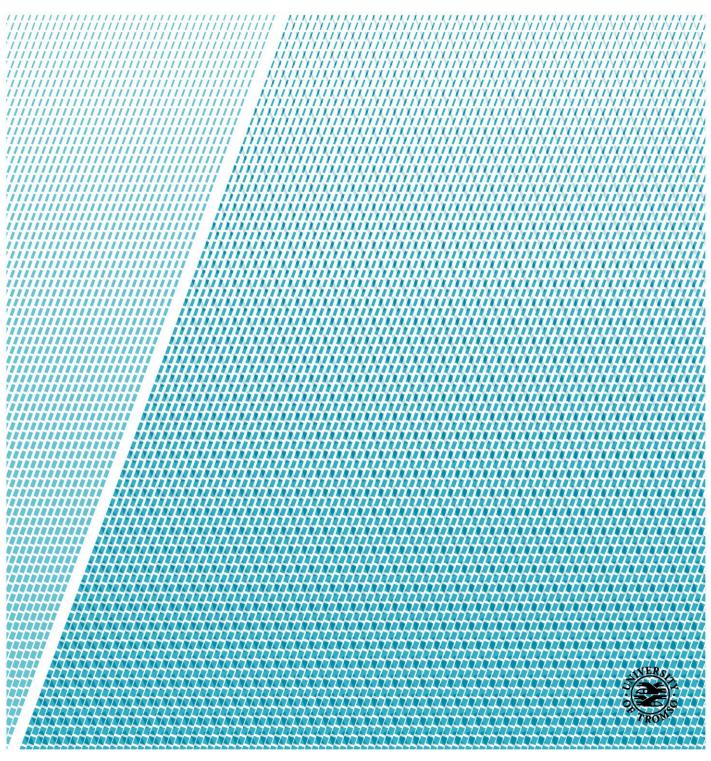
UIT THE ARCTIC UNIVERSITY OF NORWAY


Faculty of Engineering Science and Technology

Optimization of the mass of a sandwich plate that TAM is producing

Final report

Bjarne Steinulv Jensen

Master thesis in engineering design, June 2017

Preface

On the last semester of the masters in Engineering design is it written a thesis the counts 30 credits. The thesis problem was presented in a list given to the class, where the students could chose after their own desire. The problem *Numerical calc. and optimization of sandwich components (TAM AS)* was chosen since it was for an external company and a good way to see how the industry works.

The candidate gained a significant increase of knowledge in the field of sandwich components. This have the thesis supervisors Dag Lukkassen and Annette Meidell have guided and given good advice to the candidate over the last semester. The meeting with personal at TAM on May 16th 2017 gave a good understanding of the production and challenges with sandwich constructions. The personal at TAM also provided the construction with specific load conditions to optimize that this thesis is based on.

Due to reasons that is not connected to the studies, the project had a slow progress. But the last part of the semester, the progress has been much better.

Acknowledgements

Would like to thank everyone who helped me with this thesis.

Narvik 06.06.17

Bjarne S. Jensen

Abstract

In this report the possibility to optimize the mass of a sandwich plate that TAM produces have been reviewed. Dimensions of the plate is 2602mm x 2404mm with a core thickness of 40mm, top facing of 3mm and bottom facing of 1mm. To simplify the computations they calculate with uniform facings of 1mm. The function of the sandwich plate is to lift livestock with wires that are fastened in the four corners. The maximum load conditions is set to be a uniformly distributed load of 20.000N and to withstand the impact forces, the top facing has an increased thickness.

The analytical computations gives that a plate that is 11mm thicker, but have a significantly lower density gives a lower mass and less deflection than the original plate. The results given by ANSYS APDL confirms the analytical computations, but the results from ANSYS Workbench is concluded to be unreliable for sandwich constructions.

The increase in thickness should not affect the overall use of the plate since it still fits in the frame, and the frame is significantly thicker than both the new and original plate.

Contents

Introduction	1
Problem description	1
Production method	2
Material properties	4
Analytical computations	5
Variables and constants	6
Computations and description of them	7
Numerical computations	. 12
ANSYS Workbench	. 12
ANSYS APDL	. 14
Results	. 15
Conclusion	. 15
Recommendations for future work	. 16
List of figure	. 17
List of table	. 17
References	. 18
Appendix A – Analytical computations	1
Appendix B – Mechanical properties for Divinycell H [3]	1
Appendix C – Optimal stiffness Design of Sandwich Plates with Variable Core Densities	1
Appendix D – APDL log file	1
Appendix E – ANSYS report – Simulation without frame	1
Appendix F - ANSYS report – Simulation with frame	1
Appendix G – Specifications of sandwich panel from TAM	1
Appendix H – CAD drawings	1

Introduction

TAM is a small company located at Andslimoen in Troms which is in the northern part of Norway. The name TAM comes from the initials of the founder, Tor Arne Mentzoni [1]. They specialize in production of sandwich constructions to for an example the Norwegian military, for helicopter lifts and other extreme conditions.

The construction that TAM want optimized in this thesis is a plate used to lift livestock into a livestock transport container which also is made up of sandwich plates. Reducing the mass will make the transport able to transport more livestock for each trip, or reduce the fuel consumption for each trip.

Contact person at TAM is Herman Myrvoll.

Thesis supervisors

The thesis supervisors are Professor Dag Lukkassen and Professor Annette Meidell, both are internal supervisors assigned from UiT campus Narvik.

Problem description

The computations in this thesis is based on algorithms from the report "*Optimal stiffness design of sandwich plates with variable core densities*" by Dag Lukkassen, Annette Meidell and Herman Myrvoll [2], this report is attached in appendix C.

The goal for this thesis is to optimize the mass of a sandwich plate that TAM is producing. A sandwich plate supported by a frame that is supported in four points is subjected to uniformly distributed load. It has a length of 2602mm and a width of 2404mm with a divinycell H60 core from Diab and aluminum faces, the top with thickness 3mm and the bottom plate with a thickness of 1mm. The reason the top facing is 3mm thick, is to withstand impact forces from when the animals kick the plate when loading. To simplify the analytical computations for uniformly distributed load, the top facing is reduced to 1mm. In the results, the top facing thickness will the 2mm be added to after all computations are done.

The results given by the analytical computations will then be compared to simulations of the same construction in the numerical calculation tool ANSYS. The optimized construction will then be compared to the original with respect to other general parameters than total mass.

This thesis will be restricted to only consider aluminum facings for the sandwich construction, but the core material will all densities of the core materials Divinycell from Diab or equivalent be considered [3].

Production method

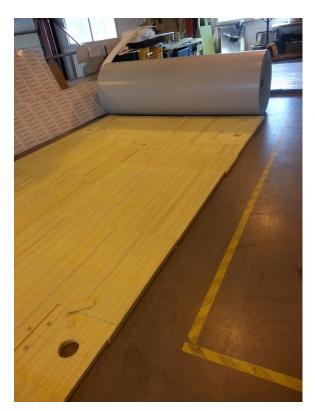


Figure 1 - Core configuration with a roll of aluminum facing in the background.

Figure 2 - Core configuration

The core materials and facings must be cut in to the desired size before the gluing process can begin. This is because the glue has to be set under vacuum within an hour or it will cure prematurely. The layout of core material in figure 1 and 2 is for the floor to the container for transportation of livestock.

In the background of figure 1 it is a roll of aluminum used for facing.

The core material have precut groves in a grid formation like the material in figure 3. This is to ensure that all air is eliminated when the sandwich plate are vacuum pressed. It is kept in vacuum for a minimum of eight hours for the glue to completely cure.

The glue used in the production have higher shear stiffness than the core material. This is to ensure that if the sandwich panel should fail, it is not the glue that fails.

Figure 3 - Close-up of core material

The sandwich plates in figure 4 is ready to assemble, the final product here is the container for transportation of livestock. The plates are then assembled with aluminum profiles.

Figure 4 - Complete panels

Material properties

The tables bellow does not list properties that is non-essential, only properties for generic aluminum and the two different core materials that is used. A list of other core materials from Diab's Divinycell H group is attached in appendix B. Only Divinycell group H is considered since all foams in group H have the same non-relevant properties in regard to mass and shear stiffness. This because if there is a property in this group that is required for this plate that was not given by TAM.

Table 1	-	Relevant	properties	of aluminum	[4]
---------	---	----------	------------	-------------	-----

Property	Value	Unit
Young's modulus	70	[GPa]
Density	2700	$[kg/m^3]$
Poisson ratio	0,33	-

Table 2 - Relevant	nronerties	of divinvce	11 H60 [3]
I ubie 2 - Reievuni	properties	of aivingee	1100 [5]

Property	Value	Unit
Shear modulus	20	[MPa]
Density	60	$[kg/m^3]$
Poisson ratio	0,4	-

Table 3 - Relevant properties of divinycell H35 [3]	Table 3 -	Relevant	properties	of divinyce	ell H35 [3]
---	-----------	----------	------------	-------------	-------------

Property	Value	Unit
Shear modulus	12	[MPa]
Young's modulus	33,6	[MPa]
Density	38	$[kg/m^3]$
Poisson ratio	0,4	-

Analytical computations

All computations are in chronological order attached in appendix A. The computations are done in PTC Mathcad Prime 3.0.

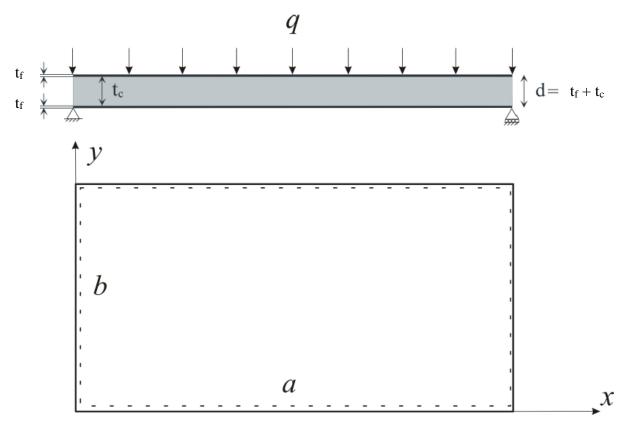


Figure 5 – Illustrating sandwich plate

Figure 5 above illustrates what some of the different variables that occurs later in this chapter. The figure is from *"Optimal stiffness design of sandwich plates with variable core densities"* [2], it is made small alterations to accommodate the denotations in the formulas in this report.

Variables and constants

Variables	Dentation	Unit
Length	a	[m]
Width	b	[m]
Face thickness	t _f	[m]
Core thickness	t _c	[m]
Poisson ratio for facing	v_{f}	-
Young's modulus for facing	Ef	[GPa]
Shear Modulus of core	Gc	[MPa]
Uniformly distributed load	q _{mn}	[Pa]
Total deflection	W _{total}	[mm]
Deflection due to pure bending	Wb	[mm]
Deflection due to pure shear deformation	Ws	[mm]
Mass	m	[kg]
Density of core	ρ _c	[kg/m ³]
Density of face	$ ho_{\mathrm{f}}$	[kg/m ³]

Table 4 - Units and denotation of variables [5]

Table 5 - Value of constants [2]

Constants	Value	Unit
k	6080/1533	$[s^2/m^2]$
1	17/1533	[1/MPa]
v	194.198*10 ⁻³	[1/kg]

Computations and description of them

There is used several formulas from "*Optimal Stiffness Design of Sandwich Plates with Variable Core Densities*" [2] to analyze and optimize the mass of the sandwich plate. There is assumed thin faces for all analytical computations.

The deflection can be computed with the formulas as shown below where w_b is the deflection from bending and w_s is from shear deformation. Sum up w_b and w_s to get the total maximum deflection w_{total} .

$$w_b = \frac{1 - v_f^2}{D} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{q_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)}{\left(\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2\right)^2}$$
$$w_s = \frac{1}{S} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{q_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)}{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$
$$D = \frac{E_f t_f d^2}{2}, \quad S = \frac{G_c d^2}{t_f}$$

Dan Zenkert's work [5], An Introduction to sandwich Constructions, states that:

The series converge rather quickly for the deflections and bending moments... The maximum deflection and bending moments appear in the middle of the plate at (x,y)=(a/2,b/2)... [5].

From "Optimal Stiffness Design of Sandwich Plates with Variable Core Densities" [2], the uniformly distributed load on a plate where the load $q_{mn} > 0$ are:

$$q_{mn} = \frac{16q_{mn}}{mn\pi^2}$$

$$w_b = \frac{q_{mn}(1-v^2)b^4}{D}f(a/b), \qquad w_s = \frac{q_{mn}b^2}{S}g(a/b)$$

Maximum deflection accurse at the center of the plate since it is an uniformly distributed load, at:

$$x = \frac{a}{2}, \quad y = \frac{b}{2}$$

This gives that:

$$f(a/b) = \sum_{n=0}^{27} \sum_{m=0}^{27} \frac{16\sin\left(\frac{(2m+1)\pi}{2}\right)\sin\left(\frac{(2n+1)\pi}{2}\right)}{\pi^6(2m+1)(2n+1)\left(\left(\frac{(2m+1)}{a/b}\right)^2 + (2n+1)^2\right)^2}$$

$$= 4,728 * 10^{-3}$$

$$g(a/b) = \sum_{n=0}^{27} \sum_{m=0}^{27} \frac{16\sin\left(\frac{(2m+1)\pi}{2}\right)\sin\left(\frac{(2n+1)\pi}{2}\right)}{\pi^4(2m+1)(2n+1)\left(\left(\frac{(2m+1)}{a/b}\right)^2 + (2n+1)^2\right)}$$

 $= 79,452 * 10^{-3}$

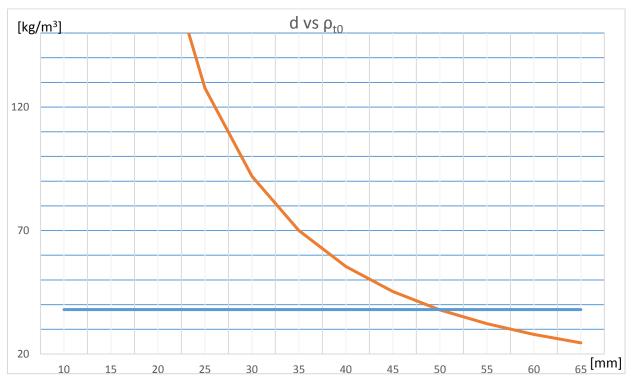
Note that f(a/b) and g(a/b) is denoted $f_{a,b}$ and $g_{a,b}$ to accommodate PTC Mathcad Prime 3.0 as attached in appendix A.

$$D = \frac{E_f * t_f * d^2}{2} \qquad S = \frac{G_{cH60} * d^2}{t_c} \qquad v = \frac{\frac{W_{total}}{q_{mn}}}{g(a/b) * k * a * b^3} + \frac{l}{a * b * d * k}$$

The variables shown above is used to shorten the mathematical expressions that follows in the report.

The total deformation of the original plate is 9,4mm, as shown by the computations done in the equations bellow:

$$w_{b} = \frac{q_{mn} * (1 - v_{f}^{2}) * b^{4}}{D} f(a/b) = 7,647mm$$
$$w_{s} = \frac{q_{mn} * b^{2}}{S} g(a/b) = 1,747mm$$


 $w_{total} = w_s + w_b = 9,394mm$

The extremal value of $t = t_{f0} = 1,074$ mm as seen bellow, which is thicker than the original thickness of the facings that is in the analytical computations. Since the top facing in reality is 3mm, this should be sufficient. The formula bellow is only valid when t_{f0} is significantly smaller than d [2].

$$t_{f0} = \frac{1}{v} \left(\sqrt{\frac{(1 - v_f^2)}{g(a/b) * E_f * d^2 * a^2 * \rho_f * k}} f(a/b) + \frac{2 * (1 - v_f^2) * b}{g(a/b) * E_f * d^2 * a * k} f(a/b) \right)$$
$$= 1,074$$

The formula for density based of t_0 with variable core thickness is then used to make the graph bellow to evaluate the best density choice. The formula is given bellow and d is ranging from 10mm to 65mm with an increment of 5mm per point made in excel. The graph shows that a divinycell H core with a density of 38 $\frac{kg}{m^3}$ and thickness d of 50mm is the best match [3].

$$\rho_{t0} = \frac{1}{a * b * d * v} \left(1 - \left(\sqrt{\frac{1}{\frac{4 * (1 - v_f^2) * b^2 * \rho_f}{g(a_{b}) * E_f * d^2 * k}} f(a_{b}) + 1 \right)^{-1} \right)^{-1}$$

Optimization of sandwich plates

Figure 6 - Graph that show where divinycell H35's density intersects with $\rho_{t0}(d)$

Figure 5 shows that to use divinycell H35, d needs to be around 50mm. This is confirmed by the computation bellow as well.

$$\rho_{t050} = \frac{1}{a * b * d_{50} * v} \left(1 - \left(\sqrt{\frac{1}{\frac{4 * (1 - v_f^2) * b^2 * \rho_f}{g(a/b) * E_f * d_{50}^2 * k}} f(a/b)} + 1 \right)^{-1} \right)^{-1} = 37,868 \frac{kg}{m^3}$$

The new minimum facing thickness (t_{f050}) then becomes:

$$t_{f050} = \frac{1}{v} \left(\sqrt{\frac{\left(1 - v_f^2\right)}{g\left(\frac{a}{b}\right) * E_f * d_{50}^2 * a^2 * \rho_f * k}} f\left(\frac{a}{b}\right) + \frac{2\left(1 - v_f^2\right) * b}{g\left(\frac{a}{b}\right) E_f * d_{50}^2 * a * k} f\left(\frac{a}{b}\right) \right)$$

 $= 765,665 \mu m$

Finally, when the original and the new plate compared, the mass of the new plate has been reduced by 6,9% compared to the original. This can be seen in the equations bellow.

$$\begin{split} m_{original} &= a * b * 2 * t_{f} * \rho_{f} + a * b * t_{c} * \rho_{c} = 48,791 kg\\ m_{new} &= a * b * 2 * t_{f50} * \rho_{f} + a * b * (d_{50} - t_{f50}) * \rho_{c50} = 45,425 kg\\ m_{improvement} &= 100 - \frac{m_{new}}{m_{original}} * 100 = 6,9\% \end{split}$$

In addition to the improvement in mass, the deflection of the plate is reduced significantly. The improvement is 19,7%, this can be seen by the equations below.

$$w_{total50} = w_{s50} + w_{b50} = 7,54mm$$
$$w_{total} = w_s + w_b = 9,394mm$$
$$w_{improvement} = 100 - \frac{w_{total50}}{w_{total}} * 100 = 19,736\%$$

Numerical computations

The numerical computations three different ways to evaluate the best way of compute the deflection of the sandwich plate. The geometry needed to do the numerical computations in ANSYS Workbench is made in SolidWorks 2015. The drawings is attached in appendix H.

ANSYS Workbench

The computations is done twice with ANSYS Workbench due to not unexpected deflection results of 20,5mm in the first simulation. This is much more that the analytical result, just as predicted in the meeting at TAM. To compensate for the deflection, the frame that the sandwich plate is supposed to rest in is added to make the sides more rigid for the second simulation.

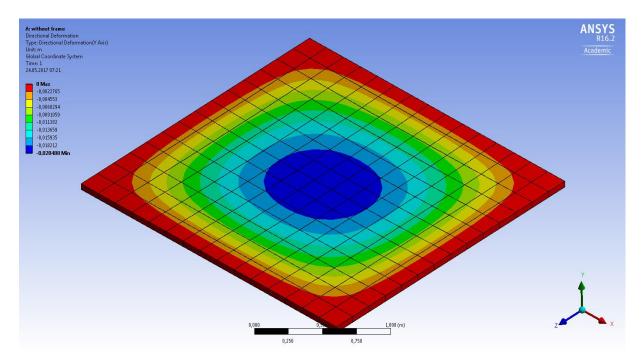


Figure 7 - ANSYS Workbench simulation without frame

Simulation in ANSYS Workbench of the sandwich panel when it is subjected to the same uniformly distributed load as in the analytical computations is shown in figure 6. With fixed supported sides, the sandwich panel has a maximum deflection of 20,5mm. The ANSYS project report that ANSYS generates attached in appendix E.

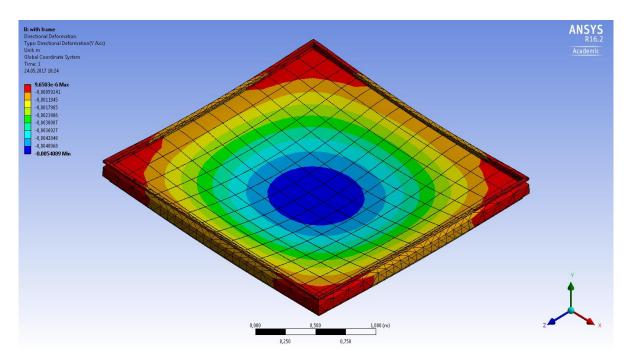


Figure 8 - ANSYS Workbench simulation with frame

Simulation in ANSYS Workbench of the sandwich panel when it is subjected to the same uniformly distributed load as in the analytical computations is shown in figure 7. In addition, the frame that's supporting the panel is fixed in is added to make the sides more rigid. The plate is supported in a manner such that one corner is fixed in all directions and the other tree is only fixed in the y-direction. With this configuration, the deflection is only 5,4mm. The ANSYS project report that ANSYS generates attached in appendix F.

ANSYS APDL

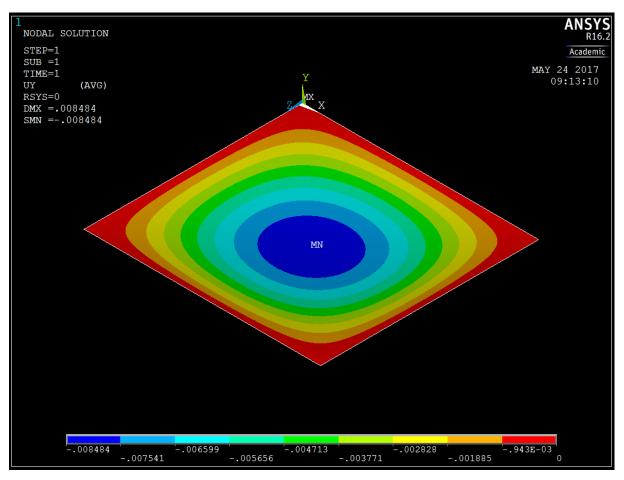


Figure 9 - ANSYS APDL simulation

Simulation in ANSYS APDL of the sandwich panel when it is subjected to the same uniformly distributed load as in the analytical computations is shown in figure 8. The plate is supported in a manner such that one corner is fixed in all directions and the other tree is only fixed in the y-direction. With this configuration, the deflection is 8,5mm. To reconstruct the simulation, the log file is attached in appendix D.

Results

The results is listed in Table 6 - Results bellow. They shows a significant decrease of mass in the plate with the divinycell H35 core compared to the Divinycell H60, 6,9% less mass.

In addition, the deflection is also decreased significantly, in the analytical computation the deflection is reduced by 19,7%. The numerical results varies some, this is due to the different conditions of the geometry in the ANSYS workbench computations and that ANSYS Workbench is not as well set up for simulating sandwich constructions as ANSYS APDL.

	Analy	ytical	Numerical co	omputations with	Divinycell H35
	Divinycell	Divinycell	ANSYS	Workbench	ANSYS APDL
	H60	H35	With frame	Without frame	Without frame
Mass [kg]	48,791	45,425	45,425	45,425	45,425
Deflection [mm]	9,39	7,54	5,4	20,5	8,5

Table 6 - Results

Conclusion

The analytical computation and the ANSYS APDL results are relatively close, and more importantly both shows that the new plate is stiffer than the original one.

The result from workbench is less reliable, the result without a frame gives a much higher deflection than all the other results. This was predicted by the personnel at TAM and in their inquiry to their similar result with ANSYS support. They suggested to add a simple frame to stiffen the sides to counter ANSYS Workbench inadequate boundary condition settings for sandwich construction. Therefore the frame the plate was supposed to be fixed inn was added in the final simulation in ANSYS Workbench, resulting in a significantly less deflection than any of the other results.

In all computations the top facing is 1mm, but it should be 3mm to be able to withstand impact forces, but the plate should only get less deflection and the same increase in mass for both core materials. Concluding that it only improves the construction.

From this the conclusion is that the results from ANSYS Workbench is inadequate to use to simulate sandwich constructions. But the analytical and the simulation in ANSYS APDL shows that it is possible to optimize the mass of the sandwich plate.

The new plate is 11mm thicker, but it still fits in the frame and therefore does not affect the overall thickness of the construction.

Assuming the new plate can withstand the impact forces it will be subjected to, there is no negative properties compared to the original plate.

Recommendations for future work

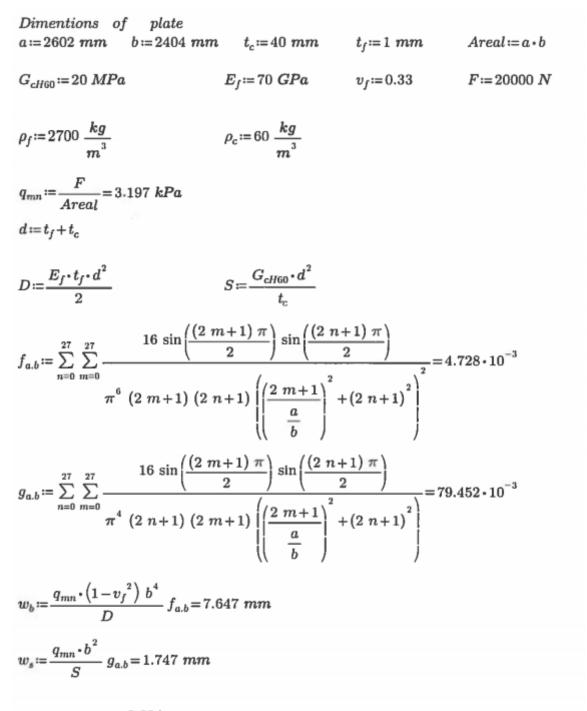
Future work should be to analyze the impact forces to if the thickness of the top facing can be reduced to improve the mass.

Optimize the mass of the rest of the livestock transport should also be done to reduce the fuel consumption or/and increase the transport capacity of the livestock transport.

Also make ANSYS Workbench better suited for simulating sandwich panels if possible.

List of figures

Figure 1 - Core configuration with a roll of aluminum facing in the background	2
Figure 2 - Core configuration	2
Figure 3 - Close-up of core material	
Figure 4 - Complete panels	3
Figure 5 – Illustrating sandwich plate	
Figure 6 - Graph that show where divinycell H35's density intersects with $\rho_{t0}(d)$	10
Figure 7 - ANSYS Workbench simulation without frame	12
Figure 8 - ANSYS Workbench simulation with frame	13
Figure 9 - ANSYS APDL simulation	14


List of tables

.4
.4
.4
.6
.6
15

References

- [1] V. Lekang, "nye-troms.no," Nye Troms, 16 08 2015. [Online]. Available: http://nye-troms.no/nyheter/blir-herrer-i-eget-hus/19.3428. [Accessed 02 06 2017].
- [2] A. M. a. H. M. Dag Lukkassen, "Optimal stiffness design of sandwich plates with variable core densities," AIP Publishing, Narvik, 2014.
- [3] Diab, "www.diabgroup.com," Diab, February 2016. [Online]. Available: http://www.diabgroup.com/en-GB/Products-and-services/Core-Material/Divinycell-H. [Accessed 11 May 2017].
- [4] MIT, "www.mit.edu," [Online]. Available: http://www.mit.edu/~6.777/matprops/aluminum.htm . [Accessed 15 may 2017].
- [5] D. Zenkert, An introduction to Sandwich construction, Worcester, UK: Engineering Materials Advisory Servicec Ltd., 1995.

Appendix A – Analytical computations

 $w_{total} \coloneqq w_s + w_b = 9.394 mm$

$$\begin{aligned} k &:= \frac{6080 \ kg}{1533 \ m^3 \ MPa} = (3.966 \cdot 10^{-6}) \ \frac{s^2}{m^2} \qquad l = \frac{17}{1533 \ MPa} \\ v &:= \frac{\left(\frac{w_{total}}{q_{mn}}\right)}{g_{a,b} \cdot k \cdot a \cdot b^2} + \frac{l}{a \cdot b \cdot d \cdot k} = (268.816 \cdot 10^{-3}) \ \frac{1}{kg} \\ \left(\frac{w_{total}}{q_{mn}}\right) &= (2.938 \cdot 10^3) \ \frac{mm}{MPa} \\ t_0 &:= \frac{1}{\frac{w_{total}}{q_{mn}}} + \frac{l}{a \cdot b \cdot d \cdot k}} \left(\sqrt[2]{\frac{(1 - v_f^2)}{g_{a,b} \cdot E_f \cdot d^2 \cdot a^2}} \rho_f \cdot k} \ f_{a,b} + \frac{2 \ (1 - v_f^2) \ b}{g_{a,b} \cdot E_f \cdot d^2 \cdot a \cdot k}} \ f_{a,b}\right) = 1.074 \ mm \\ \frac{d_{10} &:= 10 \ mm}{g_{a,b} \cdot k \cdot a \cdot b^3} + \frac{l}{a \cdot b \cdot d \cdot k} \\ \end{cases} \\ d_{10} &:= 10 \ mm \qquad d_{15} &:= 15 \ mm \qquad d_{20} &:= 20 \ mm \qquad d_{25} &:= 25 \ mm \\ d_{30} &:= 30 \ mm \qquad d_{35} &:= 35 \ mm \qquad d_{40} &:= 40 \ mm \qquad d_{45} &:= 45 \ mm \\ d_{50} &:= 50 \ mm \qquad d_{55} &:= 55 \ mm \qquad d_{60} &:= 60 \ mm \qquad d_{65} &:= 65 \ mm \\ \rho_{10} &:= \frac{1}{a \cdot b \cdot d_{10} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 \ (1 - v_f^2) \ b^2 \cdot \rho_f} \ f_{a,b}} + 1\right)^{-1}\right)^{-1} = 708.806 \ \frac{kg}{m^3} \\ \rho_{10} &:= \frac{1}{a \cdot b \cdot d_{10} \cdot v} \left(1 - \left(\sqrt{\frac{\frac{1}{4 \ (1 - v_f^2) \ b^2 \cdot \rho_f} \ f_{a,b}}} + 1\right)^{-1}\right)^{-1} = 328.24 \ \frac{kg}{m^3} \\ \rho_{10} &:= \frac{1}{a \cdot b \cdot d_{10} \cdot v} \left(1 - \left(\sqrt{\frac{\frac{1}{4 \ (1 - v_f^2) \ b^2 \cdot \rho_f} \ f_{a,b}}} + 1\right)^{-1}\right)^{-1} = 192.069 \ \frac{kg}{m^3} \end{aligned}$$

2

$$\begin{split} \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{25} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{25}^{-2} \cdot k}} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 127.682 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{30} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{30}^{-2} \cdot k}} + 1 \right)^{-1} \right)^{-1} &= 91.972 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{35} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{35}^{-2} \cdot k}} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 69.999 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{40} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{40}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 55.451 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{45} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{45}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 45.282 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{55} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{50}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 37.868 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{55} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{55}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 32.278 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{55} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{55}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 27.949 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{50}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 27.949 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{50}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 27.949 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{50}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} &= 27.949 \frac{kg}{m^3} \\ \rho_{10} &\coloneqq \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{-2}) b^2 \cdot \rho_f}}{g_{a,b} \cdot E_f \cdot d_{50}^{-2} \cdot k} f_{a,b} + 1 \right)^{-1} \right)^{-1} \\ &= 27.949 \frac{kg}{m^3} \\ \rho_{10} &\leftarrow \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{4 (1 - v_f^{$$

3

$$\rho_{t0} \coloneqq \frac{1}{a \cdot b \cdot d_{65} \cdot v} \left(1 - \left(\sqrt{\frac{1}{\frac{4 (1 - v_f^2) b^2 \cdot \rho_f}{g_{a,b} \cdot E_f \cdot d_{65}^2 \cdot k}} + 1 \right)^{-1} \right)^{-1} = 24.518 \frac{kg}{m^3}$$

 $d_{50} = 50 \ mm$

$$\rho_{t050} \coloneqq \frac{1}{a \cdot b \cdot d_{50} \cdot v} \left(1 - \left(\sqrt{\frac{1}{\frac{4 \left(1 - v_f^2 \right) b^2 \cdot \rho_f}{g_{a,b} \cdot E_f \cdot d_{50}^2 \cdot k}} + 1} \right)^{-1} \right)^{-1} = 37.868 \frac{kg}{m^3}$$

$$t_{050} \coloneqq \frac{1}{\frac{w_{lotal}}{q_{mn}} + \frac{l}{a \cdot b \cdot d_{50} \cdot k}} \left(\sqrt[2]{\frac{\left(1 - v_{f}^{2}\right)}{g_{a,b} \cdot E_{f} \cdot d_{50}^{2} \cdot a^{2}} \rho_{f} \cdot k}} f_{a,b} + \frac{2\left(1 - v_{f}^{2}\right)b}{g_{a,b} \cdot E_{f} \cdot d_{50}^{2} \cdot a \cdot k} f_{a,b} \right) = 771.296 \ \mu r$$

$$t_{f50} := 1 \ mm$$
 $\rho_{50} := 38 \ \frac{kg}{m^3}$

$$\begin{split} m_{original} &\coloneqq a \cdot b \cdot 2 \cdot t_{f} \cdot \rho_{f} + a \cdot b \cdot t_{c} \cdot \rho_{c} = 48.791 \ kg \\ m_{new} &\coloneqq a \cdot b \cdot 2 \cdot t_{f50} \cdot \rho_{f} + a \cdot b \cdot (d_{50} - t_{f50}) \cdot \rho_{50} = 45.425 \ kg \\ m_{Improvement} &\coloneqq 100 - \frac{m_{new}}{m_{original}} \ 100 = 6.897 \quad \% \text{ less mass} \end{split}$$

$$\begin{split} G_{cH35} &\coloneqq 12 \ MPa & t_{c50} \coloneqq d_{50} = 49 \ mm \\ D_{50} &\coloneqq \frac{E_f \cdot t_{f50} \cdot d_{50}^{-2}}{2} \qquad S_{50} \coloneqq \frac{G_{cH35} \cdot d_{50}^{-2}}{t_{c50}} \\ w_{b50} &\coloneqq \frac{q_{mn} \cdot \left(1 - v_f^{-2}\right) b^4}{D_{50}} \ f_{a.b} = 5.142 \ mm \\ w_{s50} &\coloneqq \frac{q_{mn} \cdot b^2}{S_{50}} \ g_{a.b} = 2.398 \ mm \\ w_{total50} &\coloneqq w_{s50} + w_{b50} = 7.54 \ mm \end{split}$$

 $w_{total} = w_s + w_b = 9.394 \ mm$

$$w_{Improvment} \coloneqq 100 - \frac{w_{total50}}{w_{total}} \cdot 100 = 19.736$$
 % less deflection

Appendix B – Mechanical properties for Divinycell H [3].

Mechanical properties Divinycell® H

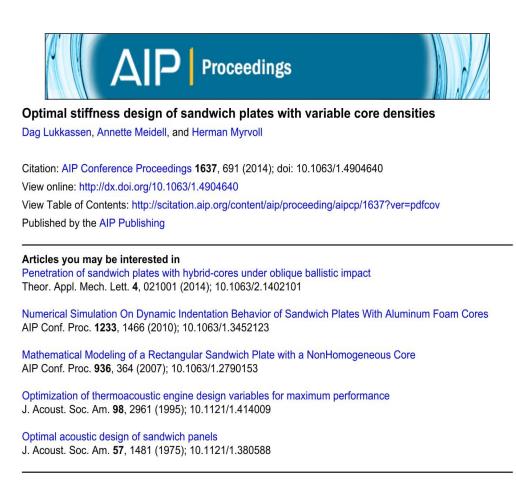
Property	Test Procedure	Unit		H35	H45	H60	H80	H100	H130	H200	H250
Compressive Strength ¹	ASTM D 1621	MPa	Nominal	0.5	0.6	0.9	1.4	2.0	3.0	5.4	7.2
			Minimum	0.3	0.5	0.7	1.15	1.65	2.4	4.5	6.1
Compressive Modulus ¹	ASTM D1621-B-73	MPa	Nominal	40	50	70	90	135	170	310	400
			Minimum	29	45	60	80	115	145	265	350
Tensile Strength ¹	ASTM D 1623	MPa	Nominal	1.0	1.4	1.8	2.5	3.5	4.8	7.1	9.2
			Minimum	0.8	1.1	1.5	2.2	2.5	3.5	6.3	8.0
Tensile Modulus ¹	ASTM D 1623	MPa	Nominal	49	55	75	95	130	175	250	320
			Minimum	37	45	57	85	105	135	210	260
Shear Strength	ASTM C 273	MPa	Nominal	0.4	0.56	0.76	1.15	1.6	2.2	3.5	4.5
			Minimum	0.3	0.46	0.63	0.95	1.4	1.9	3.2	3.9
Shear Modulus	ASTM C 273	MPa	Nominal	12	15	20	27	35	50	73	97
			Minimum	9	12	16	23	28	40	65	81
Shear Strain	ASTM C 273	%	Nominal	9	12	20	30	40	40	45	45
Density	ISO 845	kg/m³	Nominal	38	48	60	80	100	130	200	250

All values measured at +23°C

1. Properties measured perpendicular to the plane

Nominal value is an average value of a mechanical property at a nominal density Minimum value is a minimum guaranteed mechanical property a material has independently of density

Divinycell H is type approved by:



Technical Characteristics Divinycell® H

Characteristics ¹	Unit	H35	H45	H60	H80	H100	H130	H200	H250	Test method
Density variation	%	-10% to +20%	± 10	± 10	± 10	± 10	± 10	± 10	± 10	-
Thermal conductivity ²	W/(m-K)	0.028	0.028	0.029	0.031	0.033	0.036	0.044	0.049	EN 12667
Coeff, linear heat expansion	x10 ⁻⁶ /°C	40	40	40	40	40	40	40	40	ISO 4897
Heat Distortion Temperature	°C	+125	+125	+125	+125	+125	+125	+125	+125	DIN 53424
Continous temp range	°C	-200 to +70	-200 to +70	-200 to +70	-200 to +70	-200 to +70	-200 to +70	-200 to +70	-200 to +70	-
Max process temp	°C	+90	+90	+90	+90	+110	+110	+110	+110	-
Dissipation factor	-	0.0001	0.0002	0.0003	0.0005	0.0006	0.0009	0.0015	0.0019	ASTM D 2520
Dielectric constant	-	1.04	1.05	1.06	1.09	1.11	1.15	1.23	1.29	ASTM D 2520
Poissons ratio ³	-	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	D638-08

Typical values
 Thermal conductivity at +20°C
 Standard deviation is 0.045

Appendix C – Optimal stiffness Design of Sandwich Plates with Variable Core Densities.

Optimal Stiffness Design of Sandwich Plates with Variable Core Densities

The paper is dedicated to professor Lars-Erik Persson, on the occasion of his 70th birthday

Dag Lukkassen*, Annette Meidell[†] and Herman Myrvoll**

*Narvik University College and NORUT Narvik, Norway [†]Narvik University College and NORUT Narvik, Norway **Narvik University College, Norway

Abstract. We consider optimal design of sandwich plates with variable core densities. Standard methods usually involve the numerical solution of complicated polynomial equations. Our method is much simpler and often leads to simple closed form expressions with even higher accuracy.

Keywords: Sandwich plates, core densities, optimal design PACS: 87.10.-e, 87.10.Pq.

INTRODUCTION

The company TAM at Andslimoen, north in Norway, has for 33 years designed and produced many types of mobile military lightweight shelter, using a self-produced, professional, glued, self-supporting sandwich system. All delivered shelters are still in good condition except for a few ruined in accidents. The research which led to this paper was initiated for the purpose of investigating whether it is possible to reduce the weight of these shelters even more, without reducing the stiffness of the walls, roofs and floors. The most elementary model for analyzing the stiffness of each component of the shelter is to consider a simply supported sandwich plate with sides *a* and *b* subjected to a given vertical load q(x, y) (see below). In this paper we consider a new method for minimizing the weight of such sandwich plates where the core density (and the corresponding shear modulus) can be chosen from a set of available core materials. Existing methods (see e.g. [1] and [2]) involve constraint nonlinear programming and the numerical solution of complicated polynomial equations. Our method is much simpler and reduces to simple closed form expressions with even higher accuracy. The method is inspired by the method described in [3].

BASIC FORMULAE

Let us consider a simply supported, isotropic sandwich plate with sides *a* and *b* subjected to a vertical load q(x,y). We assume thin faces of thickness *t* with Young's modulus *E* and Poissons ratio *v* and weak core with shear modulus *G* of thickness t_c . The deflection of the plate *w* is then the sum of deflection due to pure bending and pure shear deformation, $w = w_b + w_b$, where

$$w_{b} = \frac{(1 - v_{f}^{2})}{D} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{q_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi x}{b}\right)}{\left(\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right)^{2}} \text{ and } w_{s} = \frac{1}{S} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{q_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi x}{b}\right)}{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}.$$
$$D = \frac{Etd^{2}}{2}, \ S = \frac{Gd^{2}}{t_{c}} \approx G_{c}d, \ d = t_{c} + t$$

Here,

10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences AIP Conf. Proc. 1637, 691-696 (2014); doi: 10.1063/1.4904640 © 2014 AIP Publishing LLC 978-0-7354-1276-7/\$30.00

691

This article is copyrighted as indicated in the article. Heuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to TP: 46.162.89.182 On: Sun, 14 Dec 2014 10:27:14

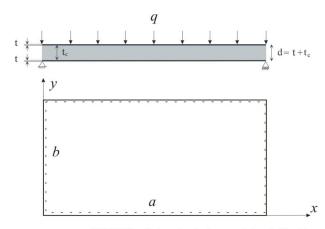


FIGURE 1. Rectangular simply supported sandwich-plate.

and q_{mn} are given by the loading conditions. In case of uniformly distributed load q(x, y) = q, where q > 0 is a constant (see Figure 1), it holds that

$$q_{mn}=\frac{16q}{mn\pi^2},$$

whenever m and n are odd, otherwise $q_{mn} = 0$ (see [1]). Hence, we may replace m by 2m + 1 and n by 2n + 1 in the above expressions and obtain that

$$\begin{split} w_b &= \frac{16q(1-\nu^2)}{D} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\sin\left(\frac{(2m+1)\pi x}{a}\right)\sin\left(\frac{(2n+1)\pi x}{b}\right)}{(2m+1)\left(2n+1\right)\left(\left(\frac{(2m+1)\pi}{a}\right)^2 + \left(\frac{(2n+1)\pi}{b}\right)^2\right)^2},\\ w_s &= \frac{16q}{S} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\sin\left(\frac{(2m+1)\pi x}{a}\right)\sin\left(\frac{(2n+1)\pi x}{b}\right)}{(2m+1)\left(2n+1\right)\left(\left(\frac{(2m+1)\pi}{a}\right)^2 + \left(\frac{(2n+1)\pi}{b}\right)^2\right)}. \end{split}$$

The maximum deflections are in this case obtained at the midpoint x = a/2, y = b/2. At this point

$$w_b = \frac{q(1-v^2)b^4}{D}f(a/b) \text{ and } w_s = \frac{qb^2}{S}g(a/b),$$

where

$$f(a/b) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{16\sin\left(\frac{(2m+1)\pi}{2}\right)\sin\left(\frac{(2n+1)\pi}{2}\right)}{\pi^6 \left(2m+1\right)\left(2n+1\right)\left(\left(\frac{(2m+1)}{a/b}\right)^2 + \left((2n+1)\right)^2\right)^2}$$

and

$$g(a/b) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{16\sin\left(\frac{(2m+1)\pi}{2}\right)\sin\left(\frac{(2n+1)\pi}{2}\right)}{\pi^4 \left(2m+1\right) \left(2n+1\right) \left(\left(\frac{(2m+1)}{a/b}\right)^2 + \left((2n+1)\right)^2\right)}.$$

This article is copyrighted as indicated in the article. Heuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 46:162.89.182 On: Sun, 14 Dec 2014 10:27:14

The stiffness of the plate (with respect to uniformly distributed loads) may be defined as the ratio w/q, where w is the maximum deflection, i.e. $(1 - y^2)t^4$

$$w/q = \frac{(1-v^2)b^4}{D}f(a/b) + \frac{b^2}{S}g(a/b) = \frac{2(1-v^2)b^4}{Etd^2}f(a/b) + \frac{b^2}{Gd}g(a/b).$$

Hence,

$$G = \frac{g(a/b)b^2}{d\left((w/q) - \frac{2(1-v^2)b^4}{Etd^2}f(a/b)\right)}.$$
(1)

MODELLING THE SHEAR MODULUS

Let us now assume that the core material belongs to some specific class of cellular materials where the shear modulus *G* is uniquely determined by the density ρ , i.e. $G = G(\rho)$. We will also assume that G(0) = 0 and that $G(\cdot)$ is strictly increasing, continuous and piecewise differentiable. In particular, this means that its inverse function $\rho(G)$ exists. The total mass of the sandwich plate is given by

$$m = ab2t\rho_f + abd\rho(G).$$

Given the required stiffness $(w/q)^{-1}$, our main objective is to find the density $\rho \in [\rho_{\min}, \rho_{\max}]$ and the design parameters *t* and *d* which minimizes this mass. Here, ρ_{\min} and ρ_{\max} denote the minimal and maximal density of the core materials available in our class ρ_{\max} . One of the most crucial remarks in this paper is that it turns out that the shear stiffness $G(\rho)$ very often can be approximated by some rational function of the form

$$G(\rho) = \frac{1}{k\rho^{-1} - l}.$$
 (2)

For example, according to DIAB (Divinycell), their H-type forms have the following relation between ρ and $G(\rho)$:

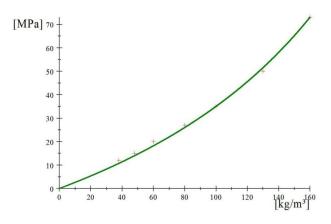
$\rho [\text{kg/m}^3]$	38	48	60	80	100	130	160
$ G(\rho) [MPa]$	12	15	20	27	35	50	73

The function of the type (2) which coincide with these table values at $\rho = 100$ and $\rho = 160$ is

$$G(\rho) = \frac{1}{\frac{6080}{1533}\rho^{-1} - \frac{17}{1533}}.$$
(3)

The graph of this function and the above table values are compared in Figure 2.

This is a substantial improvement compared with well known optimization methods. For example, the simplest known method is to approximate the shear stiffness by some power of the density, i.e. of the form


$$G(\rho) = k\rho^n \tag{4}$$

for some positive constants k and n. The approximation of this type which fits the above table values best possible, and also coincide with table value at the highest density $\rho = 160$, seems to be the following function:

$$G(\rho) = 73 \left(\frac{\rho}{160}\right)^{3/2}.$$
 (5)

The corresponding curve is illustrated in Figure 3. Note that in this case the rational approximation (3) is clearly much closer to the measured values and is therefore a better approximation than any power law formula.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IF 46.162.89.182 On: Sun, 14 Dec 2014 10:27:14

FIGURE 2. The shear modulus $G(\rho)$ as function of the density ρ .



FIGURE 3. Comparison of the rational approximation (3) (solid curve) with the best possible power law approximation (5) (dashed curve).

OPTIMAL FACE THICKNESS

As demonstrated in this section, there is another property of the rational approximation (3) which is even more striking than its accuracy, namely that it is surprisingly suitable for implementation in optimization algorithms. By (1) and (2) we find that $(-1)^{1/2}$

$$\frac{1}{k\rho^{-1} - l} = \frac{g(a/b)b^2}{d\left((w/q) - \frac{2(1-v^2)b^4}{Etd^2}f(a/b)\right)}$$

694

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 46.162.89.182 On: Sun, 14 Dec 2014 10:27:14

Hence,

$$\rho^{-1} = \frac{d\left((w/q) - \frac{2(1-v^2)b^4}{Etd^2}f(a/b)\right)}{g(a/b)b^2k} + l.$$
(6)

From this we see that the mass is given by

$$m = abt\rho_f + abd\rho =$$
$$abt\rho_f + abd\rho = abt\rho_f + abd\left(\frac{d\left((w/q) - \frac{2(1-v^2)b^4}{E_ftd^2}f(a/b)\right)}{g(a/b)b^2k} + l\right)^{-1}.$$

Hence, for a given values of a, b, d and stiffness w/q, the mass can be expressed in the form

$$m(t) = rt + \left(v - \frac{c}{t}\right)^{-1},\tag{7}$$

where

$$r = ab\rho_f, v = \frac{(w/q)}{g(a/b)kab^3} + \frac{l}{abd} \text{ and } c = \frac{2(1-v^2)b}{g(a/b)E_f d^2 ak} f(a/b),$$

which is a very suitable form since the derivative with respect to t is given by

$$m'(t) = r - \frac{c}{\left(tv - c\right)^2}.$$

Therefore, the extremal value $t = t_0$ is easy to find and is given by the simple expression,

$$t_{o} = \frac{1}{\nu} \left(\sqrt{\frac{c}{r}} + c \right) = \frac{1}{\frac{(w/q)}{g(a/b)kab^{3}} + \frac{l}{abd}} \left(\sqrt{\frac{\frac{2(1-\nu^{2})b}{g(a/b)E_{f}d^{2}ak}f(a/b)}{ab\rho_{f}}} + \frac{2(1-\nu^{2})b}{g(a/b)E_{f}d^{2}ak}f(a/b) \right) =$$

$$\frac{1}{\frac{1}{\frac{(w/q)}{g(a/b)kab^{3}} + \frac{l}{abd}}} \left(\sqrt{\frac{2(1-\nu^{2})}{g(a/b)E_{f}d^{2}a^{2}\rho_{f}k}f(a/b)}} + \frac{2(1-\nu^{2})b}{g(a/b)E_{f}d^{2}ak}f(a/b) \right)$$
(8)

This is very striking since a similar treatment with the use of the power law approximation (4) will lead to nontrivial polynomial equations. For example, the use of (5) gives a 6th order equation. The expression obtained from (8) is particularly useful if we also want to optimize the thickness of the sandwich d in the next step.

Note that our formula is based on the assumption of thin faces. The above formula for the optimal thickness is therefore only valid if $t_o \ll d$. From the above expressions we obtain that

$$\rho(t_o) = \frac{1}{abd} \left(v - \frac{c}{t_o} \right)^{-1} = \frac{1}{abd} \left(v - \frac{c}{\frac{1}{v} \left(\sqrt{\frac{c}{r}} + c \right)} \right)^{-1} = \frac{1}{abdv} \left(1 - \frac{1}{\left(\sqrt{\frac{1}{cr}} + 1 \right)} \right)^{-1} = \frac{1}{abdv} \left(1 - \left(\sqrt{\frac{1}{\frac{2(1-v^2)b^2\rho_f}{g(a/b)E_f d^2k}} f(a/b)} + 1 \right)^{-1} \right)^{-1}.$$

We have to make sure that the minimum value of m(t) falls into the class of those values which are physically realizable i.e. such that

$$\rho_{\min} \leq \rho(t) \leq \rho_{\max}$$

Based on this we obtain the following: The optimal value of $t = t_{opt}$ is given by

$$t_{opt} = \begin{cases} t_o & \text{if } \rho_{\min} \le \rho(t_o) \le \rho_{\max} \\ t_- & \text{if } \rho(t_o) < \rho_{\min} \\ t_+ & \text{if } \rho_{\max} < \rho(t_o) \end{cases}$$

,

695

This article is copyrighted as indicated in the article. Heuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 46.162.89.182 On: Sun, 14 Dec 2014 10:27:14

where t_{-} and t_{+} are given by

$$w/q = \frac{2(1-v^2)b^4}{Ed^2t_-}f(a/b) + \frac{b^2}{G(\rho_{\min})d}g(a/b),$$

and

$$w/q = \frac{2(1-v^2)b^4}{Ed^2t_+}f(a/b) + \frac{b^2}{G(\rho_{\max})d}g(a/b).$$

ACKNOWLEDGMENTS

The authors thank the referee for same generous advices, which have improved the final version of this paper.

REFERENCES

- 1. D. Zenkert, An Introduction to Sandwich Construction, EMAS, 1995.

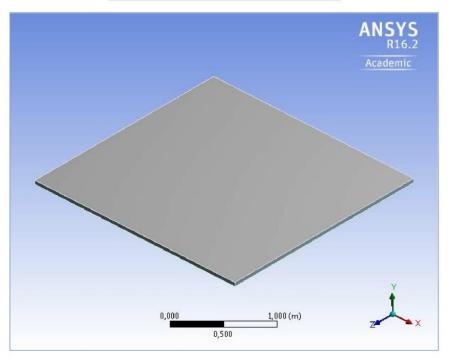
- D. ZCINCH, AN INFORMATION O Sandwich CONSTRUCTION, EMAS, 1995.
 M.F. Ashby and L.J. Gibson, Cellular Solids Structure and Properties, Cambridge University Press, Cambridge, 1997.
 A. Meidell, "Minimum weight design of sandwich beams with honeycomb core of arbitrary density," Composites Part B, Volume 40, Issue 4, Pages 284-291, June (2009).
 R. Hill, "Theory of mechanical properties of fibre-strengthened materials-I, Elastic behaviour," J. Mech. Phys. Solids, Vol. 12, 199-212 (1964).
- 5. L.D. Landau and E.M. Lifshitz, Theory of elasticity, Pergamon Press, Oxford, 1986.
- A. Meidell, "The out-of-plane shear modulus of two-component regular honeycombs with arbitrary thickness," Mech. Compos. Mater. Struct. (eds. C.A. Mota Soares, C.M. Mota Soares and M.J.M. Freitas), NATO ASI, Troia, Portugal, Vol. III, 367-379 (1998). 6.
- S.Vigdergauz, "Complete elasticity solution to the stress problem in a planar grained structure," Math. Mech. of Solids, 4(4), 407-441 (1999). 7.

696

Appendix D – APDL log file

/BATCH	K,4,0,0,2.404,	/GO
/input,menust,tmp,"	K,4,0,0,2.404,	DK,P51X, ,0, ,0,ALL, , , ,
WPSTYLE,,,,,,0	FLST,2,4,3	, ,
/PREP7	FITEM,2,1	FLST,2,3,3,ORDE,2
ET,1,SHELL281	FITEM,2,2	FITEM,2,2
MPTEMP,,,,,,,	FITEM,2,3	FITEM,2,-4
MPTEMP,1,0	FITEM,2,4	/GO
MPDATA,EX,1,,70E+09	A,P51X	DK,P51X, ,0, ,0,UY,ROTY, , , , ,
MPDATA,PRXY,1,,0.33	ESIZE,0.05,0,	FLST,2,4,4,ORDE,2
MPCOPY, ,1,2	MSHAPE,0,2D	FITEM,2,1
TBCOPY,ALL,1,2	MSHKEY,0	FITEM,2,-4
MPTEMP,,,,,,,	CM,_Y,AREA	/GO
MPTEMP,1,0	ASEL, , , , 1	DL,P51X, ,UY,0
MPDE,EX,2	CM,_Y1,AREA	FLST,2,1,5,ORDE,1
MPDE,PRXY,2	CHKMSH,'AREA'	FITEM,2,1
MPDATA,EX,2,,33.6E+0	CMSEL,S,_Y	/GO
6	AMESH,_Y1	SFA,P51X,1,PRES,3197
MPDATA,PRXY,2,,0.4	CMDELE,_Y	FINISH
sect,1,shell,,	CMDELE,_Y1	/SOL
secdata, 0.001,1,0.0,3	CMDELE,_Y2	SOLVE
secdata, 0.049,2,0.0,3	/UI,MESH,OFF	FINISH
secdata, 0.001,1,0.0,3	FINISH	/POST1
secoffset,MID	/SOL	/10511
seccontrol,,,, , ,	FINISH	
К,1,0,0,0,	/PREP7	
К,2,2.602,0,0,	FLST,2,1,3,ORDE,1	
K,3,2.602,0,2.404,	FITEM,2,1	

Appendix E – ANSYS report – Simulation without frame


Project

Page 1 of 12

Project

First Saved	Tuesday, May 23, 2017
Last Saved	Tuesday, May 23, 2017
Product Version	16.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Project

Page 2 of 12

Contents

- ا Units
- ¿ Model (A4)
 - Geometry
 - Parts
 - <u>Coordinate Systems</u>
 <u>Connections</u>
 - <u>Connections</u>
 - <u>Contact Regions</u>
 - Mesh
 - Static Structural (A5)
 - Analysis Settings
 - , <u>Loads</u>
 - . Solution (A6)
 - Solution Information
 - . Results

¿ Material Data

- Aluminum Alloy
- Divinycell H35

Units

т	۸	D		E	-1
	м	D	_		

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

Model (A4) > Geometry			
Object Name	Geometry		
State	Fully Defined		
	Definition		
Source	D:\simulations\Master\sim_files\dp0\SYS\DM\SYS.agdb		
Туре	DesignModeler		
Length Unit	Meters		
Element Control	Program Controlled		
Display Style	Body Color		
	Bounding Box		
Length X	2,602 m		
Length Y	5,1e-002 m		
Length Z	2,404 m		
	Properties		
Volume	0,31902 m ³		
Mass	42,36 kg		
Scale Factor Value	1,		
	Statistics		

Project

Page 3 of 12

Bodies	3
Active Bodies	3
Nodes	4854
Elements	630
Mesh Metric	None
Bas	ic Geometry Options
Parameters	Yes
Parameter Key	DS
Attributes	No
Named Selections	No
Material Properties	No
Advar	nced Geometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	No
Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\bje012\AppData\Local\Temp
Analysis Type	3-D
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3 Model (A4) > Geometry > Parts

Object Name	face	core	face
State		Meshed	
	Graphics Prop	erties	
Visible		Yes	
Transparency		1	
	Definition		
Suppressed		No	
Stiffness Behavior		Flexible	
Coordinate System	Defau	It Coordinate S	ystem
Reference Temperature		By Environment	
	Material		
Assignment	Aluminum Alloy	Divinycell H35	Aluminum Alloy
Nonlinear Effects		Yes	
Thermal Strain Effects		Yes	
	Bounding B	ox	
Length X		2,602 m	
Length Y	1,e-003 m	4,9e-002 m	1,e-003 m
Length Z	2,404 m		
	Properties	6	
Volume	6,2552e-003 m ³	0,30651 m³	6,2552e-003 m ³
Mass	16,889 kg	8,5821 kg	16,889 kg
Centroid X		0,8913 m	
Centroid Y	1,3491 m	1,3241 m	1,2991 m
Centroid Z		1,5642 m	
Moment of Inertia Ip1	8,1342 kg∙m²	4,1349 kg⋅m²	8,1342 kg·m²
Moment of Inertia Ip2	17,663 kg·m ²	8,9752 kg·m ²	17,663 kg·m ²
Moment of Inertia Ip3	9,5293 kg∙m²	4,8438 kg·m ²	9,5293 kg·m²
	Statistics		
Nodes		1618	
Elements	210		

Project

Page 4 of 12

Mesh Metric	None	
-------------	------	--

Coordinate Systems

	ABLE 4 Systems > Coordinate Sys
	Global Coordinate System
State	Fully Defined
De	finition
Туре	Cartesian
Coordinate System ID	0,
(Drigin
Origin X	0, m
Origin Y	0, m
Origin Z	0, m
Directio	onal Vectors
X Axis Data	[1, 0, 0,]
Y Axis Data	[0, 1, 0,]
Z Axis Data	[0,0,1,]

Connections

	TABLE 5	
Model	(A4) > Connect	ions

	-	
Object Name		
State	Fully Defined	
Auto Detection		
Generate Automatic Connection On Refresh Yes		
Transparency		
Enabled Yes		

TABLE 6 Model (A4) > Connections > Contacts		
Object Name	Contacts	
State	Fully Defined	
Defir	nition	
Connection Type	Contact	
Sc	оре	
Scoping Method	Geometry Selection	
Geometry	All Bodies	
Auto Detection		
Tolerance Type	Slider	
Tolerance Slider	0,	
Tolerance Value	8,8573e-003 m	
Use Range	No	
Face/Face	Yes	
Face/Edge	No	
Edge/Edge	No	
Priority	Include All	
Group By	Bodies	
Search Across	Bodies	
Stati	stics	
Connections	2	
Active Connections	2	

TABLE 7

Project

Page 5 of 12

Object Name	Contact Region	Contact Region 2
State		
	Scope	
Scoping Method	Geometry	/ Selection
Contact	1 F	ace
Target	1 F	ace
Contact Bodies	face	core
Target Bodies	core	face
De	efinition	
Туре	Boi	nded
Scope Mode	Auto	matic
Behavior	Program	Controlled
Trim Contact	Program	Controlled
Trim Tolerance	8,8573	e-003 m
Suppressed	1	No
Ac	dvanced	
Formulation	Program	Controlled
Detection Method	Program	Controlled
Penetration Tolerance		Controlled
Elastic Slip Tolerance	Program Controlled	
Normal Stiffness	Program	Controlled
Update Stiffness		Controlled
Pinball Region	Program	Controlled
Geometr	ic Modification	
Contact Geometry Correction	N	one
Target Geometry Correction	N	one

Mesh

Model (A4) > Mesh	
Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Sizing	
Use Advanced Size Function	Off
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Minimum Edge Length	1,e-003 m
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0,272
Maximum Layers	5
Growth Rate	1,2
Inflation Algorithm	Pre
View Advanced Options	No

TABLE 8

Project

Page 6 of 12

Patch Conforming Options		
Triangle Surface Mesher	Program Controlled	
Patch Independent Options		
Topology Checking	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Shape Checking	Standard Mechanical	
Element Midside Nodes	Program Controlled	
Straight Sided Elements	No	
Number of Retries	Default (4)	
Extra Retries For Assembly	Yes	
Rigid Body Behavior	Dimensionally Reduced	
Mesh Morphing	Disabled	
Defeaturing		
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Automatic Mesh Based Defeaturing	On	
Defeaturing Tolerance	Default	
Statistics		
Nodes	4854	
Elements	630	
Mesh Metric	None	

Static Structural (A5)

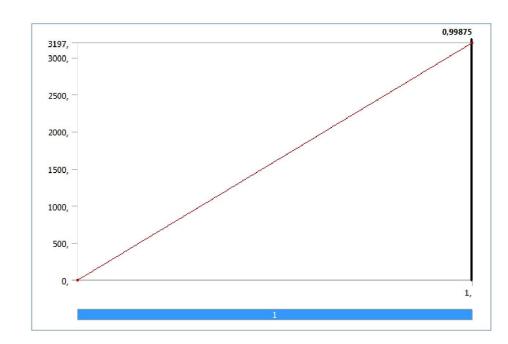
TABLE 9 Model (A4) > Analysis			
Object Name	Static Structural (A5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature 22, °C			
Generate Input Only	No		

TABLE 10 Model (A4) > Static Structural (A5) > Analysis Settings			
Object Name Analysis Settings			
State	Fully Defined		
	Step Controls		
Number Of Steps	1,		
Current Step Number	1,		
Step End Time	1, s		
Auto Time Stepping	Program Controlled		
	Solver Controls		
Solver Type	Program Controlled		
Weak Springs	Program Controlled		
Solver Pivot Checking	Program Controlled		
Large Deflection	On		
Inertia Relief	Off		
Restart Controls			
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	No		
Nonlinear Controls			

Project

Page 7 of 12

Newton-Raphson Option	Program Controlled	
Force Convergence	Program Controlled	
Moment Convergence	Program Controlled	
Displacement Convergence	Program Controlled	
Rotation Convergence	Program Controlled	
Line Search	Program Controlled	
Stabilization	Off	
	Output Controls	
Stress	Yes	
Strain	Yes	
Nodal Forces	No	
Contact Miscellaneous	No	
General Miscellaneous	No	
Store Results At	All Time Points	
Anal	ysis Data Management	
Solver Files Directory	D:\simulations\Master\sim_files\dp0\SYS\MECH\	
Future Analysis	None	
Scratch Solver Files Directory		
Save MAPDL db	No	
Delete Unneeded Files	Yes	
Nonlinear Solution	n Yes	
Solver Units	Active System	
Solver Unit System	mks	


TABLE 11		
Model (A4) >	al (A5) > Loads	
Object Name	Fixed Support	Pressure

Object Name	Fixed Support	Pressure	
State	Fully Defined		
Scope			
Scoping Method	Geometry Selection		
Geometry	12 Faces	1 Face	
Definition			
Туре	Fixed Support	Pressure	
Suppressed	No		
Define By	Normal To		
Magnitude		3197, Pa (ramped)	

FIGURE 1 Model (A4) > Static Structural (A5) > Pressure

Project

Page 8 of 12

Solution (A6)

TABLE 12 Model (A4) > Static Structural (A5) > Solution			
Object Name	Solution (A6)		
State	Solved		
Adaptive Mesh Refine	Adaptive Mesh Refinement		
Max Refinement Loops	1,		
Refinement Depth	2,		
Information			
Status	Done		
Post Processing			
Calculate Beam Section Results	No		

 TABLE 13

 Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information	
State Solved		
Solution Inform	ation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Update Interval	2,5 s	
Display Points	All	
FE Connection Visibility		
Activate Visibility	Yes	
Display	All FE Connectors	
Draw Connections Attached To	All Nodes	
Line Color	Connection Type	
Visible on Results	No	
Line Thickness	Single	
Display Type	Lines	

Project

Page 9 of 12

TABLE 14 Model (A4) > Static Structural (A5) > Solution (A6) > Results		
Object Name	Directional Deformation	Total Deformation
State	State Solved	
_	Scope	
Scoping Method	Geometry Sel	ection
Geometry	All Bodie	S
	Definition	
Туре	Directional Deformation	Total Deformation
Orientation	Y Axis	
Ву	Time	
Display Time	Last	
Coordinate System	Global Coordinate System	
Calculate Time History	Yes	
Identifier		
Suppressed	No	
	Results	
Minimum	-2,0488e-002 m	0, m
Maximum	0, m	2,0488e-002 m
Minimum Occurs On	face	
Maximum Occurs On	face	
Information		
Time	1, s	
Load Step	1	
Substep	1	
Iteration Number	5	

FIGURE 2 Model (A4) > Static Structural (A5) > Solution (A6) > Directional Deformation

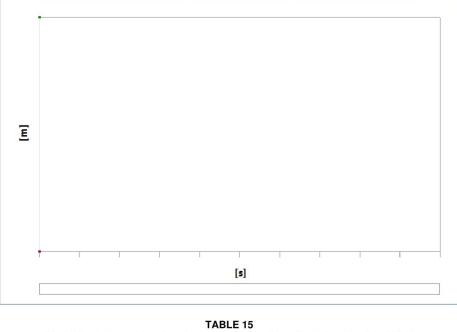
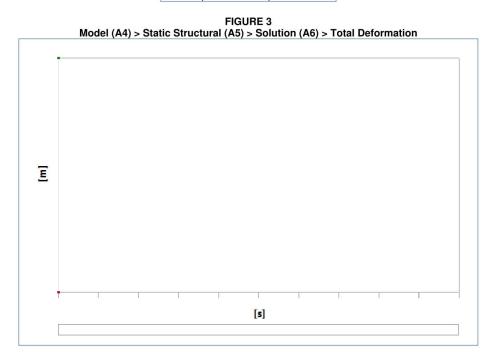
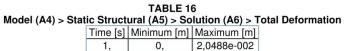


 TABLE 15

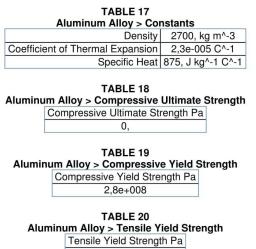
 Model (A4) > Static
 Structural (A5) > Solution (A6) > Directional Deformation


 Time [s]
 Minimum [m]


 Maximum [m]

Project

Page 10 of 12


-2,0488e-002 1, 0,

Material Data

Aluminum Alloy

Project

Г

Page 11 of 12

2,8e+008

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength Pa

3,1e+008

TABLE 22 Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion

Reference Temperature C 22,

TABLE 23 Aluminum Alloy > Isotropic Thermal Conductivity

Thermal Conductivity W m ⁻¹ C ⁻¹	Temperature C
114,	-100,
144,	0,
165,	100,
175.	200.

Alı	TABLE 24 Aluminum Alloy > Alternating Stress R-Ratio					
	Alternating Stress Pa		R-Ratio			
	2,758e+008	1700,	-1,			
	2,413e+008	5000,	-1,			
	2,068e+008	34000	-1,			
	1,724e+008	1,4e+005	-1,			
	1,379e+008	8,e+005	-1,			
	1,172e+008	2,4e+006	-1,			
	8,963e+007	5,5e+007	-1,			
	8,274e+007	1,e+008	-1,			
	1,706e+008	50000	-0,5			
	1,396e+008	3,5e+005	-0,5			
	1,086e+008	3,7e+006	-0,5			
	8,791e+007	1,4e+007	-0,5			
	7,757e+007	5,e+007	-0,5			
	7,239e+007	1,e+008	-0,5			
	1,448e+008	50000	0,			
	1,207e+008	1,9e+005	0,			
	1,034e+008	1,3e+006	0,			
	9,308e+007	4,4e+006	0,			
	8,618e+007	1,2e+007	0,			
	7,239e+007	1,e+008	0,			
	7,412e+007	3,e+005	0,5			
	7,067e+007	1,5e+006	0,5			
	6,636e+007	1,2e+007	0,5			
	6,205e+007	1,e+008	0,5			

TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm m	Temperature C	
2,43e-008	0,	
2,67e-008	20,	
3,63e-008	100,	

	TABI	_E 26		
	Aluminum Alloy >	Isotropic Elastic	city	
1	1	1	1	

Project

Page 12 of 12

Temperature CYoung's Modulus PaPoisson's RatioBulk Modulus PaShear Modulus Pa7,e+0100,336,8627e+0102,6316e+010

TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1,

Divinycell H35

TABLE 28

Divinycell H35 > Constants				
Density	28, kg m^-3			
Coefficient of Thermal Expansion	2,3e-004 C^-1			
	296, J kg^-1 C^-1			
Thermal Conductivity	0,28 W m^-1 C^-1			

TABLE 29

Divinycell H35 > Compressive Ultimate Strength Compressive Ultimate Strength Pa

5,e+005

 TABLE 30

 Divinycell H35 > Compressive Yield Strength

 Compressive Yield Strength Pa

1,e+006

TABLE 31

Divinycell H35 > Tensile Yield Strength Tensile Yield Strength Pa

4,9e+007

TABLE 32 Divinycell H35 > Tensile Ultimate Strength Tensile Ultimate Strength Pa

4,e+007

TABLE 33

Divinycell H35 > Isotropic Secant Coefficient of Thermal Expansion

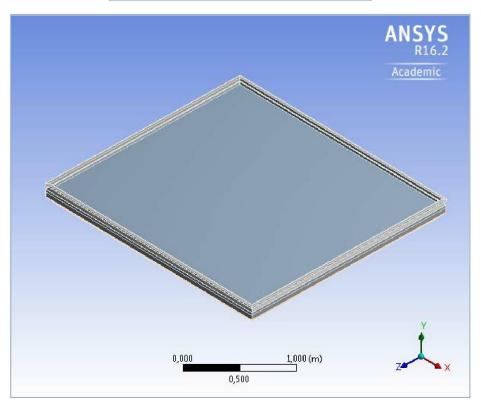
Reference Temperature C 22,

TABLE 34

Divinycell	H35 >	Isotropic	Elasticity
------------	-------	-----------	------------

Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa
	3,36e+007	0,4	5,6e+007	1,2e+007

Appendix F - ANSYS report – Simulation with frame


Project

Page 1 of 13

Project

First Saved	Tuesday, May 23, 2017
Last Saved	Wednesday, May 24, 2017
Product Version	16.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Project

Page 2 of 13

Contents

- ا Units
- ¿ Model (B4)
 - Geometry
 - Parts
 - <u>Coordinate Systems</u>
 <u>Connections</u>
 - <u>Connections</u> <u>Contacts</u>
 - Contact Regions
 - Mesh
 - Static Structural (B5)
 - Analysis Settings
 - , <u>Loads</u>
 - Solution (B6)
 - Solution Information
 - , <u>Results</u>
- ¿ Material Data
 - Aluminum Alloy
 - Divinycell H35

Units

т	۸	D		Е	-1
	м	D	L		

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

TABLE 2

Model (B4)

Geometry

Ν	Nodel (B4) > Geometry
Object Name	Geometry
State	Fully Defined
	Definition
Source	D:\simulations\Master\sim_files\dp0\SYS-1\DM\SYS-1.agdb
Туре	DesignModeler
Length Unit	Meters
Element Control	Program Controlled
Display Style	Body Color
	Bounding Box
Length X	2,6137 m
Length Y	0,19815 m
Length Z	2,4157 m
	Properties
Volume	0,32843 m³
Mass	67,787 kg
Scale Factor Value	1,
	Statistics

Project

Page 3 of 13

Destina	1
Bodies	4
Active Bodies	4
Nodes	15731
Elements	5880
Mesh Metric	None
Ba	asic Geometry Options
Parameters	Yes
Parameter Key	DS
Attributes	No
Named Selections	No
Material Properties	No
Adv	anced Geometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	No
Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\bje012\AppData\Local\Temp
Analysis Type	3-D
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3 Model (B4) > Geometry > Parts

		s Geometry > Pa	115		
Object Name	flens	face	core	face	
State					
	Graphi	ics Properties			
Visible		Ye	S		
Transparency		1			
	D	efinition			
Suppressed		N			
Stiffness Behavior		Flexi	ble		
Coordinate System		Default Coord	inate System		
Reference Temperature		By Envir	onment		
		Material			
Assignment	Aluminu	im Alloy	Divinycell H35	Aluminum Allo	
Nonlinear Effects		Ye	S		
Thermal Strain Effects		Ye	S		
	Bou	Inding Box			
Length X	2,6137 m		2,602 m		
Length Y	0,19815 m	1,e-003 m	4,9e-002 m	1,e-003 m	
Length Z	2,4157 m		2,404 m		
	P	roperties			
Volume	9,4174e-003 m ³	6,2552e-003 m ³	0,30651 m ³	6,2552e-003 m	
Mass	25,427 kg	16,889 kg	8,5821 kg	16,889 kg	
Centroid X	0,89131 m		0,8913 m		
Centroid Y	1,3454 m	1,3491 m	1,3241 m	1,2991 m	
Centroid Z		1,564	2 m		
Moment of Inertia Ip1	24,377 kg·m ²	8,1342 kg⋅m²	4,1349 kg·m²	8,1342 kg·m²	
Moment of Inertia Ip2	51,638 kg·m ²	17,663 kg·m ²	8,9752 kg·m ²	17,663 kg·m ²	
Moment of Inertia Ip3	27,482 kg·m ²	9,5293 kg∙m²	4,8438 kg·m²	9,5293 kg∙m²	
	S	tatistics			
Nodes	10877		1618		
Elements	5250	210			

Project

Page 4 of 13

Mesh Metric

None

Coordinate Systems

TABLE 4 Model (B4) > Coordinate Systems > Coordinate System				
Object Name	Global Coordinate System			
State	Fully Defined			
De	efinition			
Туре	Cartesian			
Coordinate System ID	0,			
	Origin			
Origin X	0, m			
Origin Y	0, m			
Origin Z	0, m			
Direction	onal Vectors			
X Axis Data	[1, 0, 0,]			
Y Axis Data	[0, 1, 0,]			
Z Axis Data	[0,0,1,]			

Connections

TABLE 5 Model (B4) > Connections		
Object Name	Connections	
State	Fully Defined	
Auto Detection		
Generate Automatic Connection On Refresh	Yes	
Transparency		
Enabled	Yes	

Transparency	
Enabled	Yes

TABLE 6 Model (B4) > Connections > Contacts			
Object Name			
State	Fully Defined		
Definition			
Connection Type	Contact		
Sc	оре		
Scoping Method	Geometry Selection		
Geometry	All Bodies		
Auto De	etection		
Tolerance Type	Slider		
Tolerance Slider	0,		
Tolerance Value	8,9113e-003 m		
Use Range	No		
Face/Face	Yes		
Face/Edge	No		
Edge/Edge	No		
Priority	Include All		
Group By	Bodies		
Search Across			
Statistics			
Connections	5		
Active Connections	5		

TABLE 7

Project

Page 5 of 13

Model (B4) > Connections > Contacts > Contact Regions					
Object Name	Contact Region	Contact Region 2	Contact Region 3	Contact Region 4	Contact Region 5
State		•	Fully Defined		
		Scope	÷		
Scoping Method		(Geometry Selection	on	
Contact	4 Faces				ace
Target	4 Faces	5 Faces	6 Faces	1 Fa	ace
Contact Bodies		flens		face	core
Target Bodies	face	core	face	core	face
		Definitio	n		
Туре			Bonded		
Scope Mode			Automatic		
Behavior		ł	Program Controlle	ed	
Trim Contact		F	Program Controlle	ed	
Trim Tolerance			8,9113e-003 m		
Suppressed			No		
		Advance	d		
Formulation	Program Controlled				
Detection Method	Program Controlled				
Penetration Tolerance		Program Controlled			
Elastic Slip Tolerance		Program Controlled			
Normal Stiffness	Program Controlled				
Update Stiffness	Program Controlled				
Pinball Region	Program Controlled				
Geometric Modification					
Contact Geometry Correction	None				
Target Geometry Correction	None				

Model (B4) > Connections > Contacts > Contact Regions

Mesh

Model (B4) > Mesh	1
Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Sizing	
Use Advanced Size Function	Off
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Minimum Edge Length	1,e-003 m
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0,272
Maximum Layers	5
Growth Rate	1,2
A	

Project

Page 6 of 13

Inflation Algorithm	Pre		
View Advanced Options	No		
Patch Conforming Options			
Triangle Surface Mesher	Program Controlled		
Patch Independent Op	tions		
Topology Checking	No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Shape Checking	Standard Mechanical		
Element Midside Nodes	Program Controlled		
Straight Sided Elements	No		
Number of Retries	Default (4)		
Extra Retries For Assembly	Yes		
Rigid Body Behavior	Dimensionally Reduced		
Mesh Morphing	Disabled		
Defeaturing			
Pinch Tolerance	Please Define		
Generate Pinch on Refresh	No		
Automatic Mesh Based Defeaturing	On		
Defeaturing Tolerance	Default		
Statistics			
Nodes	15731		
Elements	5880		
Mesh Metric	None		

Static Structural (B5)

TABLE 9

Model (B4) > Analysis				
Object Name	Static Structural (B5)			
State	e Solved			
Definiti	on			
Physics Type	Structural			
Analysis Type	Static Structural			
Solver Target	Mechanical APDL			
Options				
Environment Temperature	22, °C			
Generate Input Only	No			

TABLE 10

Model (B4) > Static Structural (B5) > Analysis Settings		
Object Name	Analysis Settings	
State	Fully Defined	
	Step Controls	
Number Of Steps	1,	
Current Step Number	1,	
Step End Time	1, s	
Auto Time Stepping	Program Controlled	
	Solver Controls	
Solver Type	Program Controlled	
Weak Springs	Program Controlled	
Solver Pivot Checking	Program Controlled	
Large Deflection	Off	
Inertia Relief	Off	
	Restart Controls	
Generate Restart Points	Program Controlled	

Project

Page 7 of 13

Retain Files After Full Solve	No		
Nonlinear Controls			
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		
Moment Convergence	Program Controlled		
Displacement Convergence	Program Controlled		
Rotation Convergence	Program Controlled		
Line Search	Program Controlled		
Stabilization	Off		
	Output Controls		
Stress	Yes		
Strain	Yes		
Nodal Forces	No		
Contact Miscellaneous	No		
General Miscellaneous	No		
Store Results At	All Time Points		
Analysis Data Management			
Solver Files Directory	D:\simulations\Master\sim_files\dp0\SYS-1\MECH\		
Future Analysis	None		
Scratch Solver Files Directory			
Save MAPDL db	No		
Delete Unneeded Files	Yes		
Nonlinear Solution	No		
Solver Units	Active System		
Solver Unit System	mks		

TABLE 11 Model (B4) > Static Structural (B5) > Loads

Object Name	Pressure	Displacement	Displacement 2	
State	Fully Defined			
	Scope			
Scoping Method	Geo	ometry Selection	n	
Geometry	1 Face	3 Edges	1 Edge	
	Definitio	n		
Туре	Pressure Displacement			
Define By	Normal To Components			
Magnitude	3197, Pa (ramped)			
Suppressed	No			
Coordinate System	Global Coordinate System			
X Component		Free	0, m (ramped)	
Y Component	0, m (ramped)			
Z Component		Free	0, m (ramped)	

FIGURE 1 Model (B4) > Static Structural (B5) > Pressure

Project

Page 8 of 13

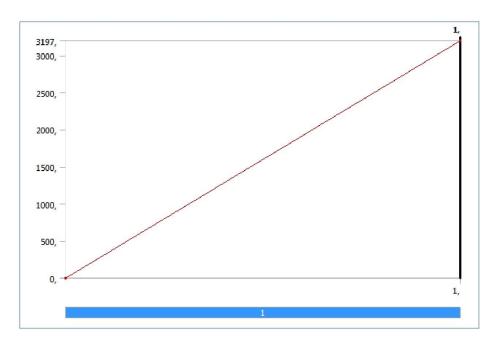


FIGURE 2 Model (B4) > Static Structural (B5) > Displacement

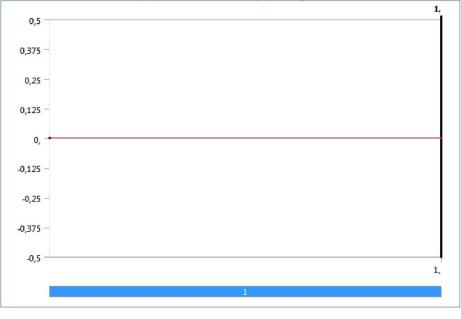
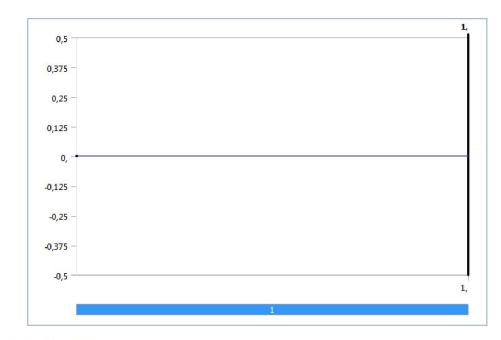



FIGURE 3 Model (B4) > Static Structural (B5) > Displacement 2

Project

Page 9 of 13

Solution (B6)

TABLE 12	
Model (B4) > Static Structural (
Object Name	Solution (B6)
State	Solved
Adaptive Mesh Refine	ment
Max Refinement Loops	1,
Refinement Depth	2,
Information	
Status	Done
Post Processing	
Calculate Beam Section Results	No

 TABLE 13

 Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

_
S
1

Project

Page 10 of 13

TABLE 14 Model (B4) > Static Structural (B5) > Solution (B6) > Results			
Object Name	Total Deformation	Directional Deformation	
State		Solved	
-	Scope		
Scoping Method	Geom	etry Selection	
Geometry	A	All Bodies	
	Definition		
Туре	Total Deformation	Directional Deformation	
Ву	Time		
Display Time		Last	
Calculate Time History	Yes		
Identifier			
Suppressed		No	
Orientation	Y Axis		
Coordinate System	Global Coordinate Sy		
Results			
Minimum	0, m	-5,4089e-003 m	
Maximum	5,6071e-003 m	9,6503e-006 m	
Minimum Occurs On	flens	core	
Maximum Occurs On	core	flens	
Information			
Time	1, s		
Load Step	1		
Substep	1		
Iteration Number	1		

FIGURE 4 Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation

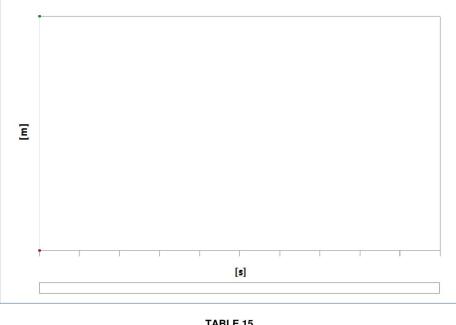
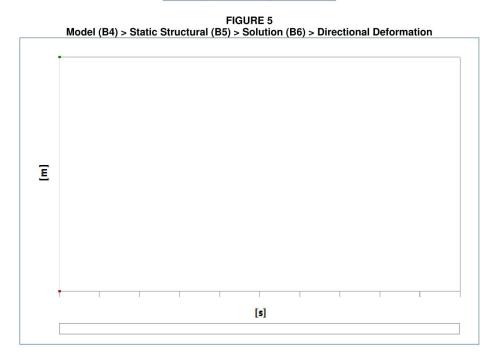


 TABLE 15

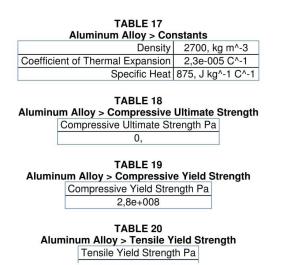
 Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation


 Time [s] Minimum [m] Maximum [m]

file:///C:/Users/bje012/AppData/Roaming/Ansys/v162/Mechanical_Report/Mechanica... 29.05.2017

Project

Page 11 of 13


1, 0, 5,6071e-003

Material Data

Aluminum Alloy

Project

Page 12 of 13

2,8e+008

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength Pa

3,1e+008

TABLE 22 Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion

Reference Temperature C

22,

TABLE 23

Aluminum Alloy > Isotropic Thermal Conductivity

Thermal Conductivity W m ⁻¹ C ⁻¹	Temperature C
114,	-100,
144,	0,
165,	100,
175.	200.

TABLE 24 Aluminum Alloy > Alternating Stress R-Ratio				
	Alternating Stress Pa		R-Ratio	
	2,758e+008	1700,	-1,	
	2,413e+008	5000,	-1,	
	2,068e+008	34000	-1,	
	1,724e+008	1,4e+005	-1,	
	1,379e+008	8,e+005	-1,	
	1,172e+008	2,4e+006	-1,	
	8,963e+007	5,5e+007	-1,	
	8,274e+007	1,e+008	-1,	
	1,706e+008	50000	-0,5	
	1,396e+008	3,5e+005	-0,5	
	1,086e+008	3,7e+006	-0,5	
	8,791e+007	1,4e+007	-0,5	
	7,757e+007	5,e+007	-0,5	
	7,239e+007	1,e+008	-0,5	
	1,448e+008	50000	0,	
	1,207e+008	1,9e+005	0,	
	1,034e+008	1,3e+006	0,	
	9,308e+007	4,4e+006	0,	
	8,618e+007	1,2e+007	0,	
	7,239e+007	1,e+008	0,	
	7,412e+007	3,e+005	0,5	
	7,067e+007	1,5e+006	0,5	
	6,636e+007	1,2e+007	0,5	
	6,205e+007	1,e+008	0,5	

TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm m		Temperature C	
	2,43e-008	0,	
	2,67e-008	20,	
	3,63e-008	100,	

TABLE 26 Aluminum Alloy > Isotropic Elasticity

Project

Page 13 of 13

Temperature CYoung's Modulus PaPoisson's RatioBulk Modulus PaShear Modulus Pa7,e+0100,336,8627e+0102,6316e+010

 TABLE 27

 Aluminum Alloy > Isotropic Relative Permeability

 Relative Permeability

 1,

Divinycell H35

TABLE 28 Divinycell H35 > Constants		
Density	28, kg m^-3	
Coefficient of Thermal Expansion	2,3e-004 C^-1	
	296, J kg^-1 C^-1	
Thermal Conductivity	0,28 W m^-1 C^-1	

TABLE 29

Divinycell H35 > Compressive Ultimate Strength Compressive Ultimate Strength Pa

5,e+005

TABLE 30 Divinycell H35 > Compressive Yield Strength Compressive Yield Strength Pa

1,e+006

 TABLE 31

 Divinycell H35 > Tensile Yield Strength

 Tensile Yield Strength Pa

4,9e+007

TABLE 32

Divinycell H35 > Tensile Ultimate Strength Tensile Ultimate Strength Pa

4,e+007

TABLE 33

Divinycell H35 > Isotropic Secant Coefficient of Thermal Expansion Reference Temperature C

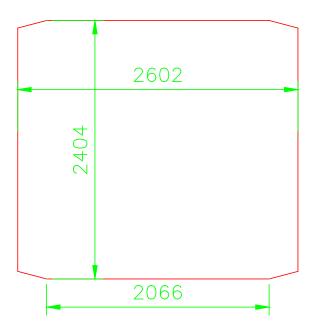
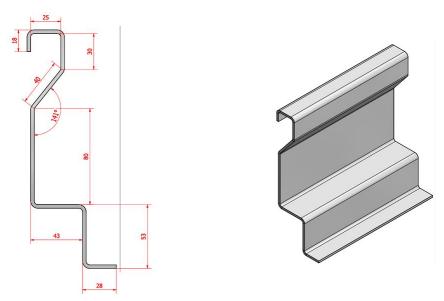

22,

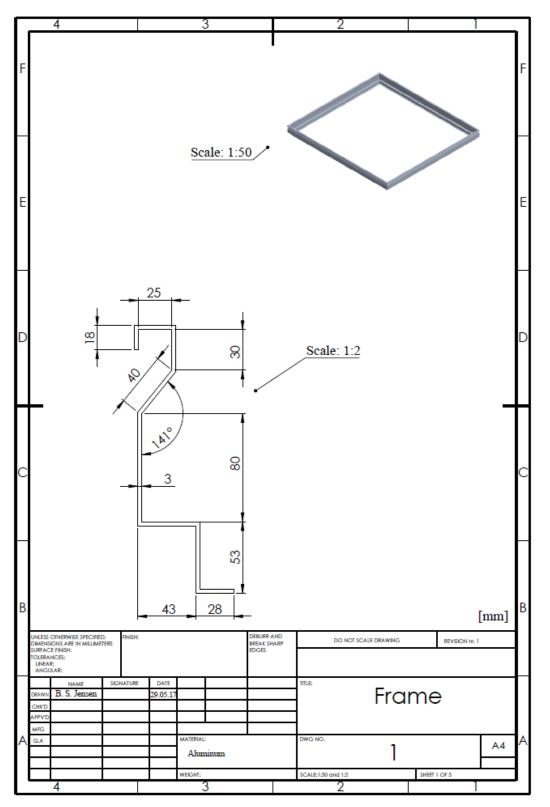
TABLE 34 Divinycell H35 > Isotropic Elasticity

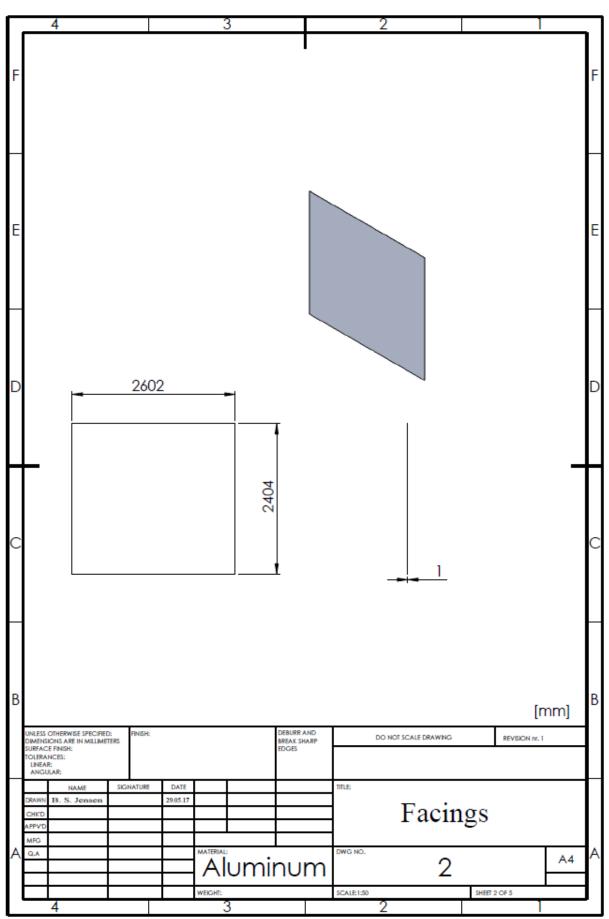

Divingcen his > isotropic Liasticity				
Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa
	3,36e+007	0,4	5,6e+007	1,2e+007

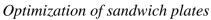
Appendix G – Specifications of sandwich panel from TAM

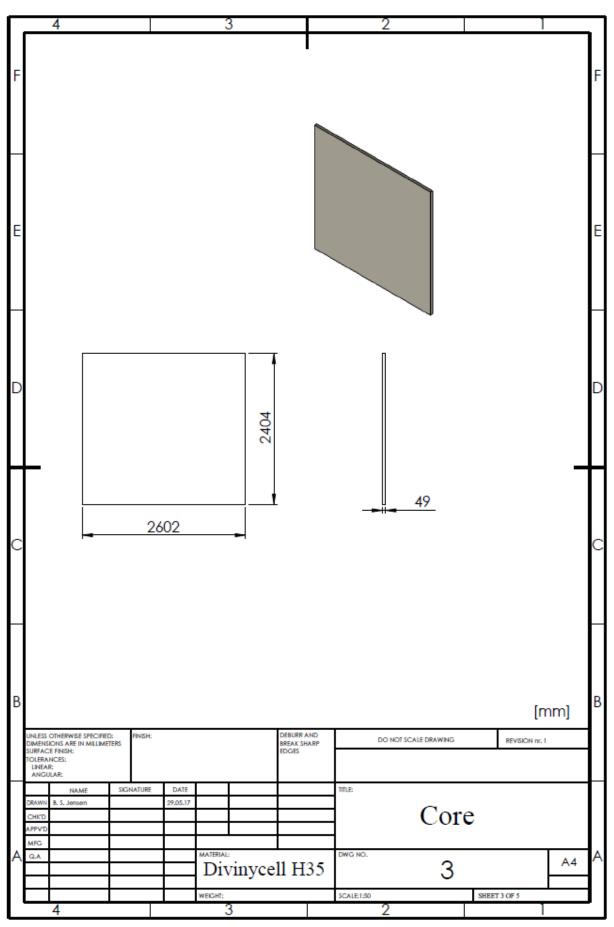
The panel is 2602mm x 2404mm and can be regarded as rectangular.

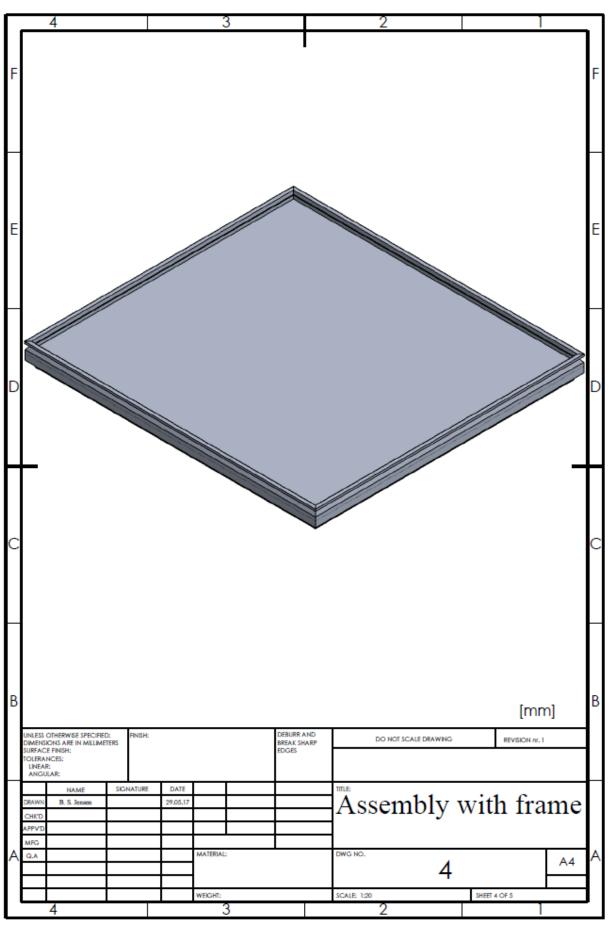
The panel is today constructed with a 1mm aluminum plate in the bottom that rests on an aluminum frame. The resting point is where the 80mm and 53mm measurements meets. The core is a 40mm H60 divinycell from DIAB AS [3] and the top is a 3mm aluminum plate.

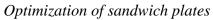



The panel is suspended from the corners by wires and shall withstand an uniformly distributed load of 20.000N.


Text is translated by author of this report from Norwegian.


Appendix H – CAD drawings


In drawing 1, the corners of the part in the drawing that is in scale 1:2 has been simplified due to lack of dimensions in the original drawing. The thickness of the entire profile is 3mm.





Optimization of sandwich plates