
	
	
	
	
	
	
	
	
	

PAPER	I	
	

Marco-Ruiz	L,	Moner	D,	Maldonado	 JA,	Kolstrup	N,	Bellika	 JG.	Archetype-based	
data	 warehouse	 environment	 to	 enable	 the	 reuse	 of	 electronic	 health	 record	
data.	 International	 Journal	 of	 Medical	 Informatics	 2015;84:702–14.	
doi:10.1016/j.ijmedinf.2015.05.016.	



International Journal of Medical Informatics 84 (2015) 702–714

Contents lists available at ScienceDirect

International Journal of Medical Informatics

journa l homepage: www. i jmi journa l .com

Archetype-based data warehouse environment to enable the reuse of
electronic health record data

Luis Marco-Ruiza,b,∗, David Monerc, José A. Maldonadoc,d, Nils Kolstrupa,e,
Johan G. Bellikaa,b

a Norwegian Centre for Integrated Care and Telemedicine, University Hospital of North Norway, Norway
b Department of Clinical Medicine, Faculty of Health Sciences, UIT The Arctic University of Norway, Norway
c Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, Valencia, Spain
d VeraTech for Health SL, Valencia, Spain
e General Practice Research Unit, UIT The Arctic University of Norway, Norway

a r t i c l e i n f o

Article history:
Received 24 November 2014
Received in revised form 26 May 2015
Accepted 28 May 2015

Keywords:
Data reuse
Semantic interoperability
Electronic health record
openEHR
Data warehouse

a b s t r a c t

Background: The reuse of data captured during health care delivery is essential to satisfy the demands
of clinical research and clinical decision support systems. A main barrier for the reuse is the existence
of legacy formats of data and the high granularity of it when stored in an electronic health record (EHR)
system. Thus, we need mechanisms to standardize, aggregate, and query data concealed in the EHRs, to
allow their reuse whenever they are needed.
Objective: To create a data warehouse infrastructure using archetype-based technologies, standards and
query languages to enable the interoperability needed for data reuse.
Materials and methods: The work presented makes use of best of breed archetype-based data transforma-
tion and storage technologies to create a workflow for the modeling, extraction, transformation and load
of EHR proprietary data into standardized data repositories. We converted legacy data and performed
patient-centered aggregations via archetype-based transformations. Later, specific purpose aggregations
were performed at a query level for particular use cases.
Results: Laboratory test results of a population of 230,000 patients belonging to Troms and Finnmark
counties in Norway requested between January 2013 and November 2014 have been standardized.
Test records normalization has been performed by defining transformation and aggregation functions
between the laboratory records and an archetype. These mappings were used to automatically gener-
ate open EHR compliant data. These data were loaded into an archetype-based data warehouse. Once
loaded, we defined indicators linked to the data in the warehouse to monitor test activity of Salmonella
and Pertussis using the archetype query language.
Discussion: Archetype-based standards and technologies can be used to create a data warehouse environ-
ment that enables data from EHR systems to be reused in clinical research and decision support systems.
With this approach, existing EHR data becomes available in a standardized and interoperable format, thus
opening a world of possibilities toward semantic or concept-based reuse, query and communication of
clinical data.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Background

The reuse of data inside the electronic health record (EHR) is
considered of paramount importance to support clinical research
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[1,2] and clinical decision support (CDS) [2,3] systems. This reuse
needs clinical data to flow from the systems where it was captured
to a specialized system that processes it with different objectives,
other than clinical care. Agile aggregation during this flow of infor-
mation can enable the creation of large repositories containing
samples to perform inferences over populations [4]. Many different
actors like physicians, hospitals, pharmaceutical and biotech com-
panies can benefit from this data flow to deliver their services more
effectively [5].

http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
1386-5056/© 2015 Elsevier Ireland Ltd. All rights reserved.
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Mechanisms to improve clinical accessibility, better integra-
tion of care across settings and advances in information exchange
are needed to reuse data effectively [6]. Several initiatives have
contributed with advances in those directions [7–9]. However,
challenges in semantic interoperability and technical infrastructure
are still present [10].

1.1. Semantic interoperability

On the semantic interoperability side the challenges are: (a)
the integration and harmonization of the formats among different
sources [2]; and (b) the definition of shared clinical information
models, and their terminological binding. To harmonize and inte-
grate EHR data, the adoption of EHR standards such as HL7CDA [11],
openEHR [12] or EN ISO 13606 [13] is needed to exchange health
information extracts. The use of such standards provides a common
syntax and representation of clinical data. In addition, the definition
of clinical information models that represent domain-oriented data
structures allows the implementation of solutions for specific clin-
ical use-cases. Finally, the terminology binding of clinical data and
clinical information models provides semantics to the standardized
information. The use of terminologies such as SNOMED-CT, LOINC
or ICD delivers a common vocabulary used to specify the exact
meaning of clinical data despite cultural or language differences.
These actions are recognized as essential steps towards the seman-
tic interoperability of health information [14]. In this sense, the
memorandum of understanding signed between the Department of
Health and Human Services and the European Commission stated
the immediate importance in adopting international standards and
interoperability specifications for EHRs. Also, the definition of har-
monized clinical information models is of importance to achieve
semantic interoperability across health information systems [15].
Internationally, the clinical information modelling initiative (CIMI)
[16] is a not-for-profit community of users and stakeholders work-
ing in the definition of shared clinical information models. At the
European level, the epSOS project [17] has defined the minimal
infrastructure and clinical information models to communicate the
patient summary, prescription and dispensation documents across
Europe using the HL7 CDA standard. National initiatives like the
NHS interoperability toolkit [18] or the meaningful use regula-
tions [19,20] are powering the adoption of standards providing
interoperability specifications and establishing payment for health
professionals who adopt certified EHRs [4].

1.2. Linkage of the EHR with inference models

On the infrastructure side, the “impedance mismatch” [21]
present between the information model, (where EHRs lay) and the
inference model (where CDS systems and data mining are located)
[22] can jeopardize clinical data reuse. The reason is that clinical
information services are not structured to support ad hoc queries
to allow reuse; therefore the use of data warehouses (DW), reg-
isters and repositories is needed [23]. To overcome the mismatch
between the EHR and inference models several approaches have
been proposed with application both in CDS and clinical research.
The Arden syntax [24] was the first standard to create indepen-
dent medical logic modules (MLM). Its syntax separated knowledge
expressions from data access to EHR. However, it encapsulated data
access between curly braces inside the MLM leading to the “curly
braces problem”. The former can be explained as the necessity to
adapt the data access sections when moving the system among
different production environments. GELLO [25] advanced in the
direction of decoupling the EHR data access from the CDS system
allowing to work with object models. Other computer interpretable
guidelines formalisms like SAGE or GLIF used a summary view of
the EHR, a.k.a. virtual medical record (VMR) using HL7 RIM [26].

Peleg et al. [27], following the former approach, defined a RIM VMR
but added a mapping ontology to transform EHR granular data from
the VMR into highly aggregated concepts for CDS [27]. Kawamoto
et al. contributed by identifying the features needed to create a
CDS VMR specific standard [28] to solve some limitations of the
HL7 RIM based views. With regard to archetypes, Marcos et al.
[29] and Fernandez-Breis et al. [30] relied on archetypes to gen-
erate an EHR view. Over that view they used additional layers of
archetypes to increase the level of abstraction to generate the con-
cepts needed by a patient cohort identification system for clinical
research. Hybrid approaches to take advantage of the best feature of
each standard have also been proposed. For example, in MobiGuide
[31], Gonzalez-Ferrer et al. [32] propose to use HL7 RIM for back-
end systems and define a layer of archetypes compliant with the
HL7 VMR for integration with the CDS system [32]. More oriented
to the data reuse in research the SHARPn consortium has defined a
complete pipeline to extract data from the EHR, normalize it into
clinical element models and allow its reuse through health quality
measures format (HQMF) [33].

1.3. Data reuse for CDS in North Norway primary care

Several studies have documented the benefits of CDS systems in
primary care [3,34]. When applied to laboratory interventions, CDS
systems have been documented to reduce costs avoiding redundant
tests [35]. However, population information for general practition-
ers (GPs) is usually limited by the patients they are assigned and
their personal communications with colleagues. They seldom have
access to real time population test results or colleagues requests.
Access to anonymized and aggregated population data about labo-
ratory interventions of other colleagues and laboratory personnel
can empower their environmental awareness of communicable
infectious diseases and help them to determine which set of tests
should be ordered when suspecting certain conditions.

In the North Norway health region tests are ordered by a GP
who usually sends a request with a sample to perform several tests
to confirm or discard a set of infectious agents to the microbiology
service. At the microbiology service, the staff can add new tests
for other infectious agents to the ordered request based on their
knowledge; e.g., if the beginning of an epidemic is suspected, an
outbreak of a communicable disease etc.

Conceptually, a request is a composition of some demograph-
ical data related to the patient and requester (GP/microbiology
service) which contains a battery of individual tests, each aimed
to detect an infectious agent. Test results are stored in the labo-
ratory information system (LIS) in a proprietary format. Currently,
reports of the tests performed in a geographical area in a period
of time are generated using the SNOW system [36,37]. The system
uses an agent-based architecture to extract the data related to tests
and aggregate it per municipality and date to monitor the number
of confirmed cases of several diseases. It applies transformation
and aggregation rules to generate derived data from the individual
results. For example, the infectious agent and its category (common
cold viruses, gastrointestinal bacteria etc.) are derived from the
type of test (DNA, culture, enzyme immunoassay etc). The aggre-
gation of tests by request is done by defining grouping rules using
the metadata of each result related to fields as patient id, request
data, requester identifier etc.

In the case of transformation rules, the SNOW system imple-
ments a total of 25 rules to derive the values of some fields from
other fields. These rules are implemented using the Drools business
rule management system [38] as result of collaboration with the
laboratory personnel. As no standard terminologies such as LOINC
are implemented, such rules are based on the internal codes and
names. As an example, the rule displayed in Fig. 1 is used to infer
the infectious agent, the family of symptoms and the subcategory
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Fig. 1. Rule to infer symptom group, virus subcategory and infectious agent from gastrointestinal viruses’ analysis type.

Fig. 2. Rule to infer symptom group, agent subcategory and infectious agent from bacteria analysis tests and the text in the original result.

of the agent from the analysis type. It also checks that test result
among the valid result set. The infectious agent is set by taking the
second part of the analysis type and adding the word “virus”.

Fig. 2 shows the logic to infer the symptom group, the subcat-
egory, and the infectious agent and result from the name of the
test performed and the text fulfilled by the laboratory staff in the
original result.

Although the SNOW system has been used successfully, the cur-
rent strategic program of the Norwegian health authorities [39] for
health IT has raised some architectural and interoperability chal-
lenges. Specifically, the requirements of interoperability among
different systems of the Norwegian health network and the needs
of data reuse for different purposes (CDS, clinical research etc.) has
motivated work in the direction of standard-based solutions. As
a result, we have implemented a new DW architecture based on
openEHR archetypes and their query language, the archetype query
language (AQL), to perform rapid and flexible aggregations of data
for each of the interoperability and reuse scenarios.

1.4. Objective

This work aims to define the data warehouse environment to
resolve interoperability and infrastructure challenges in clinical
data reuse leveraging archetype-based EHR standards and tech-
nologies. A workflow is defined and implemented to facilitate the
reuse of EHR data. The modeling, extraction, transformation, load
and exploitation from existing legacy data in the EHR to its final use
to implement indicators is covered. This paper describes how trans-

formation and aggregation functions can be used to build openEHR
compliant instances stored in an openEHR-based repository and
how this repository can be queried at an archetype level to define
indicators of microbiology test results. Policy and security chal-
lenges will remain out the scope of this work.

2. Materials and methods

2.1. The openEHR dual model architecture

The dual model methodology [12] proposes a separate definition
of the information level, that represents the generic clinical data
structures, and the conceptual level, that defines specific repre-
sentations and meanings of those data structures. The information
level or reference model (RM) defines the entities and proper-
ties that are not likely to change over time. This model must be
generic enough to avoid modifications for supporting new charac-
teristics or requirements from a clinical domain perspective. The
RM entities are the basic building blocks for the conceptual or
archetype level. The archetype model (AM) allows defining clini-
cal information models by constraining specific data structures of
the RM, to support specific clinical use cases. Such definitions are
called archetypes. Archetypes define the maximum data schema
of a clinical concept. To attach a formal specification of the mean-
ing of archetypes, they can be linked to clinical terminologies. This
makes archetypes a powerful mechanism to define information
structures with attached meaning that support semantic interop-
erability among systems.
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To achieve the objective of this work we will use openEHR
archetypes as a mechanism for the modeling of the clinical data
structures needed in our use case.

2.2. The archetype query language

The archetype query language (AQL) [40] is a declarative lan-
guage to query clinical data which schema has been structured as
archetypes. Queries are specified at an archetype level referencing
the EHR information entities rather than the proprietary IT infra-
structure. Therefore, queries are independent of the persistence
schema or the particular technologies used in the implementa-
tion of the EHR where it is executed. This allows sharing queries
among systems which have defined the clinical information mod-
els as archetypes. Table 1 shows the structure of an AQL query with
its five components. The SELECT component specifies the path to
the fields to be returned. The FROM section specifies the EHR or
id of the patient medical records and the archetypes used by the
query. The WHERE section specifies restrictions over the selec-
tion. ORDER BY allows ordering the result of the query. Finally,
the TIME WINDOW section indicates the valid time period of the
instances recorded. Similarly to SQL, AQL does support aggrega-
tion functions such as count, max, top and arithmetic and logical
operators.

Fig. 3 represents an AQL query over the archetype openEHR-
EHR-OBSERVATION lab test full blood count.v1 taken from the
International Clinical Knowledge Manager [41] to retrieve all the
tests of full blood count indicating a moderate leukocytosis. Fol-
lowing the openEHR RM class hierarchy, the query selects for the
EHR identified as 1ADC27 any encounter composition that con-
tains a full blood count test observation. The condition of the where
clause constraints to values in white cell count between 11 × 109

and 17 × 109. The TIME WINDOW section is indicating that the
fetched values should be restricted to the period of 1 year (P1Y)
before 2014-02-12 (ISO-8601).

It must be noted that, in order to execute an AQL query, an
archetype based database (DB) capable to process it is needed.

2.3. Normalization platform

It is a common situation that existing clinical data in EHR
systems do not follow any standard, being stored in proprietary
formats instead. To effectively reuse that information, it is neces-
sary to transform it into a standard format. In our case, in openEHR
format following the constraints defined in an archetype. To per-
form this transformation we make use of LinkEHR studio [42,43].
This tool is designed to facilitate the transformation of legacy data
into archetype-compliant data. LinkEHR studio allows the defini-
tion of mappings between a legacy data schema (the schema of the
original data) and an archetype of a specific standard (for exam-
ple, an openEHR archetype). A mapping is defined by a set of pairs,
each consisting of a function that specifies how to calculate the
value of the target atomic attribute and a condition that must be
satisfied to apply the function. Once these mappings have been
defined by the user, the tool automatically generates a transforma-
tion script in XQuery format. The generated transformation script
ensures that only data that satisfies the conditions defined in the
mappings and the archetype constraints are finally transformed.
Moreover, it applies a grouping logic by default based on the par-
tition normal form for nested relations [44] that tries to minimize
redundant information in the output result. When this program
is executed over the existing data it generates an XML document
that follows the standard information model and the constraints
defined in the archetype.

2.4. OpenEHR persistence platform

As persistence and query mechanism an openEHR-based
database (Think!EHR) provided by an industrial partner [45] was
used. Such platform allows storing clinical information using as
data schema the openEHR template object model. This means that
data instances are stored as archetypes instances in a template
schema rather than tables defined in a DB schema. The platform
allows querying data via AQL at a clinical level; i.e., specifying
restrictions over clinical concepts instead of the proprietary DB
schema.

2.5. Modeling, extraction, transformation and load

The pipeline for processing data can be divided in the four main
stages depicted in Fig. 4. Thick arrows represent the information
flow across the stages of the pipeline, thin continuous lines rep-
resent interaction among components (definitions, generation of
scripts or parameters that feeds some subsystem), dotted lines rep-
resent references to data schemas (XML schema or archetypes). The
information modeling has been detached from the transformation
stage and treated separately due to its complexity in comparison
with traditional DW environments. Below follows the description
of each stage.

(1) Modeling: The first step needed is to model the information
requirements in the form of archetypes. These archetypes will
become the schema of the data to be managed by the systems.
In the modeling stage, existing archetypes can be reused or new
ones can be created to fit the information requirements. More-
over, archetypes can be annotated with SNOMED-CT [34] or
other terminologies to facilitate semantic interoperability and
concept-based queries.

(2) Extraction: Existing results of laboratory tests are extracted
from the LIS, cached and serialized in XML format (marshal-
ing), containing plain representations of all the laboratory tests
extracted without any nesting or association among them. The
XML Schema of the marshalled cache is used in the trans-
formation stage as the source schema for the definition of
transformation and aggregation rules.

(3) Transformation: The modeled archetypes are mapped to the
XML schema of the marshalled laboratory test results. The
mapping specifies how to transform or group the original infor-
mation fields that are available into a structure compliant with
the constraints defined in the archetype. Once these mappings
are defined using LinkEHR studio, the tool is able to automat-
ically generate a transformation XQuery script. This XQuery
script runs in a RESTful extract server which executes it on
demand, creating an openEHR extract for a provided patient id.
The extract aggregates the laboratory tests per request as spec-
ified in the mapping rules and delivers it through the service.

(4) Load: The extract server is called sequentially for each patient
id to perform a load of the EHR into the openEHR-compliant
database. When sources compliant with openEHR are avail-
able, the load stage can be used to integrate information from
different health information systems (HIS).

2.6. Evaluation

Data from January 2013 to November 2014 of the Troms and
Finnmark counties laboratory with an assigned population of
230,000 individuals (circa 270,000 tests) was standardized and
transformed through the described pipeline and finally loaded into
the data warehouse.

For the extraction stage the time to perform a full load was mea-
sured over 5 repetitions. For the transformation and load stages a
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Table 1
AQL query structure.

Section Data to be specified in the section

SELECT Data elements to be returned and aggregation functions to use over it.
FROM EHR Id of the EHR to be queried.

Containment criteria Archetype sections that need to be contained in the specified EHR.
WHERE Criteria that needs to be applied to the result values in order to be returned.
ORDER BY Order criteria to apply to the result set.
TIME WINDOW Date from which the specified data will be queried ignoring those older.

Fig. 3. Example of white blood cells count AQL query.

random sample of 200 patient ids were used to measure the aver-
age time required to transform and load an extract containing the
tests of each patient. To test the query response of the warehouse
30 repetitions of each query were performed.

To define specific query examples to be tested within the devel-
oped system, meetings where conducted with a medical advisor
to define indicators of interest over the population that had been
tested. Three types of indicators where defined. A first type was
defined to monitor the consumption of tests; a second type to con-
trol the number of positive tested patients for a given municipality;
and a third one to monitor the ratio between the positive tests for
an infectious agent and the total ordered tests for that agent.

3. Results

3.1. System description

The architecture of the system to build an archetype based data
warehouse environment has been presented. The workflow to con-
duct raw data to openEHR standardized instances is characterized
by a segmentation into the standard ETL [46] stages, preceded
by a modeling of clinical data stage. To increase modularity and
scalability of the system it has been implemented as cooperative
RESTful web services. The extraction service, placed on the orig-
inal SNOW platform, runs a scheduled task, a.k.a. cron job, every
night to extract the test records available. The records are then
maintained as a cache and serialized on demand into a single XML
file that is consumed by the transformation service. The transfor-
mation service is a standalone web service that can be queried
given a patient id and returns the openEHR extract that is used
to populate the data warehouse. The load of the warehouse is car-
ried out by another scheduled task that calls the transformation
service sequentially until all patient extracts have been loaded. The
extraction and transformation services were implemented with the
JavaEE 7 distribution, whereas the load service was implemented
with the Spring Framework.

3.2. Information modeling

First, archetype reuse was attempted by reviewing the
openEHR clinical knowledge manager [41]. Although, the
openEHR-EHR-OBSERVATION.lab test.v1 and its specialization
openEHR-EHR-OBSERVATION.lab test-microbiology.v1 had many
of the necessary fields, the need to add some demographical
information and fields useful for CDS, like infectious agent, the
subcategory of the infectious agent (parasite, respiratory virus,
gastrointestinal virus etc.), symptom group (respiratory, gas-
trointestinal), finally required the definition of new archetypes.
The openEHR-EHR-OBSERVATION.lab test-microbiology.v1 was
found to be too specific for our purpose, as it describes detailed
information of the analysis as macro and microscopic findings,
culture findings etc. As a consequence, two archetypes had to be
defined to represent the laboratory test results, namely openEHR-
EHR-COMPOSITION.micro lab patient request composition.v1
and openEHR-EHR-OBSERVATION.micro lab test request.v1. The
first one contains the second one through a slot definition (a ref-
erence that can be defined inside an archetype to point to another
external archetype). These archetypes, with the slot resolved at
the level of the OBSERVATION node, are shown in Fig. 5.

The COMPOSITION archetype allows grouping all the results
related to a single patient. The OBSERVATION archetype represents
one request of laboratory tests. It is designed to group inside a CLUS-
TER all the individual or simple tests performed for each infectious
agent. Each simple test contains the information related to an infec-
tious agent analysis (test result, infectious agent, analysis type etc).
Fields common to every simple test (material, patient id, patient
gender etc.) are taken outside the CLUSTER as they are common for
the request.

3.3. Data extraction

Original laboratory test results are extracted from the LIS
databases, using a proprietary extraction library, and marshaled
into an XML representation. As shown in Fig. 6, the XML representa-
tion contains a collection of plain elements without any aggregation
per requester, date or patient id (which is previously anonymized).
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Fig. 4. Stages for the modeling, extraction, transformation and load of tests into openEHR compliant instances.

The description of the fields of each element in the XML represen-
tation is shown in Table 2. An XML schema for these XML files is
also defined, to be used in the transformation process described in
the next section.

3.4. Data transformation

A set of mappings between the XML schema of the marshaled
LIS data and the selected archetypes were defined using LinkEHR.
Many of the mappings were direct ones, binding a source field from
the legacy schema to an archetype attribute without needing any
additional transformation. This is the case of the patient identifier,
analysis date, result date or gender of the patient.

In other cases, it was needed to define complex transforma-
tion rules. There is a mismatch between the existing data, shown
in Table 2, and the archetype data structure shown in Fig. 5. The
archetype defines a more extensive data set and thus, a direct map-
ping between the legacy data and the archetype is not enough to
complete all possible data elements of the archetype. As explained
before, the original SNOW system included a set of Drools rules

and functions to derive new information based on the existing one.
These rules were also implemented in the form of mappings to the
archetype. Fig. 7 shows an example of this kind of complex map-
ping implementing in Drools and LinkEHR the pseudocode of Fig. 1.
In this case, one single rule exists to derive the symptom group,
the subcategory and the infectious agent from the analysis type
identification. For example, the rule shown in Fig. 7 uses the “FEC-
ROTA” analysis type to generate the “Gastrointestinalt” symptom
group (gastrointestinal in English), the “virus” subcategory and the
“rotavirus” infectious agent. Note that, in the original system, this
last value is calculated by using an external java implementation.
This rule can be represented as a set of mappings, as shown in the
same figure. In this case, the mappings are assigned to three differ-
ent attributes of the archetype (symptom group, subcategory and
infectious agent). The condition to be evaluated in the three cases
is the same (to test if the analysis type is one of those of the prede-
fined list) and the mapping function defines the values to be taken
by the archetype attribute. In the case of the infectious agent, the
data transformation can be defined in the mapping itself, without
needing any external implementation. A similar work has to be
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Fig. 5. Archetypes defined to structure the tests request.

Fig. 6. Marshaled laboratory result.

done for every attribute of the archetypes which may have a data
value extracted from the original laboratory data.

The transformation of data also includes an aggregation pro-
cess. The original data from the LIS is a collection of results for
simple tests, i.e., there exist a different data instance for each test
performed to a single material, pertaining to the same laboratory
request for the same patient.

Since the archetypes define a nested structure focused on a sin-
gle patient, existing data has to be aggregated observing some rules.
A different COMPOSITION instance was generated for each patient

and laboratory request. Contained in it, an OBSERVATION instance
is created aggregating all simple tests done to the same material
into a CLUSTER called test battery. The test battery is thus com-
posed by the complete set of simple sets that are part of the same
laboratory request.

To generate the battery of simple tests inside the observation a
grouping is performed by patient municipality, gender, birth year,
registration date, material, requester id and requester. To perform
such operation the default grouping semantics of LinkEHR matched
our needs. This allows having all tests performed for one request
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Fig. 7. Mapping rules in Drools and LinkEHR formats.

Table 2
Description of laboratory test results fields.

Field Description

Id Internal unique identifier of the simple test.
Registration date The date the test order was issued by the GP.
Analysis date Data when the analysis was performed.
Result sent date Date when the result was issued.
Test requester Id Identifier of the entity requesting the test. GP

identifier or microbiology laboratory identifier.
Analysis name Complete name of the analysis. E.g.,

Nasopharynx–Rhinovirus RNA.
Analysis type Code identifying the type of analysis. E.g.,

VNX–RHP.
Original test result Test result issued by the laboratory without

any transformation.
Material The material of the sample to perform the test.
Requester municipality code Identifier of the municipality where the test

requester is settled.
Gender Gender of the patient.
Patient municipality code Identifier of the municipality where the

patient dwells.
Patient Id Identifier of the patient generated with a

hashing function.
Patient born year Year when the patient was born.

in one battery regardless of the entity ordering of those (GP or lab-
oratory staff). As a result, an openEHR instance for each patient is
created. It documents each of the requests performed, each con-
taining a battery of all the plain tests carried out related to it.

3.5. Data load

The data load is performed sequentially for each patient. Given a
patient id, his or her information is transformed and aggregated by
executing the transformation defined in the previous step, obtain-
ing an openEHR COMPOSITION data instance as a result. According
to the openEHR specifications, this instance should be embedded
into a proper openEHR EHR Extract message [47]. However, cur-
rent implementations of the openEHR architecture have preferred
the usage of simple serializations of the COMPOSITION instances
instead of using the extract model. It was found that the generated
COMPOSITION data instances slightly differed from the serializa-
tion accepted by the openEHR data warehouse in namespaces
and message wrapping, complicating the seamless interoperabil-
ity between systems. Therefore, preprocessing and reconciliation
had to be performed before submitting each instance to the data
warehouse.
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As a result of all the previous processes, data from LIS was
extracted, transformed and stored in openEHR format in an
openEHR-compliant database, ready to be queried using AQL. Such
queries can be defined dynamically performing rapid aggregations
creating data instances at different levels of abstraction accord-
ing with the needs of each use case. For example, the answer to
a request of a patient extract from an external EHR system would
only require querying the COMPOSITION whereas a query for health
quality measures would require defining a higher level of abstrac-
tion requiring counting and selection over a particular time frame.
As a proof of concept and evaluation of the developed platform, we
developed several use-case scenarios, which are described in the
next section.

4. Evaluation: Pertussis and Salmonella infection tests
monitoring

The evaluation of the developed platform was made through
the implementation of a case study focused in primary care testing
interventions accessibility for Pertussis and Salmonella.

Pertussis is an infection caused by the gram-negative bacterium
Bordetella pertussis. Norway, as other European countries, has suf-
fered a significant increase in the incidence of the disease since
1997 [48]. Testing for pertussis is recommended for cases with an
epidemiological link to a confirmed case, or in outbreak situations
[49]. To alter the clinical course of the disease the antimicrobial
treatment must be administered during the catharal stage (first 2
weeks).

Salmonella outbreak occurred in Norway mainly as a conse-
quence of infections when living abroad [50]. It usually appears
in located focus of infection which are required to be controlled.

We defined a set of indicators to allow any GP at any moment to
access the tendencies in Pertussis and Salmonella tests and cultures.
Thus, GPs can evaluate the eligibility of the test based in the tests
results and behavior of other practitioners.

4.1. Indicators

For Pertussis, three indicators have been implemented. One to
count the number of positive tests per day, a second one to monitor
the number of negative tests per day, and a third one to count the
total of tests performed for Pertussis. The implementation in AQL
of the indicators to plot the values for January the 4th 2013 are
presented in Table 3. The queries must be executed sequentially
for each day that needs to be monitored to generate the values that
form the evolution lines of positives, negatives and total number of
tests.

For Salmonella two indicators have been implemented. The
first one is an indicator to plot the number of positive cases for
Salmonella in a selected municipality in a given window of time.
For example, first row in Table 4 selects the number of positive
tested patients for the municipality coded with 1917 in the period
from January 1st to January 15th 2013. This indicator allows the
GP to evaluate the eligibility of a test for a patient depending on
the confirmed cases in his municipality. A second indicator for
Salmonella was implemented to monitor the evolution of positive
vs. total tests in the population. Second and third row of Table 4
depict the queries to implement the former indicator for August
the 20th 2013. This second query is executed for each day to plot
the evolution of positives vs. tested.

4.2. Performance

The performance was measured over an Intel Xenon 2.9 GHz
with 12 GB RAM memory. The extraction stage had to be evaluated
as an atomic operation for the full load of records from January 2013

to November 2014. Including caching and marshaling of all tests
records, the operation took an average of 36.544 s (95% confidence
interval [CI], 35.830–37.758).

The evaluation for the transformation and load stages was
carried out by randomly selecting a sample of 200 records
and performing the transformation and load. The average
transformation time to create an openEHR instances for one
patient id was 13.483 s (95% CI, 12.981–13.985). The average
load time for one openEHR instance into the archetype-based
repository, including format reconciliation, was 1.567 s (95% CI,
0.87–2.264).

The average response time for monitoring Pertussis for the
count queries defined in the previous section was 1.287 s (95%
CI, 1.227–1.347). The average time to execute the query to mon-
itor Salmonella per municipality took 2.419 s (95% CI, 2.326–2.512).
The count query to monitor of the ratio positives vs. tested for
Salmonella took 0.656 s (95% CI, 0.609–0.703).

5. Discussion

The components and tasks needed to build a DW environ-
ment have been presented and deployed for the primary care case
study described. The proposed environment takes advantage of the
available archetype-based technologies to perform each of the nec-
essary operations; i.e., modeling, extraction, transformation, load
and query.

5.1. Archetype-based data warehouse systems

Several studies have approached the reuse of clinical informa-
tion, some from the standardization and aggregation perspective
while others from the DW perspective. The pipeline presented
tries to take the advantages of both to allow generating standard
aggregated data sets for different purposes; e.g., indicators, clinical
research, quality measures, etc. These data can be queried using
an archetype query language such as AQL, be semantically inter-
operable with other openEHR-based systems or be integrated with
analytical or rule based systems that make use of archetypes, such
as the guideline definition language (GDL) proposed by Chen [51].
An advantage of the standard-based approach with respect to tradi-
tional DW is the modeling capabilities provided by EHR standards.
For example, what is modeled as a tree in an archetype would need
to be modelled as a complex snowflaked schema or OLAP cube in
a traditional DW. Such schema would need to re-model some RM
classes and relationships, disallowing interoperability and creating
a different information model from the one already used and vali-
dated by domain experts as archetypes. We also find that queries in
non EHR standard-based warehouses are performed at a database
schema level rather than at a clinical domain level. This compels
the user defining the query to have a detailed knowledge of the
underlying database. This limitation can be softened by using an
archetype-based data repository, since the same archetypes that
the clinicians model to represent the EHR information are used as
the interface to define queries. Moreover, since these queries are
based on an archetype definition and not on a particular database
implementation, they can be shared and executed in other systems
seamlessly.

5.2. Extraction, transformation and load process

A limitation related to the proposed infrastructure is the trans-
actional control at the ETL stages when comparing it to commercial
DW. A problematic load not rolled back would lead to inconsistent
inferences. The operations performed are long lasting executions
among stateless systems and therefore production systems need
to deal with global transactions. Whereas the presented proposal
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Table 3
Queries executed to monitor Pertussis to plot the values corresponding to the 4th of January 2013.

Pertussis monitoring

Count positive tests of
Pertussis for the day
specified in the
parameter (e.g.,
2013-01-04)

SELECT count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]) – – count (patient Id)
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro lab test.v1] and OBSERVATION
o2[openEHR-EHR-OBSERVATION.micro lab test.v1])
WHERE
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value=’Kikhoste’and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value=’Positiv’)
and o1/data[at0001]/events[at0002/data[at0003]/items[at0024]/value>=‘2013-01-04’ and
o1/data[at0001]/events[at0002/data[at0003]/items[at0024]/value<‘2013-01-05’

Count negative tests of
Pertussis for the day
specified in the
parameter (e.g.,
2013-01-04)

SELECT count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro lab test.v1] and OBSERVATION
o2[openEHR-EHR-OBSERVATION.micro lab test.v1])
WHERE
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value=’Kikhoste’and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value=’Negativ’)
and o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value>=‘2013-01-04’ and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value<‘2013-01-05’

Total tests of Pertussis
(in Norwegian
‘Kikhoste’) performed
for the day specified in
the parameter (e.g.,
2013-01-04)

SELECT count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro lab test.v1] and OBSERVATION
o2[openEHR-EHR-OBSERVATION.micro lab test.v1])
WHERE
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value=’Kikhoste’)
and o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value>=‘2013-01-04’ and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value<‘2013-01-05’

is more powerful in interoperability and integration, the use of
state of the art technologies makes it less robust in aspects as
transactional control of the ETL stages with respect to classic DW
environments.

In the transformation step, it has been shown how existing rules
were implemented as mappings defining the transformation of
existing data into openEHR-compliant data. Only one rule could
not be implemented. It defined that if it already exists a result for
the same test and the same patient in the last 90 days, the new
result is not processed. Since the transformation process is made

at an individual instance level each time, it is not possible to check
the historic information to apply this rule.

In comparison to approaches like [27,30], where fixed map-
pings are used to raise the level of abstraction, our approach
allows to perform specific purpose aggregations and views over
the openEHR platform at run-time with the query language. This
way it is intended to maximize flexibility and minimize mainte-
nance while, at the same time, promote control over the state of
the data set at any time to avoid problems of real time solutions;
e.g., experiments with non-reproducible results [23].

Table 4
Queries to implement the indicators for Salmonella.

Salmonella monitoring

Salmonella cases in the specified
municipality (same as patient just
confirmed) in the first 2 weeks of
January

SELECT count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]/value) – – count (patient Id)
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro lab test.v1] and OBSERVATION
o2[openEHR-EHR-OBSERVATION.micro lab test.v1])
WHERE
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value=’Salmonella’ and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value=’Positiv’) and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0020]/value=’1917’ and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value>=‘2013-01-01’ and
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value<‘2013-01-15’

Positives in the whole region to
plot evolution per day (#
abbreviates the path to the
CLUSTER)

SELECT
count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1#micro lab test and OBSERVATION o2#micro lab test)
WHERE
o1#battery/Simple test/infectious agent=’Salmonella’ and o1#battery/Simple test/test result=’Positiv’ and
o1#registration date>=’2013-01-01’ and o1#registration date<’2013-01-15’

Negatives in the whole region to
plot evolution per day (#
abbreviates the path to the
CLUSTER)

SELECT
count (o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1#micro lab test and OBSERVATION o2#micro lab test)
WHERE
o1#battery/Simple test/infectious agent=’Salmonella’ and o1#battery/Simple test/test result=’Negativ’ and
o1#registration date>=’2013-01-01’ and o1#registration date<’2013-01-15’
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With regards to the lack of implementation of the openEHR, EHR
extract potential issues in synchronization and version control can
arise when integrating several sources and deciding which entities
need to be updated. The adoption of such information model could
alleviate these situations by keeping track of the modifications of
entities wrapping them in “versioned objects”. The mismatch in the
XML serialization of COMPOSITIONs is another issue as can cause an
overload in the load stage, since format reconciliation can require
a big effort [52] and nullify the main advantages of implementing
EHR standards; i.e., interoperability.

5.3. Query process

In our approach, once data is transformed and stored in openEHR
format, AQL is used to aggregate data for each scenario. A first lim-
itation comes from the nature of AQL, as it is intended to query
the EHR rather than generate aggregated views for inference mod-
els. When a higher level of abstraction is required; for example, to
feed CDS or indicators that need to be based on queries, we found
that some needed features are not currently supported by the AQL
specification; e.g., subqueries, group by etc. A possible solution is to
move the queries to an ontological level and triplets-based query
languages like SPARQL [53]. While an ontological approach could
jeopardize structural interoperability among systems, some stud-
ies [54] have proposed techniques to convert archetypes into OWL
ontologies enabling SPARQL queries execution over their ontologi-
cal representation. However these transformations rely on complex
archetype to ontology mappings to preserve structural, entities
relationships and cardinality consistency. Research in the direction
of semi-automatic inference of knowledge models from archetypes
annotations and structure is needed if ontological reasoning over
archetypes instances is desired. A second limitation linked to AQL
is that the current specification is intended for openEHR environ-
ments hampering its use in other archetype-based standards such
as EN ISO 13,606. For example, the reference to the EHR entity in
the FROM clause cannot be implemented in EN ISO 13,606 environ-
ments as such entity is only part of the openEHR EHR information
model. Thirdly, since AQL is a query language designed to query
the EHR, it lacks data manipulation functionalities (insert, update,
delete etc.) as EHR data should not be manipulated without a strict
versioning control. For data reuse in research or CDS, manipula-
tion functions are needed to implement certain transformations
that cannot be performed at a transformation stage. An example is
the rule presented in the previous section where consideration of
historical data was needed.

We are aware that the annotation of the standard extracts with
clinical terminologies can allow to overcome some of the limita-
tions discussed. For example, the use of the terminology semantics
may enhance our query capabilities and enable inferences over
annotated concepts. However, this are challenges to explore as
future work.

5.4. Performance

The performance times show acceptable times for the caching
and marshalling stage with a mean of 36.544 s per month, specially
taking into account the amount of records loaded. The transforma-
tion times were also acceptable with 13.483 s on average to produce
an instance. This operation is a batch process and can be performed
without disrupting the production environment and therefore not
hampering the practitioners’ acceptance. Similarly the average load
time for each register (1.567 s) is acceptable to perform as a sched-
uled batch process. In regards to the query times for the use case
indicators we find times between 0.656 and 2.419 s. While queries
like those related to the monitoring of Pertussis have acceptable
execution times, considering that speed is one of the crucial factors

for the success of CDS [55], we believe that long lasting queries
like the monitoring of Salmonella need improvement. A feasible
cause and limitation of our system is that we were operating the
openEHR platform under the minimum specifications of memory
recommended in production environments. Improvement of per-
formance times remains as future work.

5.5. Comparison with other data reuse environments

Recently, DW infrastructures for reuse of information have been
proposed [56–58]. However, to the best of the authors’ knowl-
edge, these systems were to be used inside one organization and
not based in clinical information architecture standards. For exam-
ple, Hu et al. [56] relied on ontologies and clinical terminologies
as SNOMED-CT to model clinical concepts. This is useful when the
structure of the concept is known inside one organization but might
be inaccurate for data reuse across several organizations or lev-
els of the health care system, since the structure of information
is unknown. The SHARPn consortium [33] approaches that chal-
lenge defining a powerful data reuse pipeline which normalizes to
clinical element models. This solution counts on natural language
processing tools and data transfer verification mechanisms that
our proposal lacks. However, a drawback of such platform with
respect to ours is that, once data is normalized, it is stored in a
relational or documental DB. This forces queries to be performed
over nonstandard persistence platforms. Besides, when SHARPn
queries are specified in a standard for quality measures (HQMF)
an ad-hoc transformation needs to be done to the particular query
format of the repository that stores the extracts. This can lead to
the misinterpretation of the underlying semantics when aggrega-
tions are performed, since the persistence schema differs from the
information standard schema.

Another highly related work is the informatics for integrating
biology and the bedside system (i2b2) [59], a clinical research
analytics platform gaining momentum in the US. Its architecture
provides a set of components that cover from project management
and natural language processing to ontology management and cor-
relation analysis. However, it relies in a relational data model not
directly compliant with EHR interoperability standards, with the
limitations we have discussed in previous paragraphs. We envision
a combination of i2b2 infrastructure with ours, where i2b2 is used
as intra-organization solution taking advantage of its components
for de-identification, data cleaning, NPL etc and its data model is
mapped to our infrastructure, thus allowing the combination with
other archetype-based data sources and where AQL can be used to
perform queries.

6. Conclusion

Achieving an efficient reuse of clinical data is a must to guarantee
the future of clinical research and CDS. This work contributes by
proposing a DW environment based on EHR standards to allow the
interoperability, agile aggregation of data sets, and reuse of data
in different scenarios; e.g., clinical research, CDS, surveillance etc.
This paper has described the technologies and steps necessary to
allow the modeling, transformation, integration, standardization
and aggregation of the data flowing from the EHR to reuse it. The
integration and standardization are carried out in the ETL stages
with mapping over archetypes. The aggregation for particular reuse
scenarios is performed at a warehouse level to allow a maximum
adaptability to the different reuse scenarios without need to disrupt
the ETL infrastructure.

Archetype based technologies and standards are mature enough
to be combined into a pipeline that allows applying transformation
and aggregation functions to proprietary data to standardize it and,
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later, query it at an EHR level regardless the underlying technolo-
gies. Inference models in clinical research and CDS can benefit from
this by defining queries to fetch the data sets needed. Moreover, the
standard nature of the information model allows an easy integra-
tion with new systems to allow the DW dataset grow in an ordered
manner.

When working with health information we find that the mod-
eling usually needs to be performed with domain experts thinking
both in the architecture and semantics of information. Therefore,
for clinical ETL environments it may be recommendable to treat
information modeling as a separate stage, thus redefining the ETL
process into a METL (modeling, extraction, transformation and
load). That would mean recognizing the importance of clinical
information modeling processes, not only for routine health care
delivery but also for clinical data reuse.
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