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Abstract 

Polymers have an extreme wide range of potential applications. From artificial heart valves, 

computer hardware, coating materials, noise damping materials and so on. Polyurethane is one 

of the such materials with a broad range of applications. A few such applications and properties 

are, but not limited to, treatment of leakage of an expansion joint, abrasion resistance, anti-

freezing performance and so on (Zhiheng, 2015). Additionally, the fish farm industry uses feed 

pipes and cages made of polyurethane. The Norwegian oil and gas industry have their eyes set 

on the Arctic region of the Norwegian continental shelf. If polyurethane is to be used in such 

conditions, knowledge on how the material changes it properties is needed. Properties that are 

expected to change are tensile properties, ice adhesion, thermal conductivity and more.  

 

The master thesis focuses on two aspects, namely mechanical and thermal properties of SK One 

Component Polyurethane (SKOCP). The SKOCP samples are provided by China Institute of 

Water Resources and Hydropower Research, Beijing, China. There are two different variants 

known as anti-seepage and anti-abrasion. The thesis is divided into three parts. First part focuses 

on determining the Young’s moduli. Second part investigates ice adhesion, and the third part 

investigates the thermal properties of SKOCP.  

 

The first part investigates how SKOCP behaves in cold temperatures (for e.g. changes in 

Young’s moduli). In this work, the mechanical behavior of SKOCP was investigated using a 

four-point bending test. The same phenomenon was simulated in ANSYS workbench. Results 

revealed the Young’s moduli of the samples. 

 

The second part presents ice adhesion to the polyurethane surface. These tests were also 

performed using four-point bending test. In these, water was poured on the SKOCP surface and 

allowed to freeze. Upon loading in four-point test, the ice separated. The load indicates the 

adhesion strength of the ice. Same phenomenon was also simulated in ANSYS workbench for 

clarity of results.  

 

The third part looks into the thermal properties of SKOCP. In this study two parameters were 

focused heat transfer coefficient and thermal conductivity. This was done using experiments 

(IR imaging) compared with numerical solution.  
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Abstract 

By the use of four-point bending and the solution to Euler-Bernoulli beam theory, Young’s 

modulus for SKOCP have been estimated.  The results revealed that the Young’s modulus had 

a non-linear behavior, meaning that it was not constant, and was changing with the applied load 

on the four-point bending. This is because the atomic structure of the polymers. When the 

specimen is subjected to bending, the long chains that make up the material will be stretched 

out. However, when a material have a hysteresis behavior, the chains will not return to its 

original shape.  
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Nomenclature 

 

Description Symbol Unit 

Stress 𝜎 𝑃𝑎 

Strain 𝜀 1 𝑜𝑟 𝑟𝑎𝑑𝑖𝑎𝑛 

Modulus of elasticity 𝐸 𝑃𝑎 

Length 𝐿, 𝐿1 and 𝐿2 𝑚 

Shear stress 𝜏𝑥 𝑃𝑎 

Shear force 𝑉 𝑁 

Longitudinal stress 𝜎𝑥 𝑃𝑎 

Bending moment 𝑀 𝑁𝑚 

Distance to the neutral axis 𝑐 𝑚 

Second moment of inertia 𝐼 𝑚4 

Slope of a bending beam 𝜃 𝑟𝑎𝑑𝑖𝑎𝑛 

Radius of a bending beam 𝑅 𝑚 

Force of a bending beam ∆𝑃 𝑁 

Differential in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑦 𝑚 

The distance to 𝑑𝑦 to neutral axis 𝑧 𝑚 

The distance where the moment is calculated 𝑥 𝑚 

Unknowns constants from solving PDEs 𝐶1 to 𝐶6 𝑁/𝐴 

Length of specimen 𝑙 𝑚𝑚 

Thickness of specimen 𝑡𝑠 𝑚𝑚 

Width of specimen 𝑏 𝑚𝑚 

Cubic fitted curve from MATLAB® 𝑦 𝑘𝑔 
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Outline 

The paper is divided into 5 chapters. The content of each chapter is listed below: 

• Chapter 1 gives an introduction to the goal of the paper. 

• Chapter 2 is a literature review on ice adhesion, and previous done work in the area..  

• Chapter 3 introduces the method that was elected to govern the solutions that was 

obtained in this paper. Additionally, this chapter gives a mathematically introduction 

to Euler-Bernoulli beam theory, which a fundamental method to estimate some 

necessary parameters, such as longitudinal stress. 

• Chapter 4 presents the results that was obtain in MATLAB® and ANSYS®. 

• Chapter 5 gives the discussion and conclusion. 

• Appendix I contains the MATLAB® code that was used to calculate and plot the 

Young’s Modulus for anti-abrasion polyurethane (copy/paste safe).
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Chapter 1: Introduction 

When materials are utilized in cold climates areas, their material properties, such as the 

Modulus of Elasticity (Young’s Modulus) can change compered to warmer climates. This is 

dependent on the atomic structure of the material, and how it changes. When a body is subjected 

to negative heat change, the atoms and molecules that make up the body will have a lower net 

motion. And thus, how the force that’s applied will behave differently compared to warmer 

surroundings. This paper will determine the Young’s modulus of anti-abrasion polyurethane at 

and anti-seepage polyurethane −20°𝐶. This will be done using a four-point stress test bench. 

The results obtained from the bench will be interpreted and solved with mathematical models 

based on Euler-Bernoulli beam theory, and by results obtained from simulation in the ANSYS 

® Mechanical software bundle.     
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Chapter 2: Literature Review  

2.1.  Polyurethane   

Polyurethane was invented by Otto Bayer and Heinrich Rinke, in Germany in 1937 (Bayer, 

1947), (Prisacariu, 2011) and some of the first use of this plastic was during WWII, where it 

was applied as a coating of the German airplanes (Seymore & Kauffman, 1992). However, 

some of the first commercially available products made from polyurethane was rigids foams 

and rubbers for different purposes. It was discovered that by the addition of different materials 

(e.g. mica and other processed mineral fibers, and other), the polyurethane got stiffer (Young’s 

modulus) and better heat properties. In 1983, a US car making company made the Pontiac Fiero, 

where the entire body was made from polyurethane with special additives. As of 2011, the use 

of polyurethane is spread from construction materials to clothing (Prisacariu, 2011).  

Table 1: the distribution of different applications that use polyurethane 

Polyurethane use Amounts (millions of 𝑘𝑔) Percentage (%) 

Building and construction 662 26.8 

Transportation 589 23.8 

Furniture and bedding 511 20.7 

Appliances 126 5.1 

Packaging 113 4.6 

Textile, fibers and apparel  82 3.3 

Machinery and Foundry  80 3.3 

Electronics 34 1.4 

Footwear 17 0.7 

Other use 253 10.2 

Total 2467 100 

 

2.1.1. Chemistry of Polyurethane 

Polyurethane is in the chemical class called reaction polymers (Gum, et al., 1992), (Harrington 

& Hock, 1991) and (Woods, 1990). The process of making polyurethane involves reaction an 

isocyanate containing two or more isocyanate groups per molecule (𝑅 − 𝑁 = 𝐶 = 𝑂)𝑛 (Soto, 

et al., 2014) with a polyol containing hydroxyl groups (𝑅′ − (𝑂𝐻)𝑛) (Soto, et al., 2014) that 

contain on average two or more molecules. In addition to these molecules, the urethane groups 
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are introduced (−𝑁𝐻𝐶𝑂 − 𝑂). These three groups are then put under an ultraviolet light or 

with a presence of a catalyst, and thus, polyurethane is made. See figure 1 below. Naturally, the 

process is more complicated than that. It is, however, not the scope of this paper to investigate 

all the steps in creating polyurethane.  

 

Figure 1: the creation of polyurethane 

2.1.2. SK One Component Polyurethane 

In this paper, the polyurethane that’s tested is developed by China Institute of Water Resources 

& Hydropower Research Beijing IWHR-KHL Co. Ltd. The product name is SK One 

Component Polyurethane, however, polyurethane is the name that will be used in the following 

chapters and sections in this paper. The company provided two distinct types of polyurethane 

for testing, namely anti-seepage polyurethane and anti-abrasion polyurethane. Anti-seepage 

polyurethane is suggested to be used as a sealant in either chemical tanks, as it has good 

resistance to chemical corrosion  (Zhiheng, 2015) or in dams to prevent water leaks through the 

concrete. Anti-abrasion polyurethane can be used on locations where high corrosion is 

expected. Locations of such can be water ducts from dams, on ships, due to the force of water 

while ship is in transit, and so forth.  

2.3. Modulus of Elasticity  

The modulus of elasticity, or Young’s Modulus, named after the British scientist Thomas 

Young, when he published his paper “A Course of Lectures on Natural Philosophy and the 

Mechanical Arts” in 1807. Young's modulus is describing the stiffness of an elastic material 

(Petrescu, et al., 2011), and also, Young’s modulus describes the materials ability to resist 

elastic deformation, in either compressive or tensile load.  
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Figure 2: Young's modulus (Y)  for materials and different regions. The plastic region is exaggerated. 

Materials that are subjected to stresses, and the stresses are not high enough to enter the plastic 

region, the material will “go back” to its original shape when the stress is removed. However, 

when materials enter the plastic region, the material will be permanently deformed after the 

stress is removed.   

2.3.1. Hysteresis 

It is expected that the Young’s modulus of polyurethane will behave according to the plastic 

region, as seen in figure 2 above. Additionally, some polymers have different Young’s modulus 

when the load is removed. E.g., it will behave differently if, let’s say,  5𝑁, is applied versus 

when the same load is removed. This behavior is called hysteresis. Imagine a regular balloon. 

Initially, to blow up the balloon, it is rather difficult. However, if the same balloon where 

stretched before attempting to blow it up, it will be much easier. The reason behind this behavior 

is due the fact that the polymer loses energy (heat) when the load is applied and then removed 

(Meyers & Chawla, 1999). This loss of energy is due to the fact that the molecular structure of 

the polymer rearranges the long chains when load is applied (McCrum, et al., 2003). Since the 

behavior is because of loss of heat, with lower temperatures the necessary work needed to 

displace an equal distance is less compared to higher temperatures (Atanackovic & Guran, 

2012). There are different mathematical model that can describe the hysteris behavior, whereas 

some are 

 



A-5 

• Maxwell model 

• Kelvin-Voigt model 

• Standard linear solid model 

• Generalized Maxwell model 

It is, however, not the scope of this paper to describe or include these models.  
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Chapter 3: Methodology   

To determine how polyurethane behaves in cold climates, comparison of experimental data and 

simulated data can be applied. For this technique to be viable, fundamental knowledge of how 

materials behave when subjected to load (force) is necessary. In this paper, the Euler-Bernoulli 

beam equation will be solved analytically for a four-point bending setup. The simple definition 

of the Euler-Bernoulli beam theory states that the stress varies linearly with the distance from 

the neutral axis.  

To determine the elasticity of polyurethane in cold climates, there are two main steps,  

• Theoretical analysis of Euler-Bernoulli beam theory 

• Experiments 

The theoretical study will introduce the equations necessary to estimate Young’s modulus. 

Based on the results from the experiments, the displacement as a function of the applied loads 

are given. Thus, Young’s modulus can be estimated.  

The experiments will be done at the cold lab at UiT The Arctic University of Norway. A four-

point test bench will be constructed, and based on this bench, the results will be obtained. 

3.1. Beam Theory 

To calculate the theoretical displacement 𝑦 in a beam, Euler-Bernoulli beam theory can be 

applied. The following section will introduce the basic equations that are used to calculate the 

displacement, theoretical load, and so on. This derivation considers the moment 𝑀 about the 

neutral axis 𝑐. See the figure on the next page. 
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Figure 3: Longitudinal stress (𝜎𝑥), shear stress (𝜏𝑥), shear force (𝑉) and bending moment (𝑀) in a beam, as seen in (Khawaja 

& Xue, 2016)  

To calculate the longitudinal stress, 𝜎𝑥, equation 1 below can be used (Khawaja & Xue, 2016) 

 
𝜎𝑥 =

𝑀|𝑐|

𝐼
 (1) 

Where  

• 𝑀 is the moment 

• 𝑐 is the distance to the neutral axis 

• 𝐼 is the second moment of inertia. 

The strain in a beam undergoing deflection (bending) is a function of the radius of the neutral 

axis and the distance of the surface from the neutral axis (Khawaja & Xue, 2016), as shown in 

figure 4 on the next page. 
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Figure 4: the longitudinal strain (𝜀𝑥) in a beam undergoing bending (Khawaja & Xue, 2016) 

Based on figure 4, to express the relationship between 
𝐶′𝐷′

𝐴′𝐵′
, basic geometrical rules can be 

applied. This relationship is displayed in eq. 2 below. 

 
 
𝐶′𝐷′

𝐴′𝐵′
=

(𝑅 + 𝑐)𝜃

𝑅𝜃
=

𝑅 + 𝑐

𝑅
 (2) 

Where 

• 𝑅 is the radius of the neutral axis 

• 𝜃 is the slope, in radians 

Thus, the strain, εx, at layer 𝐶′𝐷′ can be expressed as the change in length, e.g. (𝐶′𝐷′ − 𝐶𝐷) 

divided by the original length (𝐶𝐷). Remember that the distance 𝐴𝐵 and 𝐶𝐷 originates from 

the initial layer, so 𝐴𝐵 = 𝐶𝐷. In addition, 𝐴𝐵 is on the neutral axis, so there will not be any 

changes in the length, e.g. 𝐴𝐵 = 𝐴′𝐵′.  Thus, the strain at layer 𝐶′𝐷′ is displayed in equation 3 

below 

 
 εx =

𝐶′𝐷′ − 𝐶𝐷

𝐶𝐷
=

𝐶′𝐷′ − 𝐶𝐷

𝐴𝐵
=

𝐶′𝐷′

𝐴𝐵
− 1 (3) 

By substituting eq. 2 and 3 into eq. 4, we get 

 εx =
𝑐

𝑅
 (4) 

 

Since the beam is only subjected to moments, due to the location of where forces are applied, 

and the beam is in static equilibrium, the forces across the surface of the cross-section is 
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longitudinal. Remember that moment is simply 𝑓𝑜𝑟𝑐𝑒 multiplied by 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. Thus, the force 

at each of the cross-section areas in the beam can be expressed as (Khawaja & Xue, 2016) 

 ∆𝑃 = 𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦 (5) 

And the moment can be described as  

 ∆𝑀 = ∆𝑃 ∙ 𝑐 = (𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦) ∙ 𝑐 (6) 

Where  

• 𝑑𝑦 is the differential in the 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

Further, to create an expression for the entire cross-section area at a given location, simply 

summarize from 𝑧 = +𝑐/2 to 𝑧 = −𝑐/2 ( 𝑧 being the distance to 𝑑𝑦 from the neutral axis c) 

over the cross-section area in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 

 𝑀 = ∑(𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦) ∙ 𝑐 (7) 

Now, remember Hooke’s Law (Atanackovic & Guran, 2012), 𝜎𝑥 = 𝐸𝜀𝑥, 

Where 

• 𝐸 is Young’s Modulus  

Substituting the strain that was found in eq. 3, Hooke’s Law can be rewritten to 

 𝜎𝑥 = 𝐸
𝑐

𝑅
 (8) 
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When a beam undergoes bending, the neutral axis will naturally also bend. The angle, 𝑑𝜃, is 

described as the two points in between 𝑑𝑦 where the slope of the neutral axis intersects on top 

and bottom of 𝑑𝑦.  

 

Figure 5: shape of the neutral axis of a beam undergoing bending (Khawaja & Xue, 2016) 

It is known that for very small angles, tan 𝜃 =
𝑑𝑦

𝑑𝑥
 can be rewritten to 𝜃 =

𝑑𝑦

𝑑𝑥
. Note that 𝜃 is in 

radians, and thus, 𝜃 =
𝑠

𝑅
. Further, 𝑑𝑠 is very small, so that 𝑑𝑠 = 𝑑𝑥. Therefore (Khawaja & 

Xue, 2016),  

 1

𝑅
=

𝑑𝜃

𝑑𝑠
=

𝑑𝜃

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2
 (9) 

 

In addition, the moment of inertia, 𝐼, for the beam can be written as (Khawaja & Xue, 2016) 

 𝐼 = ∑ 𝑐2 ∙ 𝑏 ∙ 𝑑𝑦 (10) 

 

By substituting eq. 8, eq. 9 and eq. 10, into eq. 11, we get: 

 𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 (11) 

 

Now, the expression for the theoretical displacement in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 can be constructed. 

Remember that 𝜃 =
𝑑𝑦

𝑑𝑥
, thus 
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𝜃 = ∫

𝑀

𝐸𝐼
𝑑𝑥 → 𝑦 = ∫ 𝜃𝑑𝑥 → 𝑦 = ∫ ∫

𝑀

𝐸𝐼
𝑑𝑥 (12) 

 

It has now been established equation that can be applied to describe the theoretical 

displacement, 𝑦, for a beam that is subjected to force. In this paper, a four-point bending 

problem will be analyzed. That means that the beam is supported by two points, and loaded 

with two points, see the figure below. The advantages to use a four-point load is that the moment 

is constant between the two loads points. To determine the different parameters seen in figure 

3, different test methods can be applied. Further, the bending moment and shear force diagram 

of a four-point bending beam can be seen in figure 6 below (Khawaja & Xue, 2016). 

 

Figure 6: Bending moment (M) and shear force (V) diagrams of a four-point bending beam, as seen in (Khawaja & Xue, 2016). 

Where  

• P is the load on the (𝑁) 

• 𝐿 is the distance between the support joints (𝑚) 

• 𝐿1 is the distance between the support joints and loading points (𝑚) 
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• 𝑥 is the distance of which the moment is calculated (𝑚). 

The moment is a function of 𝑥, e.g. the distance from the load to the support (Wachtman, et al., 

2009), and the advantage to use a four-point test bench is that the moment is constant in the 

middle of the beam (Xue, 2015), e.g.: 

 
𝑀(𝑥) =

𝑃𝑥

2
 0 ≤ 𝑥 ≤ 𝐿1  

 
𝑀 =

𝑃𝐿1

2
 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) (13) 

 
𝑀(𝑥) =

𝑃(𝐿 − 𝑥)

2
 (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿  

Thus, multiple correlations based on equations 11, 12 and 13, can be derived. For the case where  

0 ≤ 𝑥 ≤ 𝐿1, and 𝑀(𝑥) =
𝑃𝑥

2
, we get equations 14 and 15: 

 
𝜃1 =

𝑃𝑥2

4𝐸𝐼
+ 𝐶1 (14) 

 
𝛿1 =

𝑃𝑥3

12𝐸𝐼
+ 𝐶1𝑥 + 𝐶2 (15) 

Further, for the case where 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1), and 𝑀 =
𝑃𝐿1

2
, equations 16 and 17 can be 

obtained: 

 
𝜃2 =

𝑃𝐿1𝑥

2𝐸𝐼
+ 𝐶3 (16) 

 
𝛿2 =

𝑃𝐿1𝑥

4𝐸𝐼
+ 𝐶3𝑥 + 𝐶4 (17) 

For the last case, where (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿, and 𝑀(𝑥) =
𝑃(𝐿−𝑥)

2
, the last set of equations can be 

derived: 

 
𝜃3 = −

𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
+ 𝐶5  (18) 

 
𝛿3 = −

𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
+ 𝐶5𝑥 + 𝐶6 (19) 

 

In equations 14 to 19, there are six unknows, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6. To solve the equations, 

boundary conditions are needed. These boundary conditions are given in equations 20 to 24: 
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 𝑥 = 0,         𝛿1 = 0 (20) 

 𝑥 = 𝐿,         𝛿1 = 𝛿2,        𝜃1 = 𝜃2 (21) 

 
𝑥 =

𝐿

2
,        𝜃2 = 0 (22) 

 𝑥 = 𝐿 − 𝐿1,         𝜃2 = 0,         𝜃2 = 𝜃3 (23) 

 𝑥 = 𝐿,         𝛿3 = 0 (24) 

 

By solving the equations (Young & Budynas, 2002) with the respective boundary conditions, 

we get the following set of equations: 

𝜃1 =
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿1𝐿

4𝐸𝐼
 (25) 

𝛿1 =
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿1𝐿𝑥

4𝐸𝐼
 (26) 

𝜃2 =
𝑃𝐿1𝑥

4𝐸𝐼
−

𝑃𝐿𝐿1

4𝐸𝐼
 (27) 

𝛿2 =
𝑃𝐿1𝑥2

4𝐸𝐼
−

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿1
3

12𝐸𝐼
 (28) 

𝜃3 = −
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
−

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿2

4𝐸𝐼
+

𝑃𝐿𝐿1

4𝐸𝐼
 (29) 

𝛿3 = −
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
−

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿2𝑥

4𝐸𝐼
+

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿3

12𝐸𝐼
+

𝑃𝐿1
2𝐿

4𝐸𝐼
−

𝑃𝐿2𝐿1

4𝐸𝐼
  (30) 

 

Where eq. 25 and 26 are in the region 0 ≤ 𝑥 ≤ 𝐿1, eq. 27 and 28 are in the region  

𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1), and eq. 29 and 30 are in the region (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿, and  

• 𝐿 is the distance between the supports 

• 𝑃 is the total load from the four-point bending 

• 𝐸 is the Young’s modulus 

• 𝐼 is the moment of inertia.  

Thus, in equations 25 to 30, a relationship between 𝐿, 𝑃, 𝐸 and 𝐼 has been established. 

Depending on what parameters are given, the equations can be rearranged to be solve a missing 

parameter.  

 



A-14 

3.2. Experimental Work 

The experimental work consists of two parts, setup of the testing apparatus (four-point bench), 

preparing the polyurethane sample, and data gathering. The following sections will describe 

these steps.  

3.2.1. Four-point Test Bench Setup 

To obtain the necessary numbers that are needed to estimate the Young’s modulus of 

polyurethane, a four-point bench can be used. A four-point bench have two loading points, and 

two support points. A rendered image of the bench that was used to obtain the number is this 

paper, can be seen in figure 7 on the next page. In this figure, (a) is the load points, and (b) is 

the support joints. The parameters of the four-point test bench are shown in table 3 below. The 

parameters of the four-point test bench are shown in table 2 below. 

Table 2: parameters of the four-point test bench and the polyurethane specimen 

Description  Variable Value (𝑚𝑚) 

Length of specimen 𝑙 260 

Width of specimen 𝑏 60 

Thickness of specimen 𝑡𝑠 90 

Distance between support and load 

points 

𝐿1 
20 

Distance between the loads points 𝐿2 160 

Distance between support points 𝐿 200 

 



A-15 

 

 

Figure 7: schematic figure of four-point stress bench. Rendered in Autodesk Inventor Professional 2017. 

 

Figure 8: top view of the four-point test bench. The polyurethane specimen in the middle. The renders in fig. 5 and 6 are both 

modelled in Autodesk Inventor Professional 2017. 
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By the use of this test method, the parameters “load” and “displacement” are recorded. Other 

parameters, such as the area moment of inertia are calculated by the use of well-established 

equations.  See eq. 31 below. 

 
𝐼 = 𝑏 ∙

𝑡3

12
 (31) 

Where 

• 𝐼 is the area moment of inertia 

• 𝑏 is the breadth of the specimen 

• 𝑡 is the thickness of the specimen. 

3.2.2. Preparation of Sample 

The polyurethane sample was cut in appropriate sizes (260𝑚𝑚 𝑥 60𝑚𝑚). Both the sample and 

the four-point bench was put in the freezer (−25°𝐶) over-night to ensure even temperature in 

the entire specimen. In the design of the test bench, there are two support rods. These were 

added to the system to ensure that the load joints did not move when load was applied, and 

hence, ensure more accurate results.  

The entire apparatus, and the anti-abrasion polyurethane, was put inside the cold room over-

night. When the objects were properly cold, masses were added on the four-point bench, while 

still inside the cold room.  

3.2.3. Data Gathering 

The load and deflection data was gathered while both the apparatus and the specimen where 

still inside the cold room. The initial load from the loading frame (see fig. 7 and 8), was 1.25 

kg. The added mass came from iron weights, and the added mass had an increment of 1.25 kg 

each time. The initial displacement was recorded before the first 1.25 kg iron weight was added, 

in the middle of the upper frame. At each time more weight was added, the new displacement 

was recorded. See figure 9 on the next page. When the upper frame had reached the lower 

frame, the experiment was concluded.  
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Figure 9: recording of displacement using a Vernier caliper. At this instant, the only load is from the upper frame alone. The 

middle of the frame is marked with a circle. 

3.3. Analytical Study in MATLAB® 

The analytical study was done based on the equations obtained in section 3.1. Equation 26 

(constant moment in the middle of the beam) was used because of the location where the data 

was gathered (see fig. 9). However, remember that eq. 26 is the equation for displacement, thus 

the equation needed to be modified to calculate the Young’s modulus. This equation can be 

seen below 

 
𝐸 =

𝑃𝑥

4 ∙ 𝛿1 ∙ 𝐼
(

𝑥2

3
+ 𝐿1(𝐿1 − 𝐿)) (32) 

 Where 

• 𝐸 is the Young’s modulus (𝑃𝑎) 

• 𝑃 is the load (𝑁) 

• 𝑥 is the distance where the moment is calculated (𝑥 = 𝐿1 in this case) (𝑚) 

• 𝛿1 is the recorded displacement (𝑚) 

• 𝐼 is the area moment of inertia 

• 𝐿1 is the distance to the load joint 

• 𝐿 is the total length of the specimen. 
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Chapter 4: Results and Discussion 

4.1. Four-point Stress Test and Analytical Study 

The experimental data to determine Young’s modulus for anti-abrasive polyurethane and anti-

seepage polyurethane is displayed in the table on the next page 

Table 3: force vs. displacement. This data was used to estimate Young's modulus for anti-abrasive polyurethane 

Mass (𝑘𝑔) 
Displacement (anti-abrasion) (𝑚𝑚) Displacement (anti-seepage) (𝑚𝑚) 

Loading Unloading   Loading Unloading 

1.25 2.91 2.98   4.32 7.2 

2.50 4.1 4.63   6.79 8.88 

3.75 4.53 5.65   9.08 10.36 

5.00 4.92 5.85   10.32 11.62 

6.25 5.61 5.59   11.48 12.62 

 

What was found when comparing the results shown in table 3 and the analytical study using eq. 

26, was that there was only a correlation between simulated data and experimental data one 

data point at a time. E.g., the simulated displacement with 𝐸 = 𝐸1 did only fit the first 

experimental data point, and 𝐸 = 𝐸2 only fit the second data point (𝐸1 ≠ 𝐸2). This suggest that 

Young’s modulus, 𝐸, is a function of the applied force (hysteresis). Thus, by using eq. 31., 

where Young’s modulus was solved with respect to the displacement. It was found that Young’s 

modulus of polyurethane had a nonlinear behavior when subjected to cold temperatures. This 

nonlinear behavior is called hysteresis. 

Table 4: the Young's modulus at loading and unloading versus the load. Results for anti-abrasion polyurethane. 

Load (𝑘𝑔) 
Young’s modulus (𝑀𝑃𝑎) 

Loading Unloading 

1.25 20.1 13.9 

2.50 29.1 22.1 

3.75 38.8 29.9 

5.00 47.6 39.9 

6.25 52.1 52.2 
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Table 5: the Young's modulus at loading and unloading versus the load. Results for anti-seepage polyurethane 

Load (𝑘𝑔) 
Young’s modulus (𝑀𝑃𝑎) 

Loading Unloading 

1.25 18.1 10.9 

2.50 23.1 17.7 

3.75 25.9 27.3 

5.00 30.4 27.0 

6.25 34.2 31.1 

 

 

Figure 10: Young's Modulus of anti-abrasion polyurethane showing hysteresis behavior.  

 

Figure 11: Young's Modulus of anti-abrasion polyurethane showing hysteresis behavior. 
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The figure above have clearly illustrates the hysteresis behavior of anti-abrasion polyurethane. 

The grey arrows illustrates the loading (arrow going up) and unloading (arrow going down). To 

illustrate the behavior better, the green lines have been added using the basic data fitting tool in 

MATLAB®. The area within the loop represents the loss of energy within the polyurethane.   

The method of reading the results on the Vernier caliper are not as reliable as one could want. 

Additionally, the human factor plays an important role in these measurements, seeing as they 

were read while inside the cold room. Consequently, the person doing the reading are exposed 

(not directly!) to the cold temperatures, and this could affect the reading accuracy.  
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Chapter 5: Conclusions and Future Work 

5.1. Conclusions 

The conclusions that can be drawn from this report is  

• The Young’s modulus of anti-abrasion and anti-seepage polyurethane, when tested in 

cold room is dependent on the applied mass, or the applied load. This feature is called 

hysteresis. However, the Young’s modulus for anti-abrasion is from 15 to 20 𝑀𝑃𝑎, 

whereas for anti-seepage, the Young’s modulus is from 10 to 17 𝑀𝑃𝑎, at loads from 

1.25kg to 6.5 kg. 

• Equation 34 can be applied to determine the Young’s modulus, for applied loads 

between 1.25 𝑘𝑔 and 6.25 𝑘𝑔, regardless of what material, as long as appropriate 

constants are used. 

 

5.2. Future work 

This report found the Young’s modulus for anti-abrasion polyurethane, and indeed, the Young’s 

modulus had a hysteresis behavior, which was expected due to the internal atomic structure of 

the material. However, what could have been done could be to investigate if the modulus 

changes with time as well. If the load was kept on the bench for example 2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 before a 

different load was put on.  
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Appendix I 

clear all 

close all 

 

Load = [1.25,2.5,3.75,5,6.25];   %kg 

 

Exp_disp = [2.91,4.1,4.53,4.92,5.61]/-1000;  % mm and negative for keep signs 

consistent 

 

P = Load*9.81;  %N 

 

L1 = 0.02;  %m 

 

L = 0.2;  %m 

 

t = 9e-3;  %m 

 

b = 6e-2;  %m 

 

I = b*t^3/12;  %m^4 (area moment of inertia) 

 

E = 40e6;  %Pa 

 

x = L1; 

 

 

E_exp = P.*x^3/12./(Exp_disp)/I+P.*L1^2*x/4./(Exp_disp)/I-

P.*L1*L*x/4./(Exp_disp)/I; 

figure() 

plot (E_exp,'.') 

title('Determining Modulus of Elastity of Polyurethane') 

xlabel('Mass (kg)') 

ylabel('Youngs Modulus (Pa)') 

legend('Youngs Modulus vs. load','location','northwest')' 

 

hold on 

 

 

Unload = sort(Load, 'ascend');   %kg 

Exp_disp_2 = [2.98,4.63,5.65,5.85,5.59]/-1000;  % mm and negative for keep signs 

consistent 

 

E_exp_2 = P.*x^3/12./(Exp_disp_2)/I+P.*L1^2*x/4./(Exp_disp_2)/I-

P.*L1*L*x/4./(Exp_disp_2)/I; 

 

plot (E_exp_2,'*') 

title('Determining Modulus of Elastity of Polyurethane') 

xlabel('Mass (kg)') 

ylabel('Youngs Modulus (Pa)') 

legend('Loading','Unloading','location','northwest')' 
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Abstract 
The strength of ice adhesion between the surface of the SKOCP and ice was found using four-

point bending, with the addition to numerical solutions to Euler-Bernoulli bending theory and 

simulations in ANSYS® Work package. In the experiment, masses were added on the four-

point bench until the ice had separated from the surface. The displacement at the time of 

separation was read, and the same displacement were feed into the ANSYS® Work package. 

From this, the longitudinal stress was found. Additionally, from the theory based on Euler-

Bernoulli bending, the longitudinal stress was calculated. The results revealed that the ice 

adhesion on the surface of polyurethane is in the same range as other polymers.   



B-ii 

 

Table of Contents 

Abstract ....................................................................................................................................... i 

Table of Contents ....................................................................................................................... ii 

List of Figures ........................................................................................................................... iv 

List of Tables .............................................................................................................................. v 

Nomenclature ............................................................................................................................ vi 

Outline ...................................................................................................................................... vii 

Chapter 1: Introduction .............................................................................................................. 1 

1.1. Different types of icing ...................................................................................... 2 

Chapter 2: Literature Review ..................................................................................................... 4 

2.1. Polyurethane ................................................................................................................ 4 

2.1.1. Chemistry of polyurethane ........................................................................................ 4 

2.1.2. SK One Component Polyurethane ............................................................................ 5 

2.2. Ice Adhesion .................................................................................................................... 6 

2.2.1. Electrostatic Adhesion .............................................................................................. 6 

2.2.2. Diffusive Adhesion ................................................................................................... 6 

2.2.3. Mechanical Adhesion ................................................................................................ 6 

2.2.4. Chemical Adhesion ................................................................................................... 6 

2.2.5. Strength of Ice Adhesion of Different Types of Surfaces ......................................... 6 

Chapter 3: Methodology ............................................................................................................. 8 

3.1. Theoretical analysis ......................................................................................................... 8 

3.1.1. Rule of Mixture ...................................................................................................... 16 

3.2.2. Ice adhesion in MATLAB® ................................................................................... 18 

3.2. Experimental Setup.................................................................................................... 18 

3.2.1. Preparation of Sample ............................................................................................ 19 



B-iii 

3.2.2. Data Gathering ....................................................................................................... 20 

3.2.3. Conditions of Experimental Location ..................................................................... 21 

3.3. Ice adhesion in ANSYS® .......................................................................................... 23 

Chapter 4: Results and Discussion ........................................................................................... 25 

4.1. Experimental Data ......................................................................................................... 25 

4.1.1. Anti-abrasion Polyurethane .................................................................................... 25 

4.2.2. Anti-seepage Polyurethane ..................................................................................... 26 

4.2. Analytical Study and Simulations in ANSYS® ............................................................ 28 

4.2.1 Anti-abrasion Polyurethane ..................................................................................... 28 

4.2.2. Anti-seepage Polyurethane ..................................................................................... 30 

Chapter 5: Conclusions and Future work ................................................................................. 33 

5.1. Conclusions ................................................................................................................... 33 

5.2. Future work ................................................................................................................... 33 

References ................................................................................................................................ 34 

Appendix J ................................................................................................................................ 37 

Polyurethane data ................................................................................................................. 37 

Ice data ................................................................................................................................. 38 

 



B-iv 

List of Figures 

Figure 1: ice adhesion ................................................................................................................ 2 

Figure 2: the creation of polyurethane ....................................................................................... 5 

Figure 3: Longitudinal stress (𝜎𝑥), shear stress (𝜏𝑥), shear force (𝑉) and bending moment 

(𝑀) in a beam, as seen in (Khawaja & Xue, 2016) ................................................................... 9 

Figure 4: the longitudinal strain (𝜀𝑥) in a beam undergoing bending (Khawaja & Xue, 2016)

 .................................................................................................................................................. 10 

Figure 5: shape of the neutral axis of a beam undergoing bending (Khawaja & Xue, 2016) .. 12 

Figure 6: Bending moment (M) and shear force (V) diagrams of a four-point bending beam, 

as seen in (Khawaja & Xue, 2016). .......................................................................................... 13 

Figure 7: cross-section area of a system of two different materials (Khawaja & Xue, 2016) . 16 

Figure 8: schematic figure of four-point stress bench. Rendered in Autodesk Inventor 

Professional 2017. .................................................................................................................... 19 

Figure 9: top view of the four-point test bench. The polyurethane specimen in the middle. The 

renders in fig. 8 and 9 are both modelled in Autodesk Inventor Professional 2017. ............... 19 

Figure 10: ice on polyurethane ................................................................................................. 20 

Figure 11: recording of displacement using a Vernier caliper. At this instant, the only load is 

from the upper frame alone. The middle of the frame is marked with a circle. ....................... 21 

Figure 12: ice have broken due to shear stress, and there are no forces restraining the ice to the 

polyurethane. ............................................................................................................................ 22 

Figure 13: ice adhesion test in ANSYS®. The light-colored blue box on the left side 

represents the ice. ..................................................................................................................... 23 

Figure 14: mesh and symmetry applied. .................................................................................. 23 

Figure 15: simulation of normal stress inside ANSYS®. ........................................................ 28 

Figure 16:pl plotted (dots) values of the recorded data from the analytical study and data from 

ANSYS® .................................................................................................................................. 29 

Figure 17: the pressure of the ice adhesion on anti-seepage polyurethane. ............................. 30 

Figure 18: plotted (dots) values of the recorded data from the analytical study and data from 

ANSYS® .................................................................................................................................. 31 

Figure 19: the pressure of the ice adhesion on anti-seepage polyurethane. ............................. 31 

  



B-v 

List of Tables 

Table 1: the distribution of different applications that use polyurethane ................................... 4 

Table 2: captured strength of ice separation from different literature ........................................ 7 

Table 3: parameters of the four-point test bench and the polyurethane specimen ................... 18 

Table 4: data from experiments with ice adhesion on anti-abrasion polyurethane .................. 25 

Table 5: data from experiments with ice adhesion on anti-seepage polyurethane ................... 26 

Table 6: normal stress between the ice layer and anti-abrasion polyurethane from simulations 

in ANSYS® and analytical simulations in MATLAB®. ......................................................... 28 

 

  



B-vi 

Nomenclature 

Description Symbol Unit 

Stress 𝜎 𝑃𝑎 

Strain 𝜀 1 𝑜𝑟 𝑟𝑎𝑑𝑖𝑎𝑛 

Modulus of elasticity 𝐸 𝑃𝑎 

Length 𝐿, 𝐿1 and 𝐿2 𝑚 

Shear stress 𝜏𝑥 𝑃𝑎 

Shear force 𝑉 𝑁 

Longitudinal stress 𝜎𝑥 𝑃𝑎 

Bending moment 𝑀 𝑁𝑚 

Distance to the neutral axis 𝑐 𝑚 

Second moment of inertia 𝐼 𝑚4 

Slope of a bending beam 𝜃 𝑟𝑎𝑑𝑖𝑎𝑛 

Radius of a bending beam 𝑅 𝑚 

Force of a bending beam ∆𝑃 𝑁 

Differential in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑦 𝑚 

The distance to 𝑑𝑦 to neutral axis 𝑧 𝑚 

The distance where the moment is calculated 𝑥 𝑚 

Unknowns constants from solving PDEs 𝐶1 to 𝐶6 𝑁/𝐴 

Length of specimen 𝑙 𝑚𝑚 

Thickness of specimen 𝑡𝑠, 𝑡1 and 𝑡2 𝑚 

Width of specimen 𝑏 𝑚𝑚 

Cross section area 𝐴1, 𝐴2 𝑚 

Balance coefficient  𝑛 1 

Centroid 𝐶𝑦 𝑚 

Centroid coordinates 𝐷𝑖 and 𝐷𝑖+1 𝑚 

Total moment of inertia 𝐼𝑡 𝑚4 

The position where stress is calculated 𝑦 𝑚 
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Outline 

This paper is divided into 5 chapters. The goals in each chapter is described below: 

• Chapter 1 gives an introduction to the goal of the paper. 

• Chapter 2 is a literature review on ice adhesion, and previous done work in the area.  

• Chapter 3 introduces the method that was elected to govern the solutions that was 

obtained in this paper. Additionally, this chapter gives a mathematically introduction 

to Euler-Bernoulli beam theory, which is a fundamental method to estimate some 

necessary parameters, such as longitudinal stress. 

• Chapter 4 presents the results that was obtain in MATLAB® and ANSYS®. 

• Chapter 5 gives the discussion and conclusion. 

• Appendix J contains the  MATLAB® codes that were used to calculate and plot the 

normal stress on the surface of polyurethane at ice separation.
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Chapter 1: Introduction 

Most manmade infrastructures and structures are not created to have ice on them. Therefore, 

time, money and energy are spent to remove the ice from the respectable surfaces. When ice 

have accumulated on roads, powerful machinery scrapes the ice off. When ice accumulates on 

pipes, it needs to be hacked off. When ice have accumulated on constructions where the 

accessibility is difficult or non-existence, let it be the blades of a wind turbine, icing can be very 

dangerous. All-in-all, the effect of ice accumulation, if not handled well, is dangerous, and can 

even be fatal. Most materials that are used in the Arctic region are designed in climates where 

the probability of icing is low. Take asphalt as an example. Amongst the first nations to use 

asphalt as a road coating materials were the US (Gerhard, 1908) in 1876. During the winter 

time in the Arctic, the temperature will be sub-zero. Thus, ice will start to accumulate. Due to 

the structure of asphalt, liquid water will seep into every small crack and groove, see figure 1 

on the next page. Here, the greyish area represents the surface, and the blueish area represents 

ice. Basically, no surface is perfectly polished, and with a rougher surface, more water will stick 

to the surface, and thus, the adhesion force ice will be bigger. When icing accumulates on wind 

turbine blades, thermal energy is applied to melt away the ice. This is a process which takes 

time, and is costly.  
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Figure 1: ice adhesion 

The figure above represents how ice adhere to a surface (mechanical adhesion, see section 

2.2.3). The grooves is a representation of the roughness. Cast iron has an approximate 0.26 mm 

groove height, whereas glass has approximately 0.0015 mm groove height (Pipe Flow Software, 

2010). Within the grooves, the pressure will be higher compared to the pressure that are on the 

rims of the grooves. Because of this, liquids that expands when going to solid state, adhere well. 

This type of adhesion is called mechanical adhesion (Landy & Freiberger, 1967).  

The scope of this paper is thus to investigate the force required to separate the ice from the 

surface of polyurethane. 

1.1. Different types of icing 

Icing can occur based on several factors, whereas some are: 

• Location (locally and globally) 

• Wind 

• Air and sea surface temperature 

• Salinity 

• Humidity. 
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The type of ice that adheres best, is ice from pure water. Salt water, rain water, dirty water will 

all have impaired ice adhesion properties.  

When the surface of which icing have occurred starts to deform, from stresses or strain, the ice 

adhesion will seize. If icing has occurred on metal surfaces, a relatively large load will be 

necessary to break the ice. Whereas surfaces that deform easily, e.g. polymers, the ice will shed 

rather quickly.  
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Chapter 2: Literature Review  

 

2.1. Polyurethane   

Polyurethane was invented by Otto Bayer and Heinrich Rinke, in Germany in 1937 (Bayer, 

1947), (Prisacariu, 2011) and some of the first use of this plastic was during WWII, where it 

was applied as a coating of the German airplanes (Seymore & Kauffman, 1992). However, 

some of the first commercially available products made from polyurethane was rigids foams 

and rubbers for different purposes. It was discovered that by the addition of different materials 

(e.g. mica and other processed mineral fibers), the polyurethane got stiffer (Young’s modulus) 

and better heat properties. In 1983, a US car making company made the Pontiac Fiero, where 

the entire body was made from polyurethane with special additives. As of 2011, the use of 

polyurethane is spread from construction materials to clothing (Prisacariu, 2011).  

Table 1: the distribution of different applications that use polyurethane 

Polyurethane use Amounts (millions of 𝑘𝑔) Percentage (%) 

Building and construction 662 26.8 

Transportation 589 23.8 

Furniture and bedding 511 20.7 

Appliances 126 5.1 

Packaging 113 4.6 

Textile, fibers and apparel  82 3.3 

Machinery and Foundry  80 3.3 

Electronics 34 1.4 

Footwear 17 0.7 

Other use 253 10.2 

Total 2467 100 

 

2.1.1. Chemistry of polyurethane 

Polyurethane is in the chemical class called reaction polymers (Gum, et al., 1992), (Harrington 

& Hock, 1991) and (Woods, 1990). The process of making polyurethane involves reaction an 

isocyanate containing two or more isocyanate groups per molecule (𝑅 − 𝑁 = 𝐶 = 𝑂)𝑛 (Soto, 

et al., 2014) with a polyol containing hydroxyl groups (𝑅′ − (𝑂𝐻)𝑛) (Soto, et al., 2014)that 
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contain on average two or more molecules. In addition to these molecules, the urethane groups 

are introduced (−𝑁𝐻𝐶𝑂 − 𝑂). These three groups are then put under an ultraviolet light or 

with a presence of a catalyst, and thus, polyurethane is made. See figure 1 below. Naturally, the 

process is more complicated than that. It is, however, not the scope of this paper to investigate 

all the steps in creating polyurethane.  

 

Figure 2: the creation of polyurethane 

2.1.2. SK One Component Polyurethane 

In this paper, the polyurethane developed by China Institute of Water Resources & Hydropower 

Research Beijing IWHR-KHL Co. Ltd is being tested. The product name is SK One Component 

Polyurethane, however, polyurethane is the name that will be used in the following chapters 

and sections in this paper. The company provided two distinct types of polyurethane, namely 

anti-seepage polyurethane and anti-abrasion polyurethane. Anti-seepage polyurethane are 

suggested to be used as a sealant in ether chemical tanks, as it has good hesitance to chemical 

corrosion  (Zhiheng, 2015) or in dams to prevent water leaks through the concrete. Anti-

abrasion polyurethane can be used on locations where high corrosion is expected. Locations of 

such can be water ducts from dams, on ships, due to the force of water while ship is in transit, 

and so forth.  
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2.2. Ice Adhesion 

There is currently no exact method to calculate the force of ice adhesion of materials (Xue, 

2015). However, there are a number of different theories on ice adhesion (Jellinks, 1959) and 

(Landy & Freiberger, 1967). The different theories have cataloged the force of ice adhesion 

into four different categories. These categories are shown below 

2.2.1. Electrostatic Adhesion 

When the adhesion force is due to electrostatic forces, the electrostatic charges between the ice 

and the surface it adheres to, hold them in place (Krotova, et al., 1965). Such adhesive force is 

generally found when there are positive ions in the water (Ryzhkin & Petrenko, 1997), and 

subsequently, the ice surface has a charge different that the surface.  

2.2.2. Diffusive Adhesion 

When the water and the surface diffuses across the interface, the resulting adhesion type is 

diffusive adhesion (Xue, 2015).  

2.2.3. Mechanical Adhesion 

The type of ice adhesion that was introduced in the introduction of this paper is called 

mechanical adhesion. The water flows into microscopic pores in the material, and when the 

water freezes, an interlocking mechanism holds the ice to the surface  (Xue, 2015)   

2.2.4. Chemical Adhesion 

This type of ice adhesion is a results of when the chemical compounds of the two bodies (ice 

and surface) bonds with each other (Xue, 2015). 

2.2.5. Strength of Ice Adhesion of Different Types of Surfaces 

As it was mentioned in the introduction to this paper, the roughness of the surface where ice 

adhere plays an important role on the strength of ice adhesion. There are a number of different 

studies on ice adhesion force, where some reported described methods uses air pressure to 

separate the ice from the surface, some methods involves using probes to force the ice from the 

surface (He, et al., 2017), (Davis, et al., 2014). Most of these testes were done in room 

temperature.   
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Table 2: captured strength of ice separation from different literature 

Material Author Temperature 
Strength at ice 

separation (𝑘𝑃𝑎) 

Steel  (He, et al., 2017) Room temperature 713 

Aluminum  (He, et al., 2017) Room temperature 486 

Polymer based coating  (He, et al., 2017) Room temperature 7 − 355 

Polyvinyl chloride (PVC)  (Xue, 2015) Cold room 1500 − 2000 

 

What can be seen in table 2, is that the force of separation plays and important role on ice 

adhesion. This suggest that the ice adhesion is sensitive to temperature.  
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Chapter 3: Methodology   

The methodology in this paper consist of three parts,  

• theoretical analysis of beam theory,  

• experiments 

• numerical simulations using ANSYS©.  

The theoretical part uses Euler-Bernoulli beam theory, and the focus in on a four-point setup. 

The resulting equations are coded in MATLB©.  

How the real-life numbers (displacements) was recorded will be described in this section. The 

construction of the four-point test bench will also be briefly described in this section.  

The last part, simulations in ANSYS©, will describe the steps to simulate a four-point problem. 

 

3.1. Theoretical analysis  

 

To calculate the theoretical displacement 𝑦 in a beam, Euler-Bernoulli beam theory can be 

applied. The following section will introduce the basic equations that are used to calculate the 

displacement. This derivation considers the moment 𝑀 about the neutral axis 𝑐.   
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Figure 3: Longitudinal stress (𝜎𝑥), shear stress (𝜏𝑥), shear force (𝑉) and bending moment (𝑀) in a beam, as seen in (Khawaja 

& Xue, 2016)  

 To calculate the longitudinal stress, 𝜎𝑥, equation 1 below can be used (Khawaja & Xue, 

2016) 

 
𝜎𝑥 =

𝑀|𝑐|

𝐼
 (1) 

Where  

• 𝑀 is the moment 

• 𝑐 is the distance to the neutral axis 

• 𝐼 is the second moment of inertia. 

The strain in a beam undergoing deflection (bending) is a function of the radius of the neutral 

axis and the distance of the surface from the neutral axis (Khawaja & Xue, 2016), as shown in 

figure 3 below  
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Figure 4: the longitudinal strain (𝜀𝑥) in a beam undergoing bending (Khawaja & Xue, 2016) 

Based on figure 2, to express the relationship between 
𝐶′𝐷′

𝐴′𝐵′
, basic geometrical rules can be 

applied. This relationship is displayed in eq. 2 below. 

 
 
𝐶′𝐷′

𝐴′𝐵′
=

(𝑅 + 𝑐)𝜃

𝑅𝜃
=

𝑅 + 𝑐

𝑅
 (2) 

Where 

• 𝑅 is the radius of the neutral axis 

• 𝜃 is the slope, in radians 

• Thus, the strain, εx, at layer 𝐶′𝐷′ can be expressed as the change in length, 

e.g. (𝐶′𝐷′ − 𝐶𝐷) divided by the original length (𝐶𝐷). Remember that the distance 𝐴𝐵 

and 𝐶𝐷 originates from the initial layer, so 𝐴𝐵 = 𝐶𝐷. In addition, 𝐴𝐵 is on the neutral 

axis, so there will not be any changes in the length, e.g. 𝐴𝐵 = 𝐴′𝐵′.  Thus, the strain 

at layer 𝐶′𝐷′ is displayed in equation 3 below 

 
 εx =

𝐶′𝐷′ − 𝐶𝐷

𝐶𝐷
=

𝐶′𝐷′ − 𝐶𝐷

𝐴𝐵
=

𝐶′𝐷′

𝐴𝐵
− 1 (3) 

• By substituting eq. 2 and 3 into eq. 4, we get 

 εx =
𝑐

𝑅
 (4) 

 

Since the beam is only subjected to moments, due to the location of where forces are applied, 

and the beam is in static equilibrium, the forces across the surface of the cross-section is 
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longitudinal. Remember that moment is simply 𝑓𝑜𝑟𝑐𝑒 𝑥 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. Thus, the force at each of 

the cross-section areas in the beam can be expressed as (Khawaja & Xue, 2016) 

 ∆𝑃 = 𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦 (4) 

And the moment can be described as  

 ∆𝑀 = ∆𝑃 ∙ 𝑐 = (𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦) ∙ 𝑐 (5) 

Where  

• 𝑑𝑦 is the differential in the 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

Further, to create an expression for the entire cross-section area at a given location, simply 

summarize from 𝑧 = +𝑐/2 to 𝑧 = −𝑐/2 over the cross-section area in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 

 𝑀 = ∑(𝜎𝑥 ∙ 𝑏 ∙ 𝑑𝑦) ∙ 𝑐 (6) 

Where  

• 𝑧 is the distance to 𝑑𝑦 from the neutral axis 𝑐 

Now, remember Hooke’s Law (Atanackovic & Guran, 2012) 𝜎𝑥 = 𝐸𝜀𝑥, 

Where 

• 𝐸 is Young’s Modulus  

Substituting the strain that was found in eq. 3, Hooke’s Law can be rewritten to 

 𝜎𝑥 = 𝐸
𝑐

𝑅
 (7) 
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When a beam undergoes bending, the neutral axis will naturally bend. The angle, 𝑑𝜃, is 

described as the two points in between 𝑑𝑦 where the neutral axis intersects on top and bottom 

of 𝑑𝑦.  

 

Figure 5: shape of the neutral axis of a beam undergoing bending (Khawaja & Xue, 2016) 

It is known that for very small angles, tan 𝜃 =
𝑑𝑦

𝑑𝑥
 can be rewritten to 𝜃 =

𝑑𝑦

𝑑𝑥
. Note that 𝜃 is in 

radians, and thus, 𝜃 =
𝑠

𝑅
. Further, 𝑑𝑠 is very small, so that 𝑑𝑠 = 𝑑𝑥. Therefore (Khawaja & 

Xue, 2016),  

 1

𝑅
=

𝑑𝜃

𝑑𝑠
=

𝑑𝜃

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2
 (8) 

 

In addition, the moment of inertia, 𝐼, for the beam can be written as (Khawaja & Xue, 2016) 

 𝐼 = ∑ 𝑐2 ∙ 𝑏 ∙ 𝑑𝑦 (9) 

 

By substituting eq. 7, eq. 8 and eq. 9, into eq. 10: 

 𝑑2𝑦

𝑑𝑥2
=

𝑀

𝐸𝐼
 (10) 

 

Now, the expression for the theoretical displacement in 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 can be constructed. 

Remember that 𝜃 =
𝑑𝑦

𝑑𝑥
, thus 
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𝜃 = ∫

𝑀

𝐸𝐼
𝑑𝑥 → 𝑦 = ∫ 𝜃𝑑𝑥 → 𝑦 = ∫ ∫

𝑀

𝐸𝐼
𝑑𝑥 (11) 

 

It has now been established equation that can be applied to describe the theoretical displacement 

for a beam that is subjected to force. For this case, four-point bending will be applied. That 

means that the beam is supported by two points, and loaded with two points, see the figure on 

the next page. The advantages to use a four-point load is that the moment is constant between 

the two loads points. To determine the different parameters seen in figure 1, different test 

methods can be applied. Further, the bending moment and shear force diagram of a four-point 

bending beam can be seen in figure 2 below (Khawaja & Xue, 2016). 

 

Figure 6: Bending moment (M) and shear force (V) diagrams of a four-point bending beam, as seen in (Khawaja & Xue, 2016). 
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Where  

• P is the load on the (𝑁) 

• 𝐿 is the distance between the support joints (𝑚) 

• 𝐿1 is the distance between the support joints and loading points (𝑚) 

• 𝑥 is the distance of which the moment is calculated (𝑚). 

The moment is a function of 𝑥, e.g. the distance from the load to the support (Wachtman, 

et al., 2009), and the advantage to use a four-point test bench is that the moment is constant 

in the middle of the beam (Xue, 2015), e.g.: 

Thus, multiple correlations based on equations 10, 11 and 12, can be derived. For the case 

where  

0 ≤ 𝑥 ≤ 𝐿1, and 𝑀(𝑥) =
𝑃𝑥

2
, we get equations 13 and 14: 

Further, for the case where 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1), and 𝑀 =
𝑃𝐿1

2
, equations 15 and 16 can be 

obtained: 

 
𝜃2 =

𝑃𝐿1𝑥

2𝐸𝐼
+ 𝐶3 (15) 

 
𝛿2 =

𝑃𝐿1𝑥

4𝐸𝐼
+ 𝐶3𝑥 + 𝐶4 (16) 

For the last case, where (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿, and 𝑀(𝑥) =
𝑃(𝐿−𝑥)

2
, the last set of equations can 

be derived: 

 
𝑀(𝑥) =

𝑃𝑥

2
 0 ≤ 𝑥 ≤ 𝐿1  

 
𝑀 =

𝑃𝐿1

2
 𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1) (12) 

 
𝑀(𝑥) =

𝑃(𝐿 − 𝑥)

2
 (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿  

 
𝜃1 =

𝑃𝑥2

4𝐸𝐼
+ 𝐶1 (13) 

 
𝛿1 =

𝑃𝑥3

12𝐸𝐼
+ 𝐶1𝑥 + 𝐶2 (14) 
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𝜃3 = −

𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
+ 𝐶5  (17) 

 
𝛿3 = −

𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
+ 𝐶5𝑥 + 𝐶6 (18) 

In equations 13 to 18, there are six unknows, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6. To solve the equations, 

boundary conditions are needed. These boundary conditions are given in equations 19 to 23: 

 𝑥 = 0,         𝛿1 = 0 (19) 

 𝑥 = 𝐿,         𝛿1 = 𝛿2,        𝜃1 = 𝜃2 (20) 

 
𝑥 =

𝐿

2
,        𝜃2 = 0 (21) 

 𝑥 = 𝐿 − 𝐿1,         𝜃2 = 0,         𝜃2 = 𝜃3 (22) 

 𝑥 = 𝐿,         𝛿3 = 0 (23) 

 

By solving the equations (Young & Budynas, 2002) with the respective boundary conditions, 

we get the following set of equations: 

𝜃1 =
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿1𝐿

4𝐸𝐼
 (24) 

𝛿1 =
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿1𝐿𝑥

4𝐸𝐼
 (25) 

𝜃2 =
𝑃𝐿1𝑥

4𝐸𝐼
−

𝑃𝐿𝐿1

4𝐸𝐼
 (26) 

𝛿2 =
𝑃𝐿1𝑥2

4𝐸𝐼
−

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿1
3

12𝐸𝐼
 (27) 

𝜃3 = −
𝑃𝑥2

4𝐸𝐼
+

𝑃𝐿𝑥

2𝐸𝐼
−

𝑃𝐿1
2

4𝐸𝐼
−

𝑃𝐿2

4𝐸𝐼
+

𝑃𝐿𝐿1

4𝐸𝐼
 (28) 

𝛿3 = −
𝑃𝑥3

12𝐸𝐼
+

𝑃𝐿𝑥2

4𝐸𝐼
−

𝑃𝐿1
2𝑥

4𝐸𝐼
−

𝑃𝐿2𝑥

4𝐸𝐼
+

𝑃𝐿𝐿1𝑥

4𝐸𝐼
+

𝑃𝐿3

12𝐸𝐼
+

𝑃𝐿1
2𝐿

4𝐸𝐼
−

𝑃𝐿2𝐿1

4𝐸𝐼
  (29) 

 

Where eq. 24 and 25 are in the region 0 ≤ 𝑥 ≤ 𝐿1, eq. 26 and 27 are in the region  

𝐿1 ≤ 𝑥 ≤ (𝐿 − 𝐿1), and eq. 28 and 29 are in the region (𝐿 − 𝐿1) ≤ 𝑥 ≤ 𝐿, and  

• 𝐿 is the distance between the supports 

• 𝑃 is the total load from the four-point bending 

• 𝐸 is the Young’s modulus 



B-16 

• 𝐼 is the moment of inertia.  

Thus, in equations 24 to 29, a relationship between 𝐿, 𝑃, 𝐸 and 𝐼 has been established, and 

deflections can be calculated.  

 

3.1.1. Rule of Mixture 

This study focuses on the correlation of load/deflection where there is a system of two different 

materials, and their Young’s modulus of each material is non-equal, e.g. 𝐸1 ≠ 𝐸2. To estimate 

the Young’s modulus for the system, eq. 30 can be used: 

 
𝐸 = 𝐸1

𝐴1

𝐴
+ 𝐸2

𝐴2

𝐴
 (30) 

 

Where 

• 𝐴, with respective subscripts, are the net cross section area 

 

Figure 7: cross-section area of a system of two different materials (Khawaja & Xue, 2016) 

In figure 7 above, the constant 𝑡1 + 𝑡2 represents the thickness of each specimen that make up 

the total system. The method to analyze the system with different materials, known as a 

composite beam, is to use equivalent areas to represent the change in stiffness (Khawaja & Xue, 

2016). This can be done by introducing a balance coefficient 𝑛. The balance coefficient is given 

by equation 31 

 
𝑛 =

𝐸2

𝐸1
 (31) 
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This method, with a new equivalent cross-section, is assumed to be entirely of the first material 

(polyurethane), and the balance coefficient 𝑛 is multiplied by the area of the second material 

(ice) for scaling the difference in stiffness in the system (Hibbeler, 2013), (Khawaja & Xue, 

2016). Furthermore,  since the Young’s modulus changes, the location of the centroid and the 

moment of inertia will also change (Khawaja & Xue, 2016). The new centroid can be calculated 

using equation 32 

 
𝐶𝑦 =

𝐴1∑𝐷𝑖 + 𝑛𝐴2∑𝐷𝑖+1

𝑠(𝐴1 + 𝑛𝐴2)
 (32) 

Where 𝑖 = 1, 3, 5, 7, … , 2𝑠 − 1. The constant s represents how many times the total system (see 

fig. 7) was divided. Thus, 𝑠 = 1 for this case, and consequently, 𝑖 = 1. 𝐷𝑖 and 𝐷𝑖+1 are the 

centroid coordinates of each layer (Khawaja & Xue, 2016). These variables are calculated 

below: 

 
𝐷1 =

𝑡1

2𝑠
 

(33) 
 

𝐷2 =
𝑡1

𝑠
+

𝑡2

2𝑠
 

 

The new moment of inertia can be calculated the parallel axis theorem (Hibbeler, 2013), 

(Eshbach & Tapley, 1990), as seen below 

 𝐼 = 𝐼𝑁.𝐴 + 𝑦2𝐴 (34) 

Where 

• 𝐼 is the moment of inertia for each layer 

• 𝐼𝑁.𝐴 is the moment of inertia of each layer 

• 𝑦 is the distance from the neutral axis 

• 𝐴 is the cross-section area of the layer. 

To calculate the longitudinal stress in the ice/polyurethane layer, equation 35 below can be 

used. 

 
𝜎𝑥 =

𝑀|𝑦 − 𝐶𝑦|

𝐼𝑡
 (35) 

 

 

 



B-18 

Where 

• 𝑀 is the bending moment 

• 𝑦 is position of where the stress is calculated 

• 𝐶𝑦 is the centroid 

• 𝐼𝑡 is the total moment of inertia. 

The total moment of inertia, 𝐼𝑡, can be calculated by adding the moment of inertia for 

polyurethane and ice (Khawaja & Xue, 2016). The method to calculate the longitudinal stress 

has thus been established. 

3.2.2. Ice adhesion in MATLAB® 

In MATLAB®,  the equation for longitudinal stress (eq. 35), was solved. The moment, as seen 

in eq. 12 was solved with the use of the displacement from eq. 25 and the total load, 𝑃.  

 

3.2. Experimental Setup 

 

To obtain the necessary numbers to estimate the ice adhesion, a four-point bench can be used. 

A four-point bench have two loading points, and two support points. A rendered image of the 

bench that was used to obtain the number is this paper, can be seen in figure 9 on the next page. 

In this figure, (a) is the load points, and (b) is the support joints. The parameters of the four-

point test bench are shown in table 3 below. 

Table 3: parameters of the four-point test bench and the polyurethane specimen 

Description  Variable Value (𝑚𝑚) 

Length of specimen 𝑙 260 

Width of specimen 𝑏 60 

Thickness of specimen 𝑡𝑠 90 

Thickness of ice 𝑡𝑖 0.9 − 1.0 

Distance between support and load points 𝐿1 20 

Distance between the loads points 𝐿2 160 

Distance between support points 𝐿 200 
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Figure 8: schematic figure of four-point stress bench. Rendered in Autodesk Inventor Professional 2017. 

 

Figure 9: top view of the four-point test bench. The polyurethane specimen in the middle. The renders in fig. 8 and 9 are both 

modelled in Autodesk Inventor Professional 2017. 

3.2.1. Preparation of Sample 

The polyurethane sample was cut in appropriate sizes (260𝑚𝑚 𝑥 60𝑚𝑚). Both the sample and 

the four-point bench was put in the freezer (−25°𝐶) over-night to ensure even temperature in 

the entire specimen. In the design of the test bench, there are two support rods. These were 

added to the system to ensure that the load joints only could move downwards when load was 

applied, and hence, ensure more accurate results.  

Ice sample (exaggerated size). Ice thickness 𝑡𝑖 

(a) 

(b) 
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The entire apparatus, and the anti-abrasion polyurethane, was put inside the cold room over-

night. When the objects were properly cold, masses were added on the four-point bench, while 

still inside the cold room.  

When the preparation for ice adhesion, liquid water was poured on the surface of the anti-

abrasion polyurethane. This was done while the polyurethane specimens was inside the freezer, 

to minimize errors due to moving the specimen to the freezer from the ambient room. Errors 

can be that the water did not stick to the surface, and so on. The reason the water did not float 

everywhere was due to the surface tension between the water and surface of the polyurethane. 

Consequently, a decent slab of ice was obtained on top of the polyurethane. After approximately 

6 hours the liquid water had turned to solid ice. See fig. 9 of the ice on the specimen on 

polyurethane.  This specimen has been placed on the four-point test bench.   

 

Figure 10: ice on polyurethane 

3.2.2. Data Gathering 

The load and deflection data was gathered while both the apparatus and the specimen where 

still inside the cold room. The initial load from the loading frame (see fig. 7 and 8), was 1.25 

kg. The added mass came from iron weights, and the added mass had an increment of 1.25 kg 

each time. The initial displacement was recorded before the first 1.25 kg iron weight was added, 

in the middle of the upper frame. At each time more weight was added, the new displacement 

was recorded. See figure 11 on the next page.  
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Figure 11: recording of displacement using a Vernier caliper. At this instant, the only load is from the upper frame alone. The 

middle of the frame is marked with a circle. 

When the ice had separated from the surface, the experiment was concluded. At each time 

more weight was added, the ice was gently poked on the side to check if for ice adhesion.  

3.2.3. Conditions of Experimental Location 

To ensure that the experimental setup was true to nature, most experiments was done while 

inside the cold room (−30°𝐶) at the Cold Room at the Arctic University of Tromsø. However, 

some experiments were done in room temperature. This was done so that data that could be 

compared to other work with different materials.  
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Figure 12: ice have broken due to shear stress, and there are no forces restraining the ice to the polyurethane. 

When the displacement when the ice adhesion seized to exist was measured, the experiment 

was concluded. The identical experiment was done multiple times to ensure that substantial 

amounts of data was gathered. For each time water was poured, the ice had different areas, 

which was expected. However, all areas were recorded prior to the experiment started. When 

the masses were added on the four-point bench, the deflection at point 𝐿1 was recorded using a 

Vernier caliper. This was done after each time where the added load was increased on the bench. 

Additionally, after each time where the load had increased, the ice was gently poked on the side 

to see if ice adhesion was still present.  

  



B-23 

3.3. Ice adhesion in ANSYS® 

 

In ANSYS®, a setup of the four-point test was modelled. See figure 13 below.  

 

 

Figure 13: ice adhesion test in ANSYS®. The light-colored blue box on the left side represents the ice. 

This model represents ¼ of the complete system. The reason to why only a quarter of the 

complete system was modelled is to minimize the computational load when solving the model. 

Inside the software, symmetry regions were put on the sides, so that the final model was 

appropriate, according to fig. 8 and 9. In figure 14 below, symmetry and the mesh have been 

added. The light shaded block between the load points represents the ice. For each run, the area 

of the ice was modelled according to table 4 in section 4.1. 

 

Figure 14: mesh and symmetry applied. 
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In this figure, the mesh has been applied to the system and symmetry was applied. In the setup, 

prior to running the simulation in the ANSYS®-software, the maximum displacement, in 𝑧 −

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 was set according to the displacement at the point ice separated from the 

polyurethane surface in the experiments . See these results in table 4 in chapter 4.   The recorded 

longitudinal stress from the simulation was recorded in the middle of the system. In ANSYS®, 

displacement in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 was applied, according to the experimental results. These results 

can be viewed in table 1 in section 4.2, and appendix B. As it can be seen in figure 9 and 10, 

the ice in the ANSYS® model have not been modelled according to the real ice shape of the 

ice (ref. fig. 7). What was done, however, is that the area of the ice was estimated using basic 

math and trigonometry. Trigonometry where applied if the frozen ice had triangles at some 

point of the surface. Based on these results, it was possible to approximate the area of ice on 

the surface of polyurethane. 
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Chapter 4: Results and Discussion 

4.1. Experimental Data 

The sections 4.1.1 and 4.1.2. will present the results from the four-point test bench. In the 

tables below, the point of when the ice separated from the surface is highlighted in bold.  

4.1.1. Anti-abrasion Polyurethane  

The data obtained using a Vernier caliper to obtain the displacement and the added mass from 

experiments on anti-abrasion polyurethane is shown below.  

Table 4: data from experiments with ice adhesion on anti-abrasion polyurethane 

Experiment #1 (area 𝐴 = 59.7𝑐𝑚2 ) 
 

Experiment #2 (area 𝐴 = 57.4𝑐𝑚2 ) 

Mass (kg) Displacement (mm)  Mass (kg) Displacement (mm) 

1.25 1.30  1.25 1.28 

2.50 1.46  2.50 1.84 

3.75 1.92  3.75 2.43 

5.00 2.03  5.00 2.91 

6.25 2.48  6.25 3.30 

7.50 3.01  7.50 3.85 

Experiment #3 (area 𝐴 = 56.4𝑐𝑚2 ) 
 

Experiment #5 (area 𝐴 = 58.5𝑐𝑚2 ) 

Mass (kg) Displacement (mm)  Mass (kg) Displacement (mm) 

1.25 1.25  1.25 1.30 

2.50 1.35  2.50 2.05 

3.75 1.51  3.75 2.42 

5.00 2.31  5.00 2.93 

6.25 -  6.25 3.30 

7.50 -  7.50 3.83 

Experiment #6 (area 𝐴 = 59.8𝑐𝑚2 ) 
 

Experiment #7 (area 𝐴 = 58.8𝑐𝑚2 ) 

Mass (kg) Displacement (mm)  Mass (kg) Displacement (mm) 

1.25 1.30  1.25 1.21 

2.50 1.85  2.50 1.45 

3.75 2.62  3.75 2.52 

5.00 2.93  5.00 2.73 

6.25 3.21  6.25 - 

7.50 3.73  7.50 - 
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Experiment #8 (area 𝐴 = 56.9𝑐𝑚2 ) 

 

Experiment #9 (area 𝐴 = 58.0𝑐𝑚2 ) 

Mass (kg) Displacement (mm) 
 

Mass (kg) Displacement (mm) 

1.25 1.59 
 

1.25 1.52 

2.50 2.90 
 

2.50 1.60 

3.75 3.73 
 

3.75 2.90 

5.00 3.60 
 

5.00 3.37 

6.25 3.62 
 

6.25 3.63 

7.50 - 
 

7.50 - 

 

As it can be seen, the ice adhesion seized to exist at different loads, but it was never necessary 

to have a load bigger than 7.5 kg. The lowest load was 5 kg. In all, the experiment resulted in 9 

successful results. 

4.2.2. Anti-seepage Polyurethane  

Table 5: data from experiments with ice adhesion on anti-seepage polyurethane 

Experiment #1 (area 𝐴 = 52.7𝑐𝑚2 ) 

 

Experiment #2 (area 𝐴 = 51.4𝑐𝑚2 ) 

Mass (kg) Displacement (mm) 
 

Mass (kg) Displacement (mm) 

1.25 1.28 
 

1.25 1.13 

2.50 1.52 
 

2.50 1.74 

3.75 1.95 
 

3.75 2.85 

5.00 2.12 
 

5.00 3.21 

6.25 2.57 
 

6.25 3.30 

7.50 3.07 
 

7.50 3.95 

Experiment #3 (area 𝐴 = 58.4𝑐𝑚2 ) 

 

Experiment #5 (area 𝐴 = 59.5𝑐𝑚2 ) 

Mass (kg) Displacement (mm) 
 

Mass (kg) Displacement (mm) 

1.25 1.27 
 

1.25 1.42 

2.50 1.45 
 

2.50 2.15 

3.75 1.61 
 

3.75 2.52 

5.00 2.71 
 

5.00 3.03 

6.25 3.12 
 

6.25 3.38 

7.50 - 
 

7.50 4.01 
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Experiment #6 (area 𝐴 = 51.8𝑐𝑚2 ) 

 

 

Experiment #7 (area 𝐴 = 52.9𝑐𝑚2 ) 

Mass (kg) Displacement (mm) 
 

Mass (kg) Displacement (mm) 

1.25 1.28 
 

1.25 1.17 

2.50 1.45 
 

2.50 1.55 

3.75 2.32 
 

3.75 2.62 

5.00 2.84 
 

5.00 2.93 

6.25 3.41 
 

6.25 - 

7.50 3.73 
 

7.50 - 

 

The results reveals that ice adhesion to polyurethane is generally in the same region as was 

found in PVC (Xue, 2015). As for the ice adhesion to metals and other tested polymers (table 

1), the method that was used in this paper could not obtain any quantifiable data. When the 

frozen polyurethane/ice where taken out in room temperature, the ice had already separated 

from the surface. This suggests that the ice adhesion force when tested in room temperature is 

low.  Additionally, the numbers obtained from both the analytical study and simulations for 

both materials, are similar. This suggests that both materials will behave somewhat similar 

when subjected to cold climates.  
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4.2. Analytical Study and Simulations in ANSYS® 

4.2.1 Anti-abrasion Polyurethane 

Both the results from the analytical study (beam theory in MATLAB©) and simulations will 

be presented in this section. 

The resulting normal  stress from the simulations of experiment #1 (from table 4) in 

ANSYS® can be seen in figure 14, and table 3 below (run #1): 

 

Figure 15: simulation of normal stress inside ANSYS®. 

In figure 14 above, the distance between 0 and 2.5𝑚𝑚 represents the ice cross-section area. 

The rest (2.5𝑚𝑚 and beyond) is the cross-section area of polyurethane. To determine the ice 

adhesion, the normal stress at the black line is subtracted to the data point the adjacent point to 

the left. Thus, the normal stress between the ice and polyurethane is: 

Table 6: normal stress between the ice layer and anti-abrasion polyurethane from simulations in ANSYS® and analytical 

simulations in MATLAB®. 

Run # 

Normal stress (𝑀𝑃𝑎) 
Area (𝑐𝑚2) 

ANSYS® Analytical 

1 1.91 1.99 56.4 

2 1.99 2.10 56.9 

3 2.35 2.15 57.4 

4 2.24 2.23 58.0 

5 2.35 2.39 58.4 

6 2.35 2.47 58.9 

7 2.38 2.55 58.9 

8 2.38 2.66 59.7 

9 2.56 2.63 56.8 
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The plotted figure based on table can be seen in figure 15 below. 

 

Figure 16:pl plotted (dots) values of the recorded data from the analytical study and data from ANSYS®  

By multiplying the recorded area (𝑚2) in table 4 with the stress (𝑃𝑎), the pressure of ice 

adhesion can be found. 
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Figure 17: the pressure of the ice adhesion on anti-seepage polyurethane. 

4.2.2. Anti-seepage Polyurethane 

The results from the analytical study and simulations on anti-seepage polyurethane is 

displayed below. 

Run # 

Normal stress (𝑀𝑃𝑎) 
Area (𝑐𝑚2) 

ANSYS® Analytical 

1 1.42 1.55 51.4 

2 1.52 1.61 51.8 

3 1.65 1.76 52.1 

4 1.85 1.97 52.7 

5 2.19 2.22 52.9 

6 2.25 2.29 58.4 

7 2.29 2.32 55.9 

8 2.38 2.39 56.1 

9 2.48 2.51 56.9 

 

 



B-31 

 

Figure 18: plotted (dots) values of the recorded data from the analytical study and data from ANSYS®  

 

Figure 19: the pressure of the ice adhesion on anti-seepage polyurethane. 
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When the ice/polyurethane sample was tested in room temperature, the ice separated usually 

before the experiment could start. Therefore, there are no quantitative data to report. 
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Chapter 5: Conclusions and Future work 

5.1. Conclusions  

What was found in this study it the ice adhesion strength between polyurethane and ice when 

tested in a cold atmosphere. What can be said about the ice adhesion is that the temperature of 

where the experiment is done is important. This can also be seen in table 1 where the strength 

of ice adhesion between varied materials were tested. The ice adhesion force when the test is 

done in room temperature is way lower compared to when tests are done in cold room. This 

was also observed when polyurethane with ice was tested in room temperature. In addition, the 

added mass on the four-point bench, when the ice separated, varied from 7.5 𝑘𝑔 to 5 𝑘𝑔.  

5.2. Future work 

• More sophisticated method to determine the ice adhesion can be developed. Methods of 

such could be the use of a sensors to determine the instance when ice separated from 

the surface (e.g. ultrasonic waves detection).  

• How these materials could be used in areas where icing is a problem, based on the results 

from the relatively low ice adhesion. 
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Appendix J 

The MATLAB® code that was used in the analytical study 

clc 

clear all 

close all 

 

E_1 = 50e6;                                     %% Young's modulus for PE at -

30degC, Pa 

E_2 = 4e9;                                      %% Young's moduls for ice (Helen 

report), Pa 

 

x = 20e-3;                                      %% distance to the support joint, 

meter 

n = E_2/E_1;                                    %% Balance coefficient 

s = 1; 

% P = [5:0.25:7.5].*9.81;                       %% Recored force, N 

o = [2.73:0.11:3.63]*1e-3;                      %% measured deflection (\delta), m 

Polyurethane data 

t_p = 8.5e-3;                                   %% Thickness of polyurethane, m 

l_p = 60e-3;                                    %% width of polyurethane, m 
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Ice data 

t_i = 0.91e-3;                                  %% Thickness of ice, m 

l_t = 50e-3;                                    %% width of ice, m 

A_1 =  t_p*l_p;                                 %% cross-section area of PU, m2 

A_2 =  t_i*l_t;                                 %% cross-section area of ice, m2 

 

A = A_1 + A_2;                                  %% Total cross-section area, m2 

E = E_1*(A_1/A) + E_2*(A_2/A);                  %% Rule of mixture Young's modulus, 

Pa 

 

D_1 = t_p/2*s;                                  %% See report 

D_2 = t_p/s + t_i/2*s;                          %% See report 

 

c_y = (A_1*D_1 + n*A_2*D_2)/(s*(A_1 + n*A_2)); 

 

I_PU = l_p*t_p^3/12 + l_p*t_p/s*(D_1-c_y)^2;   %% Moment of inertia of 

polyurethane, m4 

I_ice = l_t*t_p^3/12+ l_t*t_i/s*(D_2-c_y)^2;   %% Moment of inertia of ice, m4 

 

I_t = I_ice + I_PU;                            %% Total moment of inertia, m4 

L_1 = x;                                       %% Distane to load joint, m 

L = 260e-3;                                    %% Distanece between loading joints, 

m 

 

theo_P =  o.*((12*E*I_t)/(x^3) + (E*I_t)/(x*L_1^2) - 4*E*I_t/(L_1*L*x));  %% 

theoretical applied force, N 

 

 

y = t_p;                                       %% The distance from zero where we 

find the longitudinal stress, m 

 

 

M = L_1.*theo_P/2; 

 

 

long_stress_1 = (M*abs(y-c_y)/I_t)/1e6;       %% The longitundinal stress in the 

first (PU) material, in MPa 

long_stress_2 = (n*M*abs(y-c_y)/I_t)/1e6;     %% The longitundinal stress in the 

second (ice) material, in MPa 

 

figure() 

plot(long_stress_1,'.k') 

axis([0 10 1.7 2.8]) 

hold on 

 

data = sort([ 1.91, 2.35, 2.35, 2.38, 2.12, 1.99, 2.56 2.38 2.24]); 

plot(data,'*') 

 

legend('Analytical study','Data from ANSYS','location','northwest') 

 

 

xlabel('Run number') 

ylabel('Longitudinal  stress (MPa)') 
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title('Different runs with increaseing load') 
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Abstract 
By capturing the infrared signature using a FLIR Infrared camera (FLIR T1030Sc) of a cold 

(𝑎𝑝𝑝.−20°𝐶) specimen of SKOCP and comparing the results with a simulated result, the 

thermal properties of the material have been estimated. The simulation were carried out in 

MATLAB®, and the solution is based upon the Heat equation. In this paper, the driving 

mechanisms behind the Heat equation, as well as how the approximated solution to the Heat 

equation is obtained will be described.   
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Nomenclature 

 

Description Symbol Unit 

Thermal conductivity 𝑘 𝑊 ∙ 𝐾−1 ∙ 𝑚−1  

Heat transfer ℎ 𝑊 ∙ 𝐾−1 ∙ 𝑚−2 

Fourier’s Law/heat flux 𝑞𝑥
′′ 𝑊/𝑚2 

Time 𝑡 𝑠 

Spatial coordinates 𝑥, 𝑦, 𝑧 𝑚 

Derivation in the cartesian space 𝑑𝑥, 𝑑𝑦. 𝑑𝑧 𝑚 

Internal energy 𝑢 𝐽 

Specific heat capacity  𝐶𝑝 𝐽/𝑘𝑔 ∙ 𝐾 

Density of material 𝜌 𝑘𝑔/𝑚3 

Volumetric energy generation �̇� 𝑊/𝑚3 

Volumetric heat capacity 𝛼 𝐽/𝑚3 ∙ 𝐾 

Partial differential equation 
𝜕𝜑

𝜕𝑥
 𝑁/𝐴 

Truncation error 𝜉 𝑁/𝐴 
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Outline 
The paper is divided into 5 chapters. The content of each chapter is listed below: 

• Chapter 1 introduces the goal of the paper. 

• Chapter 2 is a literature review on what polyurethane is, a brief overview of the 

chemistry of polyurethane.  

• Chapter 3 introduces the method that was elected to govern the solutions that was 

obtained in this paper. Additionally, this chapter describes what heat is. Mathematical 

models and theories, such as Fourier’s Law, the derivation of the Heat equation, and the 

approximation (“solution”) to the Heat equation are found in this chapter. 

• Chapter 4 presents the results that was obtain by solving the Heat equation in 

MATLAB®. 

• Chapter 5 gives the discussion and conclusion. 

• Appendix I contains the MATLAB© code that was used to solve the Heat equation and 

compare the experimental results. It was constructed two similar set of codes, however, 

only one set of code are included, because of the obvious similarities between the two. 
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Chapter 1: Introduction 

All materials have different and unique thermal properties, and there are two important 

constants that determine how the temperature changes when a material is subjected to a 

temperature difference. These constants are named the thermal conductivity and the heat 

transfer coefficient. By solving the Heat equation and by using infrared camera technology, 

these factors can be estimated. This paper will introduce the basic concepts of heat, introduce 

Fourier’s Law, and how the Heat equation is derived. The solution the Heat equation is currently 

not available, therefore, approximations or numerical solutions will be applied. The 

approximation the is used in this paper is called the Finite Difference Method (FDM), and 

Forward-Time Central-Space (FTCS). By comparing the thermal images captured by an IR 

camera with the results from the FDM/FTCS analysis, the thermal properties can be estimated.  

This study will investigate the thermal properties of a plastic called polyurethane. This plastic 

is unique in that sense that it can be applied to close-to anything. Depending on what additives 

the manufacturer decides to put in the production of polyurethane, the material characteristics 

will change. This paper will, however, focus on anti-seepage polyurethane and anti-abrasion 

polyurethane. If these materials where to be put in Arctic regions, let it be as a coating material 

for pipes used by the oil and gas industry, their thermal properties must be adequate with regards 

to current standards. The paper will, however, not suggest if these materials be used as listed, 

it will purely focus on determining the thermal properties.    

1.2. Thermal Properties of Materials 
As mentioned, each material have unique thermal properties, and some thermal properties of 

common materials are listed below (Engineering Toolbox, 2017) 

Material 
Thermal conductivity 

(𝑊/𝑚−1 ∙ 𝐾−1) 
Coefficient of heat transfer 

(𝑊/𝑚−2 ∙ 𝐾−1) 
Cast iron 58 5.7 

Stainless steel 16 7.9 

Wood 0.23 − 

 

Note that the coefficient of heat transfer is dependent of different factors (fluid velocity over 

material surface etc.). These factors are not studied in this paper.   
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Chapter 2: Literature Review 

2.1.  Polyurethane   

Polyurethane was invented by Otto Bayer and Heinrich Rinke, in Germany in 1937 (Bayer, 

1947), (Prisacariu, 2011) and some of the first use of this plastic was during WWII, where it 

was applied as a coating of the German airplanes (Seymore & Kauffman, 1992). However, 

some of the first commercially available products made from polyurethane was rigids foams 

and rubbers for different purposes. It was discovered that by the addition of different materials 

(e.g. mica and other processed mineral fibers), the polyurethane got stiffer and better heat 

properties (thermal conductivity and heat transfer). In 1983, a US car making company made 

the Pontiac Fiero, where the entire body was made from polyurethane with special additives. 

As of 2011, the use of polyurethane is spread from construction materials to clothing 

(Prisacariu, 2011).  

Table 1: the distribution of different applications that use polyurethane 

Polyurethane use Amounts (millions of 𝑘𝑔) Percentage (%) 

Building and construction 662 26.8 

Transportation 589 23.8 

Furniture and bedding 511 20.7 

Appliances 126 5.1 

Packaging 113 4.6 

Textile, fibers and apparel  82 3.3 

Machinery and Foundry  80 3.3 

Electronics 34 1.4 

Footwear 17 0.7 

Other use 253 10.2 

Total 2467 100 
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2.1.1. Chemistry of Polyurethane 

 
Polyurethane is in the chemical class called reaction polymers (Gum, et al., 1992), (Harrington 

& Hock, 1991) and (Woods, 1990). The process of making polyurethane involves reaction an 

isocyanate containing two or more isocyanate groups per molecule (𝑅 − 𝑁 = 𝐶 = 𝑂)𝑛 (Soto, 

et al., 2014) with a polyol containing hydroxyl groups (𝑅′ − (𝑂𝐻)𝑛) (Soto, et al., 2014)that 

contain on average two or more molecules. In addition to these molecules, the urethane groups 

are introduced (−𝑁𝐻𝐶𝑂 − 𝑂). These three groups are then put under an ultraviolet light or 

with a presence of a catalyst, and thus, polyurethane is made. See figure 1 below. Naturally, the 

process is more complicated than that. It is, however, not the scope of this paper to investigate 

all the steps in creating polyurethane.  

 

Figure 1: the creation of polyurethane 

2.1.2. SK One Component Polyurethane 

 
In this paper, the polyurethane developed by China Institute of Water Resources & Hydropower 

Research Beijing IWHR-KHL Co. Ltd. The product name is SK One Component Polyurethane, 

however, polyurethane is the name that will be used in the following chapters and sections in 

this paper. The company provided two distinct types of polyurethane, namely anti-seepage 

polyurethane and anti-abrasion polyurethane. Anti-seepage polyurethane is suggested to be 

used as a sealant in either chemical tanks, as it has good resitance to chemical corrosion  

(Zhiheng, 2015) or in dams to prevent water leaks through the concrete. Anti-abrasion 

polyurethane can be used on locations where high corrosion is expected. Locations of such can 

be water ducts from dams, on ships, due to the force of water while ship is in transit, and so 

forth.  
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2.5. Infrared camera technology 
All bodies emit radiation, the most familiar being the light we see in the visible spectrum, with 

wavelength from 380𝑛𝑚 to 700𝑛𝑚. See the figure below (NASA, 2010).   

 

Figure 2: the electromagnetic spectrum, showing different wavelength for different types of radiation . 

By using a camera that can “see” beyond what our eyes can see, a thermal camera (infrared 

camera), a visual representation of the thermal radiation can be obtained. Thermal cameras 

report a temperature value. Instead of seeing the visible light of an object, the camera estimates 

the infrared radiation an object is emitting. This is because any temperature above zero kelvin, 

glows. Our eyes cannot pick up this radiation because the emitted photons are not in our visible 

range. However, the intensity of radiation (e.g. temperature difference) can be linked to a color, 

see fig. 10 on page 17. In this figure, a darker color represents colder temperatures, and lighter 

colors represents hotter temperatures.  
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Chapter 3: Methodology   

3.1. Heat Transfer and Thermal Conductivity  

Heat is energy. This energy comes from the net average motion (e.g. translational, rotational, 

and/or vibrational motion) of the atoms and molecules that make up a medium. For instance, a 

unit mass of iron with a temperature of 300K will contain atoms with a higher net motion that 

the same unit mass of iron at temperature 273K.  For sake of example, if these two iron 

specimen were put in direct contact with each other, heat will transfer to the medium with higher 

energy, to the one with lower energy. In that case, heat transfer is established. Energy will 

“flow” from the 300K specimen to the 273K specimen. Thus, the definition of heat transfer can 

be written as  

Heat transfer is energy in transit due to a temperature difference (Moran, et al., 2003). 

There are different types of modes of heat transfer, however, this paper will focus on heat 

transfer due to conduction. To compute the amount of heat transferred per unit time, rate 

equations, such as Fourier’s Law (see section 2.2.1.) can be applied. 

Thermal conductivity is a material’s ability to transmit heat throughout its volume. It is defined 

as “watts per kelvin-meter”, 𝑊 ∙ 𝐾−1 ∙ 𝑚−1 (Snoke, 2009). Different matters have different 

thermal conductivity. For example, the heating element in a water boiler (kettle) needs to have 

a high thermal conductivity to transfer heat to the water. However, the plastic handle needs to 

have a relatively low thermal conductivity to ensure that the device is safe to use. Likewise, 

workplaces where hot pipes and instruments are present needs to be insulated. See figure 3.  
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Figure 3: insulated pipe with description of the heat loss through the insulated layer. Rendered in Autodesk Inventor 

Professional 2017. 

As it can be seen in the illustration above, the temperature across the insulated area decreases. 

One could argue that the temperature of the insulated layer should reach the temperature of the 

steel pipe when time 𝑡 is very large. However, because the surrounding atmosphere absorb heat, 

due to radiation, there will always be a temperature difference. Additionally, the steel pipe will 

absorb heat faster than the insulated layer. This is not illustrated here. 

3.1.1. Fourier’s Law 

As mentioned in the introduction to this sub-chapter, Fourier’s Law (Fourier, 2007 (1822)) can 

be applied to describe the heat transfer in a spatial direction (𝑥, 𝑦 𝑎𝑛𝑑/𝑜𝑟 𝑧) per unit area 

perpendicular to the direction of transfer. Further, the heat transfer it proportional to the 

temperature gradient (Moran, et al., 2003). Fourier’s Law, in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, and one-

dimension, can be seen in equation 13 

 
𝑞𝑥
′′ = −𝑘

𝑑𝑇

𝑑𝑥
 (1) 

 

Where 

• Fourier’s Law,which is also called the heat flux (𝑊/𝑚2) 

• 𝑘 is the thermal conductivity (𝑊/𝑚 ∙ 𝐾) 

Contains hot fluids 

Steel pipe 

Insulation layer 

Ambient atmosphere 

𝑥 

𝑦 
Temperature 

gradient across area 
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• 𝑇 is time. 

The reason to the minus sign is because energy is transferred from media with higher 

temperature to a lower temperature medium. 

3.1.2. Derivation of the heat equation 

The derivation of the heat equation is based on the principle of conservation of energy, e.g. 

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

= 

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 

− 

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 

+ 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 "𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑" 

(2) 

 

The last term, 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 "𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑", describes the thermal energy generated from an 

external, different source. Examples of such energies can be chemical reactions, nuclear fission, 

and/or electrical. To simplify the understanding of eq. 2, an infinitesimally small control volume 

can be drawn, as seen on the figure below.  

 

Figure 4: infinitesimally small control volume, in the cartesian space x, y, and z. 
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As it can be seen in figure 4, 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 represents a very (infinitesimally) small change in 

direction. For further derivation, the heat flowing into the system, denoted 𝑞𝑥
′′|𝑥, will be the 

only direction considered in this explanation. This is because the energy flowing in 𝑦, and 𝑧 

direction will be derived in the same manner as the 𝑥 −direction. Thus, the flow of energy 

entering the system (in 𝑥 −direction) is 𝑞𝑥
′′|𝑥, evaluated at position x, and the energy leaving 

the system is 𝑞𝑥
′′|𝑥+𝑑𝑥, evaluated at position 𝑥 + 𝑑𝑥. To find the relationship between the energy 

at position 𝑥 and 𝑥 + 𝑑𝑥, e.g. 𝑞𝑥
′′|𝑥

        ?        
→     𝑞𝑥

′′|𝑥+𝑑𝑥, the use of a Taylor series expansion could 

be applied. Looking at the first term in this series, the heat evaluated at position 𝑞𝑥
′′|𝑥+𝑑𝑥 is 

simply, 

 
𝑞𝑥
′′|𝑥+𝑑𝑥 = 𝑞𝑥

′′|𝑥 +
𝜕𝑞𝑥
𝜕𝑥
𝑑𝑥 (3) 

 

The term on the right-hand side is the rate of which energy changes as a function of 𝑥 multiplied 

by 𝑑𝑥. The figure below shows equation (3). From the first term in the Taylor series, which 

assumes a linear relationship between the two points, 𝑞𝑥
′′|𝑥 and 𝑞𝑥

′′|𝑥+𝑑𝑥, figure 5 can be drawn.  

 

Figure 5: visual representation of equation (3) 

The next step would be to look at the net flow of energy into the system. Remember that the 

net flow of energy, from eq. (2), is the flow of energy into the system, minus flow of energy 

out of the system. Thus, the net flow of energy is  

 
𝑞𝑥
′′|𝑥 − 𝑞𝑥

′′|𝑥+𝑑𝑥 = 𝑞𝑥
′′|𝑥 − (𝑞𝑥

′′|𝑥 +
𝜕𝑞𝑥

′′

𝜕𝑥
𝑑𝑥 ) (4) 

Rearranging eq. (4) to eq. (5) 

 
𝑞𝑥
′′|𝑥 − 𝑞𝑥

′′|𝑥+𝑑𝑥 = −
𝜕𝑞𝑥

′′

𝜕𝑥
𝑑𝑥  (5) 
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Remember from eq. (2), that 𝑞𝑥
′′|𝑥 − 𝑞𝑥

′′|𝑥+𝑑𝑥 is  

 

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 − 𝐹𝑙𝑜𝑤 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 

Referring to eq. (2), there are two terms left to be described mathematically.  

•  The first is the rate of which energy is being generated.  

The generated energy can be described as �̇� multiplied by 𝑣𝑜𝑙𝑢𝑚𝑒. Where �̇� is the energy per 

unit volume. For an infinitesimally small control volume (see fig. 2), the volume is 𝑑𝑥 ∙ 𝑑𝑦 ∙

𝑑𝑧. Thus, 

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 "𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑" = �̇� ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 (6) 

 

The last term left to describe is 

• 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑. 

This is the rate of which internal energy increases, or decreases, with time. So, 

 

 𝑑𝑢

𝑑𝑡
∙ 𝜌 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 (7) 

 

Where 

• 𝜌 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 is the mass of the control volume, 𝜌 being the density.  

Further, the internal energy, 𝑢, is defined as 𝑐𝑝 ∙ 𝑇. Therefore, the rate of which energy is 

accumulated can be expressed as following 

 
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝜌 ∙ 𝐶𝑝

𝑑𝑇

𝑑𝑡
𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧  (8) 

 

Remember Fourier’s Law, shown in eq. (1), 𝑞𝑥
′′ = −𝑘

𝑑𝑇

𝑑𝑥
.  This is restricted to a one-dimension 

system, and since this derivation concern a three-dimensional control volume, eq. (2) needs to 

be modified. Recall that the energy transfers perpendicular to the direction of transfer. 
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Additionally, energy flowing in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 can only flow through the area 𝑑𝑦 ∙ 𝑑𝑧 (Smith, 

et al., 2013), (Moran, et al., 2003). Therefore, Fourier’s Law can be rewritten to  

 
𝑞𝑥
′′ = −𝑘(𝑑𝑦 ∙ 𝑑𝑧)

𝜕𝑇

𝜕𝑥
 (9) 

 

A relationship between the flow of energy and the temperature have now been established in 

eq. (9). This equation can substitute 𝑞𝑥
′′ in eq. (3), (4), and (5). Add together and cancel out 

equal terms, the result is the heat equation in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is obtained: 

 
𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= �̇� +

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) (10) 

 

Apply the same strategy for 𝑦, and 𝑧 −direction, the heat equation for a three-dimensional 

volume is obtained: 

 
𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= �̇� +

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
)   (11) 

 

For most cases, there heat generation term, �̇�, can be neglected. Thus, we end up with the final 

heat equation used in this paper: 

 𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
)   (12) 

 

Where 

• 𝜌 is the density of the material (𝑘𝑔/𝑚3) 

• 𝑐𝑝 is the specific heat capacity (𝐽/(𝑘𝑔 𝐾)) 

• 𝑇 is the temperature (𝐾) 

• 𝑡 is time (𝑠) 

• �̇� is the volumetric energy generation (𝑊/𝑚3)  

• 𝑘 is the thermal conductivity (𝑊/𝑚 ∙ 𝐾) 

• 𝑥, 𝑦, 𝑧 is the coordinates of which the temperature is calculated (𝑚) 

• 𝛼 is volumetric heat capacity (see section 3.1.4.). 
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This is a partial differential equation (PDE), one which currently have no analytical (exact) 

solution. However, different methods can be applied to solve the equation. This will be done it 

section 2.3. 

3.1.3. Boundary and Initial conditions 

To solve the heat equation, the temperatures at the boundaries, and the temperature of the 

surface (or any position) at time zero of the system, is needed. Refer to fig. 6, the boundary 

conditions can be applied to all six sides of the cube. In addition, we are no longer dealing with 

an infinitesimally small control volume.  Thus, the convective boundary conditions were 

applied to this system (Moran, et al., 2003). This can be seen in eq. 13.  

 
−𝑘
𝜕𝑇𝑠
𝜕𝑥
= ℎ(𝑇∞ − 𝑇𝑠) (13) 

Where 

• 𝑇𝑠 is the surface temperature, 𝐾 

• 𝑇∞ is the temperature of the surrounding atmosphere, 𝐾 

• ℎ is convective heat transfer coefficient, 𝑊/𝑚2 ∙ 𝐾. 

For sake of example, at time 𝑡 = 0, the initial condition will be 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑇𝑠|@𝑡=0. 

3.1.4. Thermal conductivity and heat transfer 

There are two important constants that determine the temperature of a body subjected to heat 

change; the thermal conductivity and the heat transfer. The symbols are 𝑘 (𝑊 ∙ 𝑚−1 ∙ 𝐾−1) and 

𝐻 (𝑊 ∙ 𝑚−2 ∙ 𝐾−1), respectively. The heat transfer coefficient describes the rate of which the 

heat transfers to the body, whereas the thermal conductivity describes the rate the transferred 

heat dissipates within the body.  

The product of 𝜌𝑐, with units 𝐽/𝑚3 ∙ 𝐾, is often described as the materials ability to store heat 

(energy), and is called the volumetric heat capacity (Moran, et al., 2003). Further, to describe 

the time a material needs to reach equilibrium temperature (e.g. adapt to ambient atmosphere), 

the thermal diffusivity constant, 𝛼 can be derived: 

 
𝛼 =

𝑘

𝜌𝑐
 (14) 

Usually, materials with a large 𝛼 will absorb heat at a faster rate compared to materials with a 

small 𝛼 (Moran, et al., 2003). 
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3.2. Solution to the Heat equation 

 

As it was shown in sec. 3.1.2., the heat equation is a partial differential equation (PDE), and 

further, a PDE with no analytical solution. To solve problems with the Heat equation, and other 

PDEs for that matter, different numerical methods can be applied. One such numerical method 

is the Finite Difference Method (FDM). When the FDM is applied to a continuous PDE, the 

numerical solution is replaced with a discrete approximation (Recktenwald, 2004). This means 

that the numerical solution is only known at a finite number of positions (boundary and initial 

conditions). When FDM is applied to a PDE, the first step would be to divide the physical 

domain into a finite set of elements, or replace the physical domain with a grid. See fig. 5 on 

the next page. Here, a two-dimensional plane is divided into a set of finite elements, or nodes. 

The resolution (number of elements) in this example is 11𝑥11. Further, the initial condition 

here is in the middle, and the boundary conditions are on all edges of the plane. This is because 

the red square indicates hot areas, and blue indicate colder areas. 

 

Figure 6: grid applied to a two-dimensional plane, with the heat source (initial condition) in the middle. 

At each of the points, the discrete solution is evaluated. There are two important parameters 

that govern the accuracy of the results, namely ∆𝑥 and ∆𝑡. For sake of example, if the grid in 

fig. 5 is 11 𝑐𝑚 𝑥 11𝑐𝑚, ∆𝑥 would be 1. Thus, if it was desirable to have double resolution, ∆𝑥 

should be 0.5, and the resulting grid would be 22𝑥22. ∆𝑡, on the other hand, governs the time 

it takes to go from one position to the next. With lesser time steps (usually around 1 𝑠𝑒𝑐), more 

information is gathered in the solution, and thus, a more accurate solution is obtained. For sake 
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of example, imagine two cameras, one with capture rate of 30 frames per second and the other 

camera having 120 frames per second. An identical event recorded with either cameras, the 

camera with 120 frames per second will contain 4 times as much information as the other 

camera. Simply put, the same goes for FDM and solution resolution. Naturally, with smaller 

∆𝑥 and ∆𝑡, the time required to solve the model increases (computationally heavier).  

Further, the discrete solution to a PDE, 
𝜕𝜑

𝜕𝑥
, (at each node) can we shown to be (Recktenwald, 

2004) 

 𝜕𝜑

𝜕𝑥
≈
𝜑𝑖+1 − 𝜑𝑖  

∆𝑥
  (15)  

Where 

• 𝜑(𝑥, 𝑡) is the true (continuous) solution 

• 𝜑(𝑥𝑖, 𝑡𝑚) is the continuous solution calculated at each node in the mesh 

• 𝜑𝑖
𝑚 is the approximated numerical solution given by solving the FEM equation 

To help the understanding of eq. 15, and the derivation of the approximation of the heat 

equation, a general grid can be drawn: 

 

Figure 7: general grid for a one-dimensional Heat equation problem (Recktenwald, 2004) 
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In figure 7, the initial condition is displayed as solid squares, and the non-solids squares indicate 

the boundary conditions. 𝑖 denote the grid position, 𝑚 denote the time. The work done by 

Recktenwald (2004) introduces the FDM. The following section is thus purely based on his 

work. To obtain the finite difference approximation to the Heat equation, the first step is to 

consider a Taylor series expansion 𝜑(𝑥) about point 𝑥𝑖 (Recktenwald, 2004) 

 
𝜑(𝑥𝑖 + 𝛿𝑥) = 𝜑(𝑥) + 𝛿𝑥

𝜕𝜑

𝜕𝑥
|
𝑥𝑖

+
𝛿𝑥2

2

𝜕2𝜑

𝜕𝑥2
|
𝑥𝑖

+
𝛿𝑥3

3!

𝜕3𝜑

𝜕𝑥3
|
𝑥𝑖

+⋯ (16) 

Where 𝛿𝑥 is the change of 𝑥 relative to 𝑥𝑖, thus 𝛿𝑥 can be assumed to be ∆𝑥 and consider the 

value of 𝜑 at position 𝑥𝑖+1 on the mesh line, and solve for 
𝜕𝜑

𝜕𝑥
|
𝑥𝑖

 . Thus, eq. 16 can be rewritten 

to eq. 17 

 𝜕𝜑

𝜕𝑥
|
𝑥𝑖

≈
𝜑𝑖+1 − 𝜑𝑖
∆𝑥

−
∆𝑥

2
 
 𝜕2𝜑

𝜕𝑥2
|
𝑥𝑖

−
∆𝑥

3!
 
 𝜕3𝜑

𝜕𝑥3
|
𝑥𝑖

+⋯ (17) 

Notice the approximated approach, and that the first term on the right side is the approximated 

solution to 𝜑𝑖+1 ≈ 𝜑(𝑥𝑖 + ∆𝑥) and 𝜑(𝑥𝑖) ≈ 𝜑𝑖+1. Since this derivation deals with a Taylor 

series expansion, the mean value theorem can be applied to replace the higher order derivatives 

(Recktenwald, 2004). Simply put, the mean value theorem states that in a function 𝑓(𝑥) is a 

differentiable on the open interval (𝑎, 𝑏), and continuous on the closed interval [𝑎, 𝑏] there is a 

point, 𝑐, in (𝑎, 𝑏), such that 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 (Weisstein, 2011). Thus,  

 
 
𝜕𝜑

𝜕𝑥
|
𝜉
=
𝜑𝑖+1 −𝜑𝑖
∆𝑥

+
∆𝑥

2
 
 𝜕2𝜑

𝜕𝑥2
|
𝜉

 (18) 

The term on the far-right side is called the truncation error. This is an error that is the result of 

using the mean value theorem, and this error is not known. However, the truncation error term 

contains the parameter ∆𝑥, and is the only parameter that determines the error. This is a 

parameter that can be changed by the user, and thus, this error term is usually neglected. 

Therefore,  

 𝜕𝜑

𝜕𝑥
|
𝑥𝑖

≈  
𝜑𝑖+1 − 𝜑𝑖
∆𝑥

 (19) 

If the simulated solution is clearly unstable, the user should decrease the timestep, or lower ∆𝑥. 

Therefore, the argument of removing the truncation error is thus validated. Eq. 19 is called the 

forward difference, for the approximation, since it contains 𝑥𝑖 and 𝑥𝑖+1. The backwards 

difference, however is  
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 𝜕𝜑

𝜕𝑥
|
𝑥𝑖

=
𝜑𝑖 − 𝜑𝑖−1
∆𝑥

 (20) 

 

The last form of the approximation is called the central difference.  This form is derived by 

writing the Taylor series expansion for 𝜑𝑖+1 and 𝜑𝑖−1 (Recktenwald, 2004). The derivation 

follows the same route as the derivation of eq. 16 and 17, so,  

 𝜕𝜑

𝜕𝑥
| =

𝜑𝑖+1 − 𝜑𝑖−1
2∆𝑥

 (21) 

By applying the same strategy, and further manipulation of the Taylor series in eq. 16, second 

order PDE can be approximated (Recktenwald, 2004):  

 
𝜑𝑖+1 + 𝜑𝑖−1 = 2𝜑𝑖 + (𝜕𝛿)

2
 𝜕2𝜑

𝜕𝑥2
|
𝑥𝑖

 (22) 

Solving for 
 𝜕2𝜑

𝜕𝑥2
 yields 

  𝜕2𝜑

𝜕𝑥2
|
𝑥𝑖

=
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1 

∆𝑥2
 (23) 

In this section, the heat equation was estimated, by first describing a first degree approach, and 

then a second degree approach. 

3.2.1. Forward-Time Central-Space (FTCS) 

Eq. 20 to eq. 23 is are different types of finite difference approximation. This approximation 

can be applied to eq. 12, the Heat equation in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. However, the Heat equation will 

be written in a manner called the forward difference. By using this technique, the temperature 

at each node can be estimated one timestep forward, e.g. 

 𝜑𝑖
𝑚+1 − 𝜑𝑖

𝑚

∆𝑡
 (24) 

Remember from fig. 8 that 𝑚 denotes timestep. With this statement in mind, eq. 23 can be 

applied to the Heat equation in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 𝜑𝑖
𝑚+1 − 𝜑𝑖

𝑚

∆𝑡
=
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1 

∆𝑥2
 (25) 

Substitute appropriate term (according to the heat equation): 

 
𝑇𝑖
𝑡+1 = 𝑇𝑖

𝑡 + 𝛼 (
𝑇𝑖+1
𝑡 − 2𝑇𝑖

𝑡 + 𝑇𝑖−1
(∆𝑥)2

)∆𝑡 (26) 
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Where 

• 𝑇 is the temperature 

• 𝑖 is the space (grid) coordinate of which the temperature is calculated 

• 𝑡 is the time 

• 𝛼 is volumetric heat capacity (see section 3.1.4.). 

Remember that this equation (eq. 26) only is applicable for a one-dimensional problem. To 

bring this approximation to a three-dimensional problem, the space coordinates 𝑗 and 𝑘 is 

introduced. Thus, the final FTCS FEM can be derived (Rashid, et al., 2016), (Recktenwald, 

2004): 

 

 

 

 

 
𝑇𝑖,𝑗,𝑘
𝑡+1 = 𝑇𝑖

𝑡 + 𝛼 (
𝑇𝑖+1
𝑡 − 2𝑇𝑖

𝑡 + 𝑇𝑖−1
(∆𝑥)2

)∆𝑡 

+𝛼 (
𝑇𝑗+1
𝑡 − 2𝑇𝑗

𝑡 + 𝑇𝑗−1

(∆𝑥)2
)∆𝑡 

+𝛼 (
𝑇𝑘+1
𝑡 − 2𝑇𝑘

𝑡 + 𝑇𝑘−1
(∆𝑥)2

)∆𝑡 

(27) 

 

The advantages of using FTCS is that the values of 𝜑𝑖
𝑚+1, or 𝑇𝑖

𝑡+1, can be updated 

independently of each other (Recktenwald, 2004). 

 

3.3. IR Imaging and Setup 

The method that was elected to determine the heat transfer and thermal conductivity was 

developed and described in (Rashid, et al., 2016), and the basics steps in shown in the flow 

chart below.  
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Figure 8: flow chart of determination of heat transfer coefficient, H, and thermal conductivity, K. 

The experiment used a FLIR T1030Sc camera to capture the infrared radiation of the 

polyurethane sample. The sample was oriented normal to the camera lens. The data was 

gathered inside the software. The schematic figure of the setup can be seen in figure 9 below.  

 

Figure 9: schematic setup of IR capture 

From figure 8, there are only three steps. There are, however, multiple small, but equally 

important steps. Before the IR images can be captured, the sample needs to be at a different 

temperature than the surrounding atmosphere. There are several ways this could be done. 

However, to obtain the temperature difference for this experiment, the specimen was put in a 

freezer over-night (approximately 24hrs.). The freezer can hold temperatures of −20°𝐶 to 

−30°𝐶.  The surrounding atmosphere (the location of where the IR images would be captured) 

was a steady 24°𝐶. With a temperature difference between the sample and the atmosphere was 

established, capturing of the IR signatures could be done. Within the software to the IR camera, 

the sampling rate was set 2𝐻𝑧. That means, at every half second the software would capture 

the IR signature of the specimen. After about 7 minutes, the entire polyurethane specimen had 

reached 0°𝐶, and the recording was stopped. The next step would be to extract the temperature 

data of the specimen. 

Obtain IR images
Solve the heat 

equation in 
MATLAB©

Tune the simulation 
to match the IR 

results
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Figure 10: FLIR capture and region of interests where the temperature was read. 

The red line shown in fig. 10, called the Region of interest, or ROI for short, and is the location 

of where the temperature profile for the anti-abrasion specimen was captured. The ROI was at 

constant position. This was to ensure that the captured temperature was at the same location on 

the specimen, throughout all the time.  For the anti-abrasion sample, there was captured 9 

different temperature profiles, and for the anti-seepage it was captured 13 temperature profiles. 

The reason for the different captures was because the two different samples reached zero 

degrees C at different rates, due to size difference and different thermal properties (see section 

4.). The next step would be to import the temperature profiles into MATLAB© for further 

processing. In figure 8, the ROI is outside of the specimen. To obtain results where only the 

temperature of the specimen, not the air surrounding it, would be visible when comparing 

simulated data and experimental data. To manage this, the plotted experimental data was cut 

off at the edges of the specimens. When the experimental data and the simulated data was 

initially compared, without altering the two constants 𝐻 and 𝑘, it was naturally a significant 

difference occurred. However, after tinkering with the constants, the results were obtained.  

In preparation for the tests, the specimens were cut into 50𝑥50𝑚𝑚 cubes and labeled 𝐴, 𝐵 and 

𝐶. The corners of the materials were numbered 1 to 4, and it the center was labeled 5. The 

numbers indicated the point if which the measurements of the thickness. This was done for both 

Region of interest 
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the anti-seepage and the anti-abrasion materials.  The results of these measurements, in 

millimeters, can be viewed in table 2 below. 

Table 2: measurements of thickness (mm) 

Anti-abrasion  Anti-seepage 

 

A B C   A B C 

1 7,15 8,87 10,83 

 

1 5,25 5,5 5,45 

2 8,52 10,35 10,76 

 

2 5,41 5,65 5,52 

3 9,7 8,36 7,9 

 

3 5,45 6,27 6,4 

4 10,025 8,61 8,65 

 

4 5,38 5,34 6,28 

5 10,73 10,73 10,05 

 

5 5,98 5,45 5,78 

When measuring the rate of which heat travels through a material, the thickness of the tested 

specimen is important. In addition to the length, width and thickness, the masses were 

measured. The mass for the anti-abrasion material was 16𝑔 and for anti-seepage was  13𝑔. 

Thus, the density of anti-abrasion is  

• 𝜌𝑎𝑛𝑡𝑖−𝑎𝑏𝑟𝑎𝑠𝑖𝑜𝑛 = 1283𝑘𝑔/𝑚
3 

and for anti-seepage 

• 𝜌𝑎𝑛𝑡𝑖−𝑠𝑒𝑒𝑝𝑎𝑔𝑒 = 1150𝑘𝑔/𝑚
3.   

 

3.4. Heat Equation in MATLAB© 

The solution the FDM approximated equations that was obtained in sections 2.2., was solved 

in MATLAB®. To write the FTCS FEM only two basic code loops are necessary. One loop 

loops over ∆𝑡, while the other loop loops over ∆𝑥. However, since this problem deals with a 

three-dimensional problem, unique loops for each spatial domain (𝑥, 𝑦, 𝑧 or 𝑖, 𝑗, 𝑘) needs to be 

constructed. The code was developed by Hassan Abbas Khawaja, however, the author of the 

paper fine-tuned the parameters in the code. The step-by-step approach to simulate the 

temperature in the two materials anti-seepage and anti-abrasion is identical, with the three 

unique parameters heat transfer, thermal conductivity and density being different. In table 3 

below, it can be shown that there are only 4 basic steps to solve the FEM Heat equation.  



C-20 

 

Table 3: the logic steps to solve the FTCS FEM 

Step Event Description 

1 Define parameters ∆𝑡, ∆𝑥 

the spatial domains 𝑠𝑝𝑎𝑐𝑒𝑥, 𝑠𝑝𝑎𝑐𝑒𝑦, 𝑠𝑝𝑎𝑐𝑒𝑧 

𝑘 and ℎ 

𝜌 and 𝑐 

The discretized space 

Initial temperature and initial conditions. 

 

2 Create a matrix, 𝑇, containing 

zeroes 

The matrix 𝑇, initially only contains zeros. 

However, in step 3, the temperature at each 

node will replace the zeroes with the simulated 

temperature. 

 

3 Create loops This step is what solves the FTCS FEM. In 

these loops both the ∆𝑡, ∆𝑥 are contained. In 

addition to these, the boundary conditions are 

included. 

 

4 Plot experimental data vs. 

simulated data 

The last step plots the experimental data and 

compares it with the simulated data from step 1 

to 3. 
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Chapter 4: Results and Discussion 

4.1. Thermal Imaging  

To determine the thermal properties of polyurethane, the samples was taken out of the freezer 

and put in room temperature. The IR capture software was used to measure the established 

temperature gradient of the two polyurethane specimens. After reviewing the results and 

comparing it with the simulation,  𝑘 and ℎ was matched to fit the experimental data.  

Table 4: the coefficient of Heat transfer for anti-abrasion, and anti-seepage polyurethane 

Coefficient of heat transfer (ℎ) Value (𝑊/(𝑚2 ∙ 𝐾) 

Anti-seepage 19.95 

Anti-abrasion 5.2 

  

Applying the same logic to estimate the thermal conductivity, 𝑘:  

Table 5: the coefficient of Heat transfer for anti-abrasion, and anti-seepage polyurethane 

Coefficient of thermal conductivity (𝑘) Value (𝑊/(𝑚 ∙ 𝐾) 

Anti-seepage 25.0 

Anti-abrasion 11.0 

 

 

The simulated thermal image, as well as the captured thermal image from the ReseachIR® 

software are displayed in the figures on the next page.  
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Figure 11: the variation of temperature in the anti-seepage polyurethane after 100 seconds  

 

Figure 12: IR capture (FLIR T1030Sc) of anti-seepage at the same time as the simulation.  

The following two figures shows the plotted temperature in the middle of both materials, one 

as a function of time (fig. 13 and 15), and one as a function of position and time (fig. 14 and 

16).  
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Figure 13: temperature in anti-seepage polyurethane as a function of time. 

 

Figure 14: temperature in anti-seepage polyurethane as a function of position. 
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Figure 15: temperature in anti-abrasion polyurethane as a function of time. 

 

 

Figure 16: temperature in anti-abrasion polyurethane as a function of position. 

The results reveal that the heat transfer coefficient for anti-abrasion polyurethane is almost four 

times that for anti-seepage polyurethane, and the thermal conductivity for the respective have 

a difference of a factor of two.  
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Chapter 5: Conclusions and Future work 

5.1. Conclusions 

By applying a finite difference approach to the heat equation, and using IR-capture technology, 

the two thermal constants, heat transfer coefficient and the thermal conductivity coefficient was 

estimated for anti-abrasion and anti-seepage polyurethane. These constants were found for the 

two materials anti-abrasion polyurethane and anti-seepage polyurethane. However, from fig. 

14 and 16, it appears to be a difference in the two compared temperatures. This is because the 

samples that were tested were non-uniform. This non-uniformity can be because there are air 

bubbles from the production of the polyurethane. The computational load required to model air 

bubbles are unnecessary high, therefore this difference will be present in the solution.  

5.2. Future Work 
Based on the results and methods that have been described, a proposition of future work is 

presented below 

• How this material can be utilized in the Arctic region with regard to coating of hot pipes 

• More sophisticated methods to obtain a more accurate representation of the thermal 

properties 
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Appendix I 

The MATLAB© code that was used to determine ℎ and 𝑘 for Anti-seepage polyurethane is 

displayed below 

Polyurethane Anti-Abrasion heat simulation  

clear all 

close all 

 

delta_t = 1;                       % time step (1 sec) 

time_steps = 6000/delta_t;         % timesteps 

n = 5; 

m = [10.83 10.76 7.9 8.65 10.05];  % actual thickness of C specimen (anti-abrasion) 

mm 

%i = size(m); 

q = int32(mean(m)/10);             % average thickness of C specimen (anti-abrasion) 

cm, and then rouning up to nearest integer 

 

 

 

spacex = 5*n;                      % array size (in cm) 

spacey = 5*n; 

spacez = q*n; 

 

T = zeros(spacex, spacey, spacez, time_steps); 

 

                                  % Constants (multiple of hundreds to convert to cm) 

k = 0.11*100;                     % conductivity constant of polyurethane (W/(m.K)), 

varies slightly with temperature 

(http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=

pu&MinorID=1) 

h = 5.2;                          % convective (overall) heat transfer coefficient 

of air (W/(m2.K)), varies with conditions (CAUTION: tune it later) 

 

r = 950/1000000;                  % density (Kg/m3)(current value, 1286 is calculated) 

(1030 - 1500), varies slightly with temperature 

(http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=

pu&MinorID=1) 

c = 1800*10000;                   % heat capacity polyurethane (J/Kg/K), varies 

slightly with temperature (http://www.engineeringtoolbox.com/specific-heat-capacity-

d_391.html) 

Dx = 1/n;                         % discretisised space (in cm) 

Dy = Dx; 
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Dz = Dx; 

To = 273+23;                      % Room Temperature in K 

 

 

 

% Initial conditions 

T(:,:,:,1) = 273-24;              % Temperature of polyurethane when taken out of 

freezer in K 

 

 

 

 

 

tic 

% Solution 

for t = 2 : time_steps 

 

 

sx = 2 : spacex-1; 

sy = 2 : spacey-1; 

sz = 2 : spacez-1; 

 

 

T(sx, sy, sz, t) = T(sx, sy, sz, t-1) ... 

    + k/r/c * (T(sx+1, sy, sz, t-1) - 2*T(sx, sy, sz, t-1) + T(sx-1, sy, sz, t-1)) / 

(Dx*Dx) * delta_t ... 

    + k/r/c * (T(sx, sy+1, sz, t-1) - 2*T(sx, sy, sz, t-1) + T(sx, sy-1, sz, t-1)) / 

(Dy*Dy) * delta_t ... 

    + k/r/c * (T(sx, sy, sz+1, t-1) - 2*T(sx, sy, sz, t-1) + T(sx, sy, sz-1, t-1)) / 

(Dz*Dz) * delta_t; 

 

% Boundary conditions 

 

% 8 Corner Cells 

T(1,1,1,t) = T(1,1,1,t-1)... 

    + (h/r/c/Dx * (To - T(1,1,1,t-1)) + k/r/c/Dx/Dx * (T(2,1,1,t-1) - T(1,1,1,t-

1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(1,1,1,t-1)) + k/r/c/Dy/Dy * (T(1,2,1,t-1) - T(1,1,1,t-

1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(1,1,1,t-1)) + k/r/c/Dz/Dz * (T(1,1,2,t-1) - T(1,1,1,t-

1)))*delta_t; 

 

 

 

T(spacex,1,1,t) = T(spacex,1,1,t-1)... 
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    - (-h/r/c/Dx * (To - T(spacex,1,1,t-1)) + k/r/c/Dx/Dx * (T(spacex,1,1,t-1) - 

T(spacex-1,1,1,t-1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(spacex,1,1,t-1)) + k/r/c/Dy/Dy * (T(spacex,2,1,t-1) - 

T(spacex,1,1,t-1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(spacex,1,1,t-1)) + k/r/c/Dz/Dz * (T(spacex,1,2,t-1) - 

T(spacex,1,1,t-1)))*delta_t; 

 

 

 

T(1,spacey,1,t) = T(1,spacey,1,t-1)... 

    + (h/r/c/Dx * (To - T(1,spacey,1,t-1)) + k/r/c/Dx/Dx * (T(2,spacey,1,t-1) - 

T(1,spacey,1,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(1,spacey,1,t-1)) + k/r/c/Dy/Dy * (T(1,spacey,1,t-1) - 

T(1,spacey-1,1,t-1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(1,spacey,1,t-1)) + k/r/c/Dz/Dz * (T(1,spacey,2,t-1) - 

T(1,spacey,1,t-1)))*delta_t; 

 

 

 

T(spacex,spacey,1,t) = T(spacex,spacey,1,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,spacey,1,t-1)) + k/r/c/Dx/Dx * (T(spacex,spacey,1,t-

1) - T(spacex-1,spacey,1,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(spacex,spacey,1,t-1)) + k/r/c/Dy/Dy * (T(spacex,spacey,1,t-

1) - T(spacex,spacey-1,1,t-1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(spacex,spacey,1,t-1)) + k/r/c/Dz/Dz * (T(spacex,spacey,2,t-

1) - T(spacex,spacey,1,t-1)))*delta_t; 

 

 

 

T(1,1,spacez,t) = T(1,1,spacez,t-1)... 

    + (h/r/c/Dx * (To - T(1,1,spacez,t-1)) + k/r/c/Dx/Dx * (T(2,1,spacez,t-1) - 

T(1,1,spacez,t-1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(1,1,spacez,t-1)) + k/r/c/Dy/Dy * (T(1,2,spacez,t-1) - 

T(1,1,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dz * (To - T(1,1,spacez,t-1)) + k/r/c/Dz/Dz * (T(1,1,spacez,t-1) - 

T(1,1,spacez-1,t-1)))*delta_t; 

 

 

 

T(spacex,1,spacez,t) = T(spacex,1,spacez,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,1,spacez,t-1)) + k/r/c/Dx/Dx * (T(spacex,1,spacez,t-

1) - T(spacex-1,1,spacez,t-1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(spacex,1,spacez,t-1)) + k/r/c/Dy/Dy * (T(spacex,2,spacez,t-

1) - T(spacex,1,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dz * (To - T(spacex,1,spacez,t-1)) + k/r/c/Dz/Dz * (T(spacex,1,spacez,t-

1) - T(spacex,1,spacez-1,t-1)))*delta_t; 
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T(1,spacey,spacez,t) = T(1,spacey,spacez,t-1)... 

    + (h/r/c/Dx * (To - T(1,spacey,spacez,t-1)) + k/r/c/Dx/Dx * (T(2,spacey,spacez,t-

1) - T(1,spacey,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(1,spacey,spacez,t-1)) + k/r/c/Dy/Dy * (T(1,spacey,spacez,t-

1) - T(1,spacey-1,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dz * (To - T(1,spacey,spacez,t-1)) + k/r/c/Dz/Dz * (T(1,spacey,spacez,t-

1) - T(1,spacey,spacez-1,t-1)))*delta_t; 

 

 

 

T(spacex,spacey,spacez,t) = T(spacex,spacey,spacez,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,spacey,spacez,t-1)) + k/r/c/Dx/Dx * 

(T(spacex,spacey,spacez,t-1) - T(spacex-1,spacey,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(spacex,spacey,spacez,t-1)) + k/r/c/Dy/Dy * 

(T(spacex,spacey,spacez,t-1) - T(spacex,spacey-1,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dz * (To - T(spacex,spacey,spacez,t-1)) + k/r/c/Dz/Dz * 

(T(spacex,spacey,spacez,t-1) - T(spacex,spacey,spacez-1,t-1)))*delta_t; 

 

%12 edges 

 

% sx = 2 : spacex-1; 

 

T(sx,1,1,t) = T(sx,1,1,t-1) ... 

    + k/r/c * (T(sx+1, 1, 1, t-1) - 2*T(sx, 1, 1, t-1) + T(sx-1, 1, 1, t-1)) / (Dx*Dx) 

* delta_t ... 

    + (h/r/c/Dy * (To - T(sx,1,1,t-1)) + k/r/c/Dy/Dy * (T(sx,2,1,t-1) - T(sx,1,1,t-

1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(sx,1,1,t-1)) + k/r/c/Dz/Dz * (T(sx,1,2,t-1) - T(sx,1,1,t-

1)))*delta_t; 

 

T(sx,spacey,1,t) = T(sx,spacey,1,t-1)... 

    + k/r/c * (T(sx+1, spacey, 1, t-1) - 2*T(sx, spacey, 1, t-1) + T(sx-1, spacey, 1, 

t-1)) / (Dx*Dx) * delta_t ... 

    - (-h/r/c/Dy * (To - T(sx,spacey,1,t-1)) + k/r/c/Dy/Dy * (T(sx,spacey,1,t-1) - 

T(sx,spacey-1,1,t-1)))*delta_t ... 

    + (h/r/c/Dz * (To - T(sx,spacey,1,t-1)) + k/r/c/Dz/Dz * (T(sx,spacey,2,t-1) - 

T(sx,spacey,1,t-1)))*delta_t; 

 

T(sx,1,spacez,t) = T(sx,1,spacez,t-1)... 

    + k/r/c * (T(sx+1, 1,spacez, t-1) - 2*T(sx, 1,spacez, t-1) + T(sx-1, 1,spacez, t-

1)) / (Dx*Dx) * delta_t ... 

    + (h/r/c/Dy * (To - T(sx,1,spacez,t-1)) + k/r/c/Dy/Dy * (T(sx,2,spacez,t-1) - 

T(sx,1,spacez,t-1)))*delta_t ... 
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    - (-h/r/c/Dz * (To - T(sx,1,spacez,t-1)) + k/r/c/Dz/Dz * (T(sx,1,spacez,t-1) - 

T(sx,1,spacez-1,t-1)))*delta_t; 

 

T(sx,spacey,spacez,t)= T(sx,spacey,spacez,t-1)... 

    + k/r/c * (T(sx+1, spacey,spacez, t-1) - 2*T(sx, spacey,spacez, t-1) + T(sx-1, 

spacey,spacez, t-1)) / (Dx*Dx) * delta_t ... 

    - (-h/r/c/Dy * (To - T(sx,spacey,spacez,t-1)) + k/r/c/Dy/Dy * 

(T(sx,spacey,spacez,t-1) - T(sx,spacey-1,spacez,t-1)))*delta_t ... 

    - (-h/r/c/Dz * (To - T(sx,spacey,spacez,t-1)) + k/r/c/Dz/Dz * 

(T(sx,spacey,spacez,t-1) - T(sx,spacey,spacez-1,t-1)))*delta_t; 

 

% sy = 2 : spacey-1 

 

T(1,sy,1,t) = T(1,sy,1,t-1)... 

    + (h/r/c/Dx * (To - T(1,sy,1,t-1)) + k/r/c/Dx/Dx * (T(2,sy,1,t-1) - T(1,sy,1,t-

1)))*delta_t ... 

    + k/r/c * (T(1, sy+1, 1, t-1) - 2*T(1, sy, 1, t-1) + T(1, sy-1, 1, t-1)) / (Dy*Dy) 

* delta_t ... 

    + (h/r/c/Dz * (To - T(1,sy,1,t-1)) + k/r/c/Dz/Dz * (T(1,sy,2,t-1) - T(1,sy,1,t-

1)))*delta_t; 

 

T(spacex,sy,1,t) = T(spacex,sy,1,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,sy,1,t-1)) + k/r/c/Dx/Dx * (T(spacex,sy,1,t-1) - 

T(spacex-1,sy,1,t-1)))*delta_t ... 

    + k/r/c * (T(spacex, sy+1, 1, t-1) - 2*T(spacex, sy, 1, t-1) + T(spacex, sy-1, 1, 

t-1)) / (Dy*Dy) * delta_t ... 

    + (h/r/c/Dz * (To - T(spacex,sy,1,t-1)) + k/r/c/Dz/Dz * (T(spacex,sy,2,t-1) - 

T(spacex,sy,1,t-1)))*delta_t; 

 

T(1,sy,spacez,t) = T(1,sy,spacez,t-1)... 

    + (h/r/c/Dx * (To - T(1,sy,spacez,t-1)) + k/r/c/Dx/Dx * (T(2,sy,spacez,t-1) - 

T(1,sy,spacez,t-1)))*delta_t ... 

    + k/r/c * (T(1, sy+1, spacez, t-1) - 2*T(1, sy, spacez, t-1) + T(1, sy-1, spacez, 

t-1)) / (Dy*Dy) * delta_t ... 

    - (-h/r/c/Dz * (To - T(1,sy,spacez,t-1)) + k/r/c/Dz/Dz * (T(1,sy,spacez,t-1) - 

T(1,sy,spacez-1,t-1)))*delta_t; 

 

T(spacex,sy,spacez,t) = T(spacex,sy,spacez,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,sy,spacez,t-1)) + k/r/c/Dx/Dx * 

(T(spacex,sy,spacez,t-1) - T(spacex-1,sy,spacez,t-1)))*delta_t ... 

    + k/r/c * (T(spacex,sy+1,spacez, t-1) - 2*T(spacex,sy,spacez, t-1) + T(spacex,sy-

1,spacez, t-1)) / (Dy*Dy) * delta_t ... 

    - (-h/r/c/Dz * (To - T(spacex,sy,spacez,t-1)) + k/r/c/Dz/Dz * 

(T(spacex,sy,spacez,t-1) - T(spacex,sy,spacez-1,t-1)))*delta_t; 

 

%sz = 2 : spacez-1 
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T(1,1,sz,t) = T(1,1,sz,t-1)... 

    + (h/r/c/Dx * (To - T(1,1,sz,t-1)) + k/r/c/Dx/Dx * (T(2,1,sz,t-1) - T(1,1,sz,t-

1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(1,1,sz,t-1)) + k/r/c/Dy/Dy * (T(1,2,sz,t-1) - T(1,1,sz,t-

1)))*delta_t ... 

    + k/r/c * (T(1, 1, sz+1, t-1) - 2*T(1, 1, sz, t-1) + T(1, 1, sz-1, t-1)) / (Dz*Dz) 

* delta_t; 

 

 

T(spacex,1,sz,t) = T(spacex,1,sz,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,1,sz,t-1)) + k/r/c/Dx/Dx * (T(spacex,1,sz,t-1) - 

T(spacex-1,1,sz,t-1)))*delta_t ... 

    + (h/r/c/Dy * (To - T(spacex,1,sz,t-1)) + k/r/c/Dy/Dy * (T(spacex,2,sz,t-1) - 

T(spacex,1,sz,t-1)))*delta_t ... 

    + k/r/c * (T(spacex, 1, sz+1, t-1) - 2*T(spacex, 1, sz, t-1) + T(spacex, 1, sz-

1, t-1)) / (Dz*Dz) * delta_t; 

 

 

T(1,spacey,sz,t) = T(1,spacey,sz,t-1)... 

    + (h/r/c/Dx * (To - T(1,spacey,sz,t-1)) + k/r/c/Dx/Dx * (T(2,spacey,sz,t-1) - 

T(1,spacey,sz,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(1,spacey,sz,t-1)) + k/r/c/Dy/Dy * (T(1,spacey,sz,t-1) - 

T(1,spacey-1,sz,t-1)))*delta_t ... 

    + k/r/c * (T(1,spacey, sz+1, t-1) - 2*T(1,spacey, sz, t-1) + T(1,spacey, sz-1, t-

1)) / (Dz*Dz) * delta_t; 

 

 

T(spacex,spacey,sz,t) = T(spacex,spacey,sz,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,spacey,sz,t-1)) + k/r/c/Dx/Dx * 

(T(spacex,spacey,sz,t-1) - T(spacex-1,spacey,sz,t-1)))*delta_t ... 

    - (-h/r/c/Dy * (To - T(spacex,spacey,sz,t-1)) + k/r/c/Dy/Dy * 

(T(spacex,spacey,sz,t-1) - T(spacex,spacey-1,sz,t-1)))*delta_t ... 

    + k/r/c * (T(spacex,spacey, sz+1, t-1) - 2*T(spacex,spacey, sz, t-1) + 

T(spacex,spacey, sz-1, t-1)) / (Dz*Dz) * delta_t; 

 

%6 faces 

 

T(sx,sy,1,t) = T(sx,sy,1,t-1)... 

    + k/r/c * (T(sx+1, sy, 1, t-1) - 2*T(sx, sy, 1, t-1) + T(sx-1, sy, 1, t-1)) / 

(Dx*Dx) * delta_t ... 

    + k/r/c * (T(sx, sy+1, 1, t-1) - 2*T(sx, sy, 1, t-1) + T(sx, sy-1, 1, t-1)) / 

(Dy*Dy) * delta_t ... 

    + (h/r/c/Dz * (To - T(sx,sy,1,t-1)) + k/r/c/Dz/Dz * (T(sx,sy,2,t-1) - T(sx,sy,1,t-

1)))*delta_t; 
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T(sx,sy,spacez,t) = T(sx,sy,spacez,t-1)... 

    + k/r/c * (T(sx+1, sy, spacez, t-1) - 2*T(sx, sy, spacez, t-1) + T(sx-1, sy, 

spacez, t-1)) / (Dx*Dx) * delta_t ... 

    + k/r/c * (T(sx, sy+1, spacez, t-1) - 2*T(sx, sy, spacez, t-1) + T(sx, sy-1, 

spacez, t-1)) / (Dy*Dy) * delta_t ... 

    - (-h/r/c/Dz * (To - T(sx,sy,spacez,t-1)) + k/r/c/Dz/Dz * (T(sx,sy,spacez,t-1) - 

T(sx,sy,spacez-1,t-1)))*delta_t; 

 

 

T(sx,1,sz,t) = T(sx,1,sz,t-1)... 

    + k/r/c * (T(sx+1, 1, sz, t-1) - 2*T(sx, 1, sz, t-1) + T(sx-1, 1, sz, t-1)) / 

(Dx*Dx) * delta_t ... 

    + (h/r/c/Dy * (To - T(sx,1,sz,t-1)) + k/r/c/Dy/Dy * (T(sx,2,sz,t-1) - T(sx,1,sz,t-

1)))*delta_t... 

    + k/r/c * (T(sx,1,sz+1, t-1) - 2*T(sx, 1, sz, t-1) + T(sx, 1, sz-1, t-1)) / 

(Dz*Dz) * delta_t; 

 

 

T(sx,spacey,sz,t) = T(sx,spacey,sz,t-1)... 

    + k/r/c * (T(sx+1, spacey, sz, t-1) - 2*T(sx, spacey, sz, t-1) + T(sx-1, spacey, 

sz, t-1)) / (Dx*Dx) * delta_t ... 

    - (-h/r/c/Dy * (To - T(sx,spacey,sz,t-1)) + k/r/c/Dy/Dy * (T(sx,spacey,sz,t-1) - 

T(sx,spacey-1,sz,t-1)))*delta_t... 

    + k/r/c * (T(sx,spacey,sz+1, t-1) - 2*T(sx, spacey, sz, t-1) + T(sx, spacey, sz-

1, t-1)) / (Dz*Dz) * delta_t; 

 

 

T(1,sy,sz,t) = T(1,sy,sz,t-1)... 

    + (h/r/c/Dx * (To - T(1,sy,sz,t-1)) + k/r/c/Dx/Dx * (T(2,sy,sz,t-1) - T(1,sy,sz,t-

1)))*delta_t ... 

    + k/r/c * (T(1, sy+1, sz, t-1) - 2*T(1, sy, sz, t-1) + T(1, sy-1, sz, t-1)) / 

(Dy*Dy) * delta_t ... 

    + k/r/c * (T(1, sy, sz+1, t-1) - 2*T(1, sy, sz, t-1) + T(1, sy, sz-1, t-1)) / 

(Dz*Dz) * delta_t; 

 

 

T(spacex,sy,sz,t) = T(spacex,sy,sz,t-1)... 

    - (-h/r/c/Dx * (To - T(spacex,sy,sz,t-1)) + k/r/c/Dx/Dx * (T(spacex,sy,sz,t-1) - 

T(spacex-1,sy,sz,t-1)))*delta_t ... 

    + k/r/c * (T(spacex, sy+1, sz, t-1) - 2*T(spacex, sy, sz, t-1) + T(spacex, sy-1, 

sz, t-1)) / (Dy*Dy) * delta_t ... 

    + k/r/c * (T(spacex, sy, sz+1, t-1) - 2*T(spacex, sy, sz, t-1) + T(spacex, sy, 

sz-1, t-1)) / (Dz*Dz) * delta_t; 
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end 

 

toc 

Elapsed time is 4.166959 seconds. 

load 'experimental_data_anti_abrasion.mat' 

 

figure() 

lapse = 35;                         % adjust accordingly 

frames = 9;                         % from experiments 

void_1 = imresize(temp_2, [9 50]);  % experiment 

 

 

 

void_2 = reshape(T(:,int32(spacey/2),spacez,lapse:120:lapse+(frames-1)*120)-

273.15,25,9); 

void_3 = imresize(void_2, [50 9]);  % simulation 

 

temp_3 = zeros(9,3); 

 

for g = 1:frames 

    hold on 

    plot (void_3(:,g),'red') 

    plot (void_1(g,:),'k.'); 

    temp_3(g,1) = min ((T(:,int32(spacey/2),spacez,lapse+(g-1)*120)-273.15)); 

    temp_3(g,2) = min (temp_2(g,:)); 

    temp_3(g,3) = lapse+(g-1)*120; 

    legend('Simulated data','Experimental data') 

        xlabel('distance (mm)') 

        ylabel('Temperature (^oC)') 

    title('Temperature of anti-abrasion polyurethane') 

end 

 

hold off 

 

figure() 

plot (temp_3(:,3),temp_3(:,1),'red') 

hold on 

plot (temp_3(:,3),temp_3(:,2),'k.') 

legend('Simulated temperature','Experimental temperature','location','northwest') 

 xlabel('time (s)') 

    ylabel('Temperature (degrees ^oC)') 

title('Temperature of anti-abrasion polyurethane') 
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frame = int32(309/2);    %at what time the temperature should be calculated. Refer to 

Data_1.m, which refers to the experimantal data. 

figure; 
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dummy_T3 = reshape(T(:,:,1,100)-273, spacex, spacey); %time 100 in simulation refers 

to frame 233 in experimental data 

void = imresize(dummy_T3, [1500 1500]); 

pcolor (void), shading flat 

 

colormap jet 

colorbar 

axis equal 

 

figure; 

plot (dummy_T3(:,25)) 

title('Temperature at pos. 13') 
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