models . 47
3.7.1. Conjugate Priors for Mean and Covariance 48
3.7.2. Posterior of Parameters . 48
3.7.3. Constructing Sampling Scheme 49
3.7.4. Collapsed Gibbs Sampler for a Finite Gaussian Mixture Model . . 50

3.8. Dirichlet Process Mixture Model . 50
3.8.1. Collapsed Gibbs Sampler for the Infinite Gaussian Mixture Model 52

3.9. Non Conjugate Priors . 52
3.9.1. Adding Metropolis-Hastings Steps 52
3.9.2. Using Auxiliary Parameters . 52

3.10. The Road to Faster Dirichlet Process Mixture Models Samplers 53

4. Probabilistic Cluster Kernel 55
4.1. Mathematical Definition . 55

4.1.1. Counting versus Inner Products as Consensus Function 56
4.2. Algorithm . 57
4.3. Dimensionality Reduction using the Probabilistic Cluster Kernel (PCK) . 58

vi

Contents

II. Proposed Method; The Dirichlet Process Mixture Model 61

5. The Dirichlet Process Cluster Kernel 63
5.1. Proposed Algorithm . 63

III. Experiments 65

6. Parameter Investigation for the Dirichlet Process Mixture Model 69
6.1. Experimental setup . 70

6.1.1. Data Set . 70
6.2. Results . 72

7. Investigation of the Dirichlet Process Cluster Kernel (DPCK) 75
7.1. Experimental Setup . 75

7.1.1. Classification . 76
7.1.2. Clustering . 76
7.1.3. Dimensionality Reduction . 76

7.2. Dirichlet Process Cluster Kernel stability 76
7.3. Comparing the Probabilistic Cluster Kernel to the Dirichlet Process Clus-

ter Kernel . 79
7.3.1. Classification . 79
7.3.2. Clustering . 81
7.3.3. Dimensionality Reduction . 83

8. Semi-Supervised Learning 85
8.1. Experimental Setup . 85
8.2. Results . 86

IV. Conclusion 89

9. Summary 91

10.Discussion 93
10.1. Dirichlet Process Mixture Models . 93
10.2. Investigating the Performance of the DPCK 93

10.2.1. The Dirichlet Process Cluster Kernel 94
10.2.2. Different Data Sets . 95
10.2.3. Algorithmic Limitations . 95

10.3. Semi-Supervised Classification . 96

11.Future Work 97
11.1. Split/Merge Algorithm . 97

11.1.1. Different Data Sets . 97

vii

Contents

11.2. Semi-Supervised Cluster Kernels . 97
11.3. Missing Data . 98

A. Databook 99

Bibliography 133

viii

List of Algorithms

1. K-Means batch algorithm . 18
2. General Algorithmic Scheme for Spectral Clustering 19
3. Weighted Kernel K-Means batch algorithm 20

4. Metropolis-Hastings algorithm . 42
5. Gibbs sampler . 44
6. Collapsed Gibbs sampler for a finite Gaussian mixture model. 50
7. Collapsed Gibbs sampler for an infinite Gaussian mixture model. 52

8. PCK: training phase. 57
9. PCK: test phase. 58

10. DPCK: Training. 64
11. DPCK: Test. 64

ix

List of Figures

1.1. Outline of cluster kernel pipeline and application. Red circles represent
where the main contributions of the thesis lies. 3

2.1. The principal components (in red) of a multivariate Gaussian sample. . . 11
2.2. The top two rows display different dimensions of the Iris data set. The fig-

ure of the last row is the data projected onto the two largest eigenvectors of
the empirical covariance matrix (principal components analysis (PCA)). 12

2.3. Figure displays a data set projected down on the two largest eigenvec-
tors of the covariance matrix, before and after doing some feature pre-
processing. Different colors represent different classes. 13

2.4. Figure showing the main idea of kernel based methods, to map obser-
vations to a high dimensional space where they are linearly separable.
The kernel trick is to only calculate the inner products in the new space,
R3. Source: Sven Laur, ”SVM and Kernel methods for Graphs”, Graph
Mining 2011. 14

2.5. Figure showing artifical data and the effect of mapping the data using the
polynomial kernel and the Radial basis function (RBF) kernel, then pro-
jecting using kernel principal components analysis (KPCA). The bottom
row shows the boundary when training the support vector machine with
different kernels. Colored points correspond to ground truth. 16

2.6. Figure illustrating the difficulty of choosing the appropriate amount of
clusters. 17

2.7. Diagram displaying the general process of ensemble clustering. 21
2.8. a) Clustering partition with local scales. b) Clustering partition with

global scales. 22
2.9. Some methods to create different cluster ensembles. 23

3.1. Probability density function of the Student’s t-distribution for different
degrees of freedom ν. Source: Student’s distribution - Wikipedia. 26

3.2. Figure displays the Dirichlet distribution simplex for different values of α. 27
3.3. Figure displaying how the stick is distributed according to the Stick-

breaking representation. 28
3.4. Some realizations of the Dirichlet distributed stick for α = (10, 5, 3) . . . 28
3.5. Density estimation using Gaussians. a) Maximum likelihood estimation.

b) Kernel Density Estimation (KDE). Source: [88] 30
3.6. Example of overfitting to the data. 31

xi

List of Figures

3.7. Plot of the beta prior and posterior distribution for each of the players
from table 3.1. The batting average prior is µp = 0.27 and for each player
the posterior is µ1 = 0.277, µ2 = 0.266 and µ3 = 0.294. 33

3.8. Display of some realizations for a random walk model. Initiated at zero,
with a probability p to go up and 1− p to go down. 34

3.9. Expected number of tables in a Chinese restaurant process for different
values of alpha. 35

3.10. Figure illustrating how customers enter the restaurant in a Chinese restau-
rant process (CRP), they can sit at a new table with probability (propor-
tional to) α or sit at an existing table with probability (proportional to)
N =

∑K
i=1Ni, where Ni is the number of people sitting at table i. 36

3.11. Figure showing realizations using a CRP at different amount of observa-
tions. 37

3.12. Display of a Markov chain. 38
3.13. a) One step transition matrix. b) Five step transition matrix. c) 20 step

transition matrix. 38
3.14. Figure on the left show samples within the square, where red indicate

inside circle and red outside. On the right we see the mean error as a
function of n, with a 95% confidence interval. 41

3.15. Figure showing target distribution and histogram of the Metropolis-Hastings
algorithm (MH-algorithm) generated samples at different iteration points. 43

3.16. Figure showing samples generated using a Gibbs sampler for a bivariate
Gaussian after different number of iterations. No burn-in period used. . . 45

3.17. Digram of the bootstrap principle. 46
3.18. Empirical and true distribution for two a) n = 100 observations and b)

n = 1000 samples. 46

4.1. Display of the process used to create the PCK. 55
4.2. Toy example to illustrate two predicted mixture components. 57
4.3. Data projected on the top two eigenvectors using KPCA, using the Iris

species data set. a-c) RBF kernels with different γ. d) PCK. 59

5.1. Digram illustrating how the Probabilistic Cluster Kernel is constructed
using Dirichlet Process Mixture Models. 63

6.1. a) Original image. b) Histogram of RGB colors. 71
6.2. Display of 16 randomly drawn segmentations of all 81. 72
6.3. Fixed: κ0 = 0.001, ν0 = 25 and kinit = 5. a) Segmented image obtained

when α = 0.01. b) Segmented images obtained when α = 100. 73
6.4. Fixed α = 1, ν0 = 25 and kinit = 5. a) Segmented image obtained when

κ0 = 0.001. b) Segmented image obtained when κ0 = 10. 73
6.5. Fixed: α = 1, κ0 = 1, and kinit = 5. a) Segmented image obtained when

ν0 = 10. b) Segmented image obtained when ν0 = 80. 74

xii

List of Figures

6.6. Fixed: α = 1, κ0 = 1, and ν0 = 25. a) Segmented image obtained when
kinit = 5. b) Segmented image obtained when kinit = 25. 74

7.1. Display of prediction accuracy for different values of kinit when creating
the DPCK. Shaded areas represent standard deviation. 77

7.2. Counts for how many clusters used by the different ensembles with the
DPCK on segmentation data set. Segmentation data set have seven dif-
ferent clusters. a) Initiating with 2 clusters. b) Initiating with 5 clusters.
c) Initiating with 11 clusters. d) Initiating with 20 clusters. 78

7.3. a) Predictive accuracy on the contraceptive data set. Comparison of the
accuracy as a function of the total number of ensembles between the
DPCK and PCK. b) Predictive accuracy on the ecoli data set. Com-
parison of the accuracy as a function of the total number of ensembles
between the DPCK and PCK. 79

7.4. a) Predictive accuracy on the credit card data set. Comparison of the
accuracy as a function of the total number of ensembles between the
DPCK and PCK. b) Predictive accuracy on the breast cancer data set.
Comparison of the accuracy as a function of the total number of ensembles
between the DPCK and PCK. 80

7.5. a) Clustering NMI score for the Breast cancer data set. Comparison of the
NMI as a function of the total number of ensembles between the DPCK
and PCK. b) Clustering NMI score for the Ecoli data set. Comparison
of the NMI as a function of the total number of ensembles between the
DPCK and PCK. 81

7.6. a) Clustering NMI score for the UCI creditcard data set. Comparison
of the NMI as a function of the total number of ensembles between the
DPCK and PCK. b) Clustering NMI score for the creditcard data set.
Comparison of the NMI as a function of the total number of ensembles
between the DPCK and PCK. 82

7.7. Projection of three data sets onto the top two principal components using
KPCA on the DPCK, PCK and a linear kernel. Colors indicate true class
labels. 83

8.1. Prediction accuracy as a function of the percentage of labeled data points.
Shaded regions represent the 95% confidence interval 87

xiii

List of Tables

1. Description of the different data sets used within the thesis. xix

3.1. Table of hitting scores for three different players. 33

6.1. Table containing values used to explore model parameters α, κ0, ν0 and
kinit.. 70

7.1. Prediction accuracy for different data sets using the DPCK and PCK.
The highest score for each data set is highlighted in bold. 80

7.2. NMI for different data sets using the DPCK and PCK. The highest score
for each data set is highlighted in bold. 82

8.1. Prediction accuracy when training using 5%/10% of the observations.
Comparison between the DPCK and RBF kernel, with γ = 0.5. The
values represent mean ± standard deviation over 20 runs. 87

xv

List of Acronyms

DPMM Dirichlet Process Mixture Model . 1

GMM Gaussian Mixture Model . 2

PCK Probabilistic Cluster Kernel . 2

DPCK Dirichlet Process Cluster Kernel. .2

PCA principal components analysis . 10

SVM Support vector machines . 14

RBF Radial basis function. .14

KPCA kernel principal components analysis . 15

MCMC Markov chain Monte Carlo . 25

MH-algorithm Metropolis-Hastings algorithm . 25

KDE Kernel Density Estimation . 29

CRP Chinese restaurant process . 34

GIW Gaussian Inverse-Wishart . 48

NMI Normalized Mutual Information . 76

xvii

Summary of Data Sets

In the thesis there will be discussions mainly about a few different data sets. In table 1
the different data sets that are used throughout the thesis is summarized. All data sets
can be found either at the UCI data set repository [1] or at Kaggle.com.

Name: N D Classes Source: Ref
Default of Credit Card Clients 30 000 25 2 UCI [2]
Credit Card Fraud Detection 284 807 31 2 Kaggle [3]
Breast Cancer Wisconsin (Diagnostic) 699 31 2 UCI [4]
SPECT Heart 267 23 2 UCI
Titanic Survival 712 8 2 Kaggle
Iris Species 150 4 3 UCI
IMDB 5000 Movie 3756 28 3 Kaggle
Contraceptive Method Choice 1473 9 3 UCI
Image Segmentation 2310 19 7 UCI
Ecoli 336 8 8 UCI
Nutrition Facts for McDonald’s Menu 260 23 9 Kaggle
Abalone 4177 9 28 UCI

Table 1.: Description of the different data sets used within the thesis.

For computational reasons each dataset is represented as a subsample of 300 obser-
vations for both the train and test set, unless otherwise specified. The specifics used to
create each subset can be seen in appendix A.

xix

1. Introduction

1.1. Background

In our daily lives, we are surrounded by increasingly large amounts of data. In line with
the amount of data accumulated every day, we are in need of methods to automatically
analyze and explore data. There is an increasing demand for accurate, efficient and
usable methods for automated learning from data. We use automated learning algo-
rithms everyday. We can find such algorithms everywhere from driving patterns to bus
timetables.

Many tasks within the automated learning methodology is unsupervised, which means
there is no prior information about the structure of the data, or class labels. Unsuper-
vised methods include clustering, the task of grouping data into groups where the obser-
vations within one group is similar to each other. Without knowing anything about the
underlying class labels methods to optimize the clustering model performance cannot
be applied. Such methods include parameter grid search [5] or cross validation [6, 7].
Therefore there is a need for methodologies without a dependency to critical parameters.
One such methodology is ensemble clustering, where the same data is clustered multiple
times before combing the results. The main idea is that if the same observations is
clustered together multiple times, there will be more evidence that they should be in
the same cluster.

Within unsupervised frameworks and clustering we are often faced with the problem
of choosing the number of groups in the data. Does an image contain one, two or maybe
five objects? One methodology for dealing with these kinds of problems with a statistical
framework is to use a nonparametric model. A nonparametric model is a model where
the number of parameters increase (unbounded) with the data, e.g. as we see wider
images we see more objects within the image. The nonparametric method in focus in
this thesis, is the Dirichlet Process Mixture Model (DPMM). The Dirichlet process was
first introduced by Ferguson in 1973 [8]. Then, a year later the mixtures of Dirichlet
processes for application within Bayesian nonparametric problems was introduced [9].
However it was not until much later with the rise of approximate statistics and Markov
chain Monte Carlo methods that Dirichlet processes gained traction with DPMM [10,
11].

Another issue with many machine learning frameworks is that they are derived such
that they can only learn linear boundaries between classes. However, data are often not
linearly separable. One methodology to deal with these problems are kernel methods
[12], where a kernel function is used to implicitly map the data to a high dimensional
space, called feature space. The main motivation for kernel methods is that in feature

1

1. Introduction

space, classes have a higher probability to be linearly separable. Kernel methods rely on
a kernel where each element represent the similarity between two observations in feature
space. However, most kernel functions are dependent on a shape parameter, the value of
the shape parameter changes the feature space in a critical way. Within an unsupervised
framework there are few possibilities to further tune the shape parameters.

1.2. Aims and Motivation of the Thesis

References for the methods discussed in this section can be found in the related work,
section 1.3

Combining the ideas from ensemble clustering and kernel methods give rise to the
Probabilistic Cluster Kernel (PCK) framework. The PCK is a data driven kernel func-
tion, that learn similarities between observations by clustering the same data multiple
times. Within each ensemble a Gaussian Mixture Model (GMM) is fitted to the data,
and the posterior probabilities are predicted. Whereby the different clusterings are com-
bined by taking the inner products between pairs of observations to create a final kernel
matrix. Within the PCK framework there are two parameters, where one decide the
number of clusters for the GMM. A benefit of the cluster kernel framework is that
the learned kernel represent similarities between observations. One drawback with the
current cluster kernel framework is that the final kernel requires two parameters to be
learned. To learn the finite cluster kernel the number of clusters have to be decided a
priori, thus making prior assumptions on the underlying shape of the data.

The aim of the thesis is to use a nonparametric Bayesian model to create a cluster
kernel without any prior assumptions on the data. The thesis proposes to apply the
DPMM to the existing PCK to create a nonparametric cluster kernel, the Dirichlet
Process Cluster Kernel (DPCK). The justification for using a more advanced clustering
model within the cluster kernel framework is to be less biased towards prior parameter
choices. Additionally, the DPCK is applied to some semi-supervised learning problems,
where the descriptive power of the cluster kernel is examined.

In figure 1.1 the outline of the cluster kernel process is illustrated. The highlighted
parts represent some of the contributions of the thesis.

2

1.3. Related Work

Figure 1.1.: Outline of cluster kernel pipeline and application. Red circles represent
where the main contributions of the thesis lies.

The thesis project aim at introducing the DPMM within the cluster kernel framework.
This creates the DPCK, a nonparametric cluster kernel that infers the number of cluster
within each ensemble. Experiments are conducted to compare the DPCK against the
existing PCK. Finally, the DPCK is applied in a semi-supervised classification problem.
The main contributions of the thesis include:

• Chapter 5: The methodology of the Dirichlet Process Cluster Kernel (DPCK) is
developed.

• Chapter 7: Experiments are conducted to compare the DPCK to the PCK.

• Chapter 8: New application of cluster kernels, where the DPCK is applied to
semi-supervised classification problems.

1.3. Related Work

Cluster kernels is an ensemble clustering framework first introduced in [13], and further
developed within remote-sensing [14, 15]. The aim of the cluster kernel methodology
is to learn a data driven kernel function, to represent similarities between observations
without prior assumptions of the data. However, the PCK relies on a parameter that

3

1. Introduction

controls the number of clusters and therefore making prior assumptions about the shape
of the data. This thesis aim to extend the current cluster kernel methodology with the
DPMM, such that each model infers the number of clusters automatically.

The DPMM is vastly represented in the literature [16–18], with successful application
in a wide range of topics. These topics range from microarray data [19] to natural
language processing with clustering verbs [20, 21] to tissue classification of magnetic
resonance imaging (MRI) [22]. Within the natural langugate processing they want to
cluster verbs with similar meaning together. They adapt the DPMM sampler to work
with constraints, in the form of must-links and cannot-links. They modify the collapsed
Gibbs sampler to not violate any of the must-links or cannot-links, thus using the prior
information within the clustering scheme. This constrained adaptation could be an
interesting approach in a semi-supervised framework for the DPCK. This will be briefly
discussed in chapter 11.

Dirichlet processes have not only been used in clustering, they are often used as a
prior on the number of learners to use in an ensemble problem. In [23] they introduce
a framework where they split data into subgroups and use the Dirichlet process to infer
the number of subgroups of data to train the models on. In [24] they want to learn a
logistic-regression model [25, 26] for multi-task classification. Multi-task learning is a
way to exploit commonalities between different learning tasks. In [24] they develop a
model with a Dirichlet process prior over the number of logistic-regression models to
use. The model finds similarities between the different tasks and infer on the number
of logistic-regression models to use. This approach of inferring the number of ensembles
to use with a Dirichlet process looks interesting. However, the specific methodologies
proposed in these papers only work in supervised problems.

There exists little directly related work on cluster kernels and Dirichlet processes.
Something close is found in [27], where they cluster phrase categories using an ensemble
of DPMM. However, they do not use the posterior probabilities to create the kernel.
Instead they combine the different clusterings by counting the number of times each
pair of observations are clustered together. To obtain the final clustering they apply a
spectral clustering algorithm, described here [28].

1.4. Outline of the Thesis

The thesis is divided into four parts.

Part 1: Theory, Concepts and Methods.
The first part of the thesis describes the background theory and concepts.

• Chapter 2: Discussion of background theory in kernels, clustering and the en-
semble clustering framework.

• Chapter 3: First the theory behind statistical modeling is introduced, then ran-
dom processes and the Dirichlet process are discussed. Finally, the mixture models
are defined.

4

1.4. Outline of the Thesis

• Chapter 4: The chapter combines the previous theory and concepts to discuss
the PCK framework.

Part 2: Proposed Method; The Dirichlet Process Cluster Kernel
The second part contains one of the contributions in the thesis. The theory and

motivation behind the DPCK is explained.

• Chapter 5: The framework of the DPCK is proposed and the algorithm is derived.

Part 3: Experiments.
The third part contains the experiments conducted in the thesis.

• Chapter 6: Investigation of the parameters in the DPMM.

• Chapter 7: Experimental comparison of the PCK and the DPCK.

• Chapter 8: The DPCK is applied to some semi-supervised problems.

Part 4: Conclusion.
The fourth and final part contains a summary of the thesis and a discussion about

the results obtained. Finally, some future work is discussed.

• Chapter 9: Summary of the thesis.

• Chapter 10: Discussion of the performance of the DPCK. With discussion about
application in semi-supervised classification problems.

• Chapter 11: Discussion of future work based on and around the framework of
DPCK.

5

Part I.

Theory, Concepts and Methods

7

2. Kernels, Clustering and Ensemble
Clustering

In data analysis we are concerned with predictive modeling, given some training data
we want to predict the behavior of unseen test data. We call this task learning, and we
make a clear distinction between learning problems that are supervised (classification)
and unsupervised (clustering). In supervised learning we have labeled data, the ground
truth for the data categories. Unsupervised learning is to analyze data with unlabeled
data [29]. Generally we speak of two different data analysis techniques: exploratory
and confirmatory. In exploratory analysis we wish to understand the underlying struc-
ture or characteristics of the data set [30]. Confirmatory is when you wish to confirm
or validate a set of hypotheses [31]. In some applications it is natural to have some mix
between labeled data and unlabeled data, as such a field of growing interest is called
semi-supervised learning. In semi-supervised learning we often have a small portion
of the data as labeled data, while the rest remain unlabeled. The unlabeled data are also
used in the learning process. In clustering semi-supervised learning is used by encoding
prior knowledge by specify pair-wise constraints, a weaker way of encoding the class
labels [32].

The focus of the thesis is unsupervised learning and clustering. Organizing data into
sensible groupings is one of the most fundamental methods of understanding and learning
within exploratory data analysis. Cluster analysis is the formal study of methods and
algorithms for grouping objects according to measured or perceived characteristics or
similarities [33]. We know that clustering is an unsupervised method, meaning that we
do not use category labels to find structures in data. As such clustering is exploratory in
nature and a challenging problem with a vast literature available. A lot of problems can
be formulated as clustering challenges. Some of these problems is image segmentation
[34], document clustering [35] and structure analysis of genome data (DNA) [36].

In this chapter we are going to introduce some methods for analyzing data. The first
method is dimensionality reduction a way to visualize high dimensional data or reducing
data complexity. Secondly we want to do a brief overview of kernels and kernel methods
in machine learning. Kernel methods is going to be the basic framework of the thesis, as
we later want to create a kernel by clustering the same data multiple time. Thirdly we
are going to introduce some clustering algorithms, to conceptualize the ideas previously
discussed. Finally we introduce cluster ensembles a flexible and robust framework for
combining multiple clusterings of the same data.

9

2. Kernels, Clustering and Ensemble Clustering

2.1. Dimensionality Reduction

Within data analysis we are often interested in visualizing data, to explore and under-
stand the data visually or avoid the curse of dimensionality [37]1. In some cases we need
to reduce the dimensions of our data to remove redundant information which increase
computing speed and predictive accuracy. Applications for dimensionality reduction
techniques are many but for the thesis we will focus on using it for visualizing data in
two dimensions.

2.1.1. PCA

One method used to reduce the dimensions is called principal components analysis (PCA)
[39]. In PCA we want to project the data onto the principal components such that
we keep as much variance as possible. We want to find an orthogonal set of L basis
vectors (wj) and the corresponding scores (zi). Such that the linear transformation
W · x minimize the average reconstruction error (mean square error) [40]. Thus we
have obtained a new basis for the data where we also have a score for the information
contained in each basis (in terms of reconstruction error or loss of information). Once the
optimal solution is obtained we can remove n basis vectors with the lowest corresponding
scores and have a new space with fewer dimensions containing the most information.

The solution obtained when W contains the L largest eigenvalues with corresponding
eigenvectors of the covariance matrix is called PCA [40]. In figure 2.1 we see the prin-
cipal components of a bivariate Gaussian sample, the length correspond to the scores
of information (eigenvalues). If we projected all the data down on the largest principal
component we would loose less variance then if we used the smaller one.

1The curse of dimensionality is a term to describe to problem caused by the exponential increase in
volume associated with extra dimensions to Euclidean space [38]

10

2.1. Dimensionality Reduction

Figure 2.1.: The principal components (in red) of a multivariate Gaussian sample.

Example

In figure 2.2 we see all four different dimensions plotted against each other for the data
set Iris species. We see that one class is separated from the other two, but the last two
is not separable from each other. The problem that arise is how to visualize data when
the number of dimensions grow, as plotting all them all is quickly not feasible. Thus we
need methods to reduce the dimensionality when working with data. In figure 2.2 we
see that projection the Iris data set on two principal components give good results. We
see that one class is linearly separable from the other two, but the two last classes can
not be linearly separated.

11

2. Kernels, Clustering and Ensemble Clustering

Figure 2.2.: The top two rows display different dimensions of the Iris data set. The figure
of the last row is the data projected onto the two largest eigenvectors of the
empirical covariance matrix (PCA).

In figure 2.3 we see a data set before and after using some feature preprocessing steps
2. The figure illustrate that we can apply dimensionality reduction and visualize the
effect of us working on it. We see that after working with the data set we did improve
the discrimination for the two classes, and that we can visualize these effects.

2When preprocessing we are interested in adding and manipulating features such that different classes
become more discriminant. Specific steps are outside the scope of the thesis.

12

2.2. Kernels

Figure 2.3.: Figure displays a data set projected down on the two largest eigenvectors of
the covariance matrix, before and after doing some feature pre-processing.
Different colors represent different classes.

2.2. Kernels

The theory behind kernels and reproducing kernels is beyond the scope of the thesis, for
a discussion about these topics see [41–43].

In this section we try to summarize the main properties of a kernel that we need later
in the thesis. We summarize the main properties through examples and demonstrations
with the use of Kernel methods.

2.2.1. Kernel Methods

Kernel methods is a wide array of methods designed to learn non-linear boundaries with
linear learning models [40]. The methods are designed in two parts: one that performs
an implicit mapping from input space to feature space The second is a linear learning
algorithm, an algorithm that discover linear boundaries [44]. We represent the implicit
mapping as inner products in feature space in a matrix, called a kernel K. We describe
one element of K as

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 (2.1)

Where Φ(·) is the map from input space to feature space. In figure 2.4 we see a visual-
ization of one such map. The map in this figure is created using the function which we
call a polynomial kernel k(xi,xj) = (xi · xj + c)d (in the case of figure 2.4 with degree
two and c = 0). The explicit map for the polynomial kernel is

x = (x1, x2)→ (z1, z2, z2) := (x21,
√

2x1x2, x
2
2) (2.2)

To explicitly map all the observations to the three dimensional feature space would be
a tedious task, and impossible if we want to choose a infinite dimensional feature space.
Luckily for us we can utilize the fact that we choose an algorithm that is optimized
through inner products. Thus when changing the inner products to happen in feature
space, we can replace the calculations with a call to the kernel matrix. Doing this we

13

2. Kernels, Clustering and Ensemble Clustering

Figure 2.4.: Figure showing the main idea of kernel based methods, to map observations
to a high dimensional space where they are linearly separable. The kernel
trick is to only calculate the inner products in the new space, R3. Source:
Sven Laur, ”SVM and Kernel methods for Graphs”, Graph Mining 2011.

efficiently find a linear boundary in a high (or infinite) dimensional space. We call this
the kernel trick.

In (2.3) we see how we represent one element of the kernel matrix K for the polynomial
kernel function.

K(x,y) = 〈Φ(x),Φ(y)〉 =
〈

(x21,
√

2x1x2, x
2
2), (y

2
1,
√

2y1y2, y
2
2)
〉

=

(x1y1 + x2y2)
2 = (x · y)2

(2.3)

Some well known kernel functions are the polynomial kernel k(x,y) = (x ·y + c)d and

the Radial basis function (RBF) kernel k(x,y) = exp
(
−‖x−y‖2

2σ2

)
[45]. One issue with

these kernel functions is that they depend on some parameters that drastically changes
the resulting feature space.

We know from [46] that any positive semidefinite matrix K can be thought of as a
kernel. Thus we do not need to explicitly define any kernel function, we just need to
create a positive semidefinite matrix in some way (that represent distances or similarities
between observations). These two properties of kernels and existing kernel functions are
fundamental in section 4.2. Where we construct such a kernel matrix by doing clustering
on the same data set multiple times.

2.2.2. Support Vector Machines

Support vector machines are a well known classification algorithm widely known for its
ability to use kernels to improve accuracy. The finer details about this algorithm is
outside the score of the thesis, for further details see [47–50].

The Support vector machines (SVM) learns a linear decision boundary (the boundary
separating two classes) between classes using inner products to optimize the distance to

14

2.2. Kernels

the boundary. Thus we can use kernel functions to replace the inner products in input
space to feature space.

2.2.3. Example using Kernel Principal Component Analysis and
Support Vector Machines

Recall that in section 2.1.1 we introduced a way to create a low-dimensional (linear)
embedding of some data [51]. In PCA we project on the principal components defined
on the empirical covariance matrix. Recall that we find the empirical covariance matrix,
and project on the eigenvectors to calculate the principal components.

However we can perform PCA in feature space following the reasoning in [52]. We
find the empirical covariance matrix in feature space in (2.4) and note that the solution
to this eigenvalue problem depend only on the inner products in this space. Thus we
use the kernel trick to find a non-linear embedding of the data, we call this method the
kernel principal components analysis (KPCA).

S̄ =
1

N

N∑
i=1

Φ(xi)Φ(xi)
T (2.4)

In figure 2.5 we see the decision boundary when training a SVM using no kernel,
the polynomial kernel (degree 5) and the RBF kernel. The top row show a plot of the
data projected down on the top two eigenvectors of the kernel matrix using KPCA. We
observe that we can greatly increase the classification accuracy, without a great loss in
speed, using kernel function and the kernel trick.

15

2. Kernels, Clustering and Ensemble Clustering

Figure 2.5.: Figure showing artifical data and the effect of mapping the data using the
polynomial kernel and the RBF kernel, then projecting using KPCA. The
bottom row shows the boundary when training the support vector machine
with different kernels. Colored points correspond to ground truth.

2.3. Clustering

In [53] they define the goal of clustering; as to separate a finite unlabeled data set
into a finite and discrete set of natural data structures. Having unlabeled observations
increase the difficulty of the problem, because what the best result is depend on who
is interpreting the results (and how!). As such clustering is a highly subjective process
which rule out an absolute judgment as to the efficiency of different clustering algorithms.
This case is further supported in [54], where they argue that in cluster analysis a group of
objects are split into a number of homogeneous subgroups on the basis of an subjectively
chosen measure of similarity.

The operation of clustering and grouping things occur naturally for people, and we
are very good at finding them, and it is something we do on a daily basis. An example
is through different groupings of species, as one group can be dogs and another can be
cats. Looking through observations of different animals, we could argue that based on
some set of specific characteristics (weight, hight, eye color ...) there should be a way
to separate dogs from cats. In many cases we would know how many groupings we are
looking for like in the dog or cat example. In reality this might not be true, and you

16

2.4. Clustering Methods

Figure 2.6.: Figure illustrating the difficulty of choosing the appropriate amount of clus-
ters.

have to guess, estimate or use other tools to find the number of groupings.
If one want to separate all the animals into land and non-land animals, based on one

characteristic; if they are observed on land or in water. Immediately we would have a
problem with animals observed both on land and in water. We might improve our results
by adding an additional possible grouping, hybrid animals. This example illustrate one
of the main application of clustering, as it is unsupervised it can be used as a data
mining tool to help build knowledge and understanding of your data. In figure 2.6 we
try to visualize the difficulty of choosing the appropriate number of clusters.

The normal application to clustering is when you assume that each observation only
belong to one group, this is called hard clustering. But some algorithms allow for each
observation to belong to more than one group, you have a measure of membership
(observation i belong to group a and b with weights 0.3, 0.7 respectively). This method
of clustering is called fuzzy clustering or soft clustering. Intuitively we can think
of fuzzy clustering as a way of assigning pseudo probabilities for each observation to
belong in the different clusters [40], it is worth noting that from a fuzzy clustering it
is trivial to get a hard clustering for each observation, just assign to the most likely
cluster. Additionally for fuzzy clustering we can say something about the uncertainty
of assignments by looking at the unused weights.

2.4. Clustering Methods

Different clustering methods partition observations into a number of clusters or groups,
based on different measures of (dis)similarity. From [53] we know that a assignments
obtained from running a clustering algorithm, should have the property that observations
in the same cluster should be similar to each other, while observations in different clusters
should be dissimilar.

17

2. Kernels, Clustering and Ensemble Clustering

In this section we will first go through some basic clustering algorithms, then some
more advanced ones using kernel methods.

2.4.1. K-Means

One of the most used clustering methods is K-Means , as the name indicate the methods
is based on having K different means. We assign each observation to the closest mean
based on some dissimilarity measure between means. Commonly we use the euclidean
distance as a dissimilarity measure. Clearly we can modify the algorithm to work with
similarity measures and different measures might be used for different tasks. K-Means is
a versatile clustering algorithm applied with success in many different areas, with small
modifications in (dis)similarity measures and/or definition of cluster means. Examples
for application is document clustering [35, 55], image segmentation [56, 57] and bioinfor-
matics to analyze Microarrray data [58]. We note that using euclidean distance create
a linear boundary between classes.

The objective function that is minimized running the K-Means algorithms is the sum
of squared errors between the mean of each cluster and all observations in different
clusters [33] . The cost function for K-Means is the squared error between each mean,
µk, and each cluster assignment set, ck = {xi | zi = k}, written as:

J(ck) =
∑
ck

‖xi − µk‖2 (2.5)

It can be shown that the K-Means algorithm minimize the sum over all, K different,
J(ck).

J(C) =
K∑
k=1

J(ck) =
K∑
k=1

∑
ck

‖xi − µk‖2 (2.6)

Additionally we know that good initial means are essential for the success of partitioned
clustering algorithms as K-Means [59], and K-Means is only guarantied to converge to
local minima due to the random selection of initial cluster means [60]. However there is
a high probability for global maxima if the cluster separation is high [33].

Algorithm 1 K-Means batch algorithm

1: Initialize µk . Draw K observations as initial means.
2: while Not converged do
3: zi = arg mink ‖xi − µk‖2 . Assign each observation to the closest cluster.
4: µk = 1

Nk

∑
ck

xi . Update each cluster mean with all observations belonging to
the cluster.

In algorithm 1 we see that the standard K-Means algorithm can be modified with
different distance measures and definition of cluster means without much trouble.

18

2.4. Clustering Methods

2.4.2. Spectral Clustering

Spectral clustering is a family of clustering methods which exploits the eigenvalues and
eigenvectors of a similarity matrix to create a partitioning of the data. Spectral clus-
tering have been applied to a wide range of problems, within image segmentation [34],
document clustering [61] and self-driving cars [62]. The reason being the simplicity of
implementing the algorithm. Additionally the clustering obtained is able to learn linear
boundaries in high dimensional space. However even tho spectral clustering is an easy
algorithm to implement, the theory behind is involved. Much of the theory behind spec-
tral clustering lie outside the scope of the thesis. For a more in-depth discussion about
spectral clustering see [63, 64].

In general we say that spectral clustering consist of four steps as described in algorithm
2. In general there is multiples way to create similarity graphs and graph Laplacians
both normalized and not. As such there exists many different algorithms. We are going
to briefly discuss these methods before showing an example.

Different Similarity Graphs

There are several popular constructions to transform a data set represented as a simi-
larity matrix into a graph. Constructing Similarity Graphs we want want to model the
local structures, e.g. local relationships between data points. Two such methods is the
The ε-neighborhood graph and k-mutual nearest neighbor graph.

To create the ε-neighborhood graph we connect all observations with a distance < ε.
The k-mutual nearest neighbor graph is constructed by connecting observation i with j
if j is one of the k closest neighbors of i. Or if j is one of the closest neighbors of i.

Graph Laplacians

The topic of Graph Laplcaians is outside the scope of the thesis, the interested reader
can see [65, 66].

Spectral Clustering Algorithm

Algorithm 2 General Algorithmic Scheme for Spectral Clustering

1: function SpectralClustering((Similarity matrix, k))
2: Construct similarity graph from similarity matrix.
3: Compute Graph Laplacian.
4: Calculate k largest Eigenvectors ui of Graph Laplacian and create the matrix

U = (u1, ...,uk).
5: Cluster U using K-Means , where each row represent one observation.

19

2. Kernels, Clustering and Ensemble Clustering

2.4.3. Kernel K-Means

One drawback of K-Means is that it can only find linear boundaries between classes. A
approach for tackling such problems is kernel K-Means . As the name indicate kernel
K-Means lies within kernel methods from section 2.2. Thus we use K-Means in high
dimensional space to learn nonlinear boundaries.

For generalization purposes we derive an weighted kernel K-Means . Let αi = w(xi) be
the weight for observation xi. Setting all weights equal to one we get an unweighted algo-
rithm. For some kernel function Φ we introduce the weighted kernel K-Means objective
function following [67]. Let πj contain the indexes of observations assigned to cluster j.

J
(
{πj}kj=1

)
=

k∑
j=1

∑
xi∈πj

αi‖Φ(x)−mj‖2

Where mj =

∑
xn∈πj αnΦ(xn)∑

xn∈πj αn

(2.7)

Where we expand the distance calculation in feature space as

‖Φ(xi)−mj‖2 = Φ(xi) · Φ(xi)−
2
∑

xn∈πj αnΦ(xi) · Φ(xn)∑
xn∈πj αn

+

∑
xn,xc∈πj αnαcΦ(xn) · Φ(xc)(∑

xn∈πj αn

)2 (2.8)

Thus the Euclidean distance from Φ(xi) to a cluster mean mj can be calculated
efficiently using the kernel matrix. As discussed in [68] the kernel K-Means cost function
is identically to standard K-Means except for the fact that distances are computed using
the kernel matrix. If we choose all α’s to be one and Φ to be the identity function
algorithm 3 simplify to the standard K-Means .

Algorithm 3 Weighted Kernel K-Means batch algorithm

1: Initialize k clusters from input {πj}kj=1 else randomly.
2: while Not converged or max iterations reached do
3: Compute d(xi,mc) from (2.8) for all observations and clusters.
4: Assign all points to clusters zi = arg minc d(xi,mc).
5: Update cluster means with respect to new assignments.

Additionally they prove in [69, 70] that a general weighted Kernel K-Means objective
is mathematically equivalent to a weighted graph partitioning objective. Thus we can
use weighted Kernel K-Means to directly optimize the graph partitioning objectives,
without computing the eigenvectors.

2.5. Ensemble Clustering

One characteristic of clustering, is the lack of truth about the data. Therefore optimiz-
ing the clustering process with respect to clustering algorithms and parameters are a

20

2.5. Ensemble Clustering

Figure 2.7.: Diagram displaying the general process of ensemble clustering.

highly subjective task. Ensemble methods is one framework that try to deal with these
problems. The basic idea, is to cluster the same data multiple times with different algo-
rithms and parameters and combine the results. The justification is that as we cluster
the same observations in the same clusters we accumulate evidence that this is true [71].
Ensemble methods have been adopted and used in classification with good results for a
long period of time. Mainly through boosting [72, 73] and bagging [74].

Clustering is an unsupervised method, we can not use methods from supervised meth-
ods to optimize parameters and initializations. As such the main goal of ensemble clus-
tering is to have an algorithm which is robust to both parameters and initializations [75].
In figure 2.7 we see a diagram of the general process of ensemble clustering. Looking at
the figure we divide the process up into three parts. First we have to create n different
clusterings, secondly we have to combine the results from multiple clusterings. Finally
we have to recover a final clustering based on all n results. However, it is worth nothing
that ensemble clustering comes at a cost, as we have to create n different clusterings we
increase the total computation time needed. Further the n different clusterings might
use to much computer resources to be feasible for large data sets.

In this section we discuss different ways to create clustering ensembles (different clus-
terings), then we discuss some challenges with combining the results. Finally we briefly
show some methods to recover the final clustering.

2.5.1. Producing Clustering Ensembles

When producing different clustering ensembles we need the different ensembles to be
diverse enough to capture different structures of the data. Initiating the same algorithm
with different parameters and initial conditions we capture different structures within
the data [76, 77]. In figure 2.8 we see an illustration of this. In figure 2.8 a) we see that
we learn local scales with five clusters. In figure 2.8 b) we learn global structures by
using two clusters. One way of doing this is to cluster the data into different number
of clusters for each ensemble, where two clusters would map to global structures and
15 would give local structures. In figure 2.9 we see some methods which we can use to
create different clustering ensembles. To project to different subsets we can randomly
choose a subsample from the original sample. To increase diversity we can sample with
and without replacement, and change the subsample size.

21

2. Kernels, Clustering and Ensemble Clustering

(a) (b)

Figure 2.8.: a) Clustering partition with local scales. b) Clustering partition with global
scales.

Different subspaces can be obtained by many approaches. We can choose to only use
a subset of the variables available, or we can project on p ≤ D principal components
using PCA. Another methods for embedding is Laplacian eigenmaps [78], a method to
preserve local structures in the projection.

To get diversity in the cluster ensembles we can change the hyper parameters in each
ensemble, such as varying the number of clusters etc. Different clustering algorithms
can be combined with all the other methods mentioned.

We can combine the different methods to further increase diversity. For example
we can choose a subset of data and project it down on the two largest eigenvectors
using PCA and initiate with a random number of clusters. Then we can do something
totally different for the next ensemble, using the full sample but only choosing two of
the variables on a different clustering algorithm with a different number of clusters.

It should be mentioned that even if the problem scales with the amount of cluster-
ing ensembles, each ensemble is produced independently of the others. Producing the
clustering ensembles is an embarrassingly parallel problem [71], [79].

2.5.2. Combining the Evidence

As we saw in the previous section there is many ways to ensure diversity in our clustering
ensembles. The challenge that arise is to combine the ensembles and accumulate the
evidence in such a way that it is invariant to relabeling and the number of clusters.
We call the function that combines the ensembles the consensus function. From the
literature we know that there exists many different consensus functions.

In [71] they use a counting function, where they count each time two observations is
in the same cluster and normalizing by the number of ensembles. This create a N ×N
matrix representing similarities between observations.

22

2.5. Ensemble Clustering

Figure 2.9.: Some methods to create different cluster ensembles.

Other consensus functions used in the literature is, but not limited to: relabeling and
voting [80, 81], Co-association matrix based methods [82], graph and hypergraph based
methods [83], finite mixture models based methods [84] and many more.

2.5.3. Final Clustering

Once we have the outcome of the consensus function we need to have a method to
recover one final clustering and make use the accumulated evidence. This depend fully
on the consensus function used in the previous step, due to different consensus function
having different outputs. The counting function previously explained output a similarity
matrix, and from section 2.2 we know that this represent a kernel matrix. Thus we can
use a number of methods to recover the final clustering. We can use is spectral clustering
from 2.4.2 or kernel K-Means from section 2.4.3 as these methods work by inputting a
similarity matrix.

Furthermore we note that the use of these kernels is not limited to clustering, as they
can be used in both supervised learning, through SVMs, and dimensionality reduction
with KPCA.

23

3. Dirichlet Process Mixture Models

We briefly discussed some of the obstacles within unsupervised learning and clustering.
As we have no ground labeling available we have no way to verify the final clustering.
Choosing the number of clusters is an hard task as the dimension of the data increases,
when we can not visually plot the data. The aim of this chapter, is to first discuss
statistical background theory and methods such that we can introduce a statistical
clustering model. Finally we aim to introduce the nonparametric mixture model, the
DPMM, this is the base clustering model we will apply to the current cluster kernel
framework. One advantage of the DPMM is that it infers the number of clusters when
learning the model.

Before introducing the DPMM, we review and discuss some statistical theory. We
start by introducing the notion of statistical distributions and statistical models. Then
we expand the framework to Bayesian statistics, and give some examples. Further, we
explore random processes, especially we spend some time on laying the framework of
the Dirichlet process. Then we move into Markov chains and the world of numerical
statistics using Markov chain Monte Carlo (MCMC), where we derive the Metropolis-
Hastings algorithm (MH-algorithm) and the Gibbs sampler. Additionally we discuss
bootstrapping for creating a confidence interval and doing hypothesis testing. Finally
we derive the collapsed Gibbs sampler for the GMM, before taking the infinite limit to
get the DPMM.

3.1. Statistical Distributions

It can be more intuitive to visualize and grasp properties of an univariate distribution,
compared to multivariate distributions. The aim of this section is to review the univariate
distributions of the multivariate ones we are going to use later. Intuitively we want to
use the simple, intuitive, visualization to generalize some properties to the multivariate
distributions.

3.1.1. Student’s t-Distribution

Later we are going to look at the multivariate Student’s-distribution. Therefore it is
convenient to recall the main properties of the univariate Student’s t-distribution before
diving into the more advanced model.

The Student’s t-distribution arises when estimating the mean of a normal distributed
sample, where the σ is unknown. As such we say that the t-distribution describes samples
draw from a full normal distributed sample. In equation (3.1) we see the probability

25

3. Dirichlet Process Mixture Models

Figure 3.1.: Probability density function of the Student’s t-distribution for different de-
grees of freedom ν. Source: Student’s distribution - Wikipedia.

density function for the Student’s t-distribution. The degree of freedom comes from the
number of samples such that: ν = N − 1, where N is the number of samples. We see in
figure 3.1 that as we increase the samples N we approximate the normal distribution, in
applied context we say that around 20-30 they are approximately equal. Additionally
we observe that the Student’s t-distribution is just a wider normal distribution (more
uncertain).

T (x; ν) =
Γ(ν+1

2
)√

νπ Γ(ν
2
)

(
1 +

x2 + 1

ν

)
(3.1)

In figure 3.1 we see the probability density function of the Student’s t-distribution for
different values of freedom ν.

3.1.2. Dirichlet Distribution

In chapter 3, we want to introduce a model based on the Dirichlet process. The Dirichlet
process is going to share a lot of the properties with the Dirichlet distribution. Just as
the Dirichlet distribution does with the beta distribution. Before going through the
details of the Dirichlet process we briefly discuss the main properties of the Dirichlet
distribution.

The Dirichlet Distribution is a multivariate Beta distribution, in fact the marginal
distribution of a Dirichlet distribution is the Beta distribution. As such the Dirichlet
distribution is a way to sample probability vectors that sum to one. If we let p ∼ Dir(α)

26

3.1. Statistical Distributions

then p = {p1, p2, ..., pk}, where
∑k

i=1 pi = 1. If k = 2 then Dir(α) simplifies to the Beta
distribution.

From [85] we recite the main properties of the Dirichlet distribution.

p ∼ Dir(α) =
1

B(α)

k∏
i=1

pαi−1i α = (α1, ..., αk) (3.2)

E(p) =
α

α0

, Var(p) =
α(α0 −α)

α2
0(α0 + 1)

α0 =
∑
i

αi (3.3)

Qi ∼ Beta(αi, α0 − αi) Marginal Distribution
(3.4)

(Q−i | Qi) ∼ (1−Qi)Dir(α−i) Conditional Distribution
(3.5)

(Q1, Q2, ..., Qi +Qj, .., Qk) ∼ Dir(α1, α2, ..., αi + αj, ..., αk) Aggregation Property
(3.6)

In figure 3.2 we see plots for different values of α. We can think of αi as a weight
parameter, if one of the αi are greater then the other then we will have more samples
from that area. Equal values will result in an uniform sample, inside the probability
simplex. The proportions between αi decides the variance, we see in figure 3.2 that as
αi increases the variances decreases. The Dirichlet distributed sample is generated using
the Pólya’s Urn algorithmic scheme, for additional details see [86, 87].

Figure 3.2.: Figure displays the Dirichlet distribution simplex for different values of α.

27

3. Dirichlet Process Mixture Models

Stick-breaking

The stick-break approach to generating a random vector with a Dir(α) distribution is
going to prove useful when we introduce the Dirichlet process in section 3.3.2. Suppose
we start with a stick with length one and we want to break it into n pieces such that
the lengths of the n pieces follow a Dir(α) distribution [85]. From (3.5) we observe that
the conditional distribution for the second piece given the first is:

(Qi, Qi+1, ..., Qk) | (Q1, ..., Qi−1) ∼
i−1∏
j=1

(1−Qj)Dir(αi, αi+1, ..., αk) (3.7)

and the marginal distribution from (3.4) give us the distribution for piece i.

Qi | (Q1, Q2, ..., Qi−1) ∼
i−1∏
j=1

(1−Qj)Beta(αi,
k∑

j=i+1

αj) (3.8)

Figure 3.3 illustrate the distribution of each piece as we break it and figure 3.4 show
some realizations for α = (10, 5, 3).

0 1Q1 Q2 Qi

Q1 ∼ Beta(α1,
∑k

j=2 αj)

Q2 | Q1 ∼ (1−Q1)Beta(α2,
∑k

j=3 αj)

Qi | (Q1, ..., Qi−1) ∼
∏i−1

j=1(1−Qj)Beta(αi,
∑k

j=i+1 αj)

Figure 3.3.: Figure displaying how the stick is distributed according to the Stick-breaking
representation.

Figure 3.4.: Some realizations of the Dirichlet distributed stick for α = (10, 5, 3)

28

3.2. Statistical Models

3.2. Statistical Models

The term model will be used from time to time throughout the thesis. Talking about a
model we talk about a statistical model on some sample space Ω. This is in fact a set
of probability measures on Ω parameterized by some parameter θ [88].

Terms that will be used and discussed are parametric and nonparametric models.
According to [88] the difference is on the dimension of the parameter space; if the
dimension of θ is finite we call the model parametric. Equally the model is called a
nonparametric model if θ has infinite dimension. Additionally we call a distribution on
an infinite dimensional space a stochastic process.

3.2.1. Statistical Inference

In the classical statistical approach we say that inference is done in three steps:

1. Assume that n observations are from a sample space Ω, such that X = {xi | xi ∈ Ω}

2. Model the observations as random variables from a probability measure in the
model, i.e.

X1, ...,Xn ∼iid Pθ (3.9)

3. Draw conclusion about the value of θ, and hence the distribution of Pθ, from the
observations.

3.2.2. Example of Statistical Modeling

To illustrate the difference between parametric and nonparametric methods we study a
classical parametric and nonparametric density estimation example. Suppose we observe
some real valued data x1, ...,xn, and would like to get an estimate of the underlying
density. Using classical parametric density estimation we assume that our observations
come from some normal distribution. We then use maximum likelihood estimation to
estimate the mean and standard deviation.

For the nonparametric density estimation we use a method called Kernel Density
Estimation (KDE), where we assume that the observations are from a mixture of normal
distributions. We add a new normal distribution with mean xi for each observation with
some fixed σ and average all of these to estimate the density. Figure 3.5 illustrates the
two approaches.

Comparing the number of parameters (Dim(θ)) for each of the estimators, we see that
the Gaussian maximum likelihood estimate have two degrees of freedom. The mean
and standard deviation are fixed for all sample sizes n thus it is a parametric approach.
Using KDE we need an additional parameter for each additional data point, the position
of each observation. The dimension of the parameter space increase linearly with n, and
we say that KDE is a nonparametric approach.

29

3. Dirichlet Process Mixture Models

(a) (b)

Figure 3.5.: Density estimation using Gaussians. a) Maximum likelihood estimation. b)
KDE. Source: [88]

3.2.3. Bayesian Framework

In Bayesian modeling, probabilities are used to describe inferences and to quantify the
degree of belief about the parameters [89]. We model parameters as random variables
where the randomness reflects our lack of knowledge about them, so called prior prob-
ability distribution (representing the degree of belief about model parameters prior to
observing any data). Once the prior and the likelihood distribution have been decided
the model is completely specified, we use the following notation for a Bayesian model.

f(θ | X) =
f(X | θ)f(θ)∫
f(X | θ)f(θ) dθ

(3.10)

posterior =
likelihood× prior

evidence
(3.11)

Therefore using a Bayesian framework we allow for prior knowledge to be incorporated
within the model. As discussed in [90] we need to be careful when choosing a prior, as an
over-specified prior will overfit and drag the posterior toward the more complex model
(leaving the base model with no support in the posterior even where the base model is
the true underlying model). In figure 3.6 we see an example of this, where we want to
find the boundary between two Gaussians. We see here that finding the optimal solution
for new observations being sampled from the two Gaussians, a) would generalize better
(the boundary between two Gaussians is a line).

30

3.2. Statistical Models

(a) (b)

Figure 3.6.: Example of overfitting to the data.

Normally we divide Bayesian inference into three general steps [89]:

1. Formulating the probabilistic model, i.e. the joint distribution over data and
parameters, including priors.

2. Infer the parameters of the posterior distribution.

3. Checking model fit and computing quantities of interest.

Finally we summarize the model of which we assume our observations to come from
in a Bayesian model:

Θ ∼ f(θ)

X1, ..., Xn | Θ ∼iid f(X | θ) (3.12)

It is important to note that the observations is only conditionally independent.

3.2.4. Conjugate Priors

We recall that in a Bayesian framework we need to make assumptions about the distri-
bution of parameters. Choosing a prior distribution in the same family of distributions
as the likelihood implies that the posterior will have the same distribution as the prior.
This kind of prior is called conjugate prior and it is widely used in statistics for its
nice mathematical convenience [91]. A conjugate prior gives a closed form expression
for the posterior.

The conjugate prior for a binomial distribution is the beta distribution. To show an
example of a conjugate prior let f(X | p) ∼ Bin(k, p) with known k, and f(p) ∼ Beta(a, b)

31

3. Dirichlet Process Mixture Models

for a data set X =

x1...
xk

.

f(p | X) ∝ f(X | p)f(p) =
k∏
i=1

[
pxi(1− p)n−xi

]
· pa−1(1− p)b−1 =

pa+
∑k
i=1 xi−1(1− p)b+n−

∑k
i=1 xi−1

(3.13)

We observe that the posterior distribution is a beta distribution with updated parameters
(thus the beta distribution is the conjugate prior for the binomial distribution). In figure
3.7 we see some example plots of the beta distribution.

f(X | p)f(p) ∼ Beta

(
k∑
i=1

xi + a, b+ n−
k∑
i=1

xi

)
(3.14)

For a comprehensive review of conjugate priors for univariate and multivariate distri-
butions see [92].

3.2.5. Example Using Bayesian Inference and Conjugate Priors

As an example using conjugate priors and Bayesian inference we will construct a model
using the Bayesian framework to modeling batting-players in baseball. Assume that we
have observed three players batting ten times each during a game, each batting can be
a miss or hit. We want to model the batting average, expected value of the posterior
distribution, for each player. We can model each player with a hit or miss as binomial
distributed with known number of batting attempts n. The probability, p of a hit is
unknown and we can use a beta distribution as the prior.

f(p | X) ∝ f(X | p)f(p) Posterior (3.15)

f(X | p) = Bin(n, p), Likelihood (3.16)

f(p) = Beta(a, b), Prior (3.17)

Where X is the data matrix containing the player scores and f(p) is the prior distri-
bution for making a hit. From (3.14) we get the following posterior distribution for each
player.

f(p | X) = Beta

(
k∑
i=1

xi + a, b+ n−
k∑
i=1

xi

)
(3.18)

As discussed in section 3.2.3 we can incorporate prior knowledge in our model. For
our specific model we choose our parameters a and b in the following sense; the mean

32

3.3. Random Processes

batting average is around 0.27, and should reasonable range between 0.21 and 0.35
(prior knowledge). If we set a = 81 and b = 219 we get the right expected value and
standard deviation for the beta distribution. In figure 3.7 we see the prior distribution
and the posterior distribution for each player, calculated from (3.14) and table 3.1.

From visual inspection of figure 3.7 we observe that even one player achieve 10 hits,
the batting average is still reasonable within what we would expect! We see that with a
good chosen prior we get good results even for small sample sizes, we can think of this
fact as giving our model a head start using prior knowledge. One thing to note is that
when the sample size increases the prior knowledge is less useful for the model, looking
at the posterior parameter

∑k
i=1 xi + a, we see that in a larger sample

∑n
i=1 xi >> a.

Miss Hit
Player 1 5 5
Player 2 8 2
Player 3 0 10

Table 3.1.: Table of hitting scores for three different players.

0
.2

0
.2

5

0
.3

0
.3

5

0
.2

7
0

.2
7

7

0
.2

6
5

0
.2

9
4

Batting average

Prior

Player 1

Player 2

Player 3 Figure 3.7.: Plot of the beta prior and pos-
terior distribution for each of
the players from table 3.1. The
batting average prior is µp =
0.27 and for each player the
posterior is µ1 = 0.277, µ2 =
0.266 and µ3 = 0.294.

3.3. Random Processes

3.3.1. Stochastic Process

From 3.2 we know that a parameter space with infinite dimension is called a stochas-
tic process. Additionally we know that a stochastic process is a collection of random
variables indexed by some set, where all the random variables are defined on the same
underlying set [85]. The random variables should be defined in such a way that there
exists a joint distribution over the collection of random variables. Intuitively we can
think of a stochastic process as a random process.

33

3. Dirichlet Process Mixture Models

To give a better understanding of what a stochastic process is, we look at a simple
example for a stochastic process. From the literature we define a a random walk model.
A stochastic model where we start at time zero and at every time step i + 1 we can go
either up or down with probability p and 1 − p respectively. The random variables is
the value/position, where the index is at time i: i = {0, 1, ..., n}. In figure 3.8 we some
realizations of this random walk model for different values of p.

Figure 3.8.: Display of some realizations for a random walk model. Initiated at zero,
with a probability p to go up and 1− p to go down.

3.3.2. Dirichlet Process

The aim of this section is to give an overview of Dirichet processes, for a more in depth
discussion see [8, 93]. First we discuss the properties of the Dirichlet process analog
to the Dirichlet distribution. Then we give an intuitive example of a related process.
Finally we show an example of a sample generated from the Dirichlet process.

In section 3.1.2 we saw that the Dirichlet distribution is a multidimensional general-
ization of the beta distribution. Analog to this the Dirichlet process is an infinite dimen-
sional generalization of the Dirichlet process. The marginal distribution of a Dirichlet
process is Dirichlet distributed. With words we say that the Dirichlet process is a way
to provide a random distribution over distributions over infinite sample spaces. We say
that each draw from a Dirichlet process is itself a distribution [85]. If we have a bag of
infinite number of dices, where each dice have some probabilities (and thus a distribu-
tion) assign to each side. We say that a draw from a Dirichlet process is one dice, where
each dice (draw) can have different distributions. However, the mean of the Dirichlet
process can be a dice with p = 1/6 for all sides, and we note that the mean of the
Dirichlet process is a distribution.

To give an intuitive example we look at a related process, called Chinese restaurant
process (CRP). The CRP is constructed such that the process represent a distribution

34

3.3. Random Processes

over the infinite partition of the integers. We start with a Chinese restaurant with
an infinite number of tables, and let customers enter one at a time. The first customer
enters and sit at the first empty table. Then we let the following customers have a chance
to sit at a new table, or at a existing table with n customers. We let the probability
of choosing a new table be proportional to some value α and the probability of sitting
at an existing table to be proportional to the number of persons sitting at the specific
table. At any point in this process the assignment of customers defines a random finite
partition over N [94].

Figure 3.9.: Expected number of tables in a Chinese restaurant process for different
values of alpha.

The posterior distribution given N customers have entered the restaurant is

tk+1 | t1, ..., tK ∼
1

α +N

(
αH +

N∑
j=1

δti(·)
)

=
1

α +N

(
αH +

K∑
i=1

Niδti(·)
)

(3.19)

where t1, ..., tK is the K different tables. Additionally δti represent the position for table
ti drawn from the base distribution H (intuitively it is the location of the table inside
the restaurant, but for this example we ignore the specific position). Furthermore we
note that for j ∈ [1, N] we do not have unique positions (sum up each customer). For
i ∈ [1, K] we sum up all the repeated positions (sum up each customer at the table)
thus Ni is the number of customers at table i.

35

3. Dirichlet Process Mixture Models

The table t1 will be repeated by tk+1 with a probability N1, customers sitting at the
table. Thus the Dirichlet process inhabit a rich-gets-richer phenomenon, where large
tables grow faster. In figure 3.9 we see the expected number of tables as a function of
N customers for the CRP.

α N

N1 N2 NK
. . .

Figure 3.10.: Figure illustrating how customers enter the restaurant in a CRP, they can
sit at a new table with probability (proportional to) α or sit at an existing
table with probability (proportional to) N =

∑K
i=1Ni, where Ni is the

number of people sitting at table i.

Using the CRP from figure 3.10 and (3.19) we can create a realization from a Dirichlet
process by assuming that each table is a bivariate normal distribution with some mean
(position of each table lie in the xy-plane). When a customer enters he can sit at an
existing table meaning that we draw a value from that bivariate normal distribution. If
he chooses to sit at a new table we draw a mean for that table from the base distribution:
the bivariate normal distribution. In figure 3.11 we see a realization using this base
distribution CRP, Each plot represent the realizations at different number of observed
customers. Note that in figure 3.11 we see the rich-gets-richer phenomenon clearly.

36

3.4. Markov Chains

Figure 3.11.: Figure showing realizations using a CRP at different amount of observa-
tions.

3.4. Markov Chains

In section 3.5 we want to cleverly construct Markov chains to do numerical statistical
modeling. However, before introducing those methods we refresh a few concepts from
Markov chain theory. First we define the Markov property, then we discuss some of the
possible states a Markov chain can have. Finally we introduce the notion of stationary
distributions, which we will need in section 3.5.

We start by defining the stochastic process:

{Xn | n ∈ N} (3.20)

where Xn is some random variable, where we say that X0 is the initial state of the
process, and let Xn = i denote that the process is in state i at time n. Next we say that
the Markov property is when the next step only depends on the present state. We
call this stochastic process a Markov chain if the Markov property hold for all time
steps n. For a discrete Markov chain we show the Markov property:

Pij = P (Xn+1 = j | Xn = i, ..., X0 = i0) = P (Xn+1 = j | Xn = i) ∀ n ≥ 0 (3.21)

We call Pij the transition probability between state i and j, and is independent of
n. The probability of moving from state i to state j. Additionally we call the matrix

37

3. Dirichlet Process Mixture Models

containing all one step transition probabilities a transition matrix, P.

P =

P00 ... P0k
...

. . .
...

Pk0 ... Pkk

 , Pij ≥ 0 ∀ i, j ≥ 0 and
∞∑
j=0

Pij = 1, ∀ i (3.22)

A Markov chain is fully specified by its initial state and the transition matrix. Ad-
ditionally we denote the n step transition matrix as (P)n = Pn [95]. These are the
probabilities that the Markov chain moves from state i to j in n steps.

3.4.1. Classification of States

In Markov chain theory it is important to classify state of the Markov chain. In figure
3.12 we see a simple diagram of a Markov chain. For the thesis, one important state of
a Markov chain is irreducibility. Later we will need this property to justify the existence
of a stationary distribution.

Sunny Rainy
0.6

0.7

0.4 0.3

Figure 3.12.: Display of a Markov chain.

P =

(
0.4 0.6
0.7 0.3

)
(a)

P5 =

(
0.5373 0.4627
0.5398 0.4602

)
(b)

P20 =

(
0.5385 0.4615
0.5385 0.4615

)
(c)

Figure 3.13.: a) One step transition matrix. b) Five step transition matrix. c) 20 step
transition matrix.

Two states in a Markov chain is said to communicate if they are accessible from each
other, e.g. you can go from sunny to raining with some probability > 0. Additionally we
say that all states that communicate is in the same class. Finally we say that a Markov
chain is irreducible if there is only one class (all states communicate).

For a stationary distribution to exist we need an irreducible time reversible Markov
chain. A time reversible Markov chain is a Markov chain where the proportion of moves

38

3.5. Markov Chain Monte Carlo Methods

from state i to state j is equal the proportion of moves from j to i. Mathematically we
define a time reversible Markov chain as a chain where:

πiPij = πjPji, ∀ i, j (3.23)

πi is the limiting probabilities for state i, and represent the proportion of time the chain
is in state i.

If a Markov chain is both irreducible and time reversible then we know that the sta-
tionary distribution exists [95]. The reason for why we need the stationary distribution
to exist, is obvious in section 3.5. In the example Markov chain in figure 3.13 we can
see the approximated stationary distribution in figure 3.13 c).

3.5. Markov Chain Monte Carlo Methods

Bayesian statistics began with the with the introduction of Markov chain Monte Carlo
(MCMC) methods. One of the main steps in Bayesian methodology is to infer parameters
of the posterior distribution. Analytically tractable posterior distributions is often not
the case, as such Bayesian statistics had its rise together with numerical methods [90].

In the following sections we first introduce Monte Carlo methods. The framework
for numerically approximating expectations, given that you can sample from the dis-
tribution. Then we will discuss how we can construct Markov chains with a specific
stationary distribution. Such that when we run the Markov chain we obtain a sam-
ple from a specific (target) distribution, we can use the previously discussed numerical
methods of MCMC. Thus we introduce a robust framework for approximating posterior
distributions.

We will use this framework later to discuss statistical clustering methods based on
mixture models. Within these clustering schemes we need to numerically approximate
some posterior distributions, where we will utilize MCMC methods.

3.5.1. Monte Carlo Method

We start by introducing Monte Carlo methods, based on approximating E(h(X)) by
drawing samples {Xi : i = 1, ..., n}, recall the connection between integration and ex-
pected value.

µh = E(h(X)) =

∫ ∞
−∞

h(x)fX(x) dx ≈ 1

n

n∑
i=1

h(Xi) = µ̂h (3.24)

when Xi is an iid sample from f , for a function h. If we can generate a sample from
f then we can evaluate the integral for any function h (If we can evaluate the function
h[f(·)]). In general, drawing samples independently from the distribution is not feasible,
since the distribution can be non standard (it is shown that as long as we draw samples
Xi throughout the support of the distribution they do not have to be independent) [96].

39

3. Dirichlet Process Mixture Models

Further we observe that we can rewrite an integral in the following way∫
D
f(x) dx =

∫
D
h(x)

f(x)

h(x)
dx =

∫
D
h(x)g(x) dx , g(x) =

f(x)

h(x)
. (3.25)

therefore from (3.25) we can approximate almost any integral, with the criteria being
that we can sample iid from the function h and evaluate g(h(·)). This way of using
the integral to approximate the expected value of a sample from a distribution is called
the Monte Carlo method. Monte Carlo methods is closely related to other numerical
methods for solving integrals, except that here we sample our grid randomly instead of
having it fixed (achieving many grid points in high probability space). It is worth noting
that by varying the function f we can approximate many quantities of interest, such as
expectation, variance and the median.

3.5.2. Example

Monte Carlo methods is useful in many applications and science areas, we can even
approximate π using this toolbox in the following way: We know that the area of a
circle with radius one is π, it is also equal to the integral:

AI =

∫ 1

−1

∫ 1

−1
I(x2 + y2 ≤ 1) dx dy (3.26)

where I() is a indicator function. If we sample x, y ∼ Unif(0, 1) we look at one forth of
the full circle, such that we can use Monte Carlo integration to approximate π as:

π = AI ≈
4

n

n∑
i=1

I(x2i + y2i ≤ 1) (3.27)

This method only require us to being able to do simple algebraic operations and sample
u ∼ Unif(0, 1). In figure 3.14 we see samples for the circle/square and the error as a
function of n, together with a 95% confidence interval. We observe that to the number
of MCMC samples needed to get accurate results is very high.

40

3.5. Markov Chain Monte Carlo Methods

Figure 3.14.: Figure on the left show samples within the square, where red indicate inside
circle and red outside. On the right we see the mean error as a function of
n, with a 95% confidence interval.

3.5.3. Constructing Markov Chains

The success of Monte Carlo methods is the feasibility to sample from the specific distri-
bution f . It turns out that we can construct Markov chains in a clever way, that their
stationary distribution is the target distribution f . This imply that when we run the
Markov chain for a sufficient amount of time, we get a sample from f [96]. There are
many ways of constructing these chains, and they are all special cases of the framework
introduced by Metropolis and Hastings [95]. Approximating statistics in this way is
called MCMC, more specific we say that MCMC refers to the framework of producing
an ergodic Markov chain with a specific stationary distribution. In relation to the ran-
dom walk model explaining what a stochastic process is, equally in MCMC we perform
a random walk through the probability distribution in question, favoring values with
higher probabilities.

How does the initial state X0 affect the Markov chain in general? We see in [96] that
as the chain moves on it will gradually forget, and depend less, on the initial state. This
implies that as the chain moves on the sampled points {Xi} will look more and more like
a sample from the stationary distribution. We say that after a sufficiently long burn-in
period of Nburn iterations the points {Xi | i = Nburn + 1, ..., N} will be a dependent
sample approximately from the stationary distribution [96] .

The two most known algorithms for MCMC is called MH-algorithm and Gibbs sam-
pling, where the Gibbs sampler is a special case of MH-algorithm.

Metropolis Hastings Algorithm

For each step i, the next state xi+1 is chosen by first sampling a candidate x∗i+1 from a
proposal distribution (proposal distribution may depend on xi). Then we accept the

41

3. Dirichlet Process Mixture Models

candidate with probability:

α(xi, x
∗
i+1) = min

(
1,
p(x∗i+1)q(xi | x∗i+1)

p(xi)q(x∗i+1 | xi)

)
(3.28)

Where q() is the proposal distribution and p() is the target distribution. From [96] we
see that remarkably, the proposal distribution can have any form and the stationary
distribution of the chain will be the target distribution.

Algorithm 4 Metropolis-Hastings algorithm

1: Initialize x0
2: for i = 1 to N do
3: Sample u ∼ Unif(0, 1)
4: Sample x∗i+1 ∼ q(x∗i+1 | xi) . where q() is the proposal distribution

5: if u < α(xi, x
∗
i+1) =

p(x∗i+1)q(xi | x∗i+1)

p(xi)q(x∗i+1 | xi)
then

6: xi+1 = x∗i+1

7: else
8: xi+1 = xi

As an example of the MH-algorithm we want to sample from a mixture of two Gaus-
sian, as such we chose the proposal distribution as another Gaussian with mean xi and
high variance in each iteration. As such we define the target distribution (stationary
distribution) and proposal:

p(x) ∝ 3 exp

(
−1

5
x2
)

+ 7 exp

(
−1

5
(x− 10)2

)
Target distribution (3.29)

q(x | y) ∼ Norm (µ = y, σ = 50) Proposal distribution (3.30)

Using (3.29) and (3.30) we can see the histogram of the MH-algorithm samples and the
target distribution after different iteration points in figure 3.15. It is important to note
the large amount of MCMC samples required to converge to the target distribution. As
we can read in [97] even if the MH-algorithm is very simple, it requires careful design of
the proposal distribution to converge in a feasible amount of samples.

42

3.5. Markov Chain Monte Carlo Methods

Figure 3.15.: Figure showing target distribution and histogram of the MH-algorithm
generated samples at different iteration points.

The Gibbs Sampler

Instead of updating the whole of x at every iteration step, it is often more conve-
nient and efficient to divide x into components x = (x1, ..., xn). We denote x−j =
(x1, ..., xj−1, xj+1, ..., xn), all components except xj. As such we construct the Gibbs
sampler, which is a special case of the MH-algorithm where you choose a specific pro-
posal distribution. If we chose the proposal distribution for updating the jth component
of x to be

q(x∗i+1 | xi) =

{
p(x∗i+1,j | xi,−j) If x∗i+1,−j = xi,−j

0 Otherwise
(3.31)

Then the corresponding acceptance probability can be shown to be equal to one [97].

43

3. Dirichlet Process Mixture Models

Algorithm 5 Gibbs sampler

1: Initialise x0 ∈ Rn

2: for i = 1 to N do
3: for j = 1 to n do
4: Sample xi+1,j ∼ p

(
xj | x(i+1),0, ..., x(i+1),(j−1), ..., x(i+1),(j+1), ..., x(i+1),n

)
Where xi,j is indexed such that i represent iterations step and j is the dimension. As

an example to better understand the Gibbs sampler we want to generate a sample from
a two-dimensional Gaussian:

x ∼ N2(µ,Σ) = N2

(
(µ1, µ2),

[
Σ11 Σ12

Σ21 Σ22

])
(3.32)

If we are only able to sample from the univariate Gaussian distribution and if we recall
that the conditional distribution of a bivariate Gaussian is univariate, we can create a
Gibbs sampler to iteratively generate a sample from x. The full conditional is written
as:

x1 | x2 ∼ N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21

)
(3.33)

Let the bivariate Gaussian be:

x ∼ N2

(
(2, 5),

[
1 −0.5
−0.5 1

])
(3.34)

Initiating with x0,2 = 2 we calculate

x1,1 | x0,2 = 2 ∼ N(µ1 + Σ12Σ22−1(x0,2 − µ2),Σ11 − Σ12Σ
−1
22 Σ21) = N(3.5, 0.75) (3.35)

We sample and draw x1,1 = 3. We calculate the next step in the Gibbs sampler:

x1,2 | x1,1 = 3 ∼ N(5 + (−0.5)(3− 2), 1− 0.25) = N(4.5, 0.75) (3.36)

If we keep following this logic we generate a sample from the bivariate Gaussian in
(3.34). In figure 3.16 we see the generated samples after different numbers of iterations.
Note that we used no burn-in period, burn-in period is the first b samples from the
Markov chain. In more complex problems we want to discard the b first samples because
we have not entered the stationary distribution of the chain yet.

44

3.6. Bootstrap

Figure 3.16.: Figure showing samples generated using a Gibbs sampler for a bivariate
Gaussian after different number of iterations. No burn-in period used.

3.6. Bootstrap

In this section we are briefly going to discuss the empirical bootstrap. The empirical
boostrap is a statistical (Monte Carlo) technique made popular by Bradley Efron [98,
99]. We will develop the needed theory to bootstrap an empirical confidence interval.
We will use these bootstrapped confidence intervals to further analyze the experiments
in chapter 7.

The bootstrap is a data-based simulation method to do statistical inference, typically
avoiding parametric assumptions [100]. The general idea of bootstrap is to sample with
replacement from the observed data set and estimate the empirical distribution of the
predictor. In figure 3.17 we see a digram of the bootstrap principle.

The bootstrap principle is to resample B times with replacement form the original
sample. Each bootstrap sample should be the same size as the original sample1.

To give some form of justification to why the empirical bootstrap work we can see
how an empirical distribution approximates the true distribution better as we get more

1The resample should be the same size because the variation of the statistic will depend on the size
of the sample. We want to approximate the original sample and should use the same size.

45

3. Dirichlet Process Mixture Models

Figure 3.17.: Digram of the bootstrap principle.

(a) (b)

Figure 3.18.: Empirical and true distribution for two a) n = 100 observations and b)
n = 1000 samples.

and more samples. In figure 3.18 we see the true distribution (F) and the empirical
distribution (F ∗) for a) n = 100 and b) n = 1000 samples. As we can see the empirical
distribution approximates the true distribution better as we get more samples. We
expect the empirical distribution of a predictor to behave in the same way, thus as we
follow the bootstrap principle we estimate the distribution of the predictor. Thus we
can find mean, variation and confidence intervals of the predictor using bootstrapping.
Note that we do not assume any prior distribution for the predictor.

3.6.1. Empirical Bootstrap Confidence Intervals

We can find the empirical confidence interval without assuming the underlying distribu-
tion using bootstrapping. To find the confidence interval we want to know how much
the distribution of some predictor µ∗ varies around the mean of the predictor µ. That is,
we want to know the distribution of ζ = µ∗−µ. If we knew the distribution (or assumed
it) we could calculate the percentiles of ζ. Recall that the (1-α)100% confidence interval

46

3.7. Gaussian Mixture Models

is:
p(ζ1−α/2 ≤ µ∗ − µ ≤ ζα/2) = 1− α (3.37)

However we can estimate the distribution of ζ using bootstrapping and approximate
the percentiles. Note that since we estimate ζ using bootstrap, we resample from the
original samples. We can then resample how many times we want, and estimate the
distribution with high precision.

Now we can estimate ζ∗i = µ∗i − µ, where µ is the prediction of the original sample,
and µ∗i is the prediction of bootstrap sample i. This we can create B such samples and
find the empirical percentiles of all the ζ∗i . Then we have the confidence interval as
[µ− ζ∗1−α/2, µ− ζ∗α/2].

3.6.2. Empirical Bootstrap Hypothesis Testing

Similar to confidence intervals we can use bootstrapping to do hypothesis testing. For
the thesis we will focus only on a two sided test to check if two population means is
zero. This is the only test we will use in the thesis, to test if the predicted values of one
model is different then the other.

The basic idea is to first transform the data such that H0 is true, e.g. make the
difference in mean zero. Then we resample B samples from that data. We then calculate
the difference between the two means in each of the bootstrap sample given. Finally we
count the number of times the means under H0 is larger then the original difference. Let
µ∗Xi

denote the mean of bootstrap sample i of sample X given that H0 is true.

p-value =

∑B
i=1

(∣∣µ∗X,i − µ∗Y,i∣∣ > |µX − µY|
)

+ 1

B + 1
(3.38)

3.7. Gaussian Mixture Models

The aim of this section is to derive the collapsed Gibbs sampler for a finite mixture model.
Following the notation from [16] we know that a finite GMM with K components can
be written as:

f(X | µ,Σ,w) ∼
K∑
k=1

wkN (X;µk,Σk) Likelihood

f(w | α) ∼ Dir(α) = Dir (α/K, · · · , α/K) Weight prior

f(µk,Σk | β0) = f(µk | Σk)π(Σk) Parameter prior

(3.39)

where β0 is the hyper parameters for the prior.
From the model in (3.39) we introduce the stochastic latent variable zi, indicating

which of the k components xi belong to. Then, we indicate with wk = P (zi = k) the
probability that xi belongs to component k, which can be expressed as:

p(z | w) ∼ Categorical(z1, ..., zK | N,w1, ..., wK) (3.40)

47

3. Dirichlet Process Mixture Models

3.7.1. Conjugate Priors for Mean and Covariance

We assume the that the parameter for each component (mean and covariance) are drawn
from the same prior distribution. Specifically, we choose the prior for µ and Σ to be
a Gaussian and an inverse-Wishart distribution respectively. Since the covariance of a
Gaussian mixture and its mean are dependent their joint distribution must be specified
accordingly [17]. Given the join dependent distribution that we have chosen to define
prior for the mean and covariance, the full joint distribution is a completely conjugate
prior density, named a Gaussian Inverse-Wishart (GIW) distribution:

p(µ,Σ | β0) = p(µ | Σ,m0, κ0)p(Σ | S0, ν0) ∼ N
(
µ;m0,

1

k0
Σ

)
· IW (Σ;S0, ν0)

∝ |Σ| 12 exp
{
−κ0

2
(µ−m0)

TΣ−1(µ−m0)
}
· |Σ|

ν0+D+1
2 exp

{
−1

2
Tr
(
S0Σ

−1)}⇒
p(µ,Σ | β0) ∼ GIW (µ,Σ; β0), β0 = (m0, κ0, ν0, S0)

(3.41)

As a way to understand how this prior behave we have the following interpretation for
the parameters in β0 [17]; m0 is our prior mean for µ, κ0 is how strongly we believe this
prior to be correct. S0 is proportional to our prior mean for Σ and ν0 is how strongly
we believe this prior to be correct. Additionally, we require that ν0 > D − 1.

3.7.2. Posterior of Parameters

The posterior distribution p(µ,Σ | X) in each mixture component is again GIW dis-
tributed.

p(µ,Σ | X) ∝ p(X | µ,Σ)p(µ,Σ) = N (X;µ,Σ) ·GIW (µ,Σ; β0) =

GIW (µ,Σ; βN)
(3.42)

with the updated parameters

βN = {mN , κN , νN ,SN}

mN =
κ0m0 +N x̄

κN
kN = κ0 +N

νN = ν0 +N

SN = S0 + S + κ0m0m
T
0 − κNmNmT

N

S =
N∑
n=1

xnx
T
n

(3.43)

where x̄ is the mean of the observations X with cardinality N .

48

3.7. Gaussian Mixture Models

The full joint distribution is in fact p(X,µ,Σ) = p(X | µ,Σ)p(µ,Σ). We get the
posterior predictive distribution for a new observation, x∗;

p (x∗ | X,µ,Σ) =
p (x∗,X,µ,Σ)

p (X,µ,Σ)
(3.44)

3.7.3. Constructing Sampling Scheme

So far we have not been dependent on using a conjugate prior, looking at the posterior
predictive in (3.44) and the fact that we choose a conjugate prior; we can analytically
integrate out µ and Σ. Therefore using the conjugate prior GIW we will construct a
collapsed Gibbs sampler for the GMM. The collapsed Gibbs sampler get its name
by integrating out (marginalizes over) one or more variables when sampling the cluster
assignments.

The labels zi can be assigned by using a Gibbs sampling scheme. Since we can calculate
the conditional distribution of the categorical distribution of z, we can sample labels one
at a time from:

zi | z−i ∼ f(zi | z−i,X,µ,Σ,w, α, β) (3.45)

For the GMM we want to create a Gibbs sampler such that we sample one at a time
from the conditional distribution for each observation given all the other observations,
zi | z−i. Intuitively this is equivalent to iteratively observer each observation for the first
time. From (3.45) we can marginalize out the mean and covariance, such that in each
step for each observation we sample from the categorical distribution;

zi | z−i ∼ {f (zi = k | z−i,X, α, β)}Nn=1 (3.46)

In order to perform the sampling scheme we need to expand the term in (3.46) and
find the analytical expression, we extend as:

f(zi = k | z−i,X, α, β0) ∝ f(zi = k | z−i, α, β0) · f(X | zi = k, z−i, α, β0)

= f(zi = k | z−i, α) · f(xi | X−i, zi = k, z−i, β0) · f(X−i | zi = k, z−i, β0)

∝ f(zi = k | z−i, α) · f(xi | X−i, zi = k, z−i, β0)

Term 1 Term 2

(3.47)

The two terms in (3.47) are in fact calculated independently.

Term 1 The first term is the likelihood that the new observation is assigned to com-
ponent k, given all other assignments and α.

f(zi = k | z−i, α) =
f(zi = k, z−i | α)

f(z−i | α)
=

f(z | α)

f(z−i | α)
=
Nk−i + α/K

N + α− 1
(3.48)

The step to finding the analytical solution in term 1 is done using the standard Dirichlet
integral [16].

49

3. Dirichlet Process Mixture Models

Term 2 The second term is similar to the marginalized posterior predictive in (3.44):

f(xi | X−i, zi = k, z−i, β0) = f(xi | Xk,−i, β0) =
f(Xk | β0)
f(Xk,−i | β0)

(3.49)

where Xk,−i represents the set of elements assigned to the k-th mixture, without
considering the i-th element. Notice that if zi 6= k, Xk,−i = Xk. This marginalized
posterior predictive distribution is known to have a multivariate Student’s t distribution
[40];

f(xi | Xk,−i, βN) ∼ T
(

xi|mN ,
κN + 1

κN(νN −D + 1)
SN , νN −D + 1

)
= T (xi|βk) (3.50)

3.7.4. Collapsed Gibbs Sampler for a Finite Gaussian Mixture Model

Algorithm 6 Collapsed Gibbs sampler for a finite Gaussian mixture model.

1: Initialize z.
2: for T iterations do
3: for i = 1 to N do
4: Remove xi from current mixture component zi = ∅.
5: Remove empty mixture components.
6: for k = 1 to K do
7: calculate f(zi = k | z−i,X, α, β0) . From term 1 (3.48) and term 2 (3.49).

8: Draw zi = knew from {p (zi = k | z−i,X,w,µ,Σ, α, β0)}Kk=1.
9: Add xi to the new mixture component zi = knew

3.8. Dirichlet Process Mixture Model

The content of this section is one of the main building blocks of the contribution in the
thesis. We want to develop the nonparametric mixture model, the DPMM. In the thesis
we introducing the transition from a finite GMM to the infinite DPMM. We do this
transition by taking the finite GMM and observing the model as we take the limit on
the number of clusters to infinite, K →∞.

If we consider the categorical distribution we sample from in the finite model described
in (3.47). We have shown how it is possible to sample from this distribution using a
collapsed Gibbs iterative scheme, even tho we now want to study how the two terms
change as we let the potential number of mixture components go to∞ it is important to
note that we only observe a finite amount of non-empty mixture components. We denote
this variable number as kobs, the number of non-empty mixture components currently
being observed (at current iteration).

50

3.8. Dirichlet Process Mixture Model

Term 1: The probability P (zi = k | z−i, α) is governed by the CRP and it can be
derived by taking the limit K → ∞. Accordingly, the probability of assigning the ele-
ment xi to an existing mixture component versus assigning to an empty unused mixture
component (of which we have an infinite amount of):

P (zi = k | z−i, α) ∝
{
Nk−i if k is a non-empty mixture

α if k is a new mixture
(3.51)

with Nk−i the number of pattern which are assigned to the component k, excluding the
element xi. Note that the probability of using a non-empty mixture component can
be obtained trivially, by taking the limit K → ∞. For what concerns the probability
of observing a new mixture component(using an empty mixture component), we sum
α/K(N + α− 1) for each empty component, then get the total probability of which we
take the limit.

lim
K→∞

K∅∑
k=1

α/K

(N + α− 1)
=

1

N + α− 1

(α
K

+
α

K
+ ...+

α

K

)
=

α

(N + α− 1)
(3.52)

Observe that K∅(K) (the number of empty components) is a strictly increasing function
of K, and as we let K go to infinity we observe that the number empty mixtures goes
to infinite, such that we get limK→∞K∅ = K.

Term 2: The second term p(xi | X−i, zi = k, z−i, β) does only depend on the number
of observed mixture components Kobs and it can be computed as in the previous case.
The only difference is that if xi is assigned to a new component zi = k∗, the predictive
distribution in Eq. 3.50 must be computed considering X = ∅.

We can now construct a Gibbs sampler for a DPMM by samplinger from the Kobs + 1
dimensional multinomial distribution

zi ∼ {P (zi = k | z−i, X, w, µ,Σ, α, β0)}Kobsk=0 = (ŵ0, ŵ1, ..., ŵKobs) (3.53)

Where ŵ0 is the probability of choosing a new mixture component.

51

3. Dirichlet Process Mixture Models

3.8.1. Collapsed Gibbs Sampler for the Infinite Gaussian Mixture
Model

Algorithm 7 Collapsed Gibbs sampler for an infinite Gaussian mixture model.

1: Choose an initial z.
2: for T iterations do
3: for i = 1 to N do
4: Remove xi’s statistics from component zi.
5: Remove empty mixture components.
6: for k = 0 to K do
7: P (zi = k | z−i, X, w, µ,Σ, α, β). . as given in (3.53).

8: Sample knew from P (zi = k | z−i, X, w, µ,Σ, α, β) after normalizing.
9: Add xi statistics to the new component zi = knew.

3.9. Non Conjugate Priors

The collapsed Gibbs sampler we derived in section 3.8 requires that we use a conjugate
prior and analytically integrate out component parameters. Often researches choose
priors for mathematically simplicity and retractable posteriors. Or they choose priors
all ready used in existing literature, a spiral of confirmation bias. For many applications
we need to define non conjugate priors to best explain our model and support the data
at hand. For a much more in-depth discussion about priors see [90, 101, 102].

In section 3.8 we constructed the algorithm for training a mixture model using a
Dirichlet process prior, given that we used a conjugate prior. In this section we are
going to review some of the basic ideas behind handling non conjugate priors.

3.9.1. Adding Metropolis-Hastings Steps

One of the naive approaches for non conjugate priors is to implement Metropolis-
Hastings updates for the unknown posterior distribution. Using a non conjugate prior
makes the posterior predictive function in (3.44) analytically impossible to marginal-
ize. Such that we can use Metropolis-Hastings updates as discussed in section 3.5.3 to
approximate the posterior. For more details on this approach see [103].

3.9.2. Using Auxiliary Parameters

The second method for non conjugate priors that we are going to discuss in the thesis is
to use auxiliary parameters within the Gibbs sampling scheme. Auxiliary parameters in
this context is to introduce latent variable(s) and create the full join distribution. Such
that the full conditional for the latent variable(s) are standard distributions and can be
sampled directly. For more details about applications and results see [103, 104].

52

3.10. The Road to Faster Dirichlet Process Mixture Models Samplers

3.10. The Road to Faster Dirichlet Process Mixture
Models Samplers

In 3.8 we derived Algorithm 7 to fit a DPMM for clustering. One of the drawbacks
with the algorithmic scheme we derived is the iterative nature of MCMC methods.
Another drawback is that the sampler propose local changes since we sample one cluster
assignment at a time. Therefore the sampler exhibit poor convergence [105]. For larger
data sets we need to create schemes that allow for parallelization and faster convergence.

One approach to faster algorithms is to move away from MCMC sampling methods
and into approximate variational inference. These kind of algorithms does not have
convergence guarantees such as MCMC methods. However, in the literature they tend to
be the go-to algorithms for large data sets since these algorithms tend to be parallelizable.
For a much more in-depth discussion about variational algorithms for fitting a DPMM
see [106–108].

If we want to stay within in the MCMC world, there are proposed methods to increase
convergence speed and create (partly) parallelizable MCMC samplers for the DPMM.
In [109] they propose a fast MCMC sampler for Dirichlet process mixture models that
can be parallelized. They combine restricted Gibbs iterations with super-clusters [110–
112] with split/merge moves via sub-clusters [113, 114]. They show that the sampler
enforce the correct stationary distribution of the Markov chain (without the need for
approximations).

53

4. Probabilistic Cluster Kernel

In this chapter we discuss the data generated kernel function PCK. We create the kernel
by clustering with a probabilistic clustering algorithm, using multiple initialization with
different number of clusters [14]. The Probabilistic Cluster Kernel (PCK) is a robust
framework for creating a matrix representing similarities, robust to prior parametric
assumptions. Recall from section 2.2, that the RBF kernel is highly dependent on
the parameter γ. The motivation of the PCK is to create a kernel function that is
independent of prior parameter choices. In figure 4.1 we see a diagram for the process
used to create the PCK. One of the strengths with the PCK is that the process creates a
similarity matrix, as discussed previously these kernels have a wide range of application.

In section 2.5 we discussed the framework of ensemble clustering, where we introduced
a framework to use multiple clusterings to make a final robust and consistent clustering.
In this chapter we combine ensemble clustering methods with the GMM introduced in
section 3.7. The main idea is to learn a kernel function through clustering the data
multiple times, e.g. data driven kernel function. The posterior probabilities predicted
by each model for each observation are used to learn similarities.

The main idea of the PCK can be traced back to [13]. In the early days they cal-
culated the (hard) cluster memberships, and counted the number of times each pair of
observations was clustered together. Later it was adopted and further developed within
remote sensing [15, 115]. It was in the latter that they started to use the fuzzy clustering
assignments, or posterior probabilities obtained from the GMM to compute the kernel
matrix.

4.1. Mathematical Definition

We learn the Probabilistic Cluster Kernel (PCK) by using a GMM, where we fit each
model using the EM-algorithm [116, 117]. We let q = {1, ..., Q} be Q different initial-

Figure 4.1.: Display of the process used to create the PCK.

55

4. Probabilistic Cluster Kernel

izations, and c = {2, ..., C} be the number of clusters for a specific initialization. We
train each model by iterating c in the interval [2, C], and for each of these cs we do
Q different initializations. We ensure diversity by using different subsamples for each
q ∈ Q. Furthermore we sample a different number of features uniformly for each subsam-
ple. However, we ensure that we fit each model on atleast two features. For each fitted
model (q, c) we calculate the posterior probabilities πi(k, c) for each observation xi and
calculate the inner product between all the different observations. Thus one ensemble
create one kernel matrix, and we combine these kernels by averaging over all the kernels
[14]. We use the following notation for the PCK kernel function;

Kpck(xi,xj) =
1

Z

Q∑
q=1

C∑
c=2

πi(q, c) · πTj (q, c) (4.1)

where Z is a normalization constant, and πi(q, c) is the posterior probability for obser-
vation i in initialization q, having c clusters. For simplicity we will denote ΠN(q, c) as
the matrix containing πi(q, c) in row i, thus the shape of ΠN(q, c) is (N × c).

The PCK is motivated by creating a kernel function without prior parametric assump-
tions. However, we see that as we decide on the upper bound C we biased the model to
prior assumptions about the parametric shape of the data.

4.1.1. Counting versus Inner Products as Consensus Function

One question that arise from the construction of the PCK is why to use the inner
products of the posterior probabilities. Looking at figure 4.2 a) we see some data where
we have learned two clusters. The big dots represent them means of each cluster. If this
was one clustering inside an ensemble and we use counting to combine the results, we
would loose the similarities of the two observations circled in figure 4.2 b). While using
the inner products of the posterior probabilities we account for the relationship between
the two observations. Let us call them x1 and x1, to calculate the kernel function for
this ensemble in (4.2).

x1 = (0.55, 0.45)

x2 = (0.45, 0.55)

x1 · x2 = 0.495

(4.2)

Thus using a inner product consensus function, we keep more of the information about
similarities within each cluster ensemble. The counting consensus function would add
zero similarity between the two observations.

56

4.2. Algorithm

(a) (b)

Figure 4.2.: Toy example to illustrate two predicted mixture components.

4.2. Algorithm

In the training phase we fit each model and save the model parameters, and the subsets
of features used within each model. The model parameters can then be used in the test
phase to create the final PCK. For initiating the parameters for each GMM we can use
both fixed parameters for each model or random sampling of the values. For the purpose
of the thesis we will use fixed parameters for each ensemble when creating the PCK.

Algorithm 8 PCK: training phase.

1: function PCK(Train set, C, Q)
2: Initiate GMM parameters for each model Θcq.
3: for q in 1 : Q do
4: for c in 2 : C do
5: Initiate GMM with c clusters and parameters Θcq.
6: Fit GMM using a random subsample. Additionally randomly select the

features to use.

57

4. Probabilistic Cluster Kernel

Algorithm 9 PCK: test phase.

1: function PCK(Train set, test set, subsets of features for each model, GMM param-
eters.)

2: Initiate kernel matrix K = 0N×M .
3: for q in 1 : Q do
4: for c in 2 : C do
5: Compute posterior probabilities for train set, ΠN .
6: Compute posterior probabilities for test set, ΠM .
7: Update kernel matrix K = K + ΠN(q, c) · ΠT

M(q, c)

4.3. Dimensionality Reduction using the PCK

In figure 4.3 we see the difficulty of selecting the appropriate value for γ in a RBF kernel.
If we have prior information about the data, like the true class labels, we could tune γ
by visual inspection or according to some measure. However, in an unsupervised context
we need methods that do not rely on prior knowledge. In 4.3 d) we see that the PCK
discriminated two of the classes, and some discrimination between the two last classes.
Additionally we do an important observation, in figure 4.3 d) we see that there is no free
lunch in machine learning the PCK does not magically obtain the best results. As we
know from the free lunch theorems, there are no general-purpose universal optimization
strategy [118, 119].

58

4.3. Dimensionality Reduction using the PCK

(a) (b) (c)

(d)

Figure 4.3.: Data projected on the top two eigenvectors using KPCA, using the Iris
species data set. a-c) RBF kernels with different γ. d) PCK.

59

Part II.

Proposed Method; The Dirichlet
Process Mixture Model

61

5. The Dirichlet Process Cluster
Kernel

The content of this chapter is one of the main contributions of the thesis. The con-
tribution is to apply the DPMM to the PCK framework. In chapter 4 we saw that
the motivation for the PCK was to learn a data driven kernel function without prior
assumptions about the data. However, for the PCK we have to decide on the upper
bound C, the number of clusters to use. In doing so we assume some parametric shape
on the data.

In this chapter we propose to replace the finite mixture model, GMM with the DPMM
discussed in 3.8. The main idea is that each ensemble within the cluster kernel should
learn the number of clusters based on the data available. The hypothesis is that we
create a stable cluster kernel without a priori deciding on any critical shape parameters.
The new cluster kernel is a data driven kernel function that learns similarities in the
data by clustering.

5.1. Proposed Algorithm

To learn the DPCK kernel matrix we fit different DPMM using the collapsed Gibbs
sampler described in algorithm 7. To ensure diversity and robustness in the ensembles
we sample Q different sets of random hyper-parameters and initial conditions. By re-
sampling with replacement from the original data (called bootstrapping or bagging) we
obtain a collection of training sets to further increase robustness to parameter choice and
diversity in the ensembles [120]. We set the size of each bootstrap sample to the same
as our original training sample. Additionally we sample a random number of features in
the interval [2, D], where D is the dimension of the data set. We sample these uniformly

Figure 5.1.: Digram illustrating how the Probabilistic Cluster Kernel is constructed using
Dirichlet Process Mixture Models.

63

5. The Dirichlet Process Cluster Kernel

without replacement.
We initiate each model with a fixed, predefined number of clusters k. With the nota-

tion of initiating the DPMM with k clusters, we mean to initiate the label assignments
using K-Means for one iteration with k randomly selected cluster means.

To create the DP-CK kernel we take the inner products of the posterior probabilities
between all observations to create the DPCK kernel matrix. This is equal to the approach
used for creating the PCK in section 4.2.

Algorithm 10 DPCK: Training.

1: function DP-CK(Train set, Q)
2: for q in 1 : Q do
3: Draw parameters for the DPMM, β0.
4: Initiate model with parameters β0.
5: Fit model on different subsamples and with a random number of features.

Algorithm 11 DPCK: Test.

1: function DP-CK(Train set, test set, subsets of features for each model, DPGMM
parameters.)

2: Initiate kernel matrix K = 0N×M .
3: for q in 1 : Q do
4: Compute posterior probabilities for train set, ΠN .
5: Compute posterior probabilities for test set, ΠM .
6: Update kernel matrix K = K + ΠN(q) · ΠT

M(q)

64

Part III.

Experiments

65

In this part we run some experiments to investigate if the DPCK is an improvement
to the PCK. We run the different cluster kernels on a series of different data sets to
investigate the differences between the two cluster kernels. One of the goals of this part
is to examine different kinds of problems such that we later can discuss what kinds of
data sets and problems we can expect the DPCK to be an improvement.

The main goal of this part is to present quantitative and statistical evidence to the
performance of the DPCK versus PCK. We will structure each chapter in this part such
that we first present some motivation for the specific experiments. Then we display
the experimental setup that are going to be used. Finally we show the results of the
experiments and briefly discussing important results. The different chapters contains
different experiments with somewhat different subgoals. We will structure the chapters
in this part in the following way:

• Chapter 6: Investigation of parameter sensitivity of the DPMM.

• Chapter 7: Investigation of the DPCK versus the PCK.

– Section: 7.2: DPCK stability of parameters.

– Section: 7.3: Performance comparison on different data sets.

∗ Section 7.3.1: Classification problems.

∗ Section 7.3.2: Clustering problems.

∗ Section 7.3.3: Dimensionality reduction using KPCA.

• Chapter 8: Application of the DPCK in semi-supervised classification problems.

67

6. Parameter Investigation for the
Dirichlet Process Mixture Model

In this chapter we run some experiments to investigate how the collapsed Gibbs sampler
depend on its parameters. As we know from previous sections, the Gibbs sampler we
constructed for the DPMM depends on one parameter for the mixture weights and four
parameters for each mixture components density. Investigating the stability of the model
parameters can help us understand how the final DPCK ensemble of multiple DPMMs
behave. Additionally we want to say something about the range for each parameter and
how they are related to the final clustering.

The mixture weights are determined by the scale parameter α where we get less
mixtures when α is small and opposite when α is large. When using the CRP analogy α
determines the number of people at each table. Higher value for α leads to more tables
with less people.

We want to look at the parameters for each mixture, recall the marginalized posterior
predictive function from section 3.7.3.

f(xi | Xk,−i, βN) ∼T
(

xi|mN ,
κN + 1

κN(νN −D + 1)
SN , νN −D + 1

)
(6.1)

Here βN is dependent on the initial parameters β0 = {m0, κ0, ν0, S0}, they have to be
set by the user prior to running the clustering algorithm.

Starting with the mean of each mixture we get define m0 to be the mean of all
observations, e.g. zero for centered data sets. Additionally we see that the parameter
κ0 is related to the mean as:

mN =
κ0m0 +N x̄

κ0 +N
≈


x̄ , 0 < κ0 << 1
m0

N
+ x̄ , κ0 = 1

m0+x̄
2

, 1 << κ0 ≈ N

(6.2)

In (6.2) we see how the mean of each mixture approximates for different values of κ0.
We see in (6.2) that κ0 represent how much we believe our initial mean. Choosing a low
value we get mixture components only depending on the current observations assigned
to the cluster. While increasing the value we get an average of the two. We see at κ0
the mixture mean be close to x̄ as we assign more observations to the specific mixture.
We expect small values close to 1 for κ0 to perform good.

We choose the prior covariance S0 to be the identity matrix. The degree of freedom
ν0 is the scale parameter for the covariance, thus some value on our belief in the prior

69

6. Parameter Investigation for the Dirichlet Process Mixture Model

Low Medium High
α 0.01 1 100
κ0 0.001 1 10
ν0 10 25 80
kinit 5 10 25

Table 6.1.: Table containing values used to explore model parameters α, κ0, ν0 and kinit..

covariance. Choosing this value to be small, the variance of each mixture component
is large. As ν0 goes to ∞ each mixture components variance goes to Σ (multivariate
Gaussian). We note that ν0 = D + 15 should give reasonable results.

Our collapsed Gibbs sampler has another dependency with the number of clusters we
initiate with kinit. This can be explained by the fact that any posterior of mixtures can
be approximated arbitrarily well if we increase the numbers of mixtures [121]. Thus
when we start with a high number of clusters, removing clusters can decrease the total
likelihood. Additionally we know that the collapsed Gibbs sampler derived only sample
one cluster assignment at a time, therefore we can only do small local changes in each
iteration. When we write kinit = a we mean that we initiate the Gibbs sampler using
one iteration of K-Means with K = a, where we randomly sample the a different means.

6.1. Experimental setup

We want to investigate how the algorithm depends on the parameters. To do this we
choose three different values for each parameter, one low, one medium and one high. In
table 6.1 we see the different values we choose. We hope that by varying over these three
values we can see the general behavior of the algorithm. To visualize the effect we choose
to segment an image using our algorithm. In total we ran 81 different segmentations.
In figure 6.2 we see nine randomly sampled segmentations. We want to discuss how the
algorithm handles values that we believe to be to high or to low.

6.1.1. Data Set

For these experiments we will use the collapsed Gibbs sampler to segment an image of
a horse. The size for the image is 500 × 280 pixels (140 000 observations in R3.). In
figure 6.1 we see the original image together with the histogram of the different colors.
What makes this an interesting problem is that the Dirichlet process allow us to observe
different amount of clusters, for different segmentations.

70

6.1. Experimental setup

(a) (b)

Figure 6.1.: a) Original image. b) Histogram of RGB colors.

For the image we do not use any preprocessing, as such we only segment based on
RGB color values. To improve accuracy we could apply one of the many preprocessing
techniques available in the literature [122, 123]. These often include adding edges and
color of nearby pixels as features to add geometric context within the pixels [124].

71

6. Parameter Investigation for the Dirichlet Process Mixture Model

6.2. Results

Figure 6.2.: Display of 16 randomly drawn segmentations of all 81.

In figure 6.3 we see how the segmentation changes as we increase α from 0.001 to 100.
We see that as α increases we observe more of the small objects in the form of rocks and
such. This is what we would expect, since the probability of observing a new mixture
component is proportional to the value of α.

72

6.2. Results

(a) (b)

Figure 6.3.: Fixed: κ0 = 0.001, ν0 = 25 and kinit = 5. a) Segmented image obtained
when α = 0.01. b) Segmented images obtained when α = 100.

In figure 6.4 we see how the segmentation changes as we increase κ0. One important
thing to see here is that a lower value for κ0 will decrease the sensitivity of each cluster,
e.g. observations within a cluster can be less similar. Thus we observe that all the little
rocks and grass pieces is now contained in one cluster. While in 6.4 b) we see that they
are segmented together with the grass, for the most part.

(a) (b)

Figure 6.4.: Fixed α = 1, ν0 = 25 and kinit = 5. a) Segmented image obtained when
κ0 = 0.001. b) Segmented image obtained when κ0 = 10.

Observing from figure 6.5 that as ν0 increases, the spread of each mixture decreases.
This is as expected looking at term 1 and term 2 in (3.47), as the variance of each mixture
decrease as ν0 increases. The likelihood for observations further away from mixture
components will decrease and we will observe more compact mixture components.

73

6. Parameter Investigation for the Dirichlet Process Mixture Model

(a) (b)

Figure 6.5.: Fixed: α = 1, κ0 = 1, and kinit = 5. a) Segmented image obtained when
ν0 = 10. b) Segmented image obtained when ν0 = 80.

From figure 6.6 we see the difference when initiating with a low number of mixture
components versus a high number of clusters. In general we see that initiating with
a high number of mixture components seems to introduce a higher number of final
mixture components. Even tho choosing a high number of clusters to initiate with we
get reasonable results. Thus we can argue that the model is not very sensitive to the
parameters.

(a) (b)

Figure 6.6.: Fixed: α = 1, κ0 = 1, and ν0 = 25. a) Segmented image obtained when
kinit = 5. b) Segmented image obtained when kinit = 25.

74

7. Investigation of the DPCK

In this chapter we investigate the PCK and DPCK in terms of predictive accuracy and
clustering accuracy. First we will present some evidence to the stability of the DPCK
with respect to the parameters kinit and total number of ensembles. Then we illustrate
some benefits of using a nonparametric Bayesian model for learning the cluster kernel
compared to the parametric GMM.

The structure of this chapter will be such that we start by going through the exper-
imental setup, and explain the details used to learn both cluster kernels. Additionally
we will inspect the predictive accuracy and cluster accuracy for a range of different data
sets. Investigating how the DPCK and PCK learns the similarities. We then investigate
how the DPCK depends on the initial number of clusters used for each ensemble and
how the results correlate with the total number of ensembles. These results will be
presented in forms of some prediction results as a function of the number of ensembles
and inside a table with the score for each data set. Finally we visualize the difference in
the learned kernels using KPCA and looking at the projected data.

7.1. Experimental Setup

For learning the cluster kernels we follow the described and proposed algorithms in
chapter 4 and 5. As such algorithms 8 and 9 for the PCK and algorithms 10 and 11 for
the DPCK.

Learning the DPCK we fix the number of cluster ensembles to 70 and the number
of initial clusters to kinit = 11 (if not otherwise specified). Those numbers where ex-
perimentally chosen, as we will briefly show in section 7.2. Additionally we fix m0 as
the mean of all the observations and use a identity matrix as prior covariance. We fix
the number of iterations for each ensemble to be 20, we have seen through experiments
that 20 iterations is a good trade between accuracy and speed. We sample the DPMM
parameters for each ensemble from the intervals in (7.1). Where D is the dimension of
data e.g. xi ∈ RD.

α ∼ Unif(10−2, 1)

κ0 ∼ Unif(10−3, 1)

ν0 ∼ Unif(D + 25, D + 100)

(7.1)

For the PCK we fix Q = 5 and C = 15, thus creating a total number of ensembles of
75. We do this for all experiments unless otherwise specified.

All the experiments are repeated 10 times and we use the mean value. Additionally
we create a 95% confidence interval by using the empirical bootstrap method discussed

75

7. Investigation of the DPCK

in section 3.6.1. In the related literature on cluster kernels we see that they often
use the standard deviation. Some problems with this is that the standard deviation is
symmetric. In some cases this might not give the full picture, as the prediction accuracy
can not be greater then 1. Additionally using the empirical bootstrap we do not have
to assume any prior distribution on the predictions. For each data set we calculate the
p-value; for the null-hypothesis (H0) that the means are equal. We do this by using the
bootstrap method discussed in section 3.6.2.

7.1.1. Classification

To investigating the performance of the DPCK we test the prediction accuracy of the
learned PCK and DPCK cluster kernels. First we learn the different kernels as defined
in the previous section. Then we train a SVM using the learned kernels on a training
set. Then we predict the labels for the test set and measure the accuracy score. The
accuracy is measured using the mean accuracy. For ground truth Y = [0, 0, 1, 1] and
predicted Ŷ = [0, 1, 1, 1] we get the mean accuracy as 1

4

∑4
i=1 f(Yi, Ŷi) = 0.5 where f is

the function:

f(Y,X) =

{
1, Y = X

0, Y 6= X
(7.2)

7.1.2. Clustering

For the clustering comparison between the PCK and DPCK we use a spectral clustering
algorithm with the number of clusters equal the true underlying number. To get a
clustering accuracy we calculate the Normalized Mutual Information (NMI) score on
the labeling obtained by the spectral clustering algorithm.

NMI is a score between 0 and 1 for cluster accuracy where 0 is no mutual information,
and 1 is perfect correlation. One of its main properties is that it is independent of the
value of the labels. For additional information see [125].

7.1.3. Dimensionality Reduction

For visually inspecting the kernels we project the data down on the two largest eigen-
vectors using KPCA. We do this for a selection of the data sets.

7.2. Dirichlet Process Cluster Kernel stability

In this section we want to say something about how the DPCK depend on its param-
eters. Specifically how the results correlate with choosing kinit and the total number
of ensembles. In figure 7.1 we see how the final prediction accuracy depend on initial
number of clusters we use for each ensemble. We see that choosing kinit to be < 5 can
give bad results. For any value higher then this it looks stable. Furthermore we know
that the higher value for kinit we choose, the more computations we need to do. Thus we

76

7.2. Dirichlet Process Cluster Kernel stability

choose the value of 11 for all our experiments, as a nice trade-off between accuracy and
speed. Additionally we want to see if there is any difference between the rate at which
the ensemble converges (how fast or lower accuracy). Additionally we not that these
stability tests where done for 70 different ensembles. Thus for all other experiments we
choose the total number of ensembles to be 70.

(a) (b)

Figure 7.1.: Display of prediction accuracy for different values of kinit when creating the
DPCK. Shaded areas represent standard deviation.

77

7. Investigation of the DPCK

(a) (b)

(c) (d)

Figure 7.2.: Counts for how many clusters used by the different ensembles with the
DPCK on segmentation data set. Segmentation data set have seven different
clusters. a) Initiating with 2 clusters. b) Initiating with 5 clusters. c)
Initiating with 11 clusters. d) Initiating with 20 clusters.

In figure 7.2 we see the number of clusters used with each ensemble within the DPCK.
Observe that the algorithm rarely add additional clusters. Even tho the segmentation
data set have 7 true clusters, the different ensembles rarely add clusters to fit to this
number. The collapsed Gibbs sampler does not add clusters very often. Thus initiating
with a high number of clusters we get some of the same effect as in the PCK. We use
both few number of clusters, and many to learn local and global structures.

78

7.3. Comparing the Probabilistic Cluster Kernel to the Dirichlet Process Cluster Kernel

7.3. Comparing the Probabilistic Cluster Kernel to the
Dirichlet Process Cluster Kernel

In table 7.1 we see the classification accuracy for 9 different data sets. The scores
are calculated using a SVM on the DPCK and PCK. In table 7.2 we see the NMI
values for 9 different data sets. The p-value is calculated for the null-hypothesis of
equal score/NMI. If the p-value is small (typically 0.05) we say that the score/NMI is
significantly different1.

Additionally we want to see how the different cluster kernels converges to the final
value. We plot the prediction accuracy and NMI as a function of total ensembles for
different data sets.

7.3.1. Classification

In figure 7.3 we see that the DPCK and PCK get pretty equal results. It appears that
the two cluster kernels converges at the same rate as well. From table 7.1 we see that
the two kernels does not give significantly different results. Figure 7.3 might indicate
that we could increase the accuracy by adding more ensembles to the DPCK. While the
PCK have reached its full potential.

(a) (b)

Figure 7.3.: a) Predictive accuracy on the contraceptive data set. Comparison of the
accuracy as a function of the total number of ensembles between the DPCK
and PCK. b) Predictive accuracy on the ecoli data set. Comparison of the
accuracy as a function of the total number of ensembles between the DPCK
and PCK.

In figure 7.4 we see that for some data sets the DPCK performs very good. In 7.4 a)

1Do note that even if the p-value is large, the null-hypothesis is not necessary true.

79

7. Investigation of the DPCK

we see that the DPCK converges very fast, to a accuracy larger then the PCK. In 7.4 b)
we see that the DPCK converges faster and to a better solution with less variation. The
p-value from table 7.1 and the confidence interval suggest that the DPCK is significantly
better for these two data sets.

(a) (b)

Figure 7.4.: a) Predictive accuracy on the credit card data set. Comparison of the accu-
racy as a function of the total number of ensembles between the DPCK and
PCK. b) Predictive accuracy on the breast cancer data set. Comparison
of the accuracy as a function of the total number of ensembles between the
DPCK and PCK.

Name DPCK 95% PCK 95% p-value

ecoli 0.963 (0.963, 0.963) 0.960 (0.956, 0.963) 0.067
segmentation 0.826 (0.811, 0.84) 0.838 (0.814, 0.867) 0.436
imdb 0.666 (0.664, 0.669) 0.685 (0.674, 0.696) 0.001
UCI creditcard 0.780 (0.775, 0.784) 0.780 (0.769, 0.79) 0.931
creditcard 0.996 (0.996, 0.997) 0.967 (0.967, 0.967) 0.000
contraceptive 0.527 (0.52, 0.534) 0.516 (0.505, 0.526) 0.087
iris 0.981 (0.979, 0.983) 0.986 (0.978, 0.994) 0.297
breast cancer 0.948 (0.944, 0.951) 0.892 (0.882, 0.903) 0.000
spect 0.428 (0.387, 0.468) 0.535 (0.423, 0.653) 0.080
titanic 0.829 (0.824, 0.834) 0.844 (0.834, 0.854) 0.010
mcdonald 0.780 (0.765, 0.792) 0.821 (0.808, 0.833) 0.000
abalon 0.198 (0.189, 0.207) 0.232 (0.222, 0.243) 0.000

Table 7.1.: Prediction accuracy for different data sets using the DPCK and PCK. The
highest score for each data set is highlighted in bold.

80

7.3. Comparing the Probabilistic Cluster Kernel to the Dirichlet Process Cluster Kernel

In table 7.1 we see the prediction accuracy using the PCK and DPCK on different data
sets. We see that there is only a few data sets where we have statistical significance for
different means. The PCK seems to perform better then the DPCK when the data has
categorical features. While the DPCK performs better when we only have continuous
features. Additionally the DPCK might perform better when the data set has an uneven
amount of observation in each cluster or one of the clusters is more compact (in terms
of variance).

7.3.2. Clustering

In figure 7.5 we see that the PCK have a wider confidence interval, and having a lower
NMI value. In terms of convergence the two cluster kernels seems to obtain the best
value after 10-15 ensembles.

(a) (b)

Figure 7.5.: a) Clustering NMI score for the Breast cancer data set. Comparison of the
NMI as a function of the total number of ensembles between the DPCK and
PCK. b) Clustering NMI score for the Ecoli data set. Comparison of the
NMI as a function of the total number of ensembles between the DPCK and
PCK.

In figure 7.6 we see that both the cluster kernels have problems scoring high using
NMI for both the credit card data sets. Additionally the PCK seems to have problems
learning the similarities in any good way, as the score decreases with more ensembles.
The DPCK give more stable results, but still scoring in the 4% range. As the DPCK
reaches 70 ensembles for the credit card fraud detection data set the results seems to be
very unstable. This tells us that we might need more ensembles for this specific data
set.

81

7. Investigation of the DPCK

(a) (b)

Figure 7.6.: a) Clustering NMI score for the UCI creditcard data set. Comparison of the
NMI as a function of the total number of ensembles between the DPCK and
PCK. b) Clustering NMI score for the creditcard data set. Comparison of
the NMI as a function of the total number of ensembles between the DPCK
and PCK.

We can see in table 7.2 that in many cases we get a very low NMI score. Additionally
we see that the DPCK give higher scores for most data sets, and there are indicators
for significantly better mean. It is interesting to see that the DPCK do better on
unsupervised problems.

Name DPCK 95% PCK 95% p-value

ecoli 0.838 (0.814, 0.866) 0.719 (0.685, 0.751) 0.000
segmentation 0.658 (0.634, 0.681) 0.606 (0.575, 0.646) 0.019
imdb 0.028 (0.028, 0.028) 0.054 (0.046, 0.061) 0.000
UCI creditcard 0.046 (0.044, 0.049) 0.012 (0.0, 0.021) 0.000
creditcard 0.071 (0.011, 0.116) 0.006 (0.001, 0.011) 0.014
contraceptive 0.045 (0.043, 0.047) 0.052 (0.045, 0.058) 0.040
iris 0.702 (0.695, 0.71) 0.716 (0.683, 0.745) 0.400
breast cancer 0.717 (0.695, 0.745) 0.360 (0.338, 0.378) 0.000
spect 0.219 (0.204, 0.233) 0.190 (0.147, 0.231) 0.197
titanic 0.164 (0.161, 0.168) 0.096 (0.078, 0.11) 0.000
mcdonald 0.558 (0.538, 0.581) 0.430 (0.411, 0.451) 0.000
abalon 0.258 (0.254, 0.262) 0.259 (0.255, 0.264) 0.659

Table 7.2.: NMI for different data sets using the DPCK and PCK. The highest score for
each data set is highlighted in bold.

82

7.3. Comparing the Probabilistic Cluster Kernel to the Dirichlet Process Cluster Kernel

7.3.3. Dimensionality Reduction

In this section we visualize the kernels by looking at the two top principal components
using KPCA for different kernels. For these experiments we use the DPCK, PCK and a
linear kernel. The goal here is to visually inspect the cluster discrimination differences
between the kernels, and general structurally differences.

The PCK and DPCK is created in a similar manner, but there is a major difference
between the single models. The PCK forces local and global scales by iterating through
different number of clusters to use. As such we assume to less compact clusters from the
PCK. Creating the DPCK we recall the number of clusters used in each ensemble that
we saw in figure 7.2. There we saw that in general the number of clusters for a single
model is close to the initial number of clusters. Therefore we assume more compact
clusters, as we stay within the same scale for each ensemble.

DPCK PCK Lin. Kernel

B
re

a
st

C
a
n
ce

r
S

e
g
m

e
n
ta

ti
o
n

E
co

li

Figure 7.7.: Projection of three data sets onto the top two principal components using
KPCA on the DPCK, PCK and a linear kernel. Colors indicate true class
labels.

In figure 7.7 we see the difference between the principal components of the two cluster
kernels. The PCK tend to give wider clusters, while the PCK give more compact clusters.
It is interesting to see that the PCK and DPCK manage to isolate different clusters
for the breast cancer data. The PCK focus on the small compact cluster, while the

83

7. Investigation of the DPCK

DPCK evenly spread the two clusters. We see in the segmentation kernels that the
DPCK manage to mostly isolate four clusters, while the linear kernel isolate only one.
Additionally we see here that the DPCK seems to produce more compact clusters. The
difference in the spread of each clusters is seen for the other data sets as well. The
linear kernel have problems discriminating the green, teal and purple clusters, both the
DPCK and PCK manage that. Since the spread of each cluster is larger for the PCK,
the discrimination is higher using the DPCK.

84

8. Semi-Supervised Learning

In many applications we often have a small amount of labeled samples available, and
a large amount of unlabeled samples. In such cases we are often interested in learning
using all the data, e.g. using all the information available. A method for doing this is to
use the full data set to learn an unsupervised kernel.The learned kernel should represent
the structure of the few labeled observations better [126, 127]. The basic idea is to
first map all of the data to some feature space using one of the many kernel functions
available. Then to train a learning algorithm on the few labeled observations, using
the created kernel. Where the feature space is a better representation of the structure
between the observation.

This chapter contains a contribution in that we apply the DPCK in some semi-
supervised classification problems. We hypothesize that the DPCK learns similarities
and structures in a more general way, then other kernel functions that have critical shape
parameters (like the RBF). Additionally the DPCK learns the cluster kernel based on
the data, without critical parameters. The DPCK should have some advantages over
using existing kernel functions for creating the kernel.

• We create a kernel without any prior assumptions on the structure of the data.
Using other kernel functions we often have to tune a critical shape parameter, like
γ for a RBF.

• Since the DPCK is learned from clustering the data, we hypothesize that the final
clustering should contain the full structure in a better way.

In this chapter we run experiments to show the effectiveness of the DPCK to capture
similarities of unlabeled observations. We investigate the prediction accuracy in a semi-
supervised framework when we have a small number of labeled observations.

8.1. Experimental Setup

We create the DPCK with the same parameters as chapter 7. For these experiments we
do the following:

1. Create DPCK following algorithm 10 and 11.

2. Randomly choice Nk observations to be the labeled observations, with some size
< N .

3. Train SVM using the Nk observations from the DPCK.

85

8. Semi-Supervised Learning

4. Test using N − Nk observations from the DPCK, where the test kernel now has
shape (N −Nk)×Nk.

For each data set we repeat the random sampling of labeled observations 20 times,
and calculate the mean for all of these. Additionally we plot the 95% confidence interval,
using the empirical bootstrapped confidence interval discussed in section 3.6.1.

To further examine the performance of the learned kernel, we compare it with a RBF
with γ = 0.5. For these experiments we do not tune γ in any way, we choose the value
rather arbitrary.

8.2. Results

In figure 8.1 we see the prediction accuracy for four different data sets. We note that as
we add more constraints (here as a function of % of the total sample size) the prediction
accuracy increases. One interesting fact to note is that for the Iris species data set the
accuracy improves more then 70%, from around 0.7 to 0.95.

In table 8.1 we see the prediction accuracy for four different data sets together with
the standard deviation. We fix the number of labeled observations to 5% and 10% of
the total sample size. Interestingly we see that as we increase the number of labeled
observations the DPCK have a higher increase in prediction accuracy.

86

8.2. Results

Figure 8.1.: Prediction accuracy as a function of the percentage of labeled data points.
Shaded regions represent the 95% confidence interval

DPCK 5% DPCK 10% RBF 5% RBF 10%

Titanic 0.667 ± 0.058 0.722 ± 0.060 0.608 ± 0.081 0.625 ± 0.068
breast cancer 0.909 ± 0.070 0.934 ± 0.022 0.648 ± 0.061 0.656 ± 0.084
ecoli 0.773 ± 0.069 0.806 ± 0.074 0.390 ± 0.110 0.488 ± 0.061
segmentation 0.369 ± 0.112 0.468 ± 0.104 0.199 ± 0.034 0.237 ± 0.040

Table 8.1.: Prediction accuracy when training using 5%/10% of the observations. Com-
parison between the DPCK and RBF kernel, with γ = 0.5. The values
represent mean ± standard deviation over 20 runs.

87

Part IV.

Conclusion

89

9. Summary

The aim for the thesis was to consider the application of a nonparametric mixture
model in the cluster kernel framework. To learn the existing PCK, the number of
clusters had to be determined a priori to learning the kernel, thus making parametric
assumptions. The DPMM was applied to the PCK framework to create the DPCK. A
cluster kernel without the critical C parameter. Further, experiments was conducted to
investigate the behavior of the DPCK by using the learned kernel in both classification
and clustering problems. The DPCK was compared against the PCK in all learning
tasks. Results illustrated that the DPCK learned more compact clusters and performed
good as a similarity kernel when applied to clustering problems. Additionally, some
new contributions where made when the cluster kernel framework was applied to semi-
supervised classification. In the semi-supervised experiments the DPCK demonstrated
that the learned similarities was a very general representation of the data.

In the first part of the thesis theory behind kernels, clustering and ensemble clustering
where explored. Then the statistical methodology was introduced together with the
DPMM. Finally, all these results where combined to demonstrate the PCK framework.

The second part contained one of the main contributions of the thesis. Here the
proposed DPCK was proposed and an algorithm was proposed for learning the cluster
kernel. The new cluster kernel is learned without prior assumptions about any shape or
number of clusters.

The third part contained all the experiments of the thesis. First experiments where
conducted to examine the stability of the DPMM with respect to its parameters. In
these experiments we saw that the DPMM was very stable, and looked to not have any
critical parameters. Additionally we ran experiments on multiple data sets to compare
the DPCK with the PCK, using the learned kernels on both classification and clustering
problems. The DPCK demonstrated good results when applied for clustering, but the
PCK performed slightly better for classification. However, for some types of data set
the DPCK looked to perform better. Finally the proposed DPCK was applied to some
semi-supervised classification problems. Here we saw that the DPCK learned the full
structure of the data, and had better performance then a single RBF kernel.

91

10. Discussion

10.1. Dirichlet Process Mixture Models

First we ran experiments to investigate the DPMM and how the parameters changes the
results. We saw in section 6.2 that the DPMM have dependencies with five parameters.
Due to the DPMM predicting different number of mixture components from different
runs, we choice to visually inspect the segmentations to inspect the results. There
exists methods to measure the accuracy of different clustering partitions with different
numbers of components, however for the objective of this chapter we found that visually
inspecting the segmentations was sufficient. Exploring the parameters one at a time, we
saw that the final segmentation obtained by the DPMM was feasible for a wide range
of parameter values. We saw that choosing multiple parameters with outliers values
(low/high) gave feasible results in the end. However we do note that some parameters
where more influential then the others. We saw that the parameter κ0 was the most
influential parameter. Where the difference between low and high values was big.

To summarize the discussion about the DPMM we conclude that the model was very
stable for the experiments we ran. The parameter range for where the model would
behave nicely and converge to a good solution looks to be wide.

10.2. Investigating the Performance of the DPCK

In chapter 7 we saw that the DPCK learned similarities in a unsupervised way, without
prior parametric assumptions. Additionally we saw that the DPCK was very good
compared to the PCK on some kinds of problems. In this section we want to discuss
what we learned from the experiments.

• The DPCK have good classification accuracy for some types of data sets.

• The DPCK have good clustering accuracy for most types of data sets.

• The DPCK create compact clusters and is good at discriminating between different
clusters.

• The proposed DPCK learned using the collapsed Gibbs sampler is limited by the
implemented algorithm.

93

10. Discussion

10.2.1. The Dirichlet Process Cluster Kernel

One of the contributions of the thesis was to investigate the use of a nonparametric
clustering model within the cluster kernel framework. To examine the performance of
the proposed DPCK, we ran experiments using both classification and clustering to
assess the cluster kernel. Additionally we visually inspected the projection on the two
top eigenvectors using KPCA, on a selection of data sets.

From the results obtained in the classification problems in section 7.3.1, we saw that
the PCK was better for data sets containing categorical features. Data sets having
continuous features gave the edge to the DPCK. Additionally we saw that the DPCK
produced predictions with a smaller confidence interval, suggesting that the results are
more stable.

From the results for the clustering experiments in section 7.3.1 we saw that the DPCK
was in general equal or slightly better for most data sets. It was interesting to see that
the DPCK learned a better kernel for unsupervised methods. In general we saw that
the DPCK produced kernels with more compact clusters, as such we suspect that the
more discriminated clusters helps in an unsupervised method.

For visually inspecting the two dimensional projections we saw that the DPCK created
a more compact representation of different clusters, while the PCK tended to create
wider clusters. Additionally, the DPCK seemed to give more discrimination between
clusters in some cases. This might also be confirmation bias, as having more compact
clusters will make it look more separated. For a learning algorithm the two kernels might
be similar in these cases. However, if we look at the classes the two kernels failed to
discriminate. The PCK tends to give wider representations of the clusters. When the
kernels group multiple clusters together, the wider representation might make it easier
to discriminate some of the observations within the grouping. This might be a reason
for why the PCK seemed to have an edge for classification.

It is important to note that using a more complex model within the cluster kernel
framework increases the total computation time in a significant way. One of the major
difficulties with the thesis project was the time it took to learn the DPCK. Clearly the
reason for the major time increase for the DPMM was due to the algorithm itself. As
discussed in section 3.10 there exists much faster algorithms. Using one of these would
make the DPCK be feasible for anything but small test data sets. Such that following
the proposed framework; if resources and time is an issue the PCK might give reasonably
good enough results.

Heuristics

Another thing to consider is the heuristics we use to create the DPCK. We sample three
parameters uniformly from the ranges:

α ∼ Unif(10−2, 1)

κ0 ∼ Unif(10−3, 1)

ν0 ∼ Unif(D + 25, D + 100)

(10.1)

94

10.2. Investigating the Performance of the DPCK

We do note that for α a log-uniformly distribution between [10−2, 102] could be good,
looking at the results discussed in section 10.1. Additionally as we saw that κ0 was one
of the most influential parameters, we could sample κ0 ∼ Exp(γ) such that we allowed
values greater then 1 (but very rarely). Or we could sample κ0 log-uniformly in the same
manner as proposed for α. This would further increase the diversity within the cluster
kernel, and explore more of the parameter space.

10.2.2. Different Data Sets

We see from the results in chapter 7 that the DPCK is expected to perform better for
some kinds of data sets. Looking at the results from clustering and classification we
suspect that the DPCK performs better for some specific data sets. i) Data sets where
the clusters have different compactness, in terms of variance. We speculate that the
reason for this is caused by the flexibility of the single ensemble covariance structure.
The PCK might do better here if we used a prior for the covariance structure within
the single GMM. ii) Because of the Dirichlet process prior on the mixture weights, we
know that the marginal distributions for the weights is Dirichlet distributed. As such
we expect the mixture weights to fit good on data with uneven number of observations
within each cluster.

Further we saw that the PCK seemed to learn a better kernel when the data had
categorical features.

10.2.3. Algorithmic Limitations

In section 7.3 we saw the distribution for the number of clusters used in the DPCK, for
different initial number of clusters used. Here we saw that the collapsed Gibbs sampler
did not add additional clusters, even when the true number of clusters was higher then
the initial. This can be due to the fact that the collapsed Gibbs sampler only propose
local changes. As we only sample one cluster assignment at a time, we only see small local
changes in the algorithm. Adding clusters in the algorithm happen frequently, however,
to not remove the cluster in the next iteration we have to assign a new observation to
the cluster before doing one iteration. If the algorithm fails this, the cluster vanishes.
Based on this we can suspect that the implemented algorithm have slow convergence to
the global maximals and might be stuck in local maximals for a significant amount of
time.

In section 3.10 we discussed methods to improve the speed of the collapsed Gibbs
sampler for the DPMM. An algorithm where we allow the model to split and merge
clusters will mean that we are not so dependent on the initiation for each ensemble. We
suspect that with an fast split/merge algorithm we will gain an even larger improvement
over the parametric PCK. Improving the base algorithm will decrease the total time
needed to construct the DPCK. Therefore an faster algorithm will allow us to test larger
and more interesting data sets.

In all our experiments we fixed the number of iterations of each ensemble to 20 due to
time constraints. This might prove to be a much to low number for an MCMC method,

95

10. Discussion

such that with an improved algorithm we could check these hypothesis within a feasible
time-frame.

10.3. Semi-Supervised Classification

In section 8.2 we wanted to further examine the descriptive power of the DPCK. To
do this we applied the cluster kernel to some semi-supervised problems. We learned
the kernel using the full data, then we trained a classifier on 5%/10% of the data.
We calculated the predictive accuracy on the rest of the data, and compared against an
unsupervised RBF kernel. The results showed that the DPCK seemed to have very good
generalization power. Because when we changed number of observations to train the data
on, the relative increase in predictive accuracy was larger for the DPCK compared to
the RBF kernel. This might indicate that the learned similarities in the DPCK are a
more descriptive representation of the data.

96

11. Future Work

From the thesis we can propose many interesting approaches for future work/research.

11.1. Split/Merge Algorithm

The biggest improvement to the proposed DPCK would be to implement a faster algo-
rithm that exploit split/merge moves. One possible choice would be the fast algorithm
proposed in [109], as discussed in section 3.10. The author suspect that as we allow
split/merge moves, the algorithm converges faster and to a better solution. Thus, the
final DPCK should depend less on the initial number of clusters.

11.1.1. Different Data Sets

One of the limitation working with the thesis was the computational time for the col-
lapsed Gibbs sampler that was implemented. With a faster and better algorithm one
could investigate larger data sets. We suspect that as the data sets grow larger, the
difference between the PCK and DPCK increases. Both because tuning the parameters
C and Q for the PCK can get increasingly hard as we get more data, also because of
the flexibility of the DPMM.

11.2. Semi-Supervised Cluster Kernels

In [128] they propose an interesting boosting-like approach for unsupervised clustering
ensembles. They create the weight distribution for each observation according to the
consistency of the clustering assignment it got in the previous ensembles. Thus as
they create ensembles they sample observations to increasingly focus on the problematic
regions. In [129] they have a similar approach, just for feature selection (recursive feature
elimination scheme). Another interesting approaches to boosting-like approaches for
unsupervised learning is to calculate the out of model feature importance score. Some
examples for such scores is the explained variance from PCA, or Laplacian score [130].
Laplacian score is a way to use the graph Laplacian to infer on the importance of each
feature using the local structure. If we want to focus om semi-supervised cluster kernel
approaches like relative feature importance from learned models, like in [131]. Or one
could calculate the Fisher score [132].

As we saw the DPCK was very good at learning general data structures, compared
to other kernel functions within the semi-supervised framework. It would be interesting

97

11. Future Work

to look at the constrained DPMM discussed in [20, 21] and combing the constrained
sampler with the boosting like subsamples of observations and features with the DPCK.
Either fully unsupervised learning process for the cluster kernel or through supervised
methods on the few labeled observations . However the unsupervised cluster kernel
approach is probably more feasible, as the number of labeled examples is usually small.

11.3. Missing Data

Since we are working with a Bayesian model, putting a prior on the missing data should
be possible for these classes of models. In [77] they create a cluster kernel for multivariate
time series with missing data. The missing data approach to cluster kernels looks to
give promising results, within an ensemble framework the lack of data should not impact
the results as much as it would when using a single model. As such looking into how to
model missing data inside the DPMM and DPCK framework would be an interesting
approach for future work.

98

A. Databook

99

Databook

In [37]: import matplotlib.pyplot as plt
import numpy as np
import random
import pandas as pd
from os import listdir
from sklearn.decomposition import PCA, KernelPCA
#from sklearn.manifold import SpectralEmbedding as PCA
plt.style.use('classic')
plt.style.use('ggplot')
col_list = ['#FF0000', '#00EAFF', '#AA00FF',

'#FF7F00', '#BFFF00', '#FF00AA',
'#FFD400', '#6AFF00', '#EDB9B9',
'#0040FF', '#8F2323', '#8F6A23',
'#6B238F', '#4F8F23', '#000000',
'#737373']

data_path = '/home/toby/master/data/data_set/'

In [38]: def plot_classes(df, labels, ax):
df = np.array(df)
labels = np.array(labels)
k = 0
for i in np.unique(labels)[::-1]:

ax.scatter(df[labels == i, 0], df[labels == i, 1],
c=col_list[k%len(col_list)])

k += 1

def plot_dim_rel(df, labels, fig):
size = df.shape[1]
labels = np.array(labels)
index_pairs = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
for i in range(6):

ax = fig.add_subplot(2, 3, i+1)
plot_classes(df[:, [index_pairs[i][0], index_pairs[i][1]]], labels, ax)
plt.axis('off')

1 UCI Credit Card Defaults

This dataset contains information on default payments, demographic factors, credit data, history
of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.

A. Databook

100

1.1 Variables

There are 25 variables:

• ID: ID of each client

• LIMIT_BAL: Amount of given credit in NT dollars (includes individual and fam-
ily/supplementary credit

• SEX: Gender (1=male, 2=female)

• EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown,
6=unknown)

• MARRIAGE: Marital status (1=married, 2=single, 3=others)

• AGE: Age in years

• PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month,
2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay
for nine months and above)

• PAY_2: Repayment status in August, 2005 (scale same as above)

• PAY_3: Repayment status in July, 2005 (scale same as above)

• PAY_4: Repayment status in June, 2005 (scale same as above)

• PAY_5: Repayment status in May, 2005 (scale same as above)

• PAY_6: Repayment status in April, 2005 (scale same as above)

• BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)

• BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)

• BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)

• BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)

• BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)

• BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)

• PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)

• PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)

• PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar)

• PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)

• PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)

• PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)

• default.payment.next.month: Default payment (1=yes, 0=no)

101

1.2 Processing Data

In [39]: df = pd.read_csv(data_path + 'UCI_creditcard/UCI_Credit_Card.csv')
labels = df.iloc[:, -1]
df = df.drop(['ID', df.columns[-1]], axis=1)
df['labels'] = labels
df[['LIMIT_BAL', 'BILL_AMT1', 'BILL_AMT2','BILL_AMT3',

'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6',
'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3',
'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']] /= df[['BILL_AMT1', 'BILL_AMT2','BILL_AMT3',
'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6',
'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3',
'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']].max().max()

print('Shape of data set: ', df.shape)

Shape of data set: (30000, 24)

We create a subsample for N = 300 for both training and test phases.

In [40]: random.seed(123)
np.random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
df_train = df.iloc[indexes[:300], :]
df_test = df.iloc[indexes[300:600], :]
print(np.unique(df_train['labels'], return_counts=True))
print(np.unique(df_test['labels'], return_counts=True))
df_train.to_csv(data_path + 'UCI_creditcard/UCI_creditcard_train.csv', index=False)
df_test.to_csv(data_path + 'UCI_creditcard/UCI_creditcard_test.csv', index=False)

(array([0, 1]), array([236, 64]))
(array([0, 1]), array([229, 71]))

1.3 Visualizing Data

In [41]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

A. Databook

102

2 Credit Card Fraud Detection

The datasets contains transactions made by credit cards in September 2013 by european cardhold-
ers. This dataset presents transactions that occurred in two days, where we have 492 frauds out
of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for
0.172% of all transactions.

2.1 Variables

It contains only numerical input variables which are the result of a PCA transformation. Unfortu-
nately, due to confidentiality issues, we cannot provide the original features and more background
information about the data. Features V1, V2, ... V28 are the principal components obtained with
PCA, the only features which have not been transformed with PCA are ’Time’ and ’Amount’. Fea-
ture ’Time’ contains the seconds elapsed between each transaction and the first transaction in the
dataset. The feature ’Amount’ is the transaction Amount, this feature can be used for example-
dependant cost-senstive learning. Feature ’Class’ is the response variable and it takes value 1 in
case of fraud and 0 otherwise.

103

2.2 Processing Data

In [42]: df = pd.read_csv(data_path + 'creditcard/creditcard.csv')
labels = df['Class'].values

def time_converter(time):
return np.floor(time/(3600))%24, np.floor(time/(60))%60

hour, min_ = time_converter(df['Time'])
df['Hour'] = hour
#df['Min'] = min_
#df['Amount'] = df['Amount']/df['Amount'].max()
df = df.drop(['Class', 'Time'], axis=1)
df['labels'] = labels
print(df.shape)
df.head()

(284807, 31)

Out[42]: V1 V2 V3 V4 V5 V6 V7 \
0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599
1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
2 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461
3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609
4 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941

V8 V9 V10 ... V22 V23 V24 \
0 0.098698 0.363787 0.090794 ... 0.277838 -0.110474 0.066928
1 0.085102 -0.255425 -0.166974 ... -0.638672 0.101288 -0.339846
2 0.247676 -1.514654 0.207643 ... 0.771679 0.909412 -0.689281
3 0.377436 -1.387024 -0.054952 ... 0.005274 -0.190321 -1.175575
4 -0.270533 0.817739 0.753074 ... 0.798278 -0.137458 0.141267

V25 V26 V27 V28 Amount Hour labels
0 0.128539 -0.189115 0.133558 -0.021053 149.62 0.0 0
1 0.167170 0.125895 -0.008983 0.014724 2.69 0.0 0
2 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0.0 0
3 0.647376 -0.221929 0.062723 0.061458 123.50 0.0 0
4 -0.206010 0.502292 0.219422 0.215153 69.99 0.0 0

[5 rows x 31 columns]

We create a subsample of N = 300 where we fix the number of frauds to 10 per data set.

In [43]: np.random.seed(123)
n_scams = 10
n_non_scams = 300-n_scams
df_processed = df.iloc[labels == 0, :].iloc[np.random.randint(0, np.sum(labels == 0), n_non_scams) ,:]

A. Databook

104

df_processed = df_processed.append(df.iloc[labels == 1, :].iloc[np.random.randint(0, np.sum(labels == 1), n_scams) ,:])
print(df_processed.shape)
df_processed.to_csv(data_path + 'creditcard/creditcard_train_300.csv', index=False)

np.random.seed(2)
df_processed = df.iloc[labels == 0, :].iloc[np.random.randint(0, np.sum(labels == 0), n_non_scams) ,:]
df_processed = df_processed.append(df.iloc[labels == 1, :].iloc[np.random.randint(0, np.sum(labels == 1), n_scams) ,:])
print(df_processed.shape)
df_processed.to_csv(data_path + 'creditcard/creditcard_test_300.csv', index=False)

(300, 31)
(300, 31)

2.3 Visualizing Data

In [44]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_processed.iloc[:, :-1])
plot_classes(data, df_processed.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

105

3 UCI Segmentation

The instances were drawn randomly from a database of 7 outdoor images. The images were
handsegmented to create a classification for every pixel.

Each instance is a 3 × 4 region.

3.1 Variables

1. region-centroid-col: the column of the center pixel of the region.

2. region-centroid-row: the row of the center pixel of the region.

3. region-pixel-count: the number of pixels in a region = 9.

4. short-line-density-5: the results of a line extractoin algorithm that counts how many lines of
length 5 (any orientation) with low contrast, less than or equal to 5, go through the region.

5. short-line-density-2: same as short-line-density-5 but counts lines of high contrast, greater
than 5.

A. Databook

106

6. vedge-mean: measure the contrast of horizontally adjacent pixels in the region. There are 6,
the mean and standard deviation are given. This attribute is used as a vertical edge detector.

7. vegde-sd: (see 6)

8. hedge-mean: measures the contrast of vertically adjacent pixels. Used for horizontal line
detection.

9. hedge-sd: (see 8).

10. intensity-mean: the average over the region of (R + G + B)/3

11. rawred-mean: the average over the region of the R value.

12. rawblue-mean: the average over the region of the B value.

13. rawgreen-mean: the average over the region of the G value.

14. exred-mean: measure the excess red: (2R - (G + B))

15. exblue-mean: measure the excess blue: (2B - (G + R))

16. exgreen-mean: measure the excess green: (2G - (R + B))

17. value-mean: 3-d nonlinear transformation of RGB. (Algorithm can be found in Foley and
VanDam, Fundamentals of Interactive Computer Graphics)

18. saturatoin-mean: (see 17)

19. hue-mean: (see 17)

3.2 Processing Data

In [45]: df = pd.read_csv(data_path + 'segmentation/training_data.csv')
df_test = pd.read_csv(data_path + 'segmentation/test_data.csv')

def string_to_category(string):
if string == 'BRICKFACE':

return 0
elif string == 'CEMENT':

return 1
elif string == 'FOLIAGE':

return 2
elif string == 'GRASS':

return 3
elif string == 'PATH':

return 4
elif string == 'SKY':

return 5
elif string =='WINDOW':

return 6
else:

107

return np.NaN

labels_train = df['labels'].apply(string_to_category)
labels_test = df_test['labels'].apply(string_to_category)
random.seed(123)
indexes = [i for i in range(df_test.shape[0])]
random.shuffle(indexes)
df = df.drop(['labels',

'REGION-PIXEL-COUNT',
'SHORT-LINE-DENSITY-5',
'SHORT-LINE-DENSITY-2'], axis=1)

df_test = df_test.drop(['labels',
'REGION-PIXEL-COUNT',
'SHORT-LINE-DENSITY-5',
'SHORT-LINE-DENSITY-2'], axis=1)

df['labels'] = labels_train
df_test['labels'] = labels_test

In [46]: df_test = df_test.iloc[indexes[:df.shape[0]], :]
print('Train shape: ', df.shape)
print('Test shape: ', df_test.shape)
df.to_csv(data_path + 'segmentation/training_data_processed.csv', index=False)
df_test.to_csv(data_path + 'segmentation/test_data_processed.csv', index=False)
df.head()

Train shape: (210, 17)
Test shape: (210, 17)

Out[46]: REGION-CENTROID-COL REGION-CENTROID-ROW VEDGE-MEAN VEDGE-SD HEDGE-MEAN \
0 140.0 125.0 0.277778 0.062963 0.666667
1 188.0 133.0 0.333333 0.266667 0.500000
2 105.0 139.0 0.277778 0.107407 0.833333
3 34.0 137.0 0.500000 0.166667 1.111111
4 39.0 111.0 0.722222 0.374074 0.888889

HEDGE-SD INTENSITY-MEAN RAWRED-MEAN RAWBLUE-MEAN RAWGREEN-MEAN \
0 0.311111 6.185185 7.333334 7.666666 3.555556
1 0.077778 6.666666 8.333334 7.777778 3.888889
2 0.522222 6.111111 7.555555 7.222222 3.555556
3 0.474074 5.851852 7.777778 6.444445 3.333333
4 0.429629 6.037037 7.000000 7.666666 3.444444

EXRED-MEAN EXBLUE-MEAN EXGREEN-MEAN VALUE-MEAN SATURATION-MEAN \
0 3.444444 4.444445 -7.888889 7.777778 0.545635
1 5.000000 3.333333 -8.333333 8.444445 0.538580
2 4.333334 3.333333 -7.666666 7.555555 0.532628
3 5.777778 1.777778 -7.555555 7.777778 0.573633

A. Databook

108

4 2.888889 4.888889 -7.777778 7.888889 0.562919

HUE-MEAN labels
0 -1.121818 0
1 -0.924817 0
2 -0.965946 0
3 -0.744272 0
4 -1.175773 0

3.3 Visualizing Data

In [47]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df.iloc[:, :-1])
plot_classes(data, df.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

109

4 UCI Iris Species

This is perhaps the best known database to be found in the pattern recognition literature. Fisher’s
paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for
example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of
iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable
from each other.

4.1 Variables

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class:

• Iris Setosa

• Iris Versicolour

• Iris Virginica

4.2 Processing Data

In [48]: df = pd.read_csv(data_path + 'iris_species/Iris.csv')
labels = df['Species']
df = df.drop(['Species', 'Id'], axis=1)

def converter(species_string):
if species_string == 'Iris-setosa':

return 0
elif species_string == 'Iris-versicolor':

return 1
elif species_string == 'Iris-virginica':

return 2
else:

return np.NaN

df['labels'] = labels.apply(converter)
df.shape

Out[48]: (150, 5)

Create train set with N = 100 and test set containing N = 50 observations

In [49]: random.seed(123)
indexes = [i for i in range(150)]
random.shuffle(indexes)

A. Databook

110

df_train = df.iloc[indexes[:], :]
df_test = df.iloc[indexes[30:], :]
df_train.to_csv(data_path + 'iris_species/Iris_train.csv', index=False)
df_test.to_csv(data_path + 'iris_species/Iris_test.csv', index=False)
df_train.head()

Out[49]: SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm labels
79 5.7 2.6 3.5 1.0 1
132 6.4 2.8 5.6 2.2 2
7 5.0 3.4 1.5 0.2 0
144 6.7 3.3 5.7 2.5 2
120 6.9 3.2 5.7 2.3 2

4.3 Visualizing Data

In [50]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

111

5 Breast Cancer

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K.
P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest
Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method
which uses linear programming to construct a decision tree. Relevant features were selected using
an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that
described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination
of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

5.1 Variables

• ID number

• Diagnosis (M = malignant, B = benign)

• 3-32) Ten real-valued features are computed for each cell nucleus:

– radius (mean of distances from center to points on the perimeter)

– texture (standard deviation of gray-scale values)

– perimeter

– area

– smoothness (local variation in radius lengths)

– compactness (perimeter2 / area - 1.0)

– concavity (severity of concave portions of the contour)

– concave points (number of concave portions of the contour)

– symmetry

– fractal dimension ("coastline approximation" - 1)

5.2 Processing Data

In [51]: np.random.seed(123)
random.seed(123)
df = pd.read_csv(data_path + 'breast_cancer/raw_data.csv', names=[0, 'labels']+[i for i in range(1, 31)])
labels = df['labels']
df = df.drop(['labels', 0], axis=1)
def converter_bs(species_string):

if species_string == 'M':
return 0

elif species_string == 'B':

A. Databook

112

return 1
else:

return np.NaN
df['labels'] = labels.apply(converter_bs)
n = df.shape[0]
indexes = [i for i in range(n)]
random.shuffle(indexes)
df_train = df.iloc[indexes[:int(n/2)], :]
df_test = df.iloc[indexes[int(n/2):], :]
df_train.to_csv(data_path + 'breast_cancer/train_data.csv', index=False)
df_test.to_csv(data_path + 'breast_cancer/test_data.csv', index=False)
df_train.head()

Out[51]: 1 2 3 4 5 6 7 8 \
52 11.940 18.24 75.71 437.6 0.08261 0.04751 0.019720 0.01349
369 22.010 21.90 147.20 1482.0 0.10630 0.19540 0.244800 0.15010
67 11.310 19.04 71.80 394.1 0.08139 0.04701 0.037090 0.02230
424 9.742 19.12 61.93 289.7 0.10750 0.08333 0.008934 0.01967
210 20.580 22.14 134.70 1290.0 0.09090 0.13480 0.164000 0.09561

9 10 ... 22 23 24 25 26 27 \
52 0.1868 0.06110 ... 21.33 83.67 527.2 0.1144 0.08906 0.09203
369 0.1824 0.06140 ... 25.80 195.00 2227.0 0.1294 0.38850 0.47560
67 0.1516 0.05667 ... 23.84 78.00 466.7 0.1290 0.09148 0.14440
424 0.2538 0.07029 ... 23.17 71.79 380.9 0.1398 0.13520 0.02085
210 0.1765 0.05024 ... 27.84 158.30 1656.0 0.1178 0.29200 0.38610

28 29 30 labels
52 0.06296 0.2785 0.07408 1
369 0.24320 0.2741 0.08574 0
67 0.06961 0.2400 0.06641 1
424 0.04589 0.3196 0.08009 1
210 0.19200 0.2909 0.05865 0

[5 rows x 31 columns]

5.3 Visualizing Data

In [52]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df.iloc[:, :-1])
plot_classes(data, df.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

113

6 SPECT Heart Data

The dataset describes diagnosing of cardiac Single Proton Emission Computed Tomography
(SPECT) images. Each of the patients is classified into two categories: normal and abnormal.
The database of 267 SPECT image sets (patients) was processed to extract features that summarize
the original SPECT images. As a result, 44 continuous feature pattern was created for each patient.
The pattern was further processed to obtain 22 binary feature patterns. The CLIP3 algorithm was
used to generate classification rules from these patterns. The CLIP3 algorithm generated rules that
were 84.0% accurate (as compared with cardilogists’ diagnoses).

SPECT is a good data set for testing ML algorithms; it has 267 instances that are descibed by
23 binary attributes

6.1 Variables

1. OVERALL_DIAGNOSIS: 0,1 (class attribute, binary)

2. F1: 0,1 (the partial diagnosis 1, binary)

3. F2: 0,1 (the partial diagnosis 2, binary)

A. Databook

114

4. F3: 0,1 (the partial diagnosis 3, binary)

5. F4: 0,1 (the partial diagnosis 4, binary)

6. F5: 0,1 (the partial diagnosis 5, binary)

7. F6: 0,1 (the partial diagnosis 6, binary)

8. F7: 0,1 (the partial diagnosis 7, binary)

9. F8: 0,1 (the partial diagnosis 8, binary)

10. F9: 0,1 (the partial diagnosis 9, binary)

11. F10: 0,1 (the partial diagnosis 10, binary)

12. F11: 0,1 (the partial diagnosis 11, binary)

13. F12: 0,1 (the partial diagnosis 12, binary)

14. F13: 0,1 (the partial diagnosis 13, binary)

15. F14: 0,1 (the partial diagnosis 14, binary)

16. F15: 0,1 (the partial diagnosis 15, binary)

17. F16: 0,1 (the partial diagnosis 16, binary)

18. F17: 0,1 (the partial diagnosis 17, binary)

19. F18: 0,1 (the partial diagnosis 18, binary)

20. F19: 0,1 (the partial diagnosis 19, binary)

21. F20: 0,1 (the partial diagnosis 20, binary)

22. F21: 0,1 (the partial diagnosis 21, binary)

23. F22: 0,1 (the partial diagnosis 22, binary)

6.2 Processing Data

In [53]: np.random.seed(123)
random.seed(123)
df = pd.read_csv(data_path + 'spect/raw_train.csv', names=['labels'] + [i for i in range(22)])
df_test = pd.read_csv(data_path + 'spect/raw_test.csv', names=['labels'] + [i for i in range(22)])
labels = df['labels']
labels_t = df_test['labels']
df = df.drop(['labels'], axis=1)
df_test = df_test.drop(['labels'], axis=1)
df['labels'] = labels
df_test['labels'] = labels_t
df.to_csv(data_path + 'spect/train_data.csv')
df_test.to_csv(data_path + 'spect/test_data.csv')
print('Train shape: ', df.shape, 'Test shape: ', df_test.shape)
df.head()

115

Train shape: (80, 23) Test shape: (187, 23)

Out[53]: 0 1 2 3 4 5 6 7 8 9 ... 13 14 15 16 17 18 19 20 21 \
0 0 0 0 1 0 0 0 1 1 0 ... 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1 1 0 ... 1 0 0 0 0 0 0 0 1
2 1 0 1 0 1 0 0 1 0 1 ... 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 1 0 0 ... 0 1 1 0 0 0 0 0 0

labels
0 1
1 1
2 1
3 1
4 1

[5 rows x 23 columns]

6.3 Visualizing Data

In [54]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df.iloc[:, :-1])
plot_classes(data, df.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

A. Databook

116

7 IMDB Movies

There are 2399 unique director names, and thousands of actors/actresses.

7.1 Variables

Below are the 28 variables:

• movie_title

• color

• num_critic_for_reviews

• movie_facebook_likes

• duration

• director_name

• director_facebook_likes

117

• actor_3_name

• actor_3_facebook_likes

• actor_2_name

• actor_2_facebook_likes

• actor_1_name

• actor_1_facebook_likes

• gross

• genres

• num_voted_users

• cast_total_facebook_likes

• facenumber_in_poster

• plot_keywords

• movie_imdb_link

• num_user_for_reviews

• language

• country

• content_rating

• budget

• title_year

• imdb_score

• aspect_ratio

7.2 Processing Data

In [55]: def ratio_converter(imdb_score):
if imdb_score < 4: #Shitty movie

return 0
elif 4 <= imdb_score < 7: #Meh movie

return 1
elif imdb_score >= 7: #Good movie

return 2

df = pd.read_csv(data_path + 'imdb_movies/movie_metadata.csv')
df = df[df.isnull().sum(axis=1) == 0]
print(df.shape)

A. Databook

118

true_values = df['imdb_score']
labels = df['imdb_score'].apply(ratio_converter)
dummie_df = pd.get_dummies(df[['color']])
df = df.iloc[:, [2, 3, 4, 5, 7, 8, 12, 13, 15, 18, 22, 23, 24, 25, 26, 27]]
df[dummie_df.columns] = dummie_df
df = df.drop(['imdb_score'], axis=1)
df -= df.min()
df /= df.max()
df['labels'] = labels
print(df.shape)
np.random.seed(123)
random.seed(123)
n = 1500
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
df_train = df.iloc[indexes[:n], :]
true_values = true_values[indexes[:n]]
true_values.to_csv(data_path + 'imdb_movies/true_values.csv', index=False)
df_test = df.iloc[indexes[n:], :]
df_train.to_csv(data_path + 'imdb_movies/train_imbd_1500.csv', index=False)
df_test.to_csv(data_path + 'imdb_movies/test_imbd_1500.csv', index=False)
df.head()

(3756, 28)
(3756, 18)

Out[55]: num_critic_for_reviews duration director_facebook_likes \
0 0.889026 0.481229 0.000000
1 0.369914 0.450512 0.024478
2 0.739827 0.378840 0.000000
3 1.000000 0.433447 0.956522
5 0.567201 0.324232 0.020652

actor_3_facebook_likes actor_1_facebook_likes gross num_voted_users \
0 0.037174 0.001563 1.000000 0.524429
1 0.043478 0.062500 0.406840 0.278829
2 0.007000 0.017188 0.263080 0.163213
3 1.000000 0.042188 0.589253 0.677200
5 0.023043 0.001000 0.096066 0.125535

cast_total_facebook_likes facenumber_in_poster num_user_for_reviews \
0 0.007361 0.000000 0.603244
1 0.073622 0.000000 0.244066
2 0.017816 0.023256 0.195807
3 0.162561 0.000000 0.533426
5 0.002852 0.023256 0.145174

119

budget title_year actor_2_facebook_likes aspect_ratio \
0 0.019402 0.921348 0.006832 0.040486
1 0.024559 0.898876 0.036496 0.078947
2 0.020056 0.988764 0.002869 0.078947
3 0.020466 0.955056 0.167883 0.078947
5 0.021587 0.955056 0.004613 0.078947

movie_facebook_likes color_ Black and White color_Color labels
0 0.094556 0.0 1.0 2
1 0.000000 0.0 1.0 2
2 0.243553 0.0 1.0 1
3 0.469914 0.0 1.0 2
5 0.068768 0.0 1.0 1

7.3 Visualizing Data

In [56]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

A. Databook

120

8 Abalon

Predicting the age of abalone from physical measurements. The age of abalone is determined
by cutting the shell through the cone, staining it, and counting the number of rings through a
microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain,
are used to predict the age. Further information, such as weather patterns and location (hence
food availability) may be required to solve the problem.

From the original data examples with missing values were removed (the majority having the
predicted value missing), and the ranges of the continuous values have been scaled for use with
an ANN (by dividing by 200).

8.1 Variables

• Name / Data Type / Measurement Unit / Description

• Sex / nominal / – / M, F, and I (infant)

• Length / continuous / mm / Longest shell measurement

• Diameter / continuous / mm / perpendicular to length

121

• Height / continuous / mm / with meat in shell

• Whole weight / continuous / grams / whole abalone

• Shucked weight / continuous / grams / weight of meat

• Viscera weight / continuous / grams / gut weight (after bleeding)

• Shell weight / continuous / grams / after being dried

• Rings / integer / – / +1.5 gives the age in years

8.2 Processing Data

In [70]: df = pd.read_csv('/home/toby/master/data/data_set/abalon/raw.csv')
def sex_converter(sex_string):

if sex_string == 'M':
return 0

elif sex_string == 'F':
return 1

elif sex_string == 'I':
return 2

df['Sex'] = df['Sex'].apply(sex_converter)
random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
df_train = df.iloc[indexes[:300], :]
df_train.to_csv(data_path + 'abalon/train.csv', index=False)
df_test = df.iloc[indexes[300:600], :] #labels == 21 is not precent in train set, but in test.
df_test.to_csv(data_path + 'abalon/test.csv', index=False)
df.head()

Out[70]: Sex Length Diameter Height Whole weight Shucked weight \
0 0 0.455 0.365 0.095 0.5140 0.2245
1 0 0.350 0.265 0.090 0.2255 0.0995
2 1 0.530 0.420 0.135 0.6770 0.2565
3 0 0.440 0.365 0.125 0.5160 0.2155
4 2 0.330 0.255 0.080 0.2050 0.0895

Viscera weight Shell weight labels
0 0.1010 0.150 15
1 0.0485 0.070 7
2 0.1415 0.210 9
3 0.1140 0.155 10
4 0.0395 0.055 7

8.3 Visualize

In [71]: fig = plt.figure()
ax = fig.add_subplot(111)

A. Databook

122

pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

9 Contraceptive Method Choice Data Set

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The
samples are married women who were either not pregnant or do not know if they were at the
time of interview. The problem is to predict the current contraceptive method choice (no use,
long-term methods, or short-term methods) of a woman based on her demographic and socio-
economic characteristics.

9.1 Variables

1. Wife’s age (numerical)

2. Wife’s education (categorical) 1=low, 2, 3, 4=high

123

3. Husband’s education (categorical) 1=low, 2, 3, 4=high

4. Number of children ever born (numerical)

5. Wife’s religion (binary) 0=Non-Islam, 1=Islam

6. Wife’s now working? (binary) 0=Yes, 1=No

7. Husband’s occupation (categorical) 1, 2, 3, 4

8. Standard-of-living index (categorical) 1=low, 2, 3, 4=high

9. Media exposure (binary) 0=Good, 1=Not good

10. Contraceptive method used (class attribute) 1=No-use, 2=Long-term, 3=Short-term

9.2 Processing Data

In [59]: df = pd.read_csv(data_path + 'contraceptive/raw.csv')
random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
df_train = df.iloc[indexes[:300], :]
df_train.to_csv(data_path + 'contraceptive/train.csv', index=False)
df_test = df.iloc[indexes[300:600], :] #labels == 21 is not precent in train set, but in test.
df_test.to_csv(data_path + 'contraceptive/test.csv', index=False)
df.head()

Out[59]: Wife's age Wife's education Husband's education \
0 24 2 3
1 45 1 3
2 43 2 3
3 42 3 2
4 36 3 3

Number of children ever born Wife's religion Wife's now working? \
0 3 1 1
1 10 1 1
2 7 1 1
3 9 1 1
4 8 1 1

Husband's occupation Standard-of-living Media exposure labels
0 2 3 0 1
1 3 4 0 1
2 3 4 0 1
3 3 3 0 1
4 3 2 0 1

A. Databook

124

9.3 Visualization

In [60]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

10 Ecoli Data Set

10.1 Variables

1. Sequence Name: Accession number for the SWISS-PROT database

2. mcg: McGeoch’s method for signal sequence recognition.

3. gvh: von Heijne’s method for signal sequence recognition.

125

4. lip: von Heijne’s Signal Peptidase II consensus sequence score. Binary attribute.

5. chg: Presence of charge on N-terminus of predicted lipoproteins. Binary attribute.

6. aac: score of discriminant analysis of the amino acid content of outer membrane and
periplasmic proteins.

7. alm1: score of the ALOM membrane spanning region prediction program.

8. alm2: score of ALOM program after excluding putative cleavable signal regions from the
sequence.

10.2 Processing Data

In [61]: f = open(data_path + 'ecoli/raw.csv', 'r')
df_list = []
for i, line in enumerate(f):

x = line.split(' ')
x = list(filter(lambda a: a != '', x))
x[-1] = x[-1][:-1]
if i == 0:

col = x
else:

df_list.append(x)

df = pd.DataFrame(df_list, columns=col)
df = df.drop(['Sequence'], axis=1)
def name_converter(label_string):

if label_string == 'cp':
return 0

elif label_string == 'im':
return 1

elif label_string == 'pp':
return 2

elif label_string == 'imU':
return 3

elif label_string == 'om':
return 4

elif label_string == 'omL':
return 5

elif label_string == 'imS':
return 6

elif label_string == 'imL':
return 7

df['labels'] = df['labels'].apply(name_converter)
random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
print(df.shape)

A. Databook

126

df_train = df.iloc[indexes[:200], :]
df_train.to_csv(data_path + 'ecoli/train.csv')
df_test = df.iloc[indexes[200:], :]
df_test.to_csv(data_path + 'ecoli/test.csv')
df.head()

(336, 8)

Out[61]: mcg gvh lip chg aac alm1 alm2 labels
0 0.49 0.29 0.48 0.50 0.56 0.24 0.35 0
1 0.07 0.40 0.48 0.50 0.54 0.35 0.44 0
2 0.56 0.40 0.48 0.50 0.49 0.37 0.46 0
3 0.59 0.49 0.48 0.50 0.52 0.45 0.36 0
4 0.23 0.32 0.48 0.50 0.55 0.25 0.35 0

In [62]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

127

11 Titanic

11.1 Variables

• Variable

• survival

• pclass

• sex

• Age

• sibsp # of siblings / spouses aboard the Titanic

• parch # of parents / children aboard the Titanic

• ticket

• fare

• cabin

• embarked

In [72]: df = pd.read_csv(data_path + 'Titanic/raw.csv')
def embarked_converter(emb_string):

if emb_string == 'S':
return 0

elif emb_string == 'C':
return 1

elif emb_string == 'Q':
return 2

labels = df['Survived']
df = df.drop(['PassengerId',

'Cabin',
'Name',
'Ticket',
'Survived'], axis=1)

df['labels'] = labels
df['Sex'] = df['Sex'].apply(lambda x: 0 if x == 'male' else 1)
df['Embarked'] = df['Embarked'].apply(embarked_converter)
df = df.iloc[[not i for i in df.isnull().sum(axis=1)], :]
random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
print(df.shape)

A. Databook

128

df_train = df.iloc[indexes[:300], :]
df_train.to_csv(data_path + 'Titanic/train.csv', index=False)
df_test = df.iloc[indexes[300:600], :]
df_train.to_csv(data_path + 'Titanic/test.csv', index=False)
df.head()

(712, 8)

Out[72]: Pclass Sex Age SibSp Parch Fare Embarked labels
0 3 0 22.0 1 0 7.2500 0.0 0
1 1 1 38.0 1 0 71.2833 1.0 1
2 3 1 26.0 0 0 7.9250 0.0 1
3 1 1 35.0 1 0 53.1000 0.0 1
4 3 0 35.0 0 0 8.0500 0.0 0

In [64]: fig = plt.figure()
ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df_train.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

129

12 McDonald’s Nutritions

Predicting the food category given the nutritions within the meal.

\subsection{Variables}

In [77]: df = pd.read_csv(data_path + 'mcdonald/menu.csv')
def converter(cat_string):

uniques = np.unique(df['Category'].value_counts().index)
for i in range(len(uniques)):

if cat_string == uniques[i]:
return i

def serving_converter(serving_string):
return float(serving_string.split(' ')[0])

print(df['Category'].value_counts().index)
df['Category'] = df['Category'].apply(converter)
df['Serving Size'] = df['Serving Size'].apply(serving_converter)
labels = df['Category']
df = df.drop(['Category', 'Item'], axis=1)
df -= df.min()
df /= df.max()
df['labels'] = labels
random.seed(123)
indexes = [i for i in range(df.shape[0])]
random.shuffle(indexes)
df_train = df.iloc[indexes[:150], :]
df_train.to_csv(data_path + 'mcdonald/train.csv', index=False)
df_test = df.iloc[indexes[150:], :]
df_train.to_csv(data_path + 'mcdonald/test.csv', index=False)
print(df.shape)
df.head()

Index(['Coffee & Tea', 'Breakfast', 'Smoothies & Shakes', 'Beverages',
'Chicken & Fish', 'Beef & Pork', 'Snacks & Sides', 'Desserts',
'Salads'],

dtype='object')
(260, 23)

Out[77]: Serving Size Calories Calories from Fat Total Fat \
0 0.122581 0.159574 0.113208 0.110169
1 0.122581 0.132979 0.066038 0.067797
2 0.093548 0.196809 0.188679 0.194915

A. Databook

130

3 0.151613 0.239362 0.235849 0.237288
4 0.151613 0.212766 0.198113 0.194915

Total Fat (% Daily Value) Saturated Fat Saturated Fat (% Daily Value) \
0 0.109890 0.25 0.245098
1 0.065934 0.15 0.147059
2 0.192308 0.40 0.411765
3 0.236264 0.50 0.509804
4 0.192308 0.40 0.411765

Trans Fat Cholesterol Cholesterol (% Daily Value) ... \
0 0.0 0.452174 0.453125 ...
1 0.0 0.043478 0.041667 ...
2 0.0 0.078261 0.078125 ...
3 0.0 0.495652 0.494792 ...
4 0.0 0.086957 0.083333 ...

Carbohydrates (% Daily Value) Dietary Fiber \
0 0.212766 0.571429
1 0.212766 0.571429
2 0.212766 0.571429
3 0.212766 0.571429
4 0.212766 0.571429

Dietary Fiber (% Daily Value) Sugars Protein \
0 0.607143 0.023438 0.195402
1 0.607143 0.023438 0.206897
2 0.607143 0.015625 0.160920
3 0.607143 0.015625 0.241379
4 0.607143 0.015625 0.241379

Vitamin A (% Daily Value) Vitamin C (% Daily Value) \
0 0.058824 0.0
1 0.035294 0.0
2 0.047059 0.0
3 0.088235 0.0
4 0.035294 0.0

Calcium (% Daily Value) Iron (% Daily Value) labels
0 0.357143 0.375 2
1 0.357143 0.200 2
2 0.357143 0.250 2
3 0.428571 0.375 2
4 0.357143 0.250 2

[5 rows x 23 columns]

In [79]: fig = plt.figure()

131

ax = fig.add_subplot(111)
pca = PCA(2)
data = pca.fit_transform(df.iloc[:, :-1])
plot_classes(data, df_train.iloc[:, -1], ax)
ax.set_xticks([])
ax.set_yticks([])
plt.show()

/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:6: VisibleDeprecationWarning: boolean index did not match indexed array along dimension 0; dimension is 260 but corresponding boolean dimension is 150

A. Databook

132

Bibliography

1. Lichman, M. UCI Machine Learning Repository 2013. <http://archive.ics.
uci.edu/ml>.

2. Yeh, I.-C. & Lien, C.-h. The comparisons of data mining techniques for the pre-
dictive accuracy of probability of default of credit card clients. Expert Systems
with Applications 36, 2473–2480 (2009).

3. Dal Pozzolo, A., Caelen, O., Johnson, R. A. & Bontempi, G. Calibrating Probability
with Undersampling for Unbalanced Classification in Computational Intelligence,
2015 IEEE Symposium Series on (2015), 159–166.

4. Mangasarian, O. L., Setiono, R. & Wolberg, W. Pattern recognition via linear
programming: Theory and application to medical diagnosis. Large-scale numerical
optimization, 22–31 (1990).

5. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. Jour-
nal of Machine Learning Research 13, 281–305 (2012).

6. Kohavi, R. et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection in Ijcai 14 (1995), 1137–1145.

7. Arlot, S. & Celisse, A. A survey of cross-validation procedures for model selection.
Statist. Surv. 4, 40–79 (2010).

8. Ferguson, T. S. A Bayesian analysis of some nonparametric problems. The annals
of statistics, 209–230 (1973).

9. Antoniak, C. E. Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. The annals of statistics, 1152–1174 (1974).

10. Escobar, M. D. & West, M. Bayesian density estimation and inference using mix-
tures. Journal of the american statistical association 90, 577–588 (1995).

11. MacEachern, S. N. in Practical nonparametric and semiparametric Bayesian statis-
tics 23–43 (Springer, 1998).

12. Müller, K.-R., Mika, S., R ä tsch, G., Tsuda, K. & Schölkopf, B. in Handbook of
Neural Network Signal Processing (CRC Press, 2001).

13. Weston, J. et al. Semi-supervised protein classification using cluster kernels. Bioin-
formatics 21, 3241 (2005).

14. Izquierdo-Verdiguier, E., Jenssen, R., Gómez-Chova, L. & Camps-Valls, G. Spec-
tral clustering with the probabilistic cluster kernel. Neurocomputing 149, 1299–
1304 (2015).

133

Bibliography

15. Tuia, D. & Camps-Valls, G. Semisupervised Remote Sensing Image Classification
With Cluster Kernels. IEEE Geoscience and Remote Sensing Letters 6, 224–228.
issn: 1545-598X (Apr. 2009).

16. Rasmussen, C. E. The Infinite Gaussian Mixture Model. in NIPS 12 (1999), 554–
560.

17. Kamper, H. Gibbs sampling for fitting finite and infinite Gaussian mixture models
(2013).

18. Richardson, S. & Green, P. J. On Bayesian Analysis of Mixtures with an Unknown
Number of Components (with discussion). Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 59, 731–792. issn: 1467-9868 (1997).

19. Dahl, D. B. Model-based clustering for expression data via a Dirichlet process
mixture model. Bayesian inference for gene expression and proteomics, 201–218
(2006).

20. Vlachos, A., Korhonen, A. & Ghahramani, Z. Unsupervised and constrained Dirich-
let process mixture models for verb clustering in Proceedings of the workshop on
geometrical models of natural language semantics (2009), 74–82.

21. Vlachos, A., Ghahramani, Z. & Korhonen, A. Dirichlet process mixture models
for verb clustering in Proceedings of the ICML workshop on Prior Knowledge for
Text and Language (2008).

22. Da Silva, A. R. F. A Dirichlet process mixture model for brain {MRI} tissue
classification. Medical Image Analysis 11, 169–182. issn: 1361-8415 (2007).

23. Zhu, J., Chen, N. & Xing, E. P. Infinite SVM: a Dirichlet process mixture of large-
margin kernel machines in Proceedings of the 28th International Conference on
Machine Learning (ICML-11) (2011), 617–624.

24. Xue, Y., Liao, X., Carin, L. & Krishnapuram, B. Multi-task learning for classi-
fication with dirichlet process priors. Journal of Machine Learning Research 8,
35–63 (2007).

25. Hosmer Jr, D. W., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression
(John Wiley & Sons, 2013).

26. Menard, S. Applied logistic regression analysis 106 (Sage, 2002).

27. Reichart, R., Elidan, G. & Rappoport, A. A Diverse Dirichlet Process Ensemble
for Unsupervised Induction of Syntactic Categories. in COLING (2012), 2307–
2324.

28. Yu, S. X. & Shi, J. Multiclass spectral clustering in Proceedings Ninth IEEE In-
ternational Conference on Computer Vision (Oct. 2003), 313–319 vol.1. doi:10.
1109/ICCV.2003.1238361.

29. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern classification (John Wiley &
Sons, 2012).

30. Tukey, J. W. Exploratory data analysis (1977).

134

Bibliography

31. Tabachnick, B. G., Fidell, L. S. & Osterlind, S. J. Using multivariate statistics
(2001).

32. Chapelle, O., Scholkopf, B. & Eds., A. Z. Semi-Supervised Learning (Chapelle,
O. et al., Eds.; 2006) [Book reviews]. IEEE Transactions on Neural Networks 20,
542–542. issn: 1045-9227 (Mar. 2009).

33. Jain, A. K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters
31. Award winning papers from the 19th International Conference on Pattern
Recognition (ICPR)19th International Conference in Pattern Recognition (ICPR),
651–666. issn: 0167-8655 (2010).

34. Shi, J. & Malik, J. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22, 888–905. issn: 0162-8828 (Aug.
2000).

35. Steinbach, M., Karypis, G., Kumar, V., et al. A comparison of document clustering
techniques in KDD workshop on text mining 400 (2000), 525–526.

36. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences 95, 14863–14868 (1998).

37. Bellman, R. Dynamic programming and Lagrange multipliers. Proceedings of the
National Academy of Sciences 42, 767–769 (1956).

38. Keogh, E. & Mueen, A. in Encyclopedia of Machine Learning (eds Sammut, C. &
Webb, G. I.) 257–258 (Springer US, Boston, MA, 2010). isbn: 978-0-387-30164-8.
doi:10.1007/978-0-387-30164-8_192. <http://dx.doi.org/10.1007/978-0-
387-30164-8_192>.

39. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometrics
and intelligent laboratory systems 2, 37–52 (1987).

40. Murphy, K. Machine Learning: A Probabilistic Perspective isbn: 9780262018029
(MIT Press, 2012).

41. Aronszajn, N. Theory of Reproducing Kernels. Transactions of the American
Mathematical Society 68, 337–404. issn: 00029947 (1950).

42. Saitoh, S. & Sawano, Y. Theory of reproducing kernels and applications (Springer,
2016).

43. Scholkopf, B. et al. Input space versus feature space in kernel-based methods.
IEEE Transactions on Neural Networks 10, 1000–1017. issn: 1045-9227 (Sept.
1999).

44. Shawe-Taylor, J. & Cristianini, N. Kernel methods for pattern analysis (Cam-
bridge university press, 2004).

45. Kavzoglu, T. & Colkesen, I. A kernel functions analysis for support vector ma-
chines for land cover classification. International Journal of Applied Earth Obser-
vation and Geoinformation 11, 352–359. issn: 0303-2434 (2009).

135

Bibliography

46. Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods isbn: 9780521780193 (Cambridge Uni-
versity Press, 2000).

47. Suykens, J. & Vandewalle, J. Least Squares Support Vector Machine Classifiers.
Neural Processing Letters 9, 293–300. issn: 1573-773X (1999).

48. Schiolkopf, B., Burges, C. & Vapnik, V. Extracting support data for a given task
in Proceedings, First International Conference on Knowledge Discovery & Data
Mining. AAAI Press, Menlo Park, CA (1995), 252–257.

49. Boser, B. E., Guyon, I. M. & Vapnik, V. N. A training algorithm for optimal
margin classifiers in Proceedings of the fifth annual workshop on Computational
learning theory (1992), 144–152.

50. Cortes, C. & Vapnik, V. Support-vector networks. Machine learning 20, 273–297
(1995).

51. Saul, L. K. & Roweis, S. T. An introduction to locally linear embedding. unpub-
lished. Available at: http://www. cs. toronto. edu/˜ roweis/lle/publications. html
(2000).

52. Schölkopf, B., Smola, A. & Müller, K.-R. in Artificial Neural Networks — ICANN’97:
7th International Conference Lausanne, Switzerland, October 8–10, 1997 Pro-
ceeedings (eds Gerstner, W., Germond, A., Hasler, M. & Nicoud, J.-D.) 583–588
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1997). isbn: 978-3-540-69620-9.
doi:10.1007/BFb0020217. <http://dx.doi.org/10.1007/BFb0020217>.

53. Xu, R. & Wunsch, D. Survey of clustering algorithms. IEEE Transactions on
neural networks 16, 645–678 (2005).

54. Backer, E. & Jain, A. K. A clustering performance measure based on fuzzy set
decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
66–75 (1981).

55. Wan, X., YANG, J. & Chen, X. An Improved k-means Algorithm for Documents
Clustering [J]. Computer Engineering 2, 042 (2003).

56. Ray, S. & Turi, R. H. Determination of number of clusters in k-means clustering
and application in colour image segmentation in Proceedings of the 4th interna-
tional conference on advances in pattern recognition and digital techniques (1999),
137–143.

57. Ng, H., Ong, S., Foong, K., Goh, P. & Nowinski, W. Medical image segmentation
using k-means clustering and improved watershed algorithm in Image Analysis and
Interpretation, 2006 IEEE Southwest Symposium on (2006), 61–65.

58. Hussain, H. M., Benkrid, K., Seker, H. & Erdogan, A. T. FPGA implementation
of K-means algorithm for bioinformatics application: An accelerated approach to
clustering Microarray data in 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS) (June 2011), 248–255. doi:10.1109/AHS.2011.5963944.

136

Bibliography

59. Basu, S., Bilenko, M. & Mooney, R. J. A probabilistic framework for semi-supervised
clustering in Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining (2004), 59–68.

60. Reddy, D. & Jana, P. K. Initialization for K-means Clustering using Voronoi
Diagram. Procedia Technology 4, 395–400. issn: 2212-0173 (2012).

61. Dhillon, I. S. Co-clustering Documents and Words Using Bipartite Spectral Graph
Partitioning in Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (ACM, San Francisco, Califor-
nia, 2001), 269–274. isbn: 1-58113-391-X. doi:10.1145/502512.502550. <http:
//doi.acm.org/10.1145/502512.502550>.

62. Hu, S., Su, L., Liu, H., Wang, H. & Abdelzaher, T. F. SmartRoad: Smartphone-
Based Crowd Sensing for Traffic Regulator Detection and Identification. ACM
Trans. Sen. Netw. 11, 55:1–55:27. issn: 1550-4859 (July 2015).

63. Von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing 17,
395–416. issn: 1573-1375 (2007).

64. Ng, A. Y., Jordan, M. I., Weiss, Y., et al. On spectral clustering: Analysis and an
algorithm in NIPS 14 (2001), 849–856.

65. Chung, F. R. Spectral graph theory (American Mathematical Soc., 1997).

66. Mohar, B. in Graph symmetry 225–275 (Springer, 1997).

67. Dhillon, I. S., Guan, Y. & Kulis, B. Kernel k-means: spectral clustering and nor-
malized cuts in Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining (2004), 551–556.

68. Kulis, B., Basu, S., Dhillon, I. & Mooney, R. Semi-supervised graph clustering: a
kernel approach. Machine Learning 74, 1–22. issn: 1573-0565 (2009).

69. Dhillon, I. S., Guan, Y. & Kulis, B. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelli-
gence 29 (2007).

70. Dhillon, I. S., Guan, Y. & Kulis, B. A unified view of kernel k-means, spectral
clustering and graph cuts (Citeseer, 2004).

71. Fred, A. L. & Jain, A. K. Combining multiple clusterings using evidence accumu-
lation. IEEE transactions on pattern analysis and machine intelligence 27, 835–
850 (2005).

72. Freund, Y. & Schapire, R. E. in Computational Learning Theory: Second European
Conference, EuroCOLT ’95 Barcelona, Spain, March 13–15, 1995 Proceedings (ed
Vitányi, P.) 23–37 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995). isbn:
978-3-540-49195-8. doi:10.1007/3-540-59119-2_166. <http://dx.doi.org/
10.1007/3-540-59119-2_166>.

137

Bibliography

73. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System in Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (ACM, San Francisco, California, USA, 2016), 785–794. isbn: 978-1-
4503-4232-2. doi:10.1145/2939672.2939785. <http://doi.acm.org/10.1145/
2939672.2939785>.

74. Breiman, L. Bagging predictors. Machine Learning 24, 123–140. issn: 1573-0565
(1996).

75. Vega-Pons, S. & Ruiz-Shulcloper, J. A survey of clustering ensemble algorithms.
International Journal of Pattern Recognition and Artificial Intelligence 25, 337–
372 (2011).

76. Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus Clustering: A Resampling-
Based Method for Class Discovery and Visualization of Gene Expression Microar-
ray Data. Machine Learning 52, 91–118. issn: 1573-0565 (2003).

77. Mikalsen, K. Ø., Bianchi, F. M., Soguero-Ruiz, C. & Jenssen, R. Time Series
Cluster Kernel for Learning Similarities between Multivariate Time Series with
Missing Data. arXiv preprint arXiv:1704.00794 (2017).

78. Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation 15, 1373–1396 (2003).

79. Hore, P., Hall, L. O. & Goldgof, D. B. A scalable framework for cluster ensembles.
Pattern Recognition 42, 676–688. issn: 0031-3203 (2009).

80. Ayad, H. G. & Kamel, M. S. Cumulative voting consensus method for partitions
with variable number of clusters. IEEE transactions on pattern analysis and ma-
chine intelligence 30, 160–173 (2008).

81. Ayad, H. G. & Kamel, M. S. On voting-based consensus of cluster ensembles.
Pattern Recognition 43, 1943–1953 (2010).

82. Li, Y., Yu, J., Hao, P. & Li, Z. Clustering ensembles based on normalized edges in
Pacific-Asia Conference on Knowledge Discovery and Data Mining (2007), 664–
671.

83. Strehl, A. & Ghosh, J. Cluster ensembles: a knowledge reuse framework for com-
bining multiple partitions. Journal of machine learning research 3, 583–617 (2002).

84. Topchy, A., Jain, A. K. & Punch, W. A mixture model for clustering ensembles in
Proceedings of the 2004 SIAM International Conference on Data Mining (2004),
379–390.

85. Frigyik, B. A., Kapila, A. & Gupta, M. R. Introduction to the Dirichlet Distribu-
tion and Related Processes tech. rep. 206 (2010).

86. Goldman, R. N. Polya’s Urn Model and Computer Aided Geometric Design. SIAM
Journal on Algebraic Discrete Methods 6, 1–28 (1985).

87. Blackwell, D. & MacQueen, J. B. Ferguson distributions via Pólya urn schemes.
The annals of statistics, 353–355 (1973).

138

Bibliography

88. Orbanz, P. Lecture notes on bayesian nonparametrics. Version: May 16, 2014.

89. Schmidt, M. N. & Morup, M. Nonparametric Bayesian modeling of complex net-
works: An introduction. IEEE Signal Processing Magazine 30, 110–128 (2013).

90. Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising Model
Component Complexity: A Principled, Practical Approach to Constructing Priors.
Statist. Sci. 32, 1–28 (Feb. 2017).

91. Diaconis, P. & Ylvisaker, D. Conjugate Priors for Exponential Families. Ann.
Statist. 7, 269–281 (Mar. 1979).

92. Fink, D. A compendium of conjugate priors. See http://www. people. cornell.
edu/pages/df36/CONJINTRnew% 20TEX. pdf, 46 (1997).

93. Teh, Y. W. in Encyclopedia of Machine Learning (eds Sammut, C. & Webb, G. I.)
280–287 (Springer US, Boston, MA, 2010). isbn: 978-0-387-30164-8. doi:10.1007/
978-0-387-30164-8_219. <http://dx.doi.org/10.1007/978-0-387-30164-
8_219>.

94. Gershman, S. J. & Blei, D. M. A tutorial on Bayesian nonparametric models.
Journal of Mathematical Psychology 56, 1–12 (2012).

95. Ross, S. M. Introduction to Probability Models, Tenth Edition isbn: 978-0-12-
375686-2 (Academic Press, Inc., Orlando, FL, USA, 2010).

96. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. Introducing markov chain
monte carlo. Markov chain Monte Carlo in practice 1, 19 (1996).

97. Andrieu, C., De Freitas, N., Doucet, A. & Jordan, M. I. An introduction to MCMC
for machine learning. Machine learning 50, 5–43 (2003).

98. Efron, B. Computers and the Theory of Statistics: Thinking the Unthinkable.
SIAM Review 21, 460–480 (1979).

99. B. Efron, R. T. Bootstrap Methods for Standard Errors, Confidence Intervals,
and Other Measures of Statistical Accuracy. Statistical Science 1, 54–75. issn:
08834237 (1986).

100. Johnson, R. W. An Introduction to the Bootstrap. Teaching Statistics 23, 49–54.
issn: 1467-9639 (2001).

101. Cooke, R. M. Experts in uncertainty: opinion and subjective probability in science
(Oxford University Press on Demand, 1991).

102. Kass, R. E. & Wasserman, L. The selection of prior distributions by formal rules.
Journal of the American Statistical Association 91, 1343–1370 (1996).

103. Neal, R. M. Markov chain sampling methods for Dirichlet process mixture models.
Journal of computational and graphical statistics 9, 249–265 (2000).

104. Damlen, P., Wakefield, J. & Walker, S. Gibbs sampling for Bayesian non-conjugate
and hierarchical models by using auxiliary variables. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology) 61, 331–344. issn: 1467-9868
(1999).

139

Bibliography

105. Papaspiliopoulos, O. & Roberts, G. O. Retrospective Markov Chain Monte Carlo
Methods for Dirichlet Process Hierarchical Models. Biometrika 95, 169–186. issn:
00063444 (2008).

106. Blei, D. M., Jordan, M. I., et al. Variational inference for Dirichlet process mix-
tures. Bayesian analysis 1, 121–143 (2006).

107. Attias, H. et al. A Variational Baysian Framework for Graphical Models. in NIPS
12 (1999).

108. Kurihara, K., Welling, M. & Teh, Y. W. Collapsed Variational Dirichlet Process
Mixture Models. in IJCAI 7 (2007), 2796–2801.

109. Chang, J. & Fisher III, J. W. in Advances in Neural Information Processing Sys-
tems 26 (eds Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Wein-
berger, K. Q.) 620–628 (Curran Associates, Inc., 2013). <http://papers.nips.
cc/paper/5162-parallel-sampling-of-dp-mixture-models-using-sub-

cluster-splits.pdf>.

110. Dahl, D. B. An improved merge-split sampler for conjugate Dirichlet process mix-
ture models. Technical R eport 1, 086 (2003).

111. Jain, S. & Neal, R. M. A split-merge Markov chain Monte Carlo procedure for
the Dirichlet process mixture model. Journal of Computational and Graphical
Statistics 13, 158–182 (2004).

112. Jain, S. & Neal, R. M. Splitting and merging components of a nonconjugate
Dirichlet process mixture model. Bayesian Anal. 2, 445–472 (Sept. 2007).

113. Lovell, D., Adams, R. P. & Mansingka, V. Parallel markov chain monte carlo for
dirichlet process mixtures in Workshop on Big Learning, NIPS (2012).

114. Williamson, S., Dubey, A. & Xing, E. P. Parallel Markov Chain Monte Carlo for
Nonparametric Mixture Models. in ICML (1) (2013), 98–106.

115. Izquierdo-Verdiguier, E., Gómez-Chova, L., Bruzzone, L. & Camps-Valls, G. Semisu-
pervised nonlinear feature extraction for image classification in 2012 IEEE In-
ternational Geoscience and Remote Sensing Symposium (July 2012), 1525–1528.
doi:10.1109/IGARSS.2012.6351244.

116. Xuan, G., Zhang, W. & Chai, P. EM algorithms of Gaussian mixture model and
hidden Markov model in Proceedings 2001 International Conference on Image
Processing (Cat. No.01CH37205) 1 (2001), 145–148 vol.1. doi:10.1109/ICIP.
2001.958974.

117. Bilmes, J. A. et al. A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models. Interna-
tional Computer Science Institute 4, 126 (1998).

118. Ho, Y. & Pepyne, D. Simple Explanation of the No-Free-Lunch Theorem and
Its Implications. Journal of Optimization Theory and Applications 115, 549–570.
issn: 1573-2878 (2002).

140

Bibliography

119. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1, 67–82. issn: 1089-778X (Apr.
1997).

120. Leisch, F. Bagged clustering (1999).

121. Miller, J. W. & Harrison, M. T. Inconsistency of Pitman-Yor process mixtures for
the number of components. Journal of Machine Learning Research 15, 3333–3370
(2014).

122. Silberman, N., Hoiem, D., Kohli, P. & Fergus, R. in Computer Vision – ECCV
2012: 12th European Conference on Computer Vision, Florence, Italy, October
7-13, 2012, Proceedings, Part V (eds Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y. & Schmid, C.) 746–760 (Springer Berlin Heidelberg, Berlin, Heidelberg,
2012). isbn: 978-3-642-33715-4. doi:10.1007/978-3-642-33715-4_54. <http:
//dx.doi.org/10.1007/978-3-642-33715-4_54>.

123. Sklansky, J. Image Segmentation and Feature Extraction. IEEE Transactions on
Systems, Man, and Cybernetics 8, 237–247. issn: 0018-9472 (Apr. 1978).

124. Hoiem, D., Efros, A. A. & Hebert, M. Geometric context from a single image in
Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1
1 (Oct. 2005), 654–661 Vol. 1. doi:10.1109/ICCV.2005.107.

125. Estevez, P. A., Tesmer, M., Perez, C. A. & Zurada, J. M. Normalized Mutual
Information Feature Selection. IEEE Transactions on Neural Networks 20, 189–
201. issn: 1045-9227 (Feb. 2009).

126. Chapelle, O., Weston, J. & Schölkopf, B. Cluster kernels for semi-supervised learn-
ing. Advances in neural information processing systems, 601–608 (2003).

127. Myhre, J. N. & Jenssen, R. Mixture weight influence on kernel entropy component
analysis and semi-supervised learning using the Lasso in 2012 IEEE International
Workshop on Machine Learning for Signal Processing (Sept. 2012), 1–6. doi:10.
1109/MLSP.2012.6349814.

128. Topchy, A., Minaei-Bidgoli, B., Jain, A. K. & Punch, W. F. Adaptive clustering
ensembles in Proceedings of the 17th International Conference on Pattern Recog-
nition, 2004. ICPR 2004. 1 (Aug. 2004), 272–275 Vol.1. doi:10.1109/ICPR.2004.
1334105.

129. Elghazel, H. & Aussem, A. Unsupervised feature selection with ensemble learning.
Machine Learning 98, 157–180 (2015).

130. He, X., Cai, D. & Niyogi, P. Laplacian score for feature selection in NIPS 186
(2005), 189.

131. Das, S. Filters, wrappers and a boosting-based hybrid for feature selection in ICML
1 (2001), 74–81.

132. Weston, J. et al. Feature selection for SVMs in Proceedings of the 13th Interna-
tional Conference on Neural Information Processing Systems (2000), 647–653.

141

