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Abstract	
	

The	current	vision	of	healthcare	is	evolving	in	directions	towards	the	secondary	use	of	

health	data	for	producing	new	evidence,	rapidly	assimilating	new	knowledge,	including	

the	patient	as	an	active	component	 in	decision-making	and	developing	communication	

strategies	to	coordinate	different	areas	of	health	care,	among	others.	The	work	in	these	

directions	heavily	relies	on	the	appropriate	use	of	different	 technologies.	Among	these	

technologies,	Clinical	Decision	Support	Systems	(CDSS)	implement	validated	evidence	as	

computable	artifacts	that	enable	access	to	medical	knowledge	at	the	point	in	time	when	

it	 is	 needed	 to	make	 a	 decision	 about	 a	 person’s	 health.	 During	 the	 last	 two	 decades	

CDSS	standards	and	technologies	have	progressed	significantly	to	develop	them	as	more	

robust	 and	 scalable	 systems.	 However,	 the	 current	 context	 of	 medicine	 sets	 high	

demands	in	aspects	such	as	interoperability	to	enable	the	use	of	EHR	data	in	CDSS,	the	

need	 to	 establish	 communication	 challenges	 to	 include	 the	 patient	 as	 an	 active	

component	 in	 decision	 making,	 collaborative	 learning	 and	 sharing	 CDSS	 across	

institutional	borders,	to	name	a	few.	

In	 this	 thesis	 I	 tackle	 some	 of	 these	 challenges.	 In	 particular,	 I	 evolve	 previous	

conceptual	 computerized	 decision	 support	 frameworks	 and	 I	 postulate	 a	 CDSS	

environment	where	different	models	interact	to	enable:	

• Secondary	use	of	data	for	CDSS:	The	dissertation	presents	a	model	to	leverage	

different	 developments	 in	 data	 access	 and	 standardization	 of	 medical	

information.		The	result	is	an	openEHR-based	Data	Warehouse	architecture	that	

enables	 access,	 standardization	 and	 abstraction	 of	 clinical	 data	 for	 CDSS.	 The	

architecture	allows:	a)	 to	access	heterogeneous	data	sources;	b)	 to	standardize	

data	 into	 openEHR	 to	 grant	 interoperability	 of	 data;	 and	 c)	 to	 exploit	 an	

openEHR	 repository	 as	 a	 Data	 Warehouse	 that	 allows	 querying	 data	 in	 a	

technology-independent	format	(the	Archetype	Query	Language).	

• CDSS	 semantic	 specification:	 The	 semantic	 model	 proposed	 exploits	 the	

paradigm	 of	 Linked	 Services	 to	 unambiguously	 describe	 CDSS	 in	 a	 machine-

understandable	 fashion.	This	grants	ontological	descriptions	of	 functional,	non-

functional	and	data	semantics.	These	descriptions	facilitate	to	overcome	some	of	

the	 barriers	 in	 CDS	 functionality	 sharing.	 In	 particular,	 the	 semantic	 model	

proposed	 allows	 using	 expressive	 queries	 to	 discover	 CDS	 services	 in	 health	
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networks,	and	analyzing	CDSS	interfaces	to	understand	how	to	interoperate	with	

them.	

• Effective	 patient-CDSS	 interaction:	 the	 dissertation	 proposes	 a	 method	 to	

evaluate	 the	 communication	 process	 between	 patients	 and	 consumer-oriented	

CDSS.		The	method	aims	for	detecting	if	important	human-computer	interaction	

barriers	 that	 could	 lead	 to	 negative	 outcomes	 are	 present	 in	 CDSS	 user	

interfaces.	

	

The	methods	and	developments	presented	are	framed	in	the	context	of	the	CDSS	er	du	

syk.	Er	du	syk	(in	English,	are	you	ill)	 is	a	symptom	checker	that	allows	users	to	record	

data	 regarding	 their	 symptoms	 and	 demography.	 These	 data	 are	 combined	 with	

epidemiology	 information	 from	 regional	 Laboratory	 Information	 Systems	 to	 provide	

patients	a	list	with	the	likelihoods	of	the	diseases	that	may	be	affecting	them.	
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1.	Introduction	
	

Summary:	This	chapter	presents	the	introduction	to	the	dissertation.	First,	 it	provides	an	overview	

of	 the	 challenges	 that	 Evidence	 Based	 Medicine	 is	 currently	 facing	 and	 how	 the	 concept	 of	 the	

Learning	 Healthcare	 System	 aims	 to	 approach	 these	 challenges.	 Secondly,	 it	 introduces	 the	

requirements	 that	 Clinical	 Decision	 Support	 Systems	 need	 to	 fulfill	 to	 become	 effective	 tools	 to	

enable	 agile	 knowledge	 assimilation	 in	 the	 Learning	 Healthcare	 System.	 Thirdly,	 the	 chapter	

introduces	 the	hypothesis	and	objectives	 to	 fulfill	 the	requirements	presented.	Finally,	 the	chapter	

explains	how	this	dissertation	is	organized.	

	

1.1.	The	Learning	Healthcare	System	
Healthcare	 sector	 in	 western	 economies	 is	 currently	 facing	 several	 challenges	 both	

externally	and	internally[1–4].	The	main	external	challenges	are	[1,5]:		

• Increasing	aging	population	that	needs	assistance	not	only	for	health	but	also	in	

their	 daily	 life.	 For	 example,	many	 citizens	 that	 nowadays	 suffer	 a	 stroke	will	

survive	from	it	but	will	need	assistance	on	a	daily	basis	[1].	

• Lack	of	enough	workforces	to	cover	all	healthcare	and	social	care	needs.	At	the	

moment,	while	 the	demand	of	workforce	 to	perform	caring	 tasks	 is	 increasing;	

the	availability	of	it	in	many	European	countries	is	diminishing	[1,5].	

• Insufficient	coordination	of	the	different	services	involved	in	people	care	such	as	

healthcare	services,	social	services	and	others	to	provide	integrated	care	for,	for	

example,	old	citizens	living	with	chronic	conditions	or	multi-morbidities	[1].		

The	 internal	 factors	are	related	 to	 the	 limitations	of	 the	current	operation	of	Evidence	

Based	Medicine	(EBM)	that	translates	to	difficulties	in	providing	the	best	care	available.	

Main	internal	challenges	are	[3,4]:	

• Assimilation	 of	 the	 evidence	 produced.	 Two	 factors	 are	 determinant	 for	 this	

challenge.	The	 first	one	 is	 that	 currently	 there	 is	a	 time	 lapse	of	 circa	17	years	

since	new	knowledge	is	produced	until	 that	knowledge	is	applied	in	healthcare	

[6–8].	 The	 second	 one	 is	 that	 the	 amount	 of	 evidence	 growing	 in	 real	 time	 is	

overwhelming	and	it	is	nearly	impossible	for	health	professionals	to	keep	up	to	

date	[9].	
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• Reductionism	in	the	scientific	method.	EBM	does	not	deal	with	the	complexity	of	

medical	 cases	 [10].	 	 EBM	 guidelines	 are	 often	 restricted	 to	 a	 narrow	 group	 of	

patients	with	only	one	condition.	As	a	consequence,	EBM	is	today	practiced	as	a	

set	 of	 rather	 inflexible	 rules.	 In	 some	 cases,	 these	 rules	 are	 influenced	 by	

management	decisions	rather	than	patient	needs,	thus	hampering	the	treatment	

of	complex	cases	(e.g.	patients	with	multimorbidity)	[4].	

	
• Inclusion	of	the	patient	as	decision	maker.	Patients	should	feel	empowered	and	

demand	evidence	that	is	explained	to	them	and	personalized	to	their	case	[3,4].	

The	 most	 efficient	 treatment	 for	 a	 patient	 may	 be	 one	 that	 causes	 secondary	

effects	 that	 disturb	 his	 life.	 However	 patients	 may	 prefer	 to	 find	 a	 balance	

between	 condition	 control	 and	 quality	 of	 life.	 For	 example,	 a	 patient	 with	

hypertension	 may	 prefer	 a	 less	 effective	 treatment	 that	 does	 not	 produce	

impotence.	

• Consideration	of	 tacit	knowledge.	EBM	relies	 in	public	evidence	to	decide	what	

are	 the	 best	 interventions.	 However,	 it	 neglects	 the	 evidence	 that	 each	

professional	 develops	 over	 the	 years	 of	 practice	 [3]	 and	 the	 experience	 and	

knowledge	that	each	patient	has	about	his/her	own	condition.	

Internal	 limitations	 show	 that	 EBM	 still	 needs	 to,	 first,	 demonstrate	 that	 it	 improves	

patient	 outcomes	 and,	 second,	 develop	 an	 appropriate	 theoretical	 framework	 for	

effective	 problem	 solving	 [3].	 	 Several	 studies	 have	 proposed	 directions	 to	 overcome	

these	challenges	[4,5].	Some	studies	put	a	stronger	focus	on	the	need	to	grant	the	patient	

an	 active	 role	 in	 decision	making	 and	 designing	 public	 health	 interventions	 [4];	while	

other	 studies	 put	 a	 stronger	 focus	 on	 the	 need	 for	 enabling	 the	 development	 of	 new	

evidence,	 the	 rapid	 assimilation	 of	 it,	 and	 accelerating	 the	 adoption	 of	 that	 evidence	

when	delivering	healthcare	 [5].	These	 two	visions	are	well	balanced	 in	 the	proposal	 to	

redesign	biomedical	research	and	healthcare	delivery	proposed	by	the	IOM	Roundtable	

on	Evidence-Based	Medicine	 in	2007.	The	IOM	Roundtable	proposed	to	evolve	current	

healthcare	 into	 the	 so-called	 Learning	 Healthcare	 System	 (LHS)[2].	 The	 LHS	 defines	

explicit	directions	of	work	to	overcome	EBM	challenges,	evolving	EBM	into	a	paradigm	

where	 the	 healthcare	 system	 uses	 clinical	 data	 to	 produce	 new	 evidence,	 rapidly	

assimilates	and	provides	access	to	that	evidence	and	where	the	patient	is	considered	an	

active	component	in	decision	making	[2].	Work	towards	the	LHS	involves	political,	legal	

and	organizational	processes	redefinition,	but	also	relies	heavily	on	the	appropriate	use	

of	technology	as	enabler	of	the	changes	needed	[1,5,11].	
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On	 the	 technology	 side,	 overcoming	 current	 health	 challenges	 requires	 to	 work	 in	

different	parallel	tracks.	These	tracks	aim	for	[1,5]:	a)	facilitating	secondary	use	of	data	

to	generate	new	knowledge;	b)	implementing	that	knowledge	to	exploit	latest	evidence	

at	 several	 levels	 (patients,	 citizens	 and	 populations);	 c)	 establishing	 communication	

channels	 that	 include	patients	to	make	them	active	participants	 in	decision	making;	d)	

providing	 the	 tools	 for	 communication	 across	 different	 health	 services.	 	 Technology	

must	 allow	 to	 inter-communicate	 Health	 Information	 Systems1	(HIS)	 and	 actors,	 thus	

allowing	 for	 exploiting	 highly	 contextualized	 information.	 That	 requires	 research	 in	

standardization,	terminologies	and	usability,	governance	and	practitioner	identification,	

among	others	[1].		

All	 these	directions	of	work	have	as	a	 final	goal	 to	exploit	data	 from	different	views	to	

generate	 knowledge	 that	 will,	 in	 the	 end,	 improve	 patients’	 health.	 	 For	 health	

professionals	to	be	able	to	use	new	knowledge	in	an	effective	way,	that	knowledge	must	

be	provided	in	the	appropriate	context,	at	the	exact	time	when	it	is	needed	[12].		Among	

the	different	HIS	that	interact	to	support	health	services,	the	explicit	implementation	of	

computable	 knowledge	 accessible	 at	 the	 point	 of	 care	 is	 covered	 by	 Clinical	 Decision	

Support	Systems	(CDSS)2.	Typically	CDSS	are	considered	as	tools	that	support	clinicians,	

but	the	 inclusion	of	the	patient	as	an	active	component	 in	decision	making	is	changing	

that	 perception	 [1,2].	 Considering	 this	 scenario,	 CDSS	 can	 be	 defined	 as	 computer	

systems	 designed	 to	 support	 decision	making	 about	 a	 person’s	 health	 at	 the	 point	 in	

time	when	that	decision	is	made.		

1.2.	Clinical	Decision	Support	in	the	Learning	Healthcare	System	
Enabling	Clinical	Decision	Support	 (CDS)	 involves	major	 legal,	political,	organizational,	

privacy	 and	 technical	 challenges	 [13,14].	 CDSS	have	 typically	been	embedded	 into	 the	

Electronic	Health	Record	(EHR).	However,	 in	order	to	be	an	efficient	 tool	 that	helps	to	

overcome	the	challenges	presented,	CDSS	need	to	become	more	flexible	platforms	that	

operate	 across	 different	 EHRs	 by	 sharing	 knowledge	 implementations	 [13–16]	 and	

bringing	knowledge	 into	practice.	Furthermore,	new	knowledge	must	be	provided	not	

only	for	clinicians	but	also	for	citizens	[2].	In	this	context,	CDSS	researchers	have	a	path	

to	walk	for	allowing	CDSS	to	become	effective	systems	that	provide	support	for	the	LHS.	

In	 particular,	 this	 has	 implications	 for	 their	 interfaces	 of	 communication	 with	 both	

systems	and	users.	In	order	to	reliably	provide	improvements	to	patient’s	health,	there	

																																								 																					
1	Health	 Information	 System	 is	 the	 generic	 term	 to	 encompass	 any	 system	 that	 processes,	 stores	 or	 manages	 health	
information.	Examples	are	Electronic	Health	Records,	Laboratory	Information	Systems,	Radiology	Information	Systems,	
Clinical	Decision	Support	Systems	etc.	
2	In	this	dissertation	the	term	CDSS	refers	to	computerized	CDSS.	
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must	exist	a	smooth	communication	among	the	actors	and	technologies	involved	in	CDS.	

As	 the	 IOM	 points,	 while	 healthcare	 is	 often	 seen	 as	 a	 data	 problem,	 it	 is	 in	 fact	 a	

communication	 problem	 among	 many	 systems	 and	 actors,	 including	 the	 patient	 [2].	

CDSS,	 as	 a	 part	 of	 the	 health	 information	 infrastructure,	 are	 no	 exception	 to	 this.	

Therefore	an	appropriate	computational	 framework	must	be	established	 to	design	 the	

mechanisms	 that	will	allow	the	communication	among	 the	different	actors	 involved	 in	

decision	making.	A	recent	review	of	Budrionis	and	Bellika	shows	that	three	directions	of	

work	are	currently	involved	in	the	LHS	implementation[17]:	1)	secondary	use	of	data;	2)	

patient	 reported	outcomes;	 and	3)	 collaborative	 learning.	 These	 three	directions	have	

direct	 influence	on	 the	 requirements	needed	 to	 implement	CDS	 in	 a	 LHS	environment	

that	are	only	partially	covered	by	previous	CDS	frameworks	[18].	This	dissertation	aims	

to	tackle	three	of	the	main	challenges	that	directly	affect	CDS	in	the	LHS:	

• Challenge:	Regarding	secondary	use	of	data,	 its	 influence	on	CDSS	comes	 from	

the	need	of	binding	data	stored	in	the	EHR	to	decision	algorithms.	The	concepts	

referenced	 from	 inference	 models	 are	 often	 abstractions	 (e.g.	 high	 blood	

pressure)	derived	from	raw	EHR	data	(e.g.	systolic	158	mm	Hg,	diastolic	95	mm	

Hg)	that	may	be	stored	in	heterogeneous	data	sources.	Nowadays	there	is	a	large	

availability	of	decision	algorithms	 that	are	constantly	adapted	and	retrained	 to	

implement	new	knowledge	or	 infer	 it	 from	data	sets	[19–21].	 	Previous	studies	

have	 covered	 the	 problem	 of	 abstracting	 data	 by	 using	 a	 standard	 Virtual	

Medical	 Record	 (VMR)[22–25].	 However	 the	 connection	 of	 the	 VMR	 with	 the	

EHR	 has	 often	 been	 performed	 as	 ad-hoc	 queries	 to	 a	 single	 source.	 The	 data	

sources	may	be	distributed	or	 they	may	 require	 applying	privacy	preservation	

techniques.	 Moreover	 abstraction	 mechanisms	 are	 usually	 coupled	 with	 one	

technology.	 This	 introduces	 a	 problem	 of	 re-implementing	 abstraction	

queries/mappings	 if	 the	 technology	 changes,	 which	 for	 environments	 where	

algorithms	are	in	continuous	evolution	represents	an	important	burden.	

Requirement	 for	 data	 perception	 (R1):	 There	 is	 a	 need	 for	 dynamic	

architectures	 that	 allow	 access	 to	 heterogeneous	 data	 sources,	 transform	 the	

data	 accessed	 into	 a	 common	 standard	 and	 provide	 technology	 independent	

abstraction	mechanisms	[26–28].		

	

• Challenge:	 Collaborative	 learning	 is	 a	 rather	 unexplored	 field.	 Budrionis	 and	

Bellika	 only	 identified	 one	 paper	 related	 to	 it	 discussing	 the	 benefits	 of	

interchange	 of	 historical	 information	 and	 experiences	 about	 practice.	When	 it	



	 5	

comes	 to	 the	 CDS	 arena,	 collaborative	 learning	 is	 needed	 in	 the	 elicitation	 of	

clinical	 knowledge	 that	 is	 used	 to	 implement	 CDS	 artifacts	 [29].	 That	 is	 a	

complex	and	resources	demanding	process	that	requires	multidisciplinary	teams	

making	 the	 CDSS	 development	 costs	 very	 high	 [29–32].	 Thus,	 sharing	 CDS	

artifacts	 is	adequate	 in	order	 to	avoid	duplicating	costs	 in	CDSS	developments.	

Sharing	knowledge	in	the	form	of	computational	artifacts	has	been	an	aspiration	

of	 CDS	 research	 for	 a	 long	 time	 [15]	 since	 it	 is	 the	 way	 towards	 the	 broad	

adoption	of	CDSS	 [13][29].	 Sharing	CDS	 functionality	 requires	methods	 for	 the	

interoperation	of	clinical	information	across	HIS	[33],	but	also	the	interoperation	

of	other	CDSS	properties	so	professionals	can	assess	the	reliability	and	validity	

of	 the	 CDSS.	 This	 involves	 the	 specification	 of	 properties	 such	 as	 which	

organization	 issued	 the	 CDS	 artifact,	 when	 it	 was	 issued,	 which	 literature	

supports	 its	 algorithm	 etc.	 For	 these	 properties	 to	 be	 interpreted	 across	

organizations	they	cannot	be	only	human	interpretable,	but	they	also	need	to	be	

machine	computable	[34].	

Requirement	 for	 semantic	 description	 (R2):	 CDSS	 functionality,	 Knowledge	

Management	 (KM)	 properties	 and	 data	 interfaces	 need	 to	 be	 unambiguously	

specified	in	a	way	that	allows	the	alignment	of	different	formats.	Therefore	CDSS	

interfaces	and	properties	need	to	be	specified	in	common	machine-interpretable	

formats	 that	 allow	 computers	 processing	 equivalence,	 subsumption	 and	 other	

types	of	semantic	relationships	among	concepts.	

	
• Challenge:	The	provision	of	outcomes	by	the	patient	involves	the	inclusion	of	a	

new	actor	(the	patient)	who	provides	valuable	data	for	decision-making	[1,2,17].	

This	 is	 a	 source	of	 information	 that	may	help	 to	personalize	health	but	 also	 to	

enhance	 decision	 making	 quality	 [17].	 For	 data	 to	 be	 used	 by	 decision	

algorithms,	 it	 must	 be	 reliably	 gathered	 and	 formalized	 in	 terms	 of	 clinical	

information	standards	and	terminologies	[33].	However,	the	patient	needs	to	be	

able	to	interpret	medical	concepts	to	report	his	data.	This	introduces	a	problem	

of	Human	Computer	Interaction	(HCI)	between	the	patient	and	the	CDSS.	

Requirement	 for	 human-computer	 perception	 (R3):	 when	 patients	

communicate	 their	health	data,	methods	that	guarantee	that	 the	patient	 is	able	

to	accurately	record	his	health	status	are	needed.	This	involves	the	evaluation	of	

CDSS	Graphical	User	Interfaces	(GUIs)	to	ensure	that	the	communication	process	

is	successful.	
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1.3.	Hypothesis	
1. Regarding	 the	 first	 requirement	 (R1),	 data	warehousing	methodologies	 can	 be	

combined	with	EHR	 information	standards	 to	define	an	architecture	 that	enables	 the	

integration,	standardization	and	abstraction	of	data	 for	 its	use	 in	CDSS.	 If	used	 in	the	

appropriate	way,	 that	architecture	can	provide	access	 to	heterogeneous	data	sources	

and	abstraction	mechanisms	based	on	clinical	information	standards.	

	
2. Regarding	 the	 second	 requirement	 (R2),	 the	 Linked	 Services	 paradigm,	 i.e	 .	

Semantic	 Web	 Services	 (SWS)	 that	 exploit	 Linked	 Data	 principles,	 can	 be	 used	 to	

produce	 semantic	 descriptions	 of	 CDSS	 to	 enable	 their	 publication,	 discovery	 and	

analysis	based	on	machine-interpretable	ontological	descriptions.	

	

3. Regarding	the	third	requirement	(R3),	usability	techniques	can	be	appropriately	

leveraged	to	evaluate	consumer	oriented	CDSS,	thus	detecting	usability	problems	that	

may	lead	to	incorrect	advise.		

	

1.4.	Objectives	
With	 the	 objective	 of	 overcoming	 the	 challenges	 presented	 in	 the	 previous	 sections,	

firstly,	I	build	on	the	models	proposed	by	Rector	et	al.[35,36]	and	Sheth	et	al.	[37,38]	to	

define	 a	 CDS	 framework	 encompassing	 the	3	 computational	models	 that	 illustrate	 the	

hypothesis	 presented.	 The	 framework,	 depicted	 in	 Figure	 1,	 represents	 a	 CDSS	

deployment	framework	with	an	algorithm	on	its	core	(pink	circle),	and	defines	semantic	

and	 perception	 mechanisms	 to	 generate	 CDS	 outcomes.	 Secondly,	 I	 develop	 specific	

models	to	enable	the	implementation	of	such	framework	in	openEHR	environments	by	

developing:	

1-A	data	 perception	model	 that	enables	 the	secondary	use	of	health	data	 for	CDS	by	

allowing	the	integration	of	disparate	data	sources,	contextualizing	it	with	an	information	

standard	 (openEHR)	 and	 allowing	 performing	 abstractions	 through	 standard	 queries	

(represented	by	the	arrow	on	the	top	of	the	yellow	circle).	

2-A	semantic	model	(orange	circle)	that	allows	the	publication,	search	and	analysis	of	

CDSS	based	on	linked	data	principles.	This	way	CDSS	can	be	discovered	and	analyzed	by	

different	organizations	regardless	of	 the	standards	used	 in	 their	 implementation.	Thus	

opening	the	door	for	sharing	CDSS	distributed	across	different	organizations.	
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3-A	human-computer	perception	model	 so	CDS	GUIs	can	be	evaluated	to	detect	HCI	

barriers	 that	may	 lead	 to	 negative	 outcomes	 (represented	 by	 the	 cloud	 in	 the	 yellow	

circle).	

	

Figure	1.	CDS	Computational	models	overview.	

	

1.5.	Dissemination	and	exploration	
During	my	PhD	I	have	published	the	different	results	of	my	research.	Following	there	is	

a	list	with	the	different	communications	I	have	authored.	

1.5.1.	Journal	papers	
	

• PAPER	1:	Marco-Ruiz	L,	Moner	D,	Maldonado	JA,	Kolstrup	N,	Bellika	 JG.	Archetype-

based	data	warehouse	environment	to	enable	the	reuse	of	electronic	health	record	data.	

International	Journal	of	Medical	Informatics.	2015	Sep;84(9):702–14.	(Published)	

My	 contribution:	 I	 had	 the	 original	 idea	 to	 define	 a	 method	 for	 building	

archetype-based	Data	Warehouses	 (DW).	 I	 led	 the	 study	 and	 developed	 the	

RESTful	micro-services	architecture	to	create	an	openEHR	DW.	I	also	led	the	

drafting	of	the	manuscript.	
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EHR
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HCI
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extract	

Patient	
data	extract	 Biomedical	

ontologies

Functional	
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• PAPER	 2:	Marco-Ruiz	 L,	 Pedrinaci	 C,	Maldonado	 JA,	 Panziera	 L,	 Chen	R,	Bellika	 JG.	

Publication,	 discovery	 and	 interoperability	 of	 Clinical	 Decision	 Support	 Systems:	 A	

Linked	 Data	 approach.	 Journal	 of	 Biomedical	 Informatics.	 2016	 Aug;62:243–64.	

(Published)	

My	 contribution:	 I	 had	 the	 original	 idea	 and	 I	 led	 the	 developments	 and	 the	

drafting	 of	 the	 manuscript.	 I	 developed	 the	 ontologies	 for	 CDSS	 semantic	

specification	and	deployed	the	infrastructure	for	the	use	case.	

	
	
• PAPER	3:	Marco-Ruiz	L.,	Bønes	E.,	de	la	Asunción	E.,	Gabarrón	E.,	Avilés-Solis	J.C.,	Lee	

E.,	 Traver	 V.,	 Sato	K,	 Bellika	 J.G.	 Combining	Multivariate	 Statistics	 and	 Think	Aloud	 to	

Asses	 Human-Computer	 interaction	 barriers	 in	 Symptom	 Checkers.	 (Submitted	 to	 the	

Journal	of	Biomedical	Informatics)	

My	Contribution:	I	had	the	original	idea	and	I	led	the	developments	and	drafting	

of	the	manuscript.	 I	performed	the	statistical	analysis	and	led	the	qualitative	

analysis	stage.	

	

1.5.2.	Conference	papers	
• PAPER	 4:	 Marco-Ruiz	 L,	 Maldonado	 JA,	 Traver	 V,	 Karlsen	 R,	 Bellika	 JG.	 Meta-

architecture	 for	 the	 interoperability	 and	 knowledge	 management	 of	 archetype-based	

clinical	 decision	 support	 systems.	 In:	 2014	 IEEE-EMBS	 International	 Conference	 on	

Biomedical	and	Health	Informatics	(BHI).	2014.	p.	517–21(published)	

My	 Contribution:	 I	 had	 the	 original	 idea	 and	 I	 defined	 the	 architecture	

described.	 In	 addition,	 I	 led	 the	 developments	 and	 drafting	 of	 the	

manuscript.	

• PAPER	 5:	 Marco-Ruiz	 L,	 Maldonado	 JA,	 Karlsen	 R,	 Bellika	 JG.	 Multidisciplinary	

Modelling	of	Symptoms	and	Signs	with	Archetypes	and	SNOMED-CT	for	Clinical	Decision	

Support.	Studies	in	health	technology	and	informatics.	2014;210:125–129.	(published)	

My	Contribution:	I	had	the	original	idea,	I	led	the	modeling	tasks	and	drafted	

the	manuscript.	I	defined	a	project	in	the	National	CKM	and	coordinated	the	

review	process	where	different	clinical	reviewers	participated.	I	modeled	the	

ontology	presented.	
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• PAPER	 6:	 Marco-Ruiz	 L,	 Budrionis	 A,	 Yigzaw	 KYY,	 Bellika	 JG.	 Interoperability	

Mechanisms	of	Clinical	Decision	Support	Systems:	A	Systematic	Review.	In:	Proceedings	

from	 The	 14th	 Scandinavian	 Conference	 on	 Health	 Informatics	 2016,	 Gothenburg,	

Sweden,	 April	 6-7	 2016	 [Internet].	 Linköping	 University	 Electronic	 Press;	 2016	 [cited	

2016	 Jun	 3].	 p.	 13–21.	 Available	 from:	

http://www.ep.liu.se/ecp/article.asp?issue=122&article=003	(Published)	

My	Contribution:	I	had	the	original	idea,	performed	the	literature	review	and	

drafted	the	manuscript.	

	

1.5.3.	Other	communications	
In	 addition	 to	 the	 publications	 in	 scientific	 journals	 and	 conferences	 during	my	PhD	 I	

have	also	participated	in	several	tutorials	and	communications.	In	2014	I	organized	the	

first	 Arctic	 Conference	 on	 Dual-Model	 based	 Clinical	 Decision	 Support	 and	 Knowledge	

Management	where	the	majority	of	openEHR	vendors	and	researcher	met	in	Tromsø	to	

explain	 they	 latest	 developments	 and	 challenges.	 At	 Medinfo	 2015,	 I	 organized	 the	

tutorial	Enabling	Clinical	Data	Reuse	with	openEHR	Data	Warehouse	Environments	about	

the	data	perception	methodology	presented	in	chapter	4	[39].	In	the	same	conference	I	

participated	as	 speaker	at	 the	 tutorial	Design	and	Implementation	of	Clinical	Databases	

with	 openEHR	 [40].	 In	 addition,	 I	 am	 the	main	 editor	 of	 www.thedatavineyard.com,	 a	

personal	blog	where	I	discuss	the	topics	related	to	my	research	in	medical	 informatics	

with	 other	 colleagues.	 I	 use	 it	 to	 extend	 certain	 topics	 of	 interest	 that	 cannot	 be	 fully	

covered	 in	papers	or	 that	 require	special	attention.	The	blog	 intends	also	 to	provide	a	

space	 for	presenting	 the	 importance	of	medical	 informatics	 to	 the	 general	public	with	

simple	examples	and	interviews	to	my	co-authors.	

1.6.	Research	Context	
I	 carried	 out	my	 thesis	 as	 part	 of	 the	Norwegian	 Centre	 for	 e-Health	 Research	 (NSE),	

previously	 the	 Norwegian	 Centre	 for	 Integrated	 Care	 and	 Telemedicine.	 Helse	 Nord	

funded	my	PhD	under	the	grant	HST1121-13.	My	PhD	was	attached	to	the	PhD	program	

offered	 at	 the	 Faculty	 of	Health	 Sciences	 belonging	 to	 the	University	 of	 Tromsø	 -	 The	

Arctic	University	of	Norway.	My	PhD	started	on	September	2013	and	during	 its	 time	 I	

have	collaborated	with	different	organizations	in	both	academia	and	industry.	

ITACA/UPV	 (Spain):	 Dr.	 J.	 Alberto	 Maldonado	 and	 Dr.	 Vicente	 Traver	 were	 my	 co-

supervisors.	Both	belong	 to	 the	 ITACA	 institute	at	Universidad	Politécnica	de	Valencia	
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where	 I	 have	 spent	 several	 periods	 as	 visiting	 researcher.	 Our	 collaboration	 provided	

me	 important	 feedback	 and	 led	 to	 the	 publication	 of	 several	 scientific	 papers.	

Additionally,	 David	 Moner	 from	 the	 ITACA	 institute	 visited	 NSE	 in	 2014,	 providing	

important	advise	 in	openEHR	data	 transformation,	which	was	used	 for	 transformation	

stage	of	the	Archetype-based	DW,	presented.	

Knowledge	 Media	 Institute/The	 Open	 University	 (UK):	 I	 spent	 3	 months	 in	 a	

research	stay	at	the	Knowledge	Media	Institute	(The	Open	University)	in	Milton	Keynes.	

During	my	 time	 there	 I	 developed	 the	method	 for	 the	 application	 of	 SWS	 and	 Linked	

Data	to	CDSS.	Dr.	Carlos	Pedrinaci	supervised	my	work	and	helped	me	to	get	immersed	

in	the	field	of	Semantic	Web	technologies.	

Marand	 d.o.o.	 (Slovenia):	 The	 company	Marand	 provided	me	 with	 the	 technologies	

needed	 for	 openEHR	 persistence.	 Additionally,	 I	 have	 regularly	 shared	 opinions	 and	

views	with	Fabian	Borut	and	Bostjan	Lah	about	different	health	informatics	topics	that	

have	significantly	enriched	my	work.		

Cambio	 Healthcare	 Systems	 (Sweden):	 Cambio	 Healthcare	 Systems	 supported	 my	

research	 proving	 me	 with	 CDS	 modules	 as	 case	 study	 for	 the	 development	 of	 the	

methodology	 for	 applying	 SWS	 to	 CDSS.	 Dr.	 Rong	 Chen,	 from	 Cambio	 Healthcare	

Systems,	was	also	my	co-supervisor	and	assessed	my	work	by	clarifying	aspects	of	the	

Guideline	Definition	Language	(GDL)	and	CDSS	KM	technologies.		

NRUA:	 I	 collaborated	 regularly	 with	 the	 National	 Editorial	 Group	 for	 Archetypes	 to	

develop	the	archetypes	that	were	used	in	my	PhD.	Dr.	Rune	Pedersen	and	Silje	Ljosland	

Bakke	 helped	 me	 setting	 up	 a	 repository	 for	 my	 project	 in	 the	 National	 CKM	 and	

provided	me	with	a	holistic	overview	of	the	challenges	and	advances	in	interoperability	

in	the	Norwegian	scenario. 

openEHR	 community:	 the	 openEHR	 community	 in	 general,	 and	 the	 openEHR	

foundation,	 in	 particular,	 with	 Dr.	 Ian	 McNicoll	 as	 director,	 were	 crucial	 to	 this	 PhD.	

From	 the	 very	 beginning	 I	 found	 support	 for	 my	 research	 in	 the	 form	 to	 access	 to	

technologies,	 discussions	 and	 advice.	 With	 the	 support	 of	 the	 openEHR	 foundation	 I	

organized	 in	 June	2014	 the	 first	Arctic Conference on Dual-Model based Clinical Decision 

Support and Knowledge Management	were	most	of	the	vendors	and	researchers	involved	

in	openEHR	and	ISO	13606	participated	sharing	their	views.		The	conference	provided	a	

valuable	overview	of	 the	 state	of	 the	art	 in	CDSS	and	 interoperability	 technologies	 for	

my	PhD.	
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1.7.	Dissertation	Overview	
This	dissertation	is	organized	as	follows:	

• Chapter	1	has	presented	the	Learning	Healthcare	challenges,	the	role	of	technology	in	

overcoming	them	by	providing	effective	CDS,	the	hypothesis	and	the	objectives	to	cover.		

	
• Chapter	 2	 provides	 a	 selective	 literature	 overview,	 gaps	 in	 prior	 research	 and	 the	

contributions	of	this	thesis.	

	
• Chapter	 3	 presents	 the	 conceptual	 framework	 that	 encompasses	 the	 models	

developed.		

	
• Chapter	4	presents	the	contribution	to	enable	the	data	perception	model	to	gather	data	

from	 HIS,	 transform	 it	 into	 openEHR	 compliant	 instances,	 and	 allow	 performing	

abstractions	to	feed	CDS	algorithms	using	the	Archetype	Query	Language	(AQL).		

	
• Chapter	 5	 presents	 the	 development	 of	 the	 semantic	 model	 to	 enable	 ontological	

descriptions	 of	 CDSS	 interfaces	 and	 KM	 properties	 compliant	 with	 Linked	 Data	

principles.		

	

• Chapter	6	presents	the	human-computer	perception	model	that	allows	evaluating	the	

patient-CDSS	 communication.	 In	 particular,	 the	 chapter	 presents	 a	 method	 for	 the	

evaluation	of	consumer-oriented	CDSS	GUIs	to	deal	with	complex	interfaces	evaluation	

in	a	cost-effective	manner.		

	
• Chapter	7	presents	a	summary	of	the	accomplishments	and	contributions;	assessment	

of	 the	methods	 developed	 and	 their	 generalizability;	 the	 limitations	 and	 future	work,	

and	the	conclusions.	
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2.	Background	and	State	of	the	Art	
	

Summary:	The	previous	chapter	argued	that	the	Learning	Health	System	requires	CDSS	to	develop	

mechanisms	 for	 data	 processing	 (integration,	 standardization	 and	 abstraction),	 semantic	

descriptions,	 and	 user	 interfaces	 evaluation	 methods	 that	 guarantee	 the	 absence	 of	 human-

computer	 interaction	barriers	when	patients	provide	their	data	to	a	CDSS.	This	chapter	presents	a	

summary	 of	 the	 standards	 and	 technologies	 used	 to	 develop	 interoperable	 CDSS.	 The	 end	 of	 the	

chapter	 presents	 the	 state	 of	 the	 art	 and	 limitations	 of	 CDSS	 technologies	 and	 standards;	 and	 the	

research	gaps	that	this	thesis	aims	to	cover.	

	

2.1.	Standards	and	technologies	in	CDS	
The	 previous	 section	 presented	 that	 the	 LHS	 requires	 working	 in	 three	 directions	 to	

provide	 CDS	 outcomes.	 The	 data	 perception	model	 for	 CDS	must	 allow	 for	 data	 to	 be	

captured	from	different	sources	preserving	its	context	and	assuring	the	consistency	and	

meaningfulness	 of	 the	 decision	model	 inputs.	 The	 semantic	model	must,	 first,	 provide	

unambiguous	 descriptions	 of	 that	 data	 in	 commonly	 accepted	 ontologies	 and,	 second,	

express	 without	 ambiguity	 the	 functionality,	 KM	 properties,	 inputs	 and	 outputs	 of	

decision	 algorithms.	 The	 human-computer	 perceptual	 model	 needs	 to	 guarantee	 that	

data	 reported	by	patients	 is	 complete	and	 that	no	barriers	exist	 to	 its	 communication.	

This	 implies	 that	 seamless	 interaction	 across	 different	 computational	models	must	 be	

established.	For	these	models	to	interact	a	high	level	of	interoperability	is	needed.	

Currently,	from	a	technical	point	of	view,	there	are	five	mechanisms	that	are	leveraged	

to	 enable	 CDS	 interoperability	 [41]:	 medical	 logic	 specification	 formalisms,	 Clinical	

Information	Models	 (CIM),	semantic	web	technologies,	medical	 terminologies	and	web	

services.	In	addition	to	these	mechanisms,	as	presented	in	the	previous	chapter,	it	is	also	

important	to	consider	the	patient	communication	model.	Figure	2	shows	an	overview	of	

the	components	that	conform	the	CDS	architecture.	In	orange	the	figure	represents	each	

of	the	mechanisms	that	allow	the	interoperation	of	the	CDSS.	On	the	left,	 the	patient	 is	

represented	as	an	active	component	in	the	decision	making	process.	This	introduces	the	

requirement	 for	 allowing	patients	 to	 communicate	 their	 data	 through	 the	 appropriate	

mechanisms	(represented	by	the	cloud).		
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Figure	2.	Interoperability	mechanisms	of	CDSS.	

	

Binding	of	data	to	decision	algorithms	

Binding	data	 to	 decision	 algorithms	 involves	 the	 integration	 and	 abstraction	 of	 health	

data	 from	 the	 data	 sources	where	 it	was	 originally	 stored	 (EHR,	 LIS	 etc.)	 so	 it	 can	 be	

consumed	by	decision	algorithms.	Two	main	types	of	operators	are	used	for	this,	namely	

horizontal	 and	 vertical	 [42].	 Horizontal	 operators	 allow	 integrating	 heterogeneous	

sources	 of	 data	 (see	 integration	 mechanisms	 in	 Figure	 2).	 Vertical	 operators	 (see	

abstraction	 mechanisms	 in	 Figure	 2)	 provide	 functionality	 to	 combine	 background	

knowledge	 with	 data	 to	 produce	 abstractions	 (e.g.	 if	 (systolic	 blood	 pressure	 >	 140	

mmHg)	->	hypertension	present).	The	top	right	part	of	Figure	2	shows	the	CDS	algorithm.	

In	 the	 CDSS	 field,	 most	 standards	 for	 CDS	 specification	 have	 focused	 on	 providing	

medical	logic	specification	formalisms.	These	formalisms	emerged	in	the	90s	as	a	mean	

for	 specifying	 decision	 logic	 as	 CDS	 modules	 independent	 from	 the	 EHR.	 The	 first	

approach	 to	 encapsulate	 CDSS	 as	 modules	 was	 the	 Arden	 Syntax	 that	 allowed	 the	

definition	of	Event-Condition-Action	(ECA)	rules	and	queries	to	the	EHR	Data	Base	(DB)	

inside	 CDS	 artifacts	 [43,44].	 In	 the	 2000s,	 new	 formalisms	 aimed	 for	 defining	 more	

complex	 CDSS	 such	 as	 Computer	 Interpretable	 Guidelines	 (CIGs).	 Some	 examples	 of	

those	formalisms	are	PROforma	[45],	EON[46],	GLIF[47]	or	SAGE[31].	Those	formalisms	

do	not	only	allow	the	development	of	simple	logic	modules	for	alarms	or	reminders,	but	

also	clinical	guidelines	that	support	full	workflows	and	provide	methods	to	improve	the	

CDSS

VIRTUAL	MEDICAL	RECORD	(VMR)

KNOWLEDGE	BASE

Static	Knowledge

ABSTRACTION	MECHANISMS

CDS	algorithm	
(Procedural	knowledge	and	

others)

EHR

PATIENT	COMUNICATION

LIS (other	sources...)

Integration	mechanisms

DECISION	
ALGORITHM	

TERMINOLOGIES

CLINICAL	INFORMATION	
STANDARDS	->	CINICAL	
INFORMTION	MODELS

INTERFACE WEB	SERVICES

SE
M
AN

TI
C	
W
EB

	T
EC

HN
O
LO

GI
ES

Sambald	et	al.-	Arden,	Boxwala	et	al.	
-	GLIF,	Fox	et	al.-	PROform

Kohn	et	al.	–	IBM	Watson;	Soguero-
Ruiz	et	al.	SVM

SNOMED-CT	
(Ahmadian	et	al.)

UMLS	(Bouhandrou	et	
al.)

LOINC	(Nee	et	al.)
ICD	(Zhang	et	al.)

HL7	RIM
(Peleg	et	al.-KDOM;	Tu	
et	al.-SAGE	VMR;	)

	
Lai	et	al.;	Davis	et	al.

openEHR
(Anani	et	al.;	M.	
Marcos	et	al.)

HL7	CDA	/	HL7	vMR
(Dixon	et	al.;	

Bouhanddou	et	al.;	
C.	Marcos	et	al.)

(Brochhausen	et	al.-ACGT)



	 14	

integration	with	 the	EHR.	Data	 integration	mechanisms	 evolved	 in	 those	models	 from	

simple	queries	embedded	in	logic	modules	to	standard-based	data	schemas	that	allowed	

CDS	modules	to	reference	standard	EHR	entities.	That	approach	was	defined	as	the	VMR	

[48].	The	main	advantage	introduced	by	VMRs	was	that	medical	logic	does	not	need	to	

be	mapped	to	the	EHR	DB	schema.	Rather	it	references	VMR	entities,	which	were	often	

defined	 using	 a	 standard	 Reference	 Model	 (RM)	 (e.g.	 HL7	 RIM).	 This	 allows	 defining	

abstractions	 from	 the	 VMR	 rather	 than	 from	 proprietary	 DBs.	 Therefore	 abstractions	

remain	 unchanged	 across	 different	 deployments	 since	 only	 the	 VMR	 needs	 to	 be	

mapped	to	the	EHR	DB,	thus	avoiding	replicating	abstraction	mappings.	Such	replication	

is	risky	provided	that	it	may	introduce	changes	in	the	semantics	of	the	data	referenced	

by	 the	 algorithm.	 Nowadays,	 the	 VMR	 approach	 has	 been	 accepted	 by	 most	 CDS	

architectures.	Originally	VMRs	were	defined	directly	from	RIM	classes	as	in	Peleg	et	al.	

[22]	 and	 Tu	 et	 al.	 [31].	 More	 recently	 CDA	 has	 been	 used	 by	 Dixon	 et	 al.	 [14]	 and	

Bouhaddou	et	al.	[49].	Since	the	VMR	works	at	a	higher	abstraction	level	than	the	EHR,	

researchers	 from	 the	HL7	CDS	work	group	have	defined	a	 specific	VMR	standard	 that	

simplifies	 the	 classes	 involved	 in	EHR	content	model	definitions	 from	RIM	 [50,51].	An	

example	of	the	use	of	HL7	vMR	can	be	found	in	the	project	Mobiguide	by	Marcos	et	al.	

[25].	 At	 the	moment,	 the	 reference	 architecture	 openCDS	 [52]	 is	 implementing	 a	 CDS	

generic	 framework	 that	 allows	 the	 interoperation	 of	 Drools	 logic	 modules	 with	 data	

schemas	 compliant	 with	 HL7	 vMR,	 HL7	 CDA	 and	 HL7	 FIHR.	 Although	 most	 VMR	

developments	 and	 integration	 architectures	 have	 come	 from	 HL7,	 the	 openEHR	

community	(openehr.org)	has	also	proposed	the	definition	of	scalable	VMRs	at	different	

abstraction	levels	by	using	archetypes	[23].	When	used	in	combination	with	GDL	[53]	(a	

rules	and	data	constraint	language	for	openEHR	CDS	artifacts	definition)	its	integration	

with	 the	 EHR	 is	 seamless	 since	 GDL	 is	 designed	 to	 directly	 reference	 archetypes	 and	

bind	logic	to	terminologies	[53,54].	CIMs	such	as	archetypes	are	at	the	moment	a	corner	

stone	 in	 the	 development	 of	 CDSS	 interfaces	 and	 interoperability	 across	 models.	

Nowadays,	all	modern	CDSS	 implementations	rely	on	clinical	 information	standards	 to	

define	their	data	models	and	interfaces.	A	VMR	defined	with	CIMs	does	not	only	allow	to	

reference	standard	entities	 from	the	decision	algorithm,	but	also	represents	 the	nexus	

with	terminologies	that	are	used	to	attach	semantics	to	data	entities.		

Clinical	Information	Models	

The	appropriate	organization	of	clinical	 information	is	needed	in	order	to	allow	HIS	to	

maintain,	 scale,	 query	 and	 share	 clinical	 data.	 CIMs	 are	 currently	 the	 main	 trend	 for	

representing	 clinical	 data.	 Several	 standards	 have	 been	 developed	 to	 define	 the	
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information	 architecture	 of	 clinical	 data	 [55].	 The	 most	 spread	 standards	 (HL7	 CDA,	

openEHR	 and	 ISO13606)	 follow	 an	 approach	 that	 divides	models	 in	 2	 levels	 to	 shape	

clinical	 content.	 In	 this	 two	 level	modeling,	 the	 first	 level	defines	a	 core	 set	of	 generic	

classes	and	relationships	common	to	all	clinical	content	models.	In	essence,	it	represents	

a	canonical	clinical	information	ontology3	that	is	constant	across	application	domains.	In	

the	 second	 level,	 the	 RM	 in	 combination	 with	 a	 constraint	 language	 is	 used	 as	 a	

metamodel	 to	 define	 application	 domain	 clinical	 content	 models	 (e.g.	 archetypes	 in	

openEHR	 can	 be	 used	 to	 define	 the	 content	 of	 the	 EHR).	 Examples	 of	 those	 content	

models	are	the	EHR	document	structure,	messages	schemas,	VMR	models	etc.	Figure	2	

represents	CIMs	on	the	left	side.	

CIMs	represent	how	data	elements	are	composed	for	an	application	domain,	the	binding	

of	their	elements	to	terminologies	to	attach	semantics	and	constraints	definitions	[56].	

CIMs	 therefore	 become	 a	 corner	 stone	 to	 drive	 the	 implementation	 of	 enterprise	 HIS	

that	 can	 effectively	 share,	 process,	 query	 and	 exploit	 clinical	 data.	 Provided	 that	 CIMs	

are	defined	as	a	consensus	among	clinicians	and	information	architects;	they	represent	

generic	 models	 of	 an	 application	 domain	 that	 are	 independent	 from	 local	

implementation	features	(e.g.	software	or	database	technology,	data	models,	indexes	or	

constraints).	Depending	on	the	standard,	CIMs	may	be	known	as	archetypes,	templates	

or	 detailed	 clinical	models.	 The	 generality	 of	 CIMs	 allows	 the	definition	of	 regional	 or	

national	libraries	that	implementers	can	access	[57].	This	enables,	on	the	one	hand,	the	

appropriate	governance	of	those	models	to	ensure	their	validity	and	generality;	and,	on	

the	other	hand,	the	promotion	of	semantic	interoperability	since	the	same	set	of	CIMs	is	

common	 to	different	 implementations.	 Examples	 of	 CIMs	 governance	 frameworks	 and	

libraries	 are	 the	 Intermountain	 Clinical	 Element	 Models	 (CEMs)	 [58],	 the	 Norwegian	

CKM	[59],	the	international	openEHR	CKM	[60]	or	the	opencimi.org	initiative	[61].	

In	 the	 CDS	 arena,	 regarding	 to	 the	 CDSS	 interoperability	 mechanisms	 presented	

aforementioned,	it	is	possible	to	see	how	CIMs	glue	many	of	those	mechanisms	together.	

Architecturally,	 Web	 services	 encapsulate	 the	 CDSS	 and	 CIMs	 provide	 a	 standard	

structure	 to	 the	 content	 in	 the	messages	payload.	At	 the	 same	 time,	 CIMs	provide	 the	

linkage	 of	 each	 element	 in	 those	 messages	 with	 standard	 terminologies	 attaching	

semantics.	 Inside	 the	 internal	 implementation,	 CIMs	 allow	 logic	 to	 reference	 standard	

entities	 contained	 in	 CIMs	 that	 are,	 in	 turn,	 bound	 to	 terminologies	 facilitating	 their	

integration	with	different	data	sources	or	contexts.	

																																								 																					
3	Here	the	word	ontology	is	used	in	the	figurative	sense,	it	should	not	be	confused	with	the	meaning	in	computer	science.	
Reference	models	define	a	general	data	model	which	classes	define	a	sort	of	data	ontology.	However,	their	definition	in	
languages	such	as	ADL	or	XML	Schema	does	not	grant	reasoning	capabilities	as	ontologies	in	computer	science	often	do.	
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Biomedical	terminologies	and	ontologies	

The	upper	left	part	of	Figure	2	shows	the	static	knowledge	contained	in	CDSS	knowledge	

bases.	 Static	 knowledge	 corresponds	 to	 entities	 of	 the	 domain	 of	 discussion	 that	

represent	 invariable	 knowledge.	 An	 example	 is	 SNOMED-CT	 that	 represents	 clinical	

concepts	 constant	 across	 application	 domains	 and	 time.	 Terminologies	 and	 medical	

ontologies,	in	CDSS	developments,	have	been	used	to	annotate	CIMs	(note	the	overlap	of	

orange	 circles	 in	 the	 figure)	with	 standard	 vocabularies	 [49,62–64],	 thus	 allowing	 the	

logic	 to	 reference	 standard	 concepts;	 integrate	 heterogeneous	 data	 sources	 or	 map	

different	terminology	systems	[49].	This	can	be	used	to	ease	the	mapping	tasks	among	

entities	in	different	information	standards,	map	them	to	other	terminologies,	or	provide	

a	 lingua	 franca	 to	 integrate	 data	 from	 several	 sources	 [14,49].	 Several	 challenges	 are	

related	to	their	adoption	in	CDSS	including	the	cost	of	mapping	to	other	terminologies,	

the	 cost	 of	 annotating	 CIMs	 and	 the	 limitation	 to	 process	 pre-	 and	 post-	 coordinated	

expressions	[41].		

	

Web	services	

Web	services	(represented	by	the	interface	in	the	lower	part	of	Figure	2)	have	been	used	

to	enable	 the	 complete	decoupling	of	CDSS	 from	 the	EHR.	Encapsulating	CDSS	 in	Web	

services	allows	CDSS	to	be	used	and	shared	among	several	clients	that	may	be	hosted	in	

different	 institutions	 [14,65].	 The	 Service	 Oriented	 Architecture	 (SOA)	 has	 been	

proposed	 as	 an	 approach	 to	 implement	 national	 frameworks	 to	 share	 CDS	 systems	 in	

order	 to	 enable	 their	 broad	 adoption	 [13].	 The	 work	 in	 SOA	 for	 CDSS	 has	 led	 to	 the	

definition	of	the	HL7	DSS	Implementation	Guideline	that	specifies	the	SOA	architecture	

to	 combine	 information	 standards	 for	defining	 the	VMR	with	 the	use	of	 terminologies	

[66].	 This	 way	 a	 CDS	 service	 can	 be	 available	 in	 a	 health	 network	 for	 any	 HIS	 (Web	

service	 client)	 with	 the	 appropriate	 access	 rights.	 This	 allows	 sharing	 the	 same	 CDS	

artifact	deployment.	 In	SOAs,	CIMs	provide	the	 information	schema	of	the	data	carried	

as	SOA	payload	that	the	CDS	service	will	use	to	produce	outcomes	[14,67].	

	

Semantic	Web	technologies	

Semantic	 web	 technologies,	 represented	 by	 the	 cross	 sectional	 vertical	 ellipse	 to	 the	

right	 in	Figure	2,	have	occupied	a	transversal	role	 in	CDSS	implementations	[41].	They	

have	been	used	to	cover	requirements	that	other	implementation	mechanisms	could	not	

fulfill	[41].	Nevertheless,	the	most	prominent	use	has	been	to	provide	implementations	
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for	 the	 concept	models	 of	 ontology-based	biomedical	 terminologies	 such	 as	 SNOMED-

CT.	 In	some	cases,	Semantic	Web	technologies	have	also	been	used	 in	 the	definition	of	

guidelines	 specification	 formalisms	 [68].	 Furthermore,	 their	 use	 has	 been	 very	

significant	 in	 semantic	 data	 integration	 where	 ontologies	 are	 used	 to	 represent	 the	

global	schema	to	mediate	across	heterogeneous	data	sources.	Finally,	some	works	have	

used	 them	 to	 develop	 mapping	 frameworks	 from	 fine-grained	 VMR	 to	 generate	

abstractions	that	the	decision	algorithms	can	consume	[22].	

	

Knowledge	Management	

Another	 aspect	 often	 omitted	 but	 of	 paramount	 importance	 for	 CDSS	 is	 knowledge	

management	 (KM).	 An	 appropriate	 framework	 for	 the	 elicitation,	 maintenance	 and	

deployment	of	CDS	artifacts	 is	needed.	Rocha	et	al.	 [29]	define	how	such	a	 framework	

should	be	organized.	Recently	 the	HL7	standard	 for	Knowledge	Artifacts	has	defined	a	

complete	 set	 of	 properties	 for	 KM	 of	 CDS	 artifacts	 and	 it	 has	 harmonized	 existing	

mapping	 and	 VMR	 models	 [69].	 Part	 of	 KM	 is	 the	 process	 for	 knowledge	 elicitation	

where	tools	such	as	Natural	Language	Processing	(NLP)	or	machine	learning	predictive	

models	from	Cognitive	Computing	may	be	supportive	[20,21].	

	

Patient-computer	interaction	

The	 former	paragraphs	have	described	the	elements	described	 for	 the	 interoperability	

of	CDSS	concerning	data	processing	and	semantic	enrichment	in	CDSS.	However,	when	

data	 come	 from	 subjective	measures	 provided	 by	 a	 patient	 through	 an	 interface	 (e.g.	

symptoms	or	pain	description),	the	CDSS	perceptual	model	needs	to	provide	the	human-

computer	interaction	mechanisms	that	guide	the	patient	in	recording	health	data	(cloud	

in	Figure	2).	The	usability	of	CDS	patient	interfaces	is	a	relatively	unexplored	area.	Davis	

and	Jiang	used	a	mixed	method	where	they	combined	objective	measurements4	such	as	

errors	 rates	 and	 time	 for	 completion,	 with	 subjective	 measures	 from	 usability	

questionnaires	 to	 capture	 the	 patient	 usability	 perception	 [70].	 Lai	 et	 al.	 combined	

usability	heuristics	and	think-aloud	for	testing	user	interfaces	for	chronic	patients	[71].	

	

																																								 																					
4	It	is	important	to	differentiate	between	measurements	of	health	data	and	measurements	of	usability	tests.	Here	the	text	
refers	to	the	objective/subjective	measuremetns	of	data	that	result	from	a	usability	test	(e.g.	eye	tracking,	TAM,	heuristics	
etc.).	 However,	 in	 chapter	 6	 the	 text	will	 refer	 to	 objective/subjective	measurements	 about	 patient	 health	 data	 (e.g.	 a	
glucose	measurement,	symptom	reporting	etc.).		
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Privacy	and	security	

Although	it	is	not	a	central	topic	in	this	dissertation,	one	must	be	aware	that	in	any	CDS	

intervention	providing	the	appropriate	security	and	privacy	preserving	framework	is	a	

must.	Privacy	and	security	are	transversal	to	each	of	the	models	that	manage	patients´	

data.	 Currently	 the	 threat	 to	 privacy	 and	 security	 is	 constant	 [72].	 Security	 is	 often	

treated	at	a	software	and	network	level	as	a	vertical	layer	that	crosses	other	application	

layers	 (user,	 service,	 business,	 persistence	 etc.)	 [73].	 Depending	 on	 the	 scenario	 of	

application,	security	and	privacy	can	be	managed	in	different	ways.	For	example,	Dixon	

et	al.	describe	 the	communication	and	 legal	 framework	 that	were	established	 to	share	

patient	 data	 from	 the	 organization	 where	 the	 patient	 is	 treated	 to	 the	 organization	

where	the	CDS	service	was	available	[14,74].	As	recommended	by	the	Health	Insurance	

Portability	and	Accountability	Act	(HIPAA),	in	their	deployment	the	patient	data	shared	

across	 organizations	 was	 a	 subset	 that	 did	 not	 contain	 sensitive	 information	 such	 as	

patient	 name,	 EHR	 number	 or	 date	 of	 birth.	 Communications	 were	 secured	 by	 using	

Secure	Socket	Layer	and	encrypted	HTTP.	The	CDSS	was	placed	in	a	secure	environment	

at	the	organization	providing	CDS.	A	different	context	appears	when	the	information	is	

not	 provided	 by	 an	 EHR	 or	 enterprise	 system,	 but	 it	 is	 provided	 by	 a	 sensor	 or	

submitted	by	a	patient	directly	into	a	website	or	app.	Mobiguide	dealt	with	that	problem	

by	 projecting	 chunks	 of	 guidelines	 in	 the	 patients	 cell	 phone	 [75,76].	 Therefore,	 the	

decision	 algorithm	 rather	 than	 the	 patient	 information	 was	 transmitted,	 thus	

overcoming	security	and	privacy	issues.		

2.2.	General	overview	

Figure	3	provides	an	overview	of	the	different	studies	covering	the	interoperability	and	

KM	of	CDSS	and	how	they	fit	in	the	decision,	perceptual	and	semantic	models	introduced	

in	 chapter	 1.	 In	 the	 intersection	 of	 the	 three	 models	 lays	 the	 combination	 of	 SOA	

principles	with	CIMs	to	express	VMRs	that	are	annotated	with	standard	terminologies.	

SOA	 provides	 the	 execution	 architecture	 that	 can	 serve	 many	 clients	 while	 CIMs	

establish	 the	 structure	 of	 the	 information	 inside	 messages	 exchanged	 that	 is	

semantically	 described	 by	 their	 annotation	 with	 terminologies.	 Those	 messages	 may	

come	from	several	sources	including	the	EHR,	the	patient	or	other	sources.			

Irrespective	 of	 the	 CDSS	 architecture,	 perception,	 semantics	 and	 CDS	 artifacts	

governance	are	needed.	This	makes	the	three	computational	models	presented	common	

across	implementations.	For	example,	both	the	work	of	Dixon	et	al.	and	Mobiguide	used	

HL7	CDA	and	vMR	respectively	to	represent	clinical	information;	medical	terminologies	
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to	 provide	 semantics	 and	 both	 needed	 CDS	 algorithms	 development	 frameworks.	

Nevertheless,	one	must	note	that	although	data	perception,	patient	communication	and	

semantics	 may	 be	 present,	 the	 technical	 infrastructure	 to	 support	 them	 may	 vary	

significantly	as	the	examples	of	Dixon	et	al.	and	Mobiguide	show.	

	

Figure	3.	Approaches	for	interoperability	and	KM	in	relation	with	Semantic,	Perceptual	and	Decision	models.	

	

2.3.	Context:	The	Learning	Healthcare	System	in	Norway	
CDS	implementation	is	considered	as	one	of	the	milestones	to	reach	in	national	e-Health	

infrastructures	 after	 the	 adoption	 of	 clinical	 information	 standards	 [77].	 Nowadays	

openEHR	 and	 ISO	 13606	 are	 the	 two	 archetype-based	 standards.	 OpenEHR	 has	 been	

exploited	 in	 several	 countries	 and	 projects	 for	 clinical	modeling.	 In	 Australia,	 NEHTA	

maintains	a	complete	set	of	clinical	models	based	on	openEHR	[78].	The	UK	and	Slovenia	

count	 on	 instances	 of	 the	 openEHR	CKM	 to	 define	 clinical	models	 [79,80].	 In	Norway,	
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openEHR	is	currently	the	standard	adopted	by	3	out	of	4	health	regions,	covering	82%	

of	 the	 hospital´s	 EHR	 market	 share	 [81].	 From	 2012	 several	 projects	 have	 been	

evaluating	 and	 implementing	 the	 new	 openEHR-based	 EHR	 [81].	 First	 stages	 in	 its	

adoption	 were	 marked	 by	 overlapping	 activities	 in	 clinical	 modeling	 and	 software	

implementation	 that	 resulted	 in	 uncertainty	 and	 a	 lack	 of	 archetypes	 to	 drive	 the	

development	of	the	EHR	[81].	Nevertheless,	in	the	last	two	years,	original	problems	have	

been	overcome	by	accelerating	the	publication	of	archetypes	thanks	to	the	joint	venture	

between	 the	 National	 ICT	 board,	 responsible	 for	 archetypes	 development,	 and	 the	

international	openEHR	CKM	[82].	As	a	result	 the	number	of	published5	archetypes	has	

increased	 from	 one	 in	 2014	 to	 47	 in	 2016.	 The	 current	 set	 of	 published	 archetypes	

provides	the	core	of	 the	data	structures	to	define	the	EHR	content.	Additionally,	at	 the	

moment	of	writing,	there	are	other	173	archetypes	in	draft	or	review	status	that	cover	

more	specialized	contents.	

Besides	clinical	models	development,	Norway	is	currently	involved	in	several	initiatives	

to	 unify	 all	 the	 information	 related	 to	 each	 patient	 [83],	 to	 allow	 patient-centered	

medicine	 [84,85],	 to	enable	data	secondary	use	 [84],	and	 to	elicit	and	evaluate	clinical	

guidelines	 [86,87].	 In	 addition,	 several	 research	 projects	 are	 working	 towards	

establishing	the	symbiosis	between	the	clinical	view	and	patient	preferences	to	enable	

shared	decision	making	[88,89].	Altogether	 those	projects	and	 initiatives	are	gradually	

moving	Norway	towards	a	LHS.	In	order	to	provide	the	tooling	necessary	to	accomplish	

those	 objectives,	 in	 particular	 rapid	 knowledge	 assimilation	 in	 the	 form	 of	 CDSS,	 the	

experience	and	modeling	 in	clinical	data	provided	by	archetypes	can	provide	the	basis	

for	making	the	decision	model,	 the	perceptual	model	and	the	semantic	model	 interact,	

thus	enabling	CDS.	

2.4.	Gaps	
Although	the	role	of	CIMs	in	organizing	EHRs	content	is	well	established,	that	is	not	the	

case	in	the	CDSS	field.		On	the	data	side,	several	studies	[14,23,25,54,65]	and	standards	

[51,53,66,90]	 are	 defining	 how	 CIMs	 can	 be	 leveraged	 with	 other	 mechanisms	 of	

interoperability	to	solve	some	of	the	CDS	communication	barriers.	However,	despite	the	

advances	in	information	specification	that	CIMs	annotated	with	standard	terminologies	

have	provided,	 there	 are	 still	 strong	barriers	when	 sharing	CDSS	 across	organizations	

[14,65].		When	other	than	the	clinical	data	dimensions	are	explored,	the	situation	is	even	

more	 challenging.	 In	 the	 LHS	 context,	 the	decision	model	 includes	many	data	 streams	

																																								 																					
5	A	published	archetype	is	a	CIM	that	has	gone	satisfactorily	through	all	the	stages	established	in	order	to	be	accepted	as	
a	generic	model	at	a	national	level.	
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from	 different	 actors	 and	 sources:	 knowledge	 engineers,	 domain	 experts,	 CDS	

developers,	data	from	the	EHR,	from	the	patient	etc.	that	need	to	be	specified.	Relating	

them	 to	 the	 computational	models	previously	presented,	 several	 research	gaps	 can	be	

identified:	

Data	perception	model:	In	order	to	prepare	data	to	be	exploited	by	the	decision	model,	

the	data	perception	model	must	explore	and	gather	data	 from	heterogeneous	sources.	

Data	gathered	from	displays,	sensors	and	physical	objective	measures	has	been	treated	

elsewhere	 using	 ontologies	 such	 as	 the	W3C	 Semantic	 Sensor	 Network	 ontology	 [91]	

that	 enables	 interoperability	 among	 sensors	 for	 the	 Internet	 of	 Things	 (IoT)	 [37].	

However,	 in	 the	 LHS	 context,	 the	 main	 sources	 of	 data	 that	 contain	 most	 of	 the	

information	needed	 in	patient	centered	medicine	are	contained	 in	 the	EHR	[11]	or	are	

provided	by	the	patient	as	subjective	information	about	their	condition[1,2].	Regarding	

CDS	access	 to	EHR	data,	 several	 studies	have	proposed	different	methods	 to	map	and	

abstract	data	from	the	EHR	to	the	CDS.	Saez	et	al.	[92]	proposed	a	pragmatic	approach	to	

map	CDA	documents	to	Jess	rules,	but	did	not	performed	abstraction.	Marcos	et	al.	[23]	

used	layers	of	archetypes	where	the	first	 layer	was	mapped	to	the	EHR	and	the	others	

gradually	 increased	 the	 level	 of	 abstraction	 by	 using	 transformation	 functions	 to	map	

one	 layer	 to	 the	 layer	 above.	 Peleg	 et	 al.	 [22]	 proposed	 a	 mapping	 ontology	 able	 to	

automatically	 generate	 SQL	 queries	 over	 the	 HL7-RIM	 based	 VMR	 in	 order	 to	 create	

abstractions	 consumed	 by	 clinical	 guidelines.	 	 CDS	 abstractions	mechanisms	 typically	

focus	on	vertical	operators	 [42]	 (used	by	 the	abstractions	mechanisms	 represented	 in	

Figure	2)	 and	 they	 are	 often	dependent	 on	 one	persistence	 technology	 (e.g.	 XML,	 SQL	

etc.).	 Thus,	 if	 the	 underlying	 persistence	 technology	 changes,	 the	 abstraction	

mechanisms	 will	 have	 to	 be	 re-implemented.	 Besides	 defining	 abstractions,	 data	

extraction	mechanisms	need	to	deal	with	the	problem	of	 integrating	the	VMR	with	the	

local	EHR	model	which	may	be	represented	with	a	different	set	of	CIMs	or,	even	worse,	

in	a	different	standard	or	with	no	standard	at	all.	However,	data	is	in	many	cases	stored	

in	 distributed	 data	 sources	 that	 have	 different	 access	 policies.	 Horizontal	 operators	

(used	by	the	integration	mechanisms	represented	in	Figure	2)	that	integrate	these	data	

sources	 are	 also	 necessary.	 Often	 data	 integration	 techniques	 are	more	mature	 in	 the	

field	 of	 secondary	 use	 of	 data	 for	 research.	 These	 techniques	 often	 rely	 on	 Data	

Warehousing	 techniques	 that	 provide	 robust	 horizontal	 operators	 [42]	 to	 integrate	

heterogeneous	 data	 sources.	 Nevertheless,	 they	 usually	 do	 not	 support	 clinical	

information	standards	and	 they	are	dependent	on	a	particular	persistence	 technology.	

In	 the	 LHS	 environment,	 where	 decision	 models	 are	 under	 continuous	 evolution,	

methods	that	take	the	best	of	both	approaches	(CDS	and	Data	Warehousing)	are	needed	
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in	order	to	rapidly	assimilate	data	for	new	decision	models.	This	introduces	the	need	to	

provide	 architectures	 supporting	more	 powerful	 horizontal	 operators	 and	 abstraction	

mechanisms	 (vertical	 operators)	 based	on	 clinical	 information	 standards	 to	 guarantee	

technology	independence	(GAP	1).		

Semantic	 model:	 Standards	 such	 as	 HL7	 CDS	 Service	 IG	 [66]	 have	 provided	

architectures	 that	 leverage	 Web	 services	 with	 the	 use	 of	 CIMs	 and	 terminologies.	

However,	although	terminologies	linked	to	CIMs	provide	some	semantics	in	the	form	of	

a	 code	 that	 has	 an	 external	 definition,	 these	 semantics	 are	 not	 contextualized	 in	 the	

application	domain	within	the	CIM.	Thus,	the	CDSS	service	interface	and	CIMs	provide	a	

syntactical	 description	 where	 relationships	 among	 CIM	 elements	 cannot	 be	 formally	

explored.	 This	 disallows	 to	 evaluate	 if	 two	 concepts	 are	 equivalent,	 if	 one	 is	 a	

specialization	 of	 another,	 or	 if	 one	 concept	 is	 defined	 by	 constraining	 others	 (union,	

intersection	etc.).	As	a	 consequence	of	 these	 limitations,	barriers	 in	enabling	Semantic	

Interoperability	 (SIOp)	 with	 CIMs	 annotated	 with	 terminologies	 have	 been	 detected	

when	 sharing	 CDSS	 functionality	 across	 organizational	 boundaries	 [14].	 In	 order	 to	

share	CDSS	across	EHRs,	the	relationships	among	concepts	need	to	be	not	only	human	

readable	but	also	machine	computable	[34].	In	addition,	these	issues	are	not	only	limited	

to	data	models.	As	it	was	discussed	before,	the	decision	model	requires	the	interaction	

of	 knowledge	 engineers,	 data	 modelers,	 domain	 experts	 etc.	 Therefore	 accurate	

specifications	 to	 indicate	 the	 version	 of	 the	 system,	 the	 institution	 issuing	 it,	 the	

maintenance	 responsible,	 the	 evidence	 it	 is	 based	upon	 etc.	 are	needed.	The	 semantic	

model	 must	 provide	 the	 framework	 to	 unambiguously	 specify	 functionality,	 KM	

metadata	and	CIMs	in	order	to	reliably	locate,	understand,	and	invoke	decision	models	

(GAP	2).	

	

Human-computer	perceptual	model:	Another	important	source	of	data	in	LHS	is	the	

patient.	Previous	projects	 [93–96]	have	provided	 insights	 into	how	to	collect	 	data	 for	

CDS	 from	 the	 patients	 using	 mobile	 platforms.	 Nevertheless	 these	 projects	 retrieve	

physical	objective	measures	that	can	be	gathered	with	sensors	or	mobile	displays.	This	

is	useful	to	follow-up	some	diseases	but	other	 information	crucial	 for	medical	decision	

making	is	actually	subjective	and	expressed	by	the	patient	during	consultations.	The	rise	

of	importance	of	the	patient	in	decision-making	involves	patients	registering	data	about	

their	 health	 condition.	 For	 patients	 to	 effectively	 record	 their	 health	 conditions,	 they	

need	to	understand	and	interpret	their	symptoms	and	signs	and	report	them	through	a	

user	interface	that	will	be	the	entry	point	to	the	perceptual	model.	However,	record	that	



	 23	

information	with	the	level	of	detail	required	to	be	used	for	CDS	inference	engines	can	be	

very	 challenging	 for	 patients.	 In	 fact,	 how	 patients	 understand	 health	 information	 or	

characterize	 their	 condition	 in	 comparison	 with	 clinicians	 is	 unclear	 [2,97].	 The	

challenge	 is	 therefore	 to	 evaluate	 complex	 interfaces	 ensuring	 that	 users	 understand	

what	the	system	is	asking	to	allow	them	effectively	registering	their	health	data.	(GAP3).	

2.5.	Contributions	
Enabling	 CDS	 in	 the	 LHS	 involves	 major	 legal,	 political,	 organizational,	 privacy	 and	

technical	 challenges.	 This	 dissertation	 tackles	 some	 of	 the	 challenges	 in	 the	 technical	

dimension.	 In	 particular,	 this	 thesis	 aims	 to	 provide	 a	 technical	 framework	 where	

national	developments	for	standardization	can	be	exploited	together	with	semantic	web	

and	human-computer	interaction	developments	to	enable	CDSS	in	the	LHS	context.	The	

main	contributions	of	this	thesis	are:		

1)	 An	 archetype-based	 DW	 methodology	 to	 build	 a	 data	 integration	 and	 abstraction	

pipeline	 that	allows:	 a)	 to	deal	with	heterogeneous	data	 sources;	 and	b)	 to	enable	 the	

definition	 of	 technology-independent	 abstractions	 using	 the	 AQL	 [98,99].	 This	

contribution	aims	to	cover	the	first	research	gap	presented	(Contribution	1).	

2)	 A	 method	 to	 drive	 the	 definition	 of	 CDSS	 metadata	 with	 unambiguous	 machine-

interpretable	semantics	using	the	common	body	of	knowledge	provided	by	the	Linking	

Open	 Data	 Cloud.	 This	 grants	 unambiguous	 definitions	 of	 CDSS	 functionality,	 data	

interfaces	and	KM	properties.	These	descriptions	allow	to	discover	and	analyze	systems	

using	 formal	 models	 to	 overcome	 current	 CDS	 SIOp	 limitations	 [14,65].	 This	

contribution	aims	to	cover	the	second	research	gap	presented	(Contribution	2).	

3)	A	method	to	measure	the	user	technology	acceptance	and	usability	of	the	CDS	patient	

interfaces,	 thus	 identifying	 barriers	 in	 the	 patient-CDS	 interaction.	 This	 contribution	

aims	to	cover	the	third	research	gap	presented	(Contribution	3).	
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3.	Conceptual	Framework	for	CDS	
	

Summary:	The	previous	chapter	presented	a	selective	literature	review	and	introduced	the	

research	gaps	that	this	thesis	aims	to	cover.	This	chapter	presents	a	conceptual	framework	

of	 the	 different	 models	 that	 are	 involved	 in	 the	 Learning	 Healthcare	 System	 context	 to	

enable	CDS.	This	chapter	builds	on	previous	conceptual	frameworks	to	define	CDS	generic	

models	that	contextualize	the	technical	developments	presented	in	the	following	chapters.	

	

In	 the	 previous	 chapter	 I	 have	 presented	 a	 literature	 review	 of	 the	 available	

technologies	to	implement	the	components	and	application	layers	needed	to	enable	CDS	

interventions.	 I	 have	 briefly	 introduced	 three	 main	 computational	 models	 namely	

perceptual,	semantic	and	decision	model.	The	perceptual	model	unfolds	 into	two	main	

functionalities:	 a)	 data	 binding	 (integration	 and	 abstraction)	 between	 heterogeneous	

sources	 and	 the	 decision	 algorithm;	 and	 b)	 data	 capture	 from	 patients	 ensuring	

completeness	 and	 HCI	 barriers	 detection.	 The	 semantic	 model	 aims	 to	 describe	

unambiguously	 CDSS	 functionality,	 KM	 and	 data	 properties	 to	 enable	 their	 discovery,	

analysis	 and	 interoperability.	 The	 decision	 model	 frames	 the	 mechanisms	 and	 actors	

that	elicit	new	knowledge	and	implement	it	as	decision	algorithms.	

This	chapter	presents	a	theoretical	framework	to	understand	how	the	models	proposed	

interact	to	enable	CDS.	This	framework	will	help	to	understand	the	relationship	among	

the	different	technical	developments	explained	in	following	chapters.	

3.1.	Previous	conceptual	frameworks	for	CDS	
One	of	 the	 first	works	documenting	 at	 a	 high	 level	 the	different	models	 interacting	 to	

produce	CDS	outcomes	was	presented	by	Rector	and	colleagues	in	2001	[35,36].	In	their	

works	 they	 analyzed	 the	 interfaces	 between	 different	models	 that	 interact	 in	medical	

information	 systems	 [35,36].	 Figure	 4	 shows	 the	 models	 identified	 by	 Rector	 et	 al.	

namely	 the	 information	 model,	 the	 inference	 model	 and	 the	 concept	 model	 [35].	 The	

information	model	represents	the	 information	structures	 in	the	EHR.	That	 information	

can	 be	 specified	 using	 information	 standards	 such	 as	 openEHR	 or	 HL7	 CDA	 that	

represent	EHR	content	as	CIMs	[55].	The	inference	model	represents	logic	and	statistical	

models	 used	 by	 CDSS	 that	 exploit	 contextualized	 data	 from	 the	 EHR	 to	 produce	 an	

outcome	 that	 supports	 decision-making.	 The	 concept	 model	 represents	 the	

terminologies	 and	 ontologies	 that	 provide	 semantics	 to	 the	 entities	 referenced	 by	
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medical	 logic	 or	 the	 EHR.	 The	 interface	 of	 the	 information	 model	 and	 the	 inference	

model	 represents	 the	connection	of	 the	EHR	with	 the	decision	algorithm	through	data	

views.	The	interface	between	the	concept	model	and	the	information	model	represents	

the	annotation	of	 information	structures	with	biomedical	terminologies.	The	interfaces	

between	 the	concept	model	and	 the	 inference	model	 represent	 the	conceptual	entities	

that	are	used	to	identify	the	data	structures	referenced	by	the	decision	algorithms.	

	

	

Figure	4.	Interfaces	between	information,	terminology	and	inference	models	from	Rector	et	al	[35,36].	

	

Rector’s	 model	 comprehends	 the	 three	 main	 enterprise	 models	 involved	 in	 the	

production	 of	 CDS	 outcomes	 in	 EHR	 centric	 health	 information	 architectures.	 These	

models	 are	 constant	 in	 most	 large	 CDS	 deployments.	 The	 LHS	 relies	 in	 a	 seamless	

integration	 of	 those	 models	 to	 produce	 knowledge	 and	 accelerate	 its	 use	 in	 clinical	

practice.	 However,	 the	 LHS	 also	 introduces	 a	 more	 holistic	 view	 that	 requires	 the	

consideration	 of	 other	 actors	 and	 systems	 that	 need	 to	 be	 involved	 to	 produce	 CDS	

outcomes.	As	explained	in	previous	chapters,	communication	channels	with	the	patient	

need	to	be	established,	and	semantics	need	to	go	beyond	biomedical	ontologies	to	cover	

contextual	properties	of	the	system	such	as	the	author,	the	institution	issuing	it	etc.	

Recently,	another	conceptual	framework	that	includes	some	of	these	characteristics	has	

been	 proposed	 from	 the	 IoT	 perspective	 by	 Sheth	 and	 colleagues	 [37,38].	 Their	

framework	proposes	the	distinction	of	three	computational	paradigms	namely	Semantic	

Computing,	Cognitive	Computing	and	Perceptual	Computing.	These	paradigms	 interact	

towards	enabling	human-centric	computing	by	processing	and	analyzing	large	amounts	

of	heterogeneous	data	to	support	decision	making	[37,38].	This	separation	can	be	very	

useful	for	the	CDS	arena	since	it	allows	isolating	the	different	computation	models	that	

interact	when	CDS	is	provided	in	the	LHS	context.	

Inference	Model

Information	Model

Concept	Model
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In	 Sheth´s	 model,	 Semantic	 Computing	 provides	 mechanisms	 to	 identify	 entities	 and	

abstractions	from	Perceptual	Computing.	Perceptual	Computing	iteratively	explores	the	

cyber,	social	and	physical	domain	[42]	to	gather	observations	that	are	used	to	generate	

abstractions.	 Cognitive	 Computing	 helps	 to	 process	 and	 analyze	 large	 amounts	 of	

multimodal	data	useful	for	decision-making.		

An	 example	 of	 Semantic	 Computing	 is	 the	 use	 of	 ontologies	 to	 attach	 semantics	 by	

linking	an	entity	of	a	data	model	 to	a	medical	 terminology	(e.g.	 laboratory	 tests	coded	

with	LOINC).	An	example	of	how	Perceptual	Computing	works	is	presented	in	Sheth	et	

al.´s	 work	 [37,38].	 There,	 Perceptual	 Computing	 explores	 the	 EHR	 iteratively	 locating	

the	 topic	 of	 interest	 and	 contextualizing	 it	 so	 it	 can	 be	 used	 in	 decision-making.	 For	

example,	 they	 exemplify	 how	 raw	 data	 related	 to	 an	 asthma	 patient	 can	 be	 gathered	

from	sensors	and	the	EHR	to	infer	concepts	useful	for	decision	making	such	as	disturbed	

sleep,	low	activity,	night	cough	etc.	[38].	Cognitive	Computing	provides	the	algorithms	to	

analyze	complex	data	and	discover	knowledge	hidden	by	complex	relations,	correlations	

and	 high	 number	 of	 variables.	 An	 example	 of	 Cognitive	 Computing	 is	 provided	 by	

Soguero	 et	 al.	 that	 use	 machine-learning	 techniques	 to	 analyze	 data	 from	 surgery	

patients	to	predict	anastomosis	leakage	[20].	

Although	 those	models	 fit	with	 the	 IoT	 vision,	 the	 Cognitive	 Computing	 role	 is	 not	 so	

clearly	 defined.	 For	 Cognitive	 Computing,	 Sheth	 envisions	 the	 use	 of	 NLP	 of	 scientific	

literature	to	provide	evidence	to	the	clinician	and	states	that	advanced	statistical	models	

could	be	used	to	analyze	complex	data	sets	and	derive	knowledge	from	them.	Although	

in	essence	this	is	correct,	from	a	functional	point	of	view,	the	clinician	would	hardly	ever	

perform	 that	 exploration	 during	 consultations	 provided	 that	 average	 times	 per	

consultation	go	 from	11	 to	21	minutes	 [100–102].	Typically	 the	process	of	knowledge	

elicitation	 is	 performed	 by	 multidisciplinary	 teams	 of	 clinicians	 and	 knowledge	

engineers	 that	 distill	 it	 from	 scientific	 literature	 and	 national	 guidelines	 [29].	 That	

knowledge	is	then	implemented	in	the	form	of	a	CDS	artifact	deployed	in	an	integration	

architecture	[103]	that	seamlessly	integrates	it	with	the	EHR	so	it	can	be	exploited	at	the	

bedside.	 This	 way,	 CDS	 can	 be	 rapidly	 delivered	 in	 the	 appropriate	 context	 and	 time	

with	 a	minimum	 interference	with	 the	 physician,	which	 is	 a	 key	 factor	 for	 its	 success	

[12].		

Gutierrez-García	 and	 López-Neri	 performed	 a	 review	 on	 the	 different	 approaches	 to	

Cognitive	 Computing	 [104].	 Among	 the	 definitions	 presented,	 the	 one	 of	 Clark	 is	 the	

closest	 to	 the	application	of	Cognitive	Computing	 in	CDS:	 “One	of	 the	 central	 tenets	of	

cognitive	computing	is	that	there	exist	suitable	ways	to	abstract	detailed	behavior,	and	
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to	 talk	 about	 goals,	 plans,	 constraints	 and	methods	 at	 a	 high	 level”[105].	 DARPA	 also	

provides	a	vision	more	centered	in	the	requirements	defining	a	cognitive	system	as	one	

that	 is	able	 to	 “reason,	use	represented	knowledge,	 learn	 from	experience,	accumulate	

knowledge,	explain	itself,	accept	direction,	be	aware	of	its	own	behavior	and	capabilities	

as	 well	 as	 respond	 in	 a	 robust	 manner	 to	 surprises”[106].	 DARPA´s	 vision	 is	 also	

followed	by	Sheth	 [37]. When	 looked	as	a	whole,	 the	 complete	 framework	 that	 allows	

the	elicitation	and	deployment	of	CDS	artifacts	behaves	similarly	to	a	cognitive	system	

since	 it	 uses	 represented	 knowledge	 (e.g.	 ontologies),	 learns	 from	 experience	 (is	

maintained	 and	monitored),	 is	 context	 aware	 [31,94]	 and	 allows	 to	 specify	 goals	 and	

plans	 at	 a	 high	 level	 [107].	 However,	 in	 CDS	 deployment	 frameworks,	 intelligence	

emerges	not	directly	from	a	machine	learning	algorithms,	but	also	from	the	interaction	

among	different	human	agents	and	their	symbiosis	with	technologies	[108].	Therefore,	if	

the	 definition	 of	 Sheth	 for	 this	 model	 is	 generalized	 to	 include	 all	 the	 actors	 and	

components	 of	 such	 frameworks,	 Cognitive	 Computing	 may	 fit	 in	 this	 paradigm.	 But	

even	 so,	 in	 the	 Cognitive	 Computing	milieu	 there	 is	 not	 a	 clear	 consensus	 over	 what	

Cognitive	 Computing	 encompasses.	 Several	 alternative	 definitions	 can	 be	 found,	

sometimes	related	to	machine	learning	algorithms,	and	other	times	related	to	hardware	

architectures	emulating	the	brain	cellular	physiology	[104].	For	the	sake	of	clarity,	this	

dissertation	 will	 identify	 the	 CDS	 algorithm	 implementation,	 maintenance	 and	

deployment	 framework	 with	 the	 broader	 term	 Decision	 Model.	 Additionally,	 since	

models	 are	 proposed	 to	 realize	 those	 computation	 paradigms,	 I	 will	 use	 the	 terms	

Semantic	Model,	 Perceptual	Model	and	Decision	Model	 to	 refer	 to	 them.	 A	 constrained	

definition	 of	 those	 models	 elaborating	 the	 ideas	 originally	 proposed	 by	 Sheth	 et	 al.	

[37,38]	and	Rector	et	al.	[35,36]	from	a	LHS	point	of	view	follows.	

3.2.	Proposed	conceptual	framework	
3.2.1.	Decision	model	
The	decision	model	encompasses	all	mechanisms	and	actors	 involved	 in	the	elicitation	

and	management	 of	medical	 knowledge	 for	 enabling	 the	deployment	 and	 evolution	of	

one	or	more	CDS	algorithms.	These	algorithms	may	be	based	on	different	methods	such	

as	 logic,	 Bayesian	 etc.	 The	 decision	model	 includes	many	 processes	 and	 roles	 such	 as	

knowledge	 engineers,	 knowledge	 modelers,	 terminology	 specialists,	 developers	 and	

tooling	 supporting	 them[29,103].	 Part	 of	 that	 tooling	 can	 be	 provided	 by	 Cognitive	

Computing	in	the	way	described	by	Sheth,	thus	augmenting	the	cognitive	capabilities	of	

domain	experts	by	helping	them	to	explore	scientific	literature	and	extract	new	clinical	

knowledge.	Another	use	of	Cognitive	Computing	can	be	 to	provide	advanced	cognitive	

algorithms	 in	 the	 core	 of	 the	 inference	model	when	 Bayesian	models	 are	 needed,	 for	
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example,	to	make	complex	classifications	or	predictions.	Examples	regarding	the	use	of	

cognitive	algorithms	can	be	 found	 in	Soguero	et	al.	 [20]	 for	prediction	of	post-surgery	

complications	or	in	García-Gomez	et	al.	for	classification	of	brain	tumors	using	magnetic	

resonances	[109].	Also	the	IBM	Watson	architecture	is	an	example	of	how	many	of	those	

algorithms	can	be	applied	to	support	several	clinical	tasks	[21].	One	must	be	aware	that	

although	 these	 algorithms	 provide	 ways	 for	 analyzing	 complex	 data	 sets,	 all	 of	 them	

need	human	supervision	to	be	deployed,	used	and	maintained.	The	decision	model	must	

provide	 a	 human-centric	 approach	 where	 technology	 acts	 as	 an	 extension	 of	 human	

cognitive	abilities	to	assist	persons	in	complex	decision	making	tasks	[37,110,111].	

In	 the	 core	 of	 a	 decision	model	 lays	 one	 or	more	 inference	models	 that	 process	 data	

abstractions	 provided	 by	 the	 perceptual	 model.	 The	 result	 of	 such	 process	 can	 be	 a	

prediction	(e.g.	stroke	risk,	survival	rates	in	the	next	5	years	etc.),	an	alarm	(e.g.	possible	

drug	 interaction),	a	classification	of	 the	patient	 into	a	group	(e.g.	pre-operative	risk),	a	

recommendation	for	a	treatment	etc.	Those	outcomes	facilitate	decision	making	tasks	by	

analyzing	multimodal	data	that	otherwise	would	be	hard	to	consider	in	a	timely	manner.	

3.2.2.	Semantic	model	
Semantics	 are	 needed	 in	 order	 to	 manage	 and	 interpret	 data	 correctly.	 	 The	 large	

amount	of	multimodal	data	present	in	today´s	information	systems	need	to	be	formally	

represented	 in	 order	 to	 allow	 its	 unambiguous	 interpretation.	 This	 is	 even	 more	

appealing	in	the	medical	context	due	to	the	large	amount	of	hierarchical	concepts	with	

subtle	differences	in	their	meaning.	

The	 semantic	 model	 provides	 machine-understandable	 models	 that	 unambiguously	

represent	 the	meaning	of	 the	entities	 involved	 in	 generating	a	CDS	outcome.	A	 formal	

representation	of	semantics	allows	for	reasoning	over	concepts	and	their	relationships,	

inferring	 new	 knowledge,	 establishing	 equivalences	with	 concepts	 from	 other	models	

(e.g.	terminology	mapping)	and	keeping	track	of	the	transformations	performed	from	a	

semantic	 point	 of	 view	 to	 avoid	 loss	 of	 meaning.	 The	 semantic	 model	 allows	

representing	concepts	and	relationships	as	knowledge	models	that	identify	the	entities	

used	 in	 the	 other	 models	 in	 an	 unambiguous	 machine-understandable	 way.	 	 For	

example,	ontology	models	 such	as	 the	SNOMED-CT	concept	model	allow	expressing	 in	

formal	 semantics	 that	a	Prostate	cancer	 is	a	 subtype	of	Primary	malignant	neoplasm	of	

prostate;	which,	in	turn,	is	a	type	of	disorder	that	is	located	at	the	prostate	structure.	This	

is	very	useful	to	unambiguously	establish	what	 is	 the	meaning	of	CDS	properties	(data	

entities,	KM	attributes,	functionality	etc.)	since	it	is	possible	to	determine	if	two	entities	

are	equivalent,	if	one	is	a	subtype	of	the	other	etc.	The	semantic	model	encompasses	but	
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it	is	not	limited	to	biomedical	ontologies	such	as	SNOMED-CT.	The	semantic	model	must	

also	 provide	 the	 infrastructure	 to	 provide	 the	 unambiguous	 definition	 of	 the	 system	

properties	 such	 as	 functionality,	 authorship,	 conditions	 of	 execution	 etc.	 The	 different	

types	of	semantics	described	by	the	semantic	model	can	be	classified	in	three	categories	

[67,112]:	

• Data	semantics:	describe	the	semantics	of	the	information	that	the	CDSS	accept	

as	 input	 and	 provides	 as	 output.	 For	 example,	 the	 representation	 of	 the	

semantics	 contained	 within	 archetypes	 [113]	 as	 machine-understandable	

models.	

• Functional	semantics:	describe	the	functionality	of	the	CDSS	as	a	taxonomy	that	

allows	the	annotation	of	 the	system	specifying	both	 the	clinical	 target	 task	and	

the	 clinical	 domain	 focus	 [67].	 For	 example,	 CDSS	 for	 the	 prevention	 and	

screening	 (clinical	 target	 task)	 focused	 on	 pneumococcal	 infections	 (clinical	

focus).	

• Non-functional	 semantics:	 define	 the	 semantics	 not	 covered	 by	 the	 previous	

sections.	 In	most	cases	they	concern	the	specification	of	KM	properties	such	as	

author,	issuer,	references	supporting	the	implementation	etc.	

The	 presented	 types	 of	 semantics	 allow	 describing	 the	 properties	 of	 a	 CDSS	 that	 one	

needs	to	evaluate	to	search	the	system,	analyze	it	to	determine	whether	it	is	appropriate	

for	a	given	context	and	understand	how	to	interoperate	with	it.		

3.2.3.	Perceptual	model	
The	 perceptual	 model	 concerns	 all	 the	 processes	 involved	 in	 iteratively	 exploring,	

capturing	and	processing	data	to	 feed	the	decision	model.	 It	may	encompass	disparate	

domains	and	processes	to	capture	different	types	of	data.	In	the	LHS,	the	main	sources	

will	 be	 the	 EHR	 and	 the	 patient.	When	 enabling	 data	 perception	 from	 the	 EHR	 (data	

perception	model)	 it	will	need	to	cover	access	to	the	EHR	data.	When	data	 is	captured	

from	the	patient,	it	will	need	to	enable	proper	human-computer	interaction	mechanisms	

to	 allow	 patients	 recording	 accurate	 data	 (human-computer	 perception	model).	 Once	

captured	 from	 one	 system	 or	 another,	 the	 perceptual	 model	 will	 exploit	 clinical	

information	standards	to	ensure	the	proper	contextualization	of	the	information.	When	

dealing	 with	 clinical	 information,	 contextual	 properties	 that	 indicate	 how	 data	 was	

recorded	(e.g.	arm	cuff	to	record	blood	pressure),	when	it	was	recorded	(e.g.	last	blood	

pressure	 measured	 3	 hours	 ago),	 who	 recorded	 it	 (e.g.	 the	 nurse)	 or	 where	 it	 was	

recorded	(e.g.	recorded	in	the	emergency	department)	are	paramount.	Otherwise	it	may	

not	be	possible	to	know	if	that	data	is	useful	for	decision-making	or	not.		
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3.2.3.1.	Data	perception	model	
The	data	perception	model,	 first,	uses	horizontal	operators	 to	 integrate	heterogeneous	

sources	 of	 data	 into	 a	 canonical	 data	 model.	 Data	 in	 the	 canonical	 model	 are	 then	

transformed	 into	 clinical	 information	 standards	 (e.g.	 openEHR)	 to	 ensure	 proper	

contextualization.	 That	 model	 is	 then	 used	 to	 derive	 abstractions	 using	 vertical	

operators	 allowing	 climbing	 positions	 in	 the	 Data-Information-Knowledge-Wisdom	

(DIKW)	 triangle	 [42,114].	Adapting	 the	vision	 in	 [42],	Figure	5	shows	how	data	 in	 the	

EHR	 is	 complemented	with	 background	 knowledge	 becoming	 information,	 knowledge	

and	 finally	wisdom	 that	 leads	 to	 a	 decision	 about	 a	 treatment.	 In	 the	 example,	 Blood	

pressure	is	interpreted	with	medical	knowledge	to	infer	that	there	exists	a	hypertension	

problem.	 Hypertension	 in	 combination	 with	 other	 data	 allows	 the	 calculation	 of	 the	

CHADS2	score.	This	score	provides	knowledge	about	the	risk	for	stroke	in	the	next	year.	

At	the	top	of	the	triangle,	stroke	risk	and	the	knowledge	about	anticoagulants	effect	may	

be	used	by	the	decision	model	to	recommend	prescribing	an	anticoagulant	drug.	Some	

of	 the	 data	 (e.g.	 presence	 of	 diabetes)	 may	 have	 been	 inferred	 in	 the	 same	 way	 by	

another	iteration	of	the	perceptual	model.	Therefore,	depending	on	the	context	an	entity	

may	 be	 used	 as	 data,	 information	 or	 knowledge.	 For	 example,	 in	 one	 iteration,	 Atrial	

Fibrillation	 or	 Hypertension	 may	 be	 derived	 as	 knowledge	 interpreting	

electrocardiograms	 and	 blood	 pressure	 measurements	 respectively.	 But	 in	 another	

iteration	 Hypertension	 may	 be	 used	 as	 data	 to	 estimate	 the	 CHAD2DS2	 score	

(information).	 The	 striped	 area	 between	 decision	 and	 perceptual	 models	 represent	

algorithms	 that	 sometimes	 derive	 data	 that	 is	 needed	 by	 another	 algorithm.	 For	

example,	 the	rule	 If	CHADS2>=2	then	risk=“high”	derives	a	concept	 that	 is	used	 later	 to	

recommend	treatment	(i.e.	if	risk==”high”	then	“Consider	treatment	with	Warfarin”).	
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Figure	5.	DIKW	triangle	adapted	from	Sheth	et	al.	[42].	

	

3.2.3.2.	Human-computer	perception	model	
When	 not	 only	 EHR	 or	 clinicians	 reported	 data	 is	 managed,	 the	 human-computer	

perceptual	 model	 needs	 to	 deal	 with	 patients	 data	 capture	 before	 representing	

information	 with	 clinical	 information	 standards	 and	 performing	 the	 operations	

presented	 in	 the	 previous	 example.	 Recently,	 several	 projects	 have	 approached	 this	

problem	at	a	 technical	 level	developing	Patient	Health	Records	and	web	apps	 to	allow	

patients	storing	their	health	data	 [76,95,115,116].	However,	patient	provided	data	does	

not	only	include	objective	measures	(e.g.	sensors	data,	blood	glucose	levels	etc.)	but	also	

subjective	patient	observations	such	as	symptoms	or	pain.	 In	 that	case,	 the	perceptual	

model	transcends	the	pure	technical	dimension	and	it	provides	efficient	mechanisms	to	

allow	 the	 interaction	 of	 patients	 with	 the	 decision	 model,	 i.e.	 a	 human-computer	

perceptual	model.	This	communication	is	a	cornerstone	of	the	LHS	and	involves	not	only	

technical	 challenges	 but	 also	 a	 patient-computer	 communication	 challenge.	 This	

communication	needs	 to	be	performed	 in	such	a	way	that	 the	patient	understands	 the	

information	 requested	 by	 the	 system.	 The	 perceptual	 model	 must	 guarantee	 the	

seamless	 communication	 of	 health	 data	 between	 patients	 and	 CDSS.	 Patients	 must	

understand	 the	 system´s	 interfaces	 in	 order	 to	 provide	 data	 that	 is	 coherent	with	 the	

expectations	of	the	system.	 	Otherwise	the	system	will	not	be	able	to	produce	accurate	

outcomes.		
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This	dissertation	constrains	the	perceptual	model	 to	the	EHR	and	patient	data	capture	

for	the	reasons	explained.	However,	it	is	important	to	note	that	it	is	a	generic	model	that	

may	 include	many	 other	 sources	 coming	 from	 the	 Cyber,	 Physical	 and	 Social	 spheres	

[37,42].		

3.3.	Comparison	with	previous	conceptual	frameworks	
There	 are	 several	 differences	 between	 the	 model	 presented	 and	 those	 proposed	 by	

Rector	et	al.[35,36]	and	Sheth	et	al.[37,38].	

Firstly,	the	reader	must	note	that	abstraction	carried	out	by	the	perceptual	model	rather	

than	 the	 semantic	 model	 is	 a	 difference	 from	 Sheth´s	 paradigm	 [42,114].	 Semantic	

technologies	offer	very	efficient	ways	of	integrating,	transforming	and	abstracting	data.	

However,	if	CIMs	are	fully	represented	using	semantic	technologies	the	resulting	model	

may	not	be	 tractable	 [117]	depending	on	 the	properties	used	 in	 its	 specification.	This	

means	that	the	ontology	reasoners	that	process	the	model	may	not	be	able	to	finish	the	

computation	 in	polynomial	 time.	Those	 issues	will	be	explained	 in	detail	 in	Chapter	5.	

Since	 CIMs	 are	 a	 central	 point	 in	 interoperability,	 this	 forces	 us	 to	 treat	 information	

abstraction	as	a	functionality	performed	by	the	perceptual	model.	

Secondly,	the	IoT	vision	of	perceptual	computing	includes	the	Cyber,	Physical	and	Social	

spheres	 [42],	but	 it	 is	 focused	mainly	 in	capturing	knowledge	 from	the	Web.	However	

the	model	presented	in	this	dissertation	puts	the	focus	on	including	EHR	standards	and	

capturing	 patient´s	 subjective	 measures	 that	 need	 human-computer	 communication	

[38].	 This	 is	 a	 difference	 in	 Perceptual	 Computing	 when	 looked	 from	 the	 LHS	

perspective	rather	than	from	the	IoT	perspective.	The	communication	with	patients,	and	

the	study	on	how	it	should	be	performed	become	crucial	to	success	in	including	them	as	

active	participants	in	decision-making.	

Thirdly,	the	differences	between	the	model	proposed	and	Rector	et	al.´s	framework	are	

mainly	a	matter	of	perspective.	While	their	framework	presents	three	models	constant	

across	 enterprise	 architectures,	 the	 one	 proposed	 in	 this	 dissertation	 presents	 them	

from	 a	 more	 holistic	 perspective	 considering	 the	 interaction	 with	 other	 actors	 and	

components.	 The	 perceptual	 model	 in	 order	 to	 contextualize	 data	 by	 means	 of	

information	standards	uses	the	information	model	of	Rector	et	al.	Nevertheless,	the	EHR	

rather	 than	 being	 the	 central	 source	 of	 information,	 it	 remains	 as	 one	 of	 the	 many	

possible	sources.	The	concept	model	proposed	by	rector	occupies	the	central	core	of	the	

semantic	model	 presented.	 However,	 it	 is	 not	 considered	 only	 a	model	 of	meaning	 to	

attach	 clinical	 semantics	 to	 data	 structures.	 Rather,	 its	 realization	 as	 semantic	 model	
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acts	 as	 an	 application	 layer	 that	 merges	 biomedical	 ontologies	 with	 other	 types	 of	

ontologies	and	 technologies	 to	describe	data,	 functional	 and	non-functional	 semantics.	

Regarding	 Rector	 et	 al.´s	 inference	 model,	 it	 lays	 in	 the	 core	 of	 the	 decision	 model	

presented.	 	 But,	 as	 described	 before,	 the	 decision	 model	 also	 concerns	 knowledge	

elicitation	and	management	processes.	

Figure	6	depicts	the	decision	model,	the	semantic	model,	the	perceptual	model	and	their	

overlap.	It	is	important	to	remark	that	the	processes	involved	in	the	communication	and	

evolution	of	 those	models	are	not	mere	static	algorithms,	medical	ontologies	or	health	

records	mapped	 to	 the	 other	models.	 These	models	 involve	 processes	 that	 iteratively	

adapt	 and	 develop	 new	 decision	 algorithms,	 gather	 data	 from	 heterogeneous	 data	

sources	 (EHR,	 patients,	 web	 etc.)	 and	 evolve	 conceptual	 models	 including	 new	

knowledge	from	different	domains	in	the	form	of	interlinked	ontologies.	The	perceptual	

model	provides	the	mechanisms	to	gather	and	abstract	data	from	the	EHR	and	patients.	

The	 decision	 model,	 with	 an	 inference	 model	 within	 its	 core,	 involves	 the	 decision	

algorithm	and	the	framework	to	maintain	and	adapt	it	allowing	learning	from	previous	

experiences.		The	semantic	model	encompasses	a	core	of	the	basic	biomedical	ontologies	

that	can	be	constrained	or	augmented	to	represent	more	complex	entities	that	index	the	

EHR,	patient	and	inference	model	entities.	

	

Figure	6.	Computational	models	in	CDS.	
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3.4.	Interaction	between	computational	models	
As	mentioned	in	chapter	1,	healthcare	is	often	seen	as	a	data	problem,	but	it	is	in	fact	a	

communication	 problem	 among	 many	 systems	 and	 actors	 [2].	 CDSS,	 as	 a	 part	 of	 the	

health	information	infrastructure,	are	no	exception	to	this.	The	role	of	CDSS	in	learning	

health	 needs	 to	 effectively	 communicate	 and	 leverage	 the	 semantic	 model,	 the	

perceptual	 model	 and	 the	 decision	 model	 to	 produce	 outcomes.	 Therefore	 their	

interfaces	must	be	 carefully	defined	and	developed	with	mechanisms	 that	 ensure	 that	

data	 is	 captured,	 transformed	 and	 communicated	 with	 minimal	 loss	 of	 meaning	 and	

preserving	 its	 context.	The	perceptual	model	needs	 to	provide	mechanisms	 that	 allow	

capturing	and	processing	data	coming	from	EHR	and	patients	to	feed	inference	models.	

The	semantic	model	must	unambiguously	represent	the	metadata	and	entities	produced	

and	consumed	by	the	system,	its	functionality	and	its	execution	requirements	to	ensure	

that	the	system	is	used	in	the	appropriate	context.	

There	are	significant	areas	of	overlap	among	the	three	models.	For	example,	the	core	of	

the	 decision	model	 in	most	 cases	will	 encompass	 a	 decision	 algorithm,	 but	 the	model	

may	 overlap	 in	 some	 cases	 with	 the	 perceptual	 model	 in	 areas	 such	 as	 NLP	 where	

knowledge	can	be	directly	derived	at	the	moment	of	perception.		The	interface	between	

CDS	and	the	semantic	model	will	encompass	the	use	of	semantic	relations	by	algorithms	

to	identify	the	entities	involved	in	its	execution.	The	overlap	of	the	perceptual	model	and	

the	semantic	model	will	contain	the	annotation	of	information	captured	with	ontologies	

and	the	use	of	knowledge	from	these	ontologies	to	derive	new	abstractions.	

Figure	7	shows	a	minimal	example	of	the	interactions	between	these	three	models.	The	

figure	 depicts	 how	 the	 decision	model	 encompasses	 a	 group	 of	 knowledge	 engineers,	

developers	 and	 domain	 specialists	 that	 study	 guidelines	 and	 literature	 to	 elicit	

knowledge	of	 respiratory	diseases.	When	 the	knowledge,	data	and	 terms	needed	have	

been	 identified,	 the	 team	develops	 and	 deploys	 a	 CDS	 artifact	with	 one	 rule.	 The	 CDS	

artifact	 is	 designed	 to	 recommend	performing	 an	X-Ray	when	 a	 patient	 has	 had	 early	

morning	 productive	 cough.	 The	 algorithm	 (rule)	 needs	 2	 abstractions	 namely	 early	

morning	cough	and	productive	cough	in	order	to	be	able	to	produce	a	recommendation.	

Those	entities	are	not	directly	available	in	the	EHR/PHR.	The	perceptual	model	needs	to	

gather	the	necessary	data	to	infer	them.	In	first	place,	the	human-computer	perceptual	

model	needs	 to	deal	with	 the	 interaction	with	 clinicians	 and	patients	 that	 record	data	

into	 an	 EHR	 or	 PHR	 respectively.	 The	 human-computer	 perceptual	 model	 needs	 to	

enable	 efficient	 mechanisms	 of	 HCI	 in	 order	 to	 gather	 the	 data	 regarding	 symptoms.	

Different	 mechanisms	 can	 be	 used	 for	 that.	 To	 capture	 data	 from	 patients,	 apps	 or	
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websites	have	been	used	[95,115].	To	capture	data	from	clinicians,	the	EHR	deployed	in	

a	 hospital	will	 offer	 an	 appropriate	 interface	 [118].	 The	 data	 perception	model	 stores	

that	 data	 and	 its	 contextual	 metadata	 using	 a	 clinical	 information	 standard	 (e.g.	

openEHR)	to	guarantee	quality	and	interoperability.	With	data	represented	in	a	rich	and	

robust	 format,	 the	 data	 perception	model	 can	 exploit	 it	 to	 perform	 abstractions.	 The	

data	perception	model	uses	 the	onset	and	cessation	dates	of	 the	 coughing	episodes	 to	

infer	 new	 abstractions,	 i.e.	 early	 morning	 cough.	 The	 data	 perception	 model	 also	

explores	the	EHR/PHR	and	detects	the	presence	of	sputum,	which,	in	combination	with	

the	presence	 of	 cough,	 is	 used	 to	 infer	 the	 abstraction	productive	cough.	 This	way	 the	

perceptual	 model	 infers	 the	 entities	 that	 the	 algorithm	 can	 exploit	 to	 produce	 a	

recommendation.	 In	 that	 framework,	 the	 semantic	 model	 allows	 the	 algorithm	 to	

reference	 standard	 concepts	 independently	 from	 the	 information	 model	 used	 by	 the	

perceptual	 model.	 The	 algorithm	 references	 abstractions	 through	 a	 place-holder	 that	

links	 the	 entities	 referenced	 to	 a	 concept	 provided	 by	 a	medical	 terminology	 and	 the	

data	entity.	This	 is	an	approach	 followed	by,	 for	example,	openCDS	 [52]	and	openEHR	

GDL	 [53].	 The	 link	 of	 entities	 used	 in	 the	 algorithm	 to	 ontologies	 provided	 by	 the	

semantic	model	allows	attaching	a	meaning	in	a	standard	terminology.	For	example,	the	

entity	early	morning	cough	may	be	bound	to	the	concept	62618004]Early morning cough  in	

SNOMED-CT.	The	same	is	done	when	the	semantic	model	provides	meaning	by	tagging	

data	entities	and	abstractions.	For	example,	in	the	EHR/PHR,	ontologies	are	used	to	tag	

the	content	of	the	archetype	element	onset	with	405795006]Time of symptom onset.  The	role	

of	the	semantic	model	is	paramount	since	it	is	the	way	of	identifying	every	entity	at	any	

stage	 of	 the	 abstraction	 process.	 Therefore,	 it	 allows	 defining	 the	 semantics	 of	 the	

interface	 between	 the	 decision	model	 and	 the	 perceptual	model.	 The	 semantic	model	

does	not	only	serve	data	entities	identification,	but	also	can	help	in	providing	standard	

ontologies	 for	 KM	 indexing	 the	 metadata	 needed	 in	 the	 CDS	 artifact	 development	

process.	Metadata	 ontologies	 such	 as	 the	 Dublin	 Core	 can	 be	 used	 to	 express	 the	 KM	

data	 of	 a	 CDS	 artifact.	 For	 example,	 the	 properties	 dc:creator,	 dcterms:hasversion,	

dcterms:bibliographiccitation	may	 be	 used	 to	 indicate	 the	 author,	 the	 version	 and	 the	

literature	that	supports	the	development	of	a	CDS	artifact.	
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Figure	7.	Interaction	of	computational	models.	

	

3.5.	The	symptom	checker	er	du	syk	
At	the	moment,	most	symptom	checkers	are	in	their	first	generation	[119].	This	means	

that	 their	 outcomes	 are	 recommendations	 or	 diagnoses	 that	 implement	 static	

algorithms	 that	only	 take	 into	account	 fix	knowledge.	Therefore	 they	do	not	 adapt	 for	

example	to	seasonal	changes,	epidemiology	or	specific	populations.		

Er	 du	 syk	 is	 a	 symptom	 checking	 service	 for	 respiratory	 and	 gastrointestinal	

diseases[120].	 Since	 2012	 it	 has	 been	 running	 in	 north	 Norway	 covering	 Troms	 and	

Finnmark	regions.	Er	du	syk	evolves	the	first	generation	of	symptom	checkers	by	using	a	

disease	 query	 engine	 [121]	 that	 leverages	 epidemiological	 data,	 extracted	 from	

Laboratory	 Information	 Systems	 (LIS),	 with	 symptoms	 and	 demographic	 information	

provided	by	patients.	 Its	outcome	is	a	 list	of	 the	possible	diseases	affecting	the	patient	

linked	 to	 an	 estimation	 of	 the	 probability	 of	 each	 of	 them.	 This	 allows	 the	 patient	 to	
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make	an	informed	decision	on	whether	to	visit	or	not	to	visit	a	GP	rather	than	directly	

assessing	an	action.	

As	presented	in	previous	sections,	Norway	is	involved	in	several	initiatives	that	together	

advance	towards	the	LHS.	One	of	these	initiatives	is	the	adoption	of	openEHR	as	clinical	

information	 standard	 and	 the	 evaluation	 of	 SNOMED-CT	 as	 a	 reference	 terminology	

[122].	 These	 initiatives	 involve	 challenges	 for	 CDS	 implementers	 that	 concern	 the	

adoption	of	openEHR	archetypes	for	CDS,	the	adoption	of	semantic	technologies	that	can	

exploit	 SNOMED-CT	 to	 describe	 the	 system	 data	 interfaces,	 and	 enable	 the	 seamless	

interaction	with	patients	that	need	to	record	clinical	information	based	on	archetypes.	

When	 it	 comes	 to	 er	 du	 syk,	 this	 arena	 brings	 both	 challenges	 and	 opportunities.	

Opportunities	come	from	the	set	of	nationally	approved	archetypes	by	the	national	CKM	

[59]	 and	 the	 advantages	 in	 adopting	 a	 reference	 terminology.	 If	 CDSS	were	 based	 on	

such	 set	 of	 archetypes,	 the	 quality	 of	 information	would	 be	 guaranteed	 since	 domain	

experts	 nationally	 agree	 on	 them.	 In	 addition,	with	 the	 proper	 use	 of	 ontologies	with	

SNOMED-CT	as	the	reference	one	the	interoperability	of	the	system	can	be	granted	and	

its	maintenance	facilitated	[123].		

The	remaining	chapters	present	 the	developments	 to	build	a	perceptual,	 semantic	and	

human-computer	interaction	model.	The	development	of	a	complete	decision	model	will	

remain	 out	 of	 the	 scope	 of	 this	 thesis.	 The	 reason	 is	 that	 currently,	 to	 the	 best	 of	my	

knowledge,	 national	 frameworks	 for	 CDSS	 artifacts	 development	 do	 not	 exist	 in	 the	

Norwegian	 context	 and,	 additionally,	 a	 perception	 and	 semantic	 model	 are	 a	

precondition	for	developing	such	frameworks	[13,18,67].	The	developments	presented	

in	this	dissertation	are	framed	by	the	case	study	of	er	du	syk.	Chapter	4	presents	the	data	

perception	model	 built	 to	 extract,	 standardize	 and	 abstract	 data	 from	HISs.	 Chapter	 5	

presents	 the	 semantic	 model	 to	 describe	 its	 data,	 functional	 and	 non-functional	

semantics.	 Chapter	 6	 presents	 the	 human-computer	 perceptual	 model	 developed	 to	

evaluate	 human-computer	 interaction	 when	 capturing	 data	 from	 patients.	 Finally,	

Chapter	7	presents	the	conclusions	and	final	remarks.	
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4.	Data	Perception	Model	
		

Summary:	The	previous	chapter	introduced	the	conceptual	framework	where	the	decision,	

perceptual	and	semantic	models	interact	to	produce	CDS	outcomes.	This	chapter	covers	the	

challenge	of	data	perception.	In	particular,	 it	presents	an	openEHR-based	architecture	to	

integrate,	 standardize	 and	 abstract	 data	 for	 er	 du	 syk.	 The	 contribution	 lays	 in	 the	

combination	of	different	approaches	to	build	a	DW	environment	that	provides:	a)	a	robust	

data	 integration	 method	 to	 deal	 with	 heterogeneous	 data	 sources;	 and	 b)	 technology-

independent	abstraction	mechanisms.	The	contents	of	the	chapter	are	based	on	the	results	

of	PAPER	1.	

	

4.1.	Background	
The	 data	 perception	 model	 is	 the	 one	 that	 enables	 the	 access,	 integration,	

transformation	 and	 aggregation	 of	 data	 instances	 so	 they	 can	 be	 exploited	 by	 the	

decision	model.	 Figure	8	 shows	 the	 figure	 already	presented	 in	 chapter	1	 to	 integrate	

fine	 grained	 data	 from	 several	 data	 sources	 and,	 using	 background	 knowledge,	 define	

some	abstractions	that	climb	positions	in	the	DIKW	triangle	[37,42].	 	On	the	top	of	the	

triangle	a	person	(a	practitioner	or	a	user	 in	 the	case	of	consumer	oriented	CDS)	uses	

aggregated	 data	 to	 make	 informed	 decisions.	 This	 way,	 the	 data	 perception	 model	

assists	 decision	 making	 by	 allowing	 the	 decision	 model	 algorithms	 to	 analyze	

multimodal	 data	 that	 otherwise	 would	 not	 be	 possible	 to	 consider	 in	 the	 decision	

making	process.		

Multimodal	data	perception	models	have	been	previously	treated	by	using	semantic	web	

technologies	 to	 integrate,	 transform	and	abstract	data	 [114].	However,	as	explained	 in	

Chapter	 2,	 many	 of	 the	 data	 constraints	 specified	 in	 clinical	 models	 in	 general,	 and	

archetypes	 in	 particular,	 are	 not	 fully	 tractable	 by	 today´s	 ontology	 reasoners	 [117].	

Therefore,	 it	 is	 adequate	 to	 perform	 data	 integration	 and	 abstraction	 as	 part	 of	 the	

perceptual	model	rather	than	the	semantic	model.	
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Figure	8.	Abstraction	in	data	perception	for	CDS	adapted	from	[42].	

	

4.1.1.	Data	perception	operators	
There	are	two	types	of	operators	involved	in	the	data	perception	model	[42]:	horizontal	

and	vertical.		

From	the	clinical	data	point	of	view,	horizontal	operators	allow	to	 integrate	data	 from	

heterogeneous	HIS	 (LIS,	 EHR,	RIS	 etc.)	 into	 an	 integrated	 standard	view.	This	 ensures	

that	the	information	will	be	represented	retaining	its	context	and	with	a	maximum	level	

of	 completeness	 by	means	 of	 a	 clinical	 information	 standard	 (openEHR	 archetypes	 in	

this	 thesis).	 	 An	 example	 of	 horizontal	 operator	 functionality	 is	 the	 integration	 and	

standardization	 into	 an	 openEHR-based	 EHR	 of	 data	 from	 two	 different	 sources,	 for	

example,	a	Radiology	Information	System	(RIS)	and	a	LIS	each	with	a	proprietary	data	

model.	
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Vertical	 operators	 provide	 the	 mechanisms	 necessary	 to	 transform	 granular	 data	

contained	 in	 a	 HIS	 (e.g.	 EHR)	 to	 generate	 the	 abstractions	 exploited	 by	 the	 decision	

model.	 For	 example,	 a	 vertical	 operator	may	 infer	 from	 a	white	 cell	 count	with	 value	

15x109/L	 a	moderate	 leukocytosis.	 In	 this	 case,	 the	 vertical	 operator	 exploits	 clinical	

knowledge	 that	 allows	 for	 interpreting	 a	 white	 cell	 count	 in	 the	 range	 [11x109,	

17x109]/L	as	the	abstract	concept	“moderate	leukocytosis	present”.		

4.1.1.1.	Horizontal	operators	
One	of	the	first	documented	approaches	to	develop	decision	models	detached	from	the	

EHR	was	the	Arden	syntax	[124].	The	Arden	syntax	defined	the	concept	of	Medical	Logic	

Modules	 as	 CDS	 artifacts	 that	 encapsulated	 logic	 decision	 rules.	 MLMs	 allowed	

embedding	 SQL	 statements	 inside	 its	 data	 section	 to	 retrieve	 data	 from	 the	 EHR.	 In	

order	 to	 access	data	 in	 the	EHR	 it	 allowed	embedding	database	queries	between	 curly	

braces	inside	the	MLM	data	section.	This	direct	reference	to	the	EHR	database	led	to	the	

“curly	 braces	 problem”.	 This	 problem	 can	 be	 explained	 as	 the	 need	 to	 adapt	 the	 data	

access	 sections	 when	 moving	 the	 system	 among	 different	 production	 environments.	

Aiming	to	relief	the	dependency	from	the	original	DB	schema,	CDS	researchers	proposed	

the	use	of	VMRs	[125,126].	Among	the	different	approaches	to	map	the	EHR	schema	to	

the	VMR,	 there	are	some	differences	 in	 the	way	mappings	are	developed.	Some	studies	

define	 DB	 views	 from	 relational	 or	 other	 types	 of	 databases	 directly	 with	 some	 data	

manipulation	 language.	 For	 example,	 Peleg	 et	 al.	 used	 database	 views	 to	 define	 a	 RIM	

based	VMR[22].	Boeaz	and	Shahar	used	a	wrapping	interface	that	mapped	terminologies,	

units	and	data	schemas	to	the	common	VMR	using	different	languages	depending	on	the	

DB	model	of	the	database	to	be	queried	(e.g.	SQL	for	relational,	XPath	for	XML	etc.)[24].	

In	Mobiguide	a	view	was	also	created	using	SQL	and	DB	scripts	[25].	Other	studies	rely	in	

some	 sort	 of	mapping	 languages	 that	 are	 later	 translated	 automatically	 to	 queries.	 For	

example,	Sujansky	and	Altman	proposed	the	Extended	Relational	Algebra	(ERA)	to	define	

mappings	between	a	global	canonical	schema	and	each	data	source	[127].	A	more	recent	

example	 of	 this	 approach	 is	 the	 proposed	 by	 Marcos	 et	 al.	 that	 defines	 declarative	

mappings	 with	 the	 LinkEHR	 tool	 that	 are	 translated	 to	 XQuery	 expressions	 that	

transform	EHR	instances	into	an	openEHR	VMR	[23].	

4.1.1.2.	Vertical	operators	
Many	 of	 the	 frameworks	 presented	 in	 the	 previous	 section	 also	 provide	 vertical	

operators	to	abstract	data.	Several	options	have	been	considered.	Some	frameworks	for	

data	 integration	 and	 normalization	 allow	 the	 definition	 of	 mappings	 to	 generate	

abstractions.	Marcos	et	al.	[23]	relied	on	archetypes	and	the	LinkEHR	tool	to	generate	an	
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EHR	 view.	 LinkEHR	 was	 originally	 designed	 for	 standardizing	 clinical	 data.	 For	 that	

purpose,	 it	 provides	 a	 complete	 set	 of	 transformation	 functions.	 However,	 in	 CDSS	

scenarios,	these	functions	may	not	suffice	to	generate	the	abstractions	consumed	by	the	

decision	model.	 To	 overcome	 this	 challenge,	 Marcos	 et	 al.	 propose	 defining	 additional	

layers	of	archetypes	that	gradually	increase	the	level	of	abstraction,	thus	chaining	small	

transformations	 between	 layers	 until	 the	 desired	 abstract	 concept	 is	 generated.	 Other	

abstraction	 frameworks	 are	based	on	mapping	ontologies	 such	 as	Peleg	 et	 al.[22]	 and	

Henson	et	al.	[114].	In	the	case	of	Peleg	et	al.,	the	mapping	ontology	(KDOM)	instances	

are	translated	automatically	to	SQL	queries	executed	against	a	RIM-based	VMR.	KDOM	

was	also	used	to	abstract	data	in	Mobiguide	[25].	Boeaz	and	Shahar	explored	advanced	

deductive	reasoning	to	interpret	which	abstraction	must	be	inferred	[24].	It	is	important	

to	 note	 that	 these	 approaches	 are	 not	 standard	 in	 the	 sense	 that	 they	 have	 not	 been	

agreed	 and	 adopted	 by	 a	 community	 of	 implementers.	 Currently,	 to	 the	 authors	

knowledge,	 the	 only	 existing	 standards	 to	 define	 constraints	 for	 abstracting	 data	 are	

openEHR	GDL[53,54]	and	its	HL7	counter	part	GELLO	[90,128].	Both	GDL	and	GELLO	are	

expression	 languages	 that	 allow	 defining	 data	 constraints	 over	 a	 VMR	 that	 may	 be	

developed	with	archetypes,	in	the	case	of	GDL,	or	Object	Oriented	(OO)	model	in	the	case	

of	GELLO.	GDL	defines	its	own	data	constraint	functions	while	GELLO	relies	on	the	Object	

Constraint	Language	(OCL)	to	specify	data	constraints	in	OO	models	[90].		

4.1.2.	Advances	in	data	integration	and	abstraction	from	Data	Warehouses	
The	 approaches	 presented	 have	 provided	 advances	 to	 decouple	 the	 CDS	 artifact	 from	

other	 HIS	 databases.	 However,	 research	 in	 abstraction	 mechanisms	 has	 often	 been	

centered	 in	 providing	 powerful	 vertical	 operators	 and	 less	 focused	 on	 providing	

horizontal	operators.	Horizontal	operators	presented	are	able	to	integrate	a	set	of	EHRs	

but	do	not	 allow	 to	deal	with	distributed	access	 and	privacy	policies	 that	may	 change	

from	one	 source	 to	 another.	Most	 of	 them	 rely	 in	 database	 views	 of	 scripts	 to	 extract	

data	 from	one	database.	However	 they	do	not	 define	 a	 scalable	 architecture	 to	 access	

distributed	 data	 sources	 that	 may	 have	 different	 privacy	 policies.	 Moreover,	 vertical	

operators	have	remained	in	the	academic	sphere	and	studies	testing	their	scalability	in	

complex	 enterprise	 environments	 where	 speed	 must	 be	 guaranteed	 to	 ensure	 CDS	

effectiveness	are	scarce	[12].	Although	these	solutions	integrate	the	EHR	with	the	VMR,	

their	 application	 is	 usually	 over	 a	 limited	 set	 of	 source	DBs	with	 limited	 control	 over	

privacy	policies.	

Another	 field	 that	 has	 evolved	very	 rapidly	 in	 the	 last	 decade	 are	 the	 architectures	 to	

enable	 secondary	 use	 of	 clinical	 data.	 The	 developments	 to	 enable	 secondary	 use	 of	
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clinical	data	in	areas	such	as	clinical	research	or	public	health	have	provided	important	

advances	in	the	integration	and	abstraction	of	data.		

It	 is	 interesting	 that	 the	 requirements	 of	 data	 management	 in	 secondary	 use	

environments	for	research	and	public	health	are	mostly	the	same	as	in	CDS.	If	one	thinks	

of	 a	 statistical	 model	 for	 clinical	 research,	 it	 becomes	 evident	 that	 they	 behave	 as	 a	

decision	model.	Horizontal	operators	 for	secondary	use	of	clinical	data	are	often	more	

powerful	since	 they	need	to	 integrate	heterogeneous	data	sources.	Therefore,	 they	are	

designed	to	deal	with	data	and	policy	divergences.		In	the	case	of	vertical	operators,	they	

need	 to	be	dynamic	 (e.g.	 queries	 rather	 than	 static	 scripts)	 to	 allow	defining	different	

views	from	the	same	data	set	depending	on	the	scenario.	

Most	techniques	proposed	for	secondary	use	of	data	are	inspired	by	Data	Warehousing	

techniques	from	the	Business	Intelligence	arena.	For	example,	Danciu	et	al.	[129]	present	

an	in-house	DW	to	drive	data	from	clinical	notes	to	inference	models	for	clinical	research.	

The	 SHARPn	 consortium	 adds	 to	 this	 approach	 by	 transforming	 data	 not	 only	 in	

structured	 proprietary	 formats	 but	 in	 CEM	 compliant	 extracts	 allowing	 to	 query	 data	

using	 the	 HL7	 Health	 Quality	 Measure	 Format	 [28].	 DW4CR	 develops	 a	 powerful	

ontological	 framework	 to	 integrate	 data	 from	 existing	 ontologies	 used	 in	 research,	

terminologies	and	data	models	[130].	The	data	model	is	based	on	HL7	RIM.		

A	platform	being	widely	adopted	for	data	reuse	is	Informatics	for	Integrating	Biology	and	

the	Bedside	(i2b2).	I2b2	is	a	framework	to	enable	data	warehousing	for	clinical	research	

[131].	 It	 provides	 tooling	 for	 NLP,	 genomic	 information	 management	 and	 ontology	

management,	 among	 others.	 Its	 persistence	model	 is	 based	 on	 a	 relational	 data	model	

based	 in	 the	 Star	 Schema	 proposed	 by	 Kimball	 et	 al.	 [132].	 Its	 open	 source	 license	 is	

accelerating	its	adoption	across	many	organizations	worldwide.	

In	the	Norwegian	scenario,	the	SNOW	system	has	provided	an	architecture	to	enable	the	

distributed	access	to	heterogeneous	data	sources	that	may	have	different	policies	[133].	

SNOW	 has	 been	 used	 for	 epidemiology	 control	 monitoring	 the	 evolution	 of	

gastrointestinal	and	respiratory	diseases	 [134].	 In	parallel,	 the	adoption	of	openEHR	 in	

Norway	 has	 provided	 a	 full	 set	 of	 published	 archetypes.	 These	 archetypes	 can	 be	

exploited	 to	drive	 the	definition	of	data	perception	models	with	 the	appropriate	use	of	

technology.	 This	 requires	 leveraging	 different	 openEHR	 tooling	 to	 build	 an	 archetype-

based	DW	environment.	

Conveniently,	 most	 of	 the	 tooling	 needed	 to	 design	 an	 architecture	 that	 realizes	 an	

openEHR	data	perception	model	already	exists.	For	example,	the	SNOW	system	abilities	
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to	access	distributed	health	databases	complying	with	their	privacy	policies	can	be	used	

as	horizontal	operator	to	define	an	integrated	view	of	data.	That	view	can	be	transformed	

into	 openEHR	 valid	 instances	 using	 the	 mapping	 abilities	 of	 LinkEHR	 to	 map	 non-

standard	data	views	to	archetypes	as	Marcos	et	al.	[23]	did	in	their	first	data	integration	

layer.	 Once	 data	 is	 in	 openEHR	 compliant	 format,	 an	 openEHR	 DB	 such	 as	 ThinkEHR	

[135]	can	be	used	to	enable	transactional	control	over	data	and	perform	queries	over	the	

standard	model	using		AQL	as	vertical	operator	to	abstract	data	[98,99].		

The	objective	of	 this	chapter	 is	 to	present	a	data	perception	 infrastructure	by	building	

on	 previous	 research.	 This	 chapter	 describes	 the	 architecture	 developed	 to	 combine	

them	 into	 an	 openEHR	 DW	 environment	 for	 data	 integration	 and	 abstraction.	 The	

following	of	the	paper	presents	the	results	PAPER	1	[26].	

4.2.	Methods	
Most	 of	 the	 technologies	 that	 could	 provide	 the	 benefits	 of	 both	 CDS	 abstraction	

mechanisms	and	DW	techniques	are	available.	However,	 they	have	not	been	combined	

in	an	architecture	that	allows	exploiting	all	their	potential	as	an	integrated	solution.	This	

chapter	proposes	an	architecture	where	each	 technology	 is	used	 to	execute	 the	 task	 it	

performs	optimally.	Specifically,	a	data	perception	model	is	presented	by	combining	the	

developments	 performed	 in	 openEHR	 into	 an	 archetype-based	 DW	 environment.	 The	

methodology	 starts	 by	 extracting	 data	 in	 health	 databases	 and	 integrating	 it	 into	 a	

common	data	view.	Later,	this	data	is	transformed	into	openEHR	compliant	extracts	and	

loaded	 into	 an	 openEHR	 database.	 Over	 this	 database,	 AQL	 [98,99]	 can	 be	 used	 to	

aggregate	data	raising	the	level	of	abstraction	to	invoke	the	service.	

To	 build	 the	 DW	 environment	 for	 data	 perception,	 this	 chapter	 proposes	 a	 micro	

services	 architecture	 that	 divides	 into	 stages	 the	 different	 operations	 that	 need	 to	 be	

performed	 in	 order	 to	 prepare	 data	 for	 an	 inference	 model.	 The	 different	 stages	 are	

integrated	by	a	RESTful	 services	architecture	 that	 chains	 the	output	of	one	 stage	with	

the	input	of	the	next	one.	For	data	access	and	integration	the	architecture	relies	on	the	

SNOW	 system	 that	 acts	 as	 horizontal	 operator	 to	 define	 a	 canonical	 integrated	 data	

view[133,134].	For	transforming	data	into	openEHR	archetypes-compliant	instances,	the	

architecture	relies	on	 the	 transformation	operators	 that	LinkEHR	provides.	Finally,	 for	

persistence	and	abstraction	the	architecture	relies	on	the	openEHR	persistence	platform	

ThinkEHR	 to	 enable	 querying	 standardized	 data	 with	 AQL.	 The	 architecture	 aims	 for	

providing	 a	methodological	 framework	 to	 define	 an	 archetype-based	DW	 that	 enables	

CDS	data	perception	in	openEHR	environments.		
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The	scenario	where	the	openEHR	DW	environment	has	been	verified	is	the	extraction	of	

LIS	 extracts	 to	 feed	 the	 symptom	 checker	 er	 du	 syk.	 Er	 du	 syk	uses	 a	 combination	 of	

laboratory	data	about	test	results	of	infectious	diseases	and	symptoms	provided	by	the	

patient	 to	estimate	 the	 likelihood	of	 the	diseases	 that	may	be	affecting	 the	patient.	LIS	

data	is	used	to	perform	counts	of	the	positive	tests	in	a	given	time	range	to	estimate	the	

incidence	of	diseases	per	geographical	areas.	

	

4.3.	Results	
The	 design	 of	 openEHR	 clinical	 DW	 environments	 for	 data	 perception	 involves	 a	

challenge	 related	 to	 the	 use	 of	 archetypes.	 Often,	 industrial	 DW	 environments	 divide	

data	processing	into	3	stages	named[132]:	Extract,	Transform	and	Load.	In	addition,	DW	

usually	 store	 data	 in	 the	 form	 of	 OLAP	 cubes	 to	 enable	 the	 secondary	 use	 of	 data	 for	

decision	making	 [132].	 	However,	 in	 the	 case	of	 openEHR,	 clinical	 data	 is	 represented	

using	the	openEHR	RM	and	archetypes	to	specify	the	information	schema.	This	involves	

the	 need	 of	 relying	 on	 existing	 archetypes	 to	 maximize	 interoperability.	 Thus,	 the	

proposal	to	implement	a	data	perception	model	as	an	openEHR	DW	adds	an	additional	

stage	to	encompass	the	activities	related	to	archetypes	modeling	[26].	This	leads	to	four	

stages:	Model,	Extract,	Transform	and	Load.	

4.3.1.	Model	
Model	 concerns	 the	 identification	 of	 existing	 archetypes	 or	 modeling	 of	 new	 ones	 to	

drive	the	standardization	of	data	into	openEHR	[123].	These	archetypes	will	be	used	to	

specify	 the	 information	 schema	 of	 the	 DW	 that	 will	 be	 referenced	 by	 queries	 in	 the	

abstraction	 process.	 By	 referencing	 openEHR	 archetypes	 rather	 than	 proprietary	 DB	

schemas,	the	dependencies	on	proprietary	formats	are	eliminated.	

In	 order	 to	 maximize	 the	 level	 of	 interoperability,	 national	 repositories	 such	 as	 the	

Norwegian	CKM[59],	or	international	repositories	such	as	the	International	CKM	[136],	

should	 	be	 checked	 identifying	 the	most	adequate	archetypes	 to	use	on	each	 scenario.	

The	archetypes	identified	to	cover	each	data	perception	use	case	should	be	combined	in	

an	openEHR	template	defining	the	final	structure	of	the	DW	information	schema.	In	the	

case	of	er	du	syk,	the	Norwegian	and	international	CKM	were	checked	identifying	three	

archetypes	 named:	 lab_test.v1,	 lab_test_microbiology.v1	 and	

lab_test_microscopic_finding.v1.		

Provided	 that	 archetypes	 are	 designed	 to	 structure	 EHRs	 clinical	 content,	 DW	

infrastructures	 for	 integration	 and	 abstraction	 of	 data	 may	 need	 to	 perform	 some	
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modifications	 on	 them	 so	 they	 cover	 the	 information	 model	 requirements.	 That	 was	

actually	the	case	in	the	case	study	presented.	In	er	du	syk	demographic	data	such	as	that	

related	 to	 the	patient	 requester	and	patient	municipality	 are	needed.	Additionally,	 the	

way	of	representing	 laboratory	tests	varies	since	a	request	may	encompass	a	material,	

requester	and	patient	with	a	battery	of	tests	where	each	test	aims	to	detect	an	infectious	

agent.	This	made	it	necessary	to	remodel	some	sections	of	the	archetypes	to	fit	er	du	syk	

data	needs.	When	modifications	or	new	archetypes	are	defined,	the	process	needs	to	be	

coordinated	with	the	national	CKM.	This	guarantees	their	accessibility	and	appropriate	

governance	[123].	

4.3.2.	Extract	
Extraction	is	an	extremely	sensitive	stage	since	in	some	cases	the	CDSS	may	be	outside	

the	 system	 where	 data	 was	 originally	 stored.	 Therefore,	 it	 must	 be	 carried	 out	

complying	with	every	privacy	policy	established	by	data	sources.	Therefore,	depending	

on	the	scenario,	this	stage	may	need	to	deal	with	simple	de-identification	techniques	or,	

in	 the	most	 restricting	 scenario,	 extract	 only	 results	 of	 aggregations	 performed	 inside	

the	data	 source.	 In	 the	architecture	 for	data	perception	proposed	 the	SNOW	system	 is	

used	to	overcome	these	challenges.	SNOW	is	an	agent-based	system	that	works	as	a	peer	

to	 peer	 network	 to	 allow	 distributed	 computations	 over	 different	 data	 sources	

[133,134].	 Its	 distributed	 nature	 avoids	 the	 need	 for	 extracting	 data	 to	 perform	

computations	over	it.	SNOW	integrates	with	several	specific	export	modules	that	allow	

access	 to	 data	 stored	 in	 different	 information	 systems.	 An	 example	 is	 the	 Medrave	

library	that	provides	an	interface	to	access	primary	care	EHRs.	The	libraries	that	SNOW	

encompasses	are	used	to	extract	data.	After	extraction,	SNOW	presents	data	as	a	single	

integrated	 schema.	That	 integrated	 schema	 can	be	mapped	 to	 openEHR	archetypes	 in	

the	transformation	stage.		

SNOW	 provides	 computation	 capabilities	 that	 can	 be	 used	 as	 vertical	 operators.	

However,	the	data	perception	model	presented	uses	SNOW	as	a	horizontal	operator	to	

define	 an	 integrated	 canonical	 view	 of	 de-identified	 data.	 This	 way	 it	 is	 possible	 to	

exploit	 its	 distributed	 data	 integration	mechanisms.	 In	 this	 architecture	 abstraction	 is	

performed	at	 later	stages	relying	on	openEHR.	This	allows	to	maximize	 the	number	of	

different	 abstractions	 that	 can	be	 created	 later	using	 the	AQL.	Nevertheless,	 scenarios	

with	higher	demands	on	privacy	preservation	may	decide	to	apply	aggregations	before	

transformation.	In	those	cases,	the	openEHR	view	will	have	some	abstraction.	Therefore,	

the	 amount	 of	 different	 abstractions	 that	 will	 be	 possible	 to	 perform	 will	 be	 more	

limited.	 For	 example,	 instead	 extracting	 fine-grained	 data	 at	 a	 patient	 level,	 if	 more	
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privacy	 is	required,	 it	 is	possible	to	extract	data	accounting	results	per	patient	groups.	

An	adequate	trade-off	between	privacy	preservation	with	aggregation	and	flexibility	of	

data	reuse	in	several	scenarios	must	be	found	depending	on	the	privacy	requirements	of	

each	deployment.	

In	the	case	study	presented,	the	canonical	view	of	data	was	generated	using	one	of	the	

export	modules	that	SNOW	implements	to	extract	data	from	the	LIS	DB.	Then	a	cache	is	

built	 and	 exposed	 through	 a	 RESTful	 service	 so	 it	 is	 available	 on	 demand	 for	 the	

transformation	 stage.	 A	 sample	 marshaling	 of	 one	 laboratory	 result	 contained	 in	 the	

cache	is	displayed	in	Figure	9.	That	view	is	a	plain	representation	of	the	tests	in	the	LIS	

DBs	ready	to	be	mapped	to	openEHR	archetypes	defined	in	the	Model	stage.	

	

Figure	9.	Marshaled	extract	of	one	laboratory	test	result	in	canonical	view.	

	

4.3.3.	Transform	
The	 transform	 stage	 concerns	 the	 conversion	 of	 the	 data	 contained	 in	 the	 integrated	

view	built	using	SNOW	into	 instances	compliant	with	the	openEHR	archetypes	defined	

in	 the	model	 stage.	 This	 transformation	 is	 carried	 out	 by	means	 of	 the	 LinkEHR	 tool.		

Using	LinkEHR,	the	XML	Schema	of	the	canonical	model	and	the	openEHR	archetype	are	

mapped.	 Mappings	 vary	 in	 type	 and	 purpose.	 Figure	 10	 shows	 some	 the	 most	

representative	mappings	used	 to	standardize	some	of	 the	data	processed	by	er	du	syk.	

The	simplest	type	of	mapping	regards	the	transformation	of	one	value	into	another.	For	

example,	 the	mapping	represented	by	blue	arrows	and	ellipse	 indicates	 that	when	 the	

analysis	name	in	the	canonical	model	is	´Nasopharynx-Chlamydophila	pneumoniae	DNA´	

the	node	analysis	 type	of	 the	archetype	should	be	set	 to	 the	value	10652-6	 that	 is	 the	

code	for	identifying	that	type	of	test	in	the	LOINC	terminology.	Other	type	of	mappings	
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are	those	that	infer	new	values	of	the	archetype	nodes	that	did	not	exist	in	the	original	

schema	by	combining	the	information	of	the	canonical	schema	with	background	domain	

knowledge.	 An	 example	 of	 this	 type	 of	mapping	 is	 the	mapping	 represented	 by	 green	

arrows	 and	 ellipses.	 That	 mapping	 infers	 the	 value	 of	 the	 symptom	 group	 node	 by	

applying	 the	 knowledge	 that	 VNX-CPP	 is	 the	 code	 of	 an	 infectious	 agent	 of	 the	

respiratory	system	that	causes	respiratory	symptoms.	Finally,	another	type	of	mapping	

often	 needed	 are	 structural	 mappings	 for	 specifying	 how	 data	 in	 the	 plain	 canonical	

model	 must	 be	 grouped	 to	 comply	 with	 the	 hierarchical	 structure	 of	 the	 archetype.	

Figure	10	represents	with	gray	arrows	and	ellipse	the	set	of	attributes	that	must	be	used	

to	 specify	 groupings.	 In	 particular,	 the	 mapping	 specifies	 that	 all	 single	 tests	 with	

common	 values	 of	 registration	date,	 test	 requester	 id,	material,	 and	patient	 id	must	 be	

grouped	inside	the	same	tests	battery.		

Once	 all	 mappings	 have	 been	 defined,	 LinkEHR	 processes	 them.	 The	 outcome	 of	 that	

processing	is	an	XQuery	script.	When	the	script	is	executed	over	the	canonical	model,	it	

performs	 the	 transformations	 specified	 in	 the	 mappings	 and	 returns	 a	 data	 instance	

compliant	with	the	openEHR	archetype.		

In	 the	DW	environment	 that	 transformation	must	be	 integrated	with	 the	other	 stages.	

Placing	the	XQuery	script	in	a	REST	service	allows	its	execution	on	demand.	Therefore,	

when	the	service	is	invoked	for	a	particular	hashed	patient	id,	it	processes	the	canonical	

view	 and	 applies	 all	mappings	 returning	 instances	 corresponding	 to	 that	 patient	 that	

comply	with	the	openEHR	archetype.	
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Figure	10.	Mapping	between	the	canonical	integrated	view	and	the	openEHR	archetype.	

	

4.3.4.	Load	
With	the	 transformation	service	deployed,	 it	 is	possible	 to	 invoke	 it	and	get	compliant	

openEHR	 extracts,	 thus	 granting	 interoperability	 based	 on	 the	 archetypes	 defined.	

However,	 in	order	 to	dynamically	query	data	 for	defining	abstractions,	a	platform	that	

enables	 ACID	 properties	 and	 high	 throughput	 queries	 over	 the	 openEHR	 instances	 is	

needed.	In	the	architecture	proposed,	the	openEHR	persistence	platform	is	used	for	that	

purpose.	The	platform	 is	 loaded	with	openEHR	 instances	by	 sequentially	 invoking	 the	

transformation	 service.	 For	 each	 invocation	 the	 transformation	 service	 returns	 the	

openEHR	 serialization	 result	 of	 transforming	 the	 canonical	 view	 into	 openEHR.	 That	

extract	 is	 then	 analyzed	by	 the	 load	 service	 to	 apply	 some	 reconciliation	 in	 its	 format	

and	 it	 is	 submitted	 to	 the	 openEHR	 persistence	 platform.	 After	 the	 load	 stage,	 the	

openEHR	 persistence	 platform	 enables:	 1)	 transactional	 control	 over	 openEHR	

instances;	 2)	 high	 throughput	 in	 queries;	 3)	 independence	 from	 the	 underlying	

persistence	technology.	Querying	data	with	AQL	enables	the	 later.	AQL	allows	defining	

queries	 that	 reference	 archetypes	 rather	 than	 a	 technology	 dependent	 persistence	

schema.	 For	 example,	 if	 a	 relational	 or	 XML	 DB	 is	 used	 instead	 of	 an	 openEHR	

persistence	platform,	queries	will	have	direct	dependencies	on	the	DB	technology	such	

as	the	SQL	queries	over	tables	in	the	case	of	relational	DBs,	or	XQuery	queries	in	the	case	

of	XML	DBs.	Therefore,	 if	at	 some	point	 it	 is	decided	 to	migrate	 to	another	 technology	

such	 as	 NoSQL	 DB,	 all	 the	 queries	 will	 need	 to	 be	 re-implemented.	 Since	 many	
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technologies	can	be	used	to	persist	openEHR	instances	with	different	performances	and	

capabilities	[137]	it	is	appropriate	to	rely	on	a	persistence	core	that	provides	a	standard	

way	 of	 querying	 data	 (e.g.	 with	 AQL).	 By	 relying	 on	 AQL	 new	 technologies	 can	 be	

adopted	without	affecting	the	queries	used	for	data	aggregation.		

Table	 1	 and	 Table	 2	 contain	 several	 queries	 used	 to	 estimate	 diseases	 incidence	 and	

prevalence	by	er	du	syk	[26].	

Table	1.	Pertusis	monitoring	queries.	

PERTUSSIS	MONITORING	
Count	
positive	tests	
of	Pertussis	
for	the	day	
specified	in	
the	
parameter	
(e.g.	2013-
01-04)	

SELECT			count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])		-	-		count	(patientId)	

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(OBSERVATION	o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1]	and	OBSERVATION	
o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1])	

WHERE	
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value='K
ikhoste'and		

o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value='Po
sitiv')	

and	o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	>=	'2013-01-04'	

and		o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	<	'2013-01-05'	

Count	
negative	
tests	of	
Pertussis	

for	the	day	
specified	in	
the	
parameter(e.
g.	2013-01-
04)	

SELECT			count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])	

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(OBSERVATION	o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1]	and	OBSERVATION	
o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1])	

WHERE	
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value='K
ikhoste'and		

o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value='Ne
gativ')	

and	o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	>=	'2013-01-04'	

and		o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	<	'2013-01-05'	

Total	tests	of	
Pertussis	(in	
Norwegian	
'Kikhoste')	
performed	

for	the	day	
specified	in	
the	
parameter(e.
g.	2013-01-
04)	

SELECT			count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])	

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(OBSERVATION	o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1]	and	OBSERVATION	
o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1])	

WHERE	
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value='K
ikhoste')	

and	o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	>=	'2013-01-04'	
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and		o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	<	'2013-01-05'	

	

	

Table	2.	Salmonella	monitoring	queries.	

SALMONELLA	MONITORING	

Salmonella	
cases	in	
the	
specified	
municipali
ty	(same	as	
patient	just	
confirmed)	
in	the	first	
2	weeks	of	
January	

SELECT			count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]/value)	-	-		count	
(patientId)	

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(OBSERVATION	o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1]	and	OBSERVATION	
o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1])	

WHERE	
(o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value='Sal
monella'and		

o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value='Posi
tiv')	

and	o1/data[at0001]/events[at0002]/data[at0003]/items[at0020]/value='1917'	

and	o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	>=	'2013-01-01'	

and		o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value	<	'2013-01-15'	
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Positives	
in	the	
whole	
region	to	
plot	
evolution	
per	day	(#	
abbreviate
s	the	path	
to	the	
CLUSTER)	

SELECT	

				count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])		

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(	

				OBSERVATION	o1#micro_lab_test	and	

				OBSERVATION	o2#micro_lab_test)	

WHERE	

				o1#battery/Simple_test/infectious_agent='Salmonella'	and	

				o1#battery/Simple_test/test_result='Positiv'	and	

				o1#registration_date>='2013-01-01'	and	

				o1#registration_date<'2013-01-15'	

Negatives	
in	the	
whole	
region	to	
plot	
evolution	
per	day(#	
abbreviate
s	the	path	
to	the	
CLUSTER)	

SELECT	

				count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022])	

FROM	EHR	e	

CONTAINS	COMPOSITION	c	

CONTAINS	(	

				OBSERVATION	o1#micro_lab_test	and	

				OBSERVATION	o2#micro_lab_test)	

WHERE	

				o1#battery/Simple_test/infectious_agent='Salmonella'	and	

				o1#battery/Simple_test/test_result='Negativ'	and	

				o1#registration_date>='2013-01-01'	and	

				o1#registration_date<'2013-01-15'	

	

	

4.4.	Discussion	
The	 architecture	 to	 realize	 an	 openEHR-based	 data	 perception	 model	 has	 been	

described.	The	approach	presented	intends	to	use	the	strengths	of	each	tool	to	design	a	

DW	environment	that	can	integrate,	standardize	and	abstract	data	for	decision	models.		

SNOW	 libraries	 provide	 the	 horizontal	 operators	 to	 extract	 and	 define	 a	 canonical	

integrated	view	of	data.	LinkEHR	allows	transforming	that	canonical	view	into	openEHR	

compliant	 archetype	 instances.	The	openEHR	persistence	platform	Think!EHR	enables	

persistence	 and	 abstraction	 of	 openEHR	 instances.	 The	 archetypes	 that	 define	 the	

information	schema	provide	a	robust	model	available	and	governed	at	a	national	level.	
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Most	 of	 the	 approaches	 to	 define	 abstractions	 up	 to	 date	 are	 based	 on	mappings	 that	

provide	 vertical	 operators	 but	 limited	 integration	 capabilities	 [22–24,138].	 The	 DW	

environment	 presented	 tries	 to	 adapt	 techniques	 from	 data	 warehousing	 to	 improve	

data	 integration	 capabilities	 and	 enable	 abstraction	 using	 standard-based	 dynamic	

queries.		

Regarding	 integration,	 the	main	advantage	with	respect	 to	CDS	abstraction	 techniques	

are	 the	 powerful	 horizontal	 operators	 provided	 by	 the	 data	 access	 libraries	 and	

distributed	 access	 functions	 that	 SNOW	 provides.	 Distributed	 data	 sources	 can	 be	

accessed	 respecting	 the	 privacy	 restrictions	 of	 each	 of	 them.	 Although	 the	 case	 study	

presented	 in	er	du	syk?	 only	uses	 one	 library	 from	one	data	 source	 (the	 regional	 LIS),	

nowadays	 SNOW	 integrates	 5	 GP	 offices	 and	 7	 microbiology	 laboratories.	 	 Another	

advantage	with	respect	to	other	DW	environments	is	the	dynamic	management	of	data	

based	on	standard	queries	using	AQL.	AQL	allows	performing	queries	over	the	standard	

model	 defined	 by	 archetypes	 regardless	 of	 the	 underlying	 technology.	 This	 allows	 for	

managing	the	complexity	of	clinical	data	by	relying	on	models	that	were	developed	for	

that	 purpose	 (e.g.	 openEHR).	 Otherwise	 OLAP	 cubes	 or	 Snow	 flaked	 schemas	 that	

warehouses	 implement	would	 explode	 in	 complexity	 to	 represent	 clinical	 information	

instances.	 Moreover,	 the	 use	 of	 openEHR	 allows	 for	 representing	 all	 the	 contextual	

information	linked	to	clinical	data	instances.	

The	 architecture	 presented	 has	 benefits	 but	 also	 limitations.	 The	 first	 limitation	

concerns	 transactional	 control	 over	 ETL	 stages.	 The	 openEHR	 persistence	 platform	

grants	ACID	properties	once	data	has	been	loaded.	However,	while	data	is	extracted	into	

the	canonical	view	or	loaded	into	the	persistence	platform	some	of	the	operations	may	

abort.	This	could	lead	to	wrong	inferences	at	the	query	stage.	At	the	moment,	the	correct	

functioning	of	these	operations	needs	to	be	checked	manually.	A	way	to	overcome	this	

issue	could	be	to	endow	the	architecture	with	a	global	transaction	management	system	

such	as	the	Java	Transaction	API	[139]	in	combination	with	the	openEHR	Extract	model.	

This	would	allow	treating	each	 information	 instance	as	a	 “versioned	object”.	However,	

the	 combination	 of	 a	 global	 transaction	 system	with	 the	 use	 of	 the	 openEHR	 Extract	

model	 versioning	 control	 remains	 as	 future	work.	 	Another	 limitation	 comes	 from	 the	

nature	of	AQL.	While	the	approach	presented	attempts	to	maximize	the	flexibility	in	in	

the	 definitions	 of	 abstractions	 relying	 on	 AQL,	 this	 also	 ties	 the	 solution	 to	 AQL	

limitations.	AQL	was	originally	designed	for	querying	openEHR-based	EHRs,	but	not	as	a	

general-purpose	 query	 language	 to	 support	 the	 definition	 of	 complex	 abstractions	 for	

CDS.	 For	 the	 same	 reason	 it	 does	 not	 have	 manipulation	 operations	 since	 every	
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modification	in	the	EHR	must	become	a	new	version	of	an	existing	object	rather	than	be	

deleted.	 	 Therefore	 the	 number	 of	 functions	 to	 abstract	 and	 manage	 data	 is	 limited.	

While	some	functions	such	as	count	or	sum	are	supported,	to	the	best	of	my	knowledge,	

more	 complex	 functions	 such	 as	 subqueries	 have	 not	 been	 yet	 included	 in	 the	

specification	nor	implemented.	In	the	case	of	er	du	syk,	the	functions	necessary	to	cover	

the	 case	 study	 were	 sufficient.	 However,	 other	 scenarios	 may	 need	more	 abstraction	

power	requiring	to	chain	queries	or	rules	to	create	the	concepts	needed	by	the	decision	

model.	 Some	studies	have	proposed	 to	 transform	openEHR	entities	 into	semantic	web	

representations	 to	 apply	 semantic	web	 technologies	 in	 the	 abstraction	 process	 [140].	

This	 would	 allow	 performing	 conceptual	 abstraction	 queries.	 For	 example,	 analyze	

subsumptive	relationships	to	perform	a	general	query	to	retrieve	any	patient	diagnosed	

with	any	subtype	of	diabetes	(type	I,	II,	gestational	etc.).		However,	this	introduces	a	new	

layer	and	increases	the	level	of	complexity.	Furthermore,	there	is	no	guarantee	that	the	

resulting	 models	 are	 tractable	 for	 the	 reasons	 explained	 in	 the	 next	 chapter.	 From	 a	

practical	point	of	view,	 it	seems	more	reasonable	 to	deal	with	such	scenarios	by	using	

GDL	 or	 GELLO	 on	 top	 of	 AQL	 to	 infer	 complex	 abstractions	 with	 operations	 such	 as	

conditions,	 complex	 arithmetic	 operations	 etc.	 GDL	 can	 reference	 archetypes	 directly	

and	 GELLO	 can	 treat	 them	 as	 an	 object	 model.	 Both	 models	 provide	 advanced	

abstraction	mechanisms	without	 the	 need	 of	 performing	 further	 transformations	 into	

semantic	models.	

Other	DW	infrastructures	have	been	proposed	oriented	to	enable	the	reuse	of	data	 for	

clinical	 research.	 Hu	 et	 al.	 proposed	 a	 DW	 that	 enabled	 secondary	 use	 of	 data	 for	

research	 [130].	Their	approach	exploited	standard	 terminologies	such	as	SNOMED-CT.	

However	it	did	not	rely	on	clinical	information	standards.	Another	related	project	is	the	

SHARPn	 consortium.	 The	 SHARPn	 approach	 followed	 an	 strategy	 similar	 to	 the	 one	

presented	 here	 by	 using	 Intermountain	 CEMs	 rather	 than	 openEHR	 archetypes	 [28].	

SHARPn	 is	 oriented	 to	 provide	 health	 quality	measures	 in	HL7	HQMF.	 A	 difference	 is	

that	 rather	 than	 using	 an	 openEHR	 persistence	 platform,	 queries	 over	 the	 models	

created	are	done	by	translating	HQMF	to	the	DB	query	language.		

Haarbrandt	et	al.	partially	relied	on	openEHR	to	enable	secondary	use	of	clinical	data	by	

proposing	 a	 mapping	 methodology	 from	 openEHR	 to	 i2b2	 [27].	 That	 is	 a	 powerful	

strategy	since	 it	allows	to	place	 i2b2	on	top	of	openEHR-based	systems	and	exploit	all	

the	 functionalities	 that	 i2b2	 provides	 for	 clinical	 research.	 However	 most	 VMR	 are	

defined	using	clinical	 information	standards	such	as	openEHR	or	HL7	VMR	in	order	to	

represent	the	clinical	information	preserving	its	contextual	properties.	Therefore,	using	
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the	i2b2	star	schema	which	was	designed	for	phenotyping	in	clinical	research	is	not	an	

appropriate	 option	 for	 CDS	 perceptual	 model	 developments.	 Additionally	 it	 adds	

another	 transformation	 layer	 into	another	schema	that	 leads	 to	some	 information	 loss	

since	not	all	the	entities	in	openEHR	can	be	transformed	into	the	i2b2	star	schema[27].		

openEHR	 has	 been	 documented	 to	 be	 a	 scalable	 standard	 to	 build	 VMRs	 [141].	 Its	

combination	 with	 AQL	 allows	 to	 have	 a	 rich	 clinical	 information	 model	 with	 an	

abstraction	 mechanism	 independent	 of	 the	 underlying	 technologies	 used	 in	 the	

implementation.	Although	AQL	has	some	aggregations	limitations,	they	can	be	overcome	

by	 combining	 it	 with	 standards	 such	 as	 GDL	 or	 GELLO	 without	 introducing	 further	

mapping	layers	into	different	models	that	may	provoke	information	loss.		

A	 problem	 regarding	 the	 use	 of	 archetypes	 to	 build	 the	 VMR	 is	 that	 most,	 if	 not	 all,	

published	archetypes	available	on	CKMs	are	designed	to	model	the	content	model	of	the	

EHR.	 In	 many	 cases	 the	 VMR	 defines	 a	 summary	 with	 some	 abstraction	 level	 with	

respect	to	the	EHR.	That	 involves	a	problem	since	archetypes	from	the	CKM	may	need	

some	modifications	to	comply	with	the	requirements	of	the	VMR.	An	example	of	this	was	

shown	in	the	results	section	were	only	some	of	the	sections	of	the	archetypes	from	the	

CKM	for	laboratory	tests	were	useful	to	model	the	laboratory	request	in	the	VMR	of	er	

du	 syk.	 This	 problem	 was	 discussed	 at	 the	 tutorial	 Enabling	 Clinical	 Data	 reuse	 with	

openEHR	 DW	 environments	 at	 Medinfo	 2015	 between	 openEHR	 developers	 and	 CKM	

editors	 [39].	 Since	 this	 is	 a	 problem	 likely	 to	 appear	 in	 many	 data	 reuse	 and	 CDS	

developments,	the	recommended	way	of	dealing	with	it	for	developers	is	to	be	in	contact	

with	their	national	CKM	or	the	international	CKM	(if	no	national	CKM	is	available).	In	the	

case	of	er	du	syk,	the	resources	developed	were	uploaded	to	a	project	in	the	Norwegian	

CKM	[123].	This	allows	placing	the	resources	in	a	public	repository	with	an	appropriate	

governance	 framework.	 Additionally,	 interacting	 with	 the	 CKM	 provides	 feedback	 to	

CKM	editors	that	may	discover	requirements	for	future	versions	of	archetypes.	
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5.	Semantic	Model	
	

Summary:	The	previous	chapter	presented	an	openEHR	data	perception	model	that	needs	

to	process	data	to	allow	the	decision	model	exploiting	it.	This	chapter	is	concerned	with	the	

specification	 of	 the	 CDSS.	 Specifically,	 it	 tackles	 the	 problem	 of	 extending	 CDSS	

specifications	with	 semantic	 annotations.	 The	aim	 is	 to	 enable	CDSS	 exposed	 in	a	health	

network	 to	 be	 discovered	 and	 analyzed	 to	 understand	how	 to	 interoperate	with	 it	 in	 an	

unambiguous	way.	Several	ontologies	will	be	leveraged	to	specify	data,	functional	and	non-

functional	 semantics	 using	 the	 Linking	 Open	 Data	 cloud	 as	 a	 common	 Knowledge	 Base.	

The	annotation	of	er	du	syk	will	be	used	to	exemplify	how	these	models	allow	describing	its	

interfaces	 and	 properties	 in	 a	 machine-understandable	 fashion.	 The	 contents	 of	 the	

chapter	are	based	on	the	results	of	PAPER	2.	

	

5.1.	Background	
The	representation	of	information	and	knowledge	in	medicine	involves	many	challenges	

inherent	to	the	complexity	of	the	biomedical	domain.	When	health	information	systems	

are	 developed	 as	 conventional	 enterprise	 software	 they	 tend	 to	 become	 information	

silos	 [142].	 This	means	 that	 information	 cannot	 be	 easily	 shared,	 queried	 or	 analyzed	

outside	the	system	boundaries	since	there	is	no	common	format	to	specify	its	structure,	

context	and	meaning.	In	previous	chapters	the	importance	of	CIMs	for	providing	content	

models	 to	 structure	 clinical	 information	has	been	explained.	 	However,	 although	CIMs	

provide	 common	 scalable	 information	 schemas	 to	 enable	 interoperation,	 the	

specification	of	meaning	in	CIMs	with	rich	semantics	is	also	needed.	Semantics	need	to	

unambiguously	 identify	 the	 meaning	 of	 exchanged	 information	 with	 an	 application	

independent	lingua	franca.	Building	semantic	models	of	medical	knowledge	is	a	difficult	

task	since	complex	relationships	such	as	specializations	and	many	concepts	with	subtle	

variations	 in	 their	 meaning	 are	 common.	 This	 involves	 the	 need	 of	 formalizing	 such	

specifications	 in	a	way	that	allows	maintaining	and	scaling	knowledge	models	that	are	

constant	across	applications	(i.e.	background	static	knowledge)	[143].		

The	 need	 of	 building	 semantic	 models	 is	 not	 something	 only	 related	 to	 the	 clinical	

domain,	but	common	to	all	domains	 that	manage	complex	heterogeneous	data	such	as	

the	WWW.	In	the	last	decades	the	need	of	the	Web	to	count	on	meaningful	annotations	

to	manage	 large	amounts	of	multimodal	data	has	 led	 to	 the	development	of	 standards	

for	specifying	knowledge	models	by	Semantic	Web	researchers	[144].	These	standards	
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allow	for	defining	models	with	a	logic	foundation	(e.g.	relying	on	Description	Logics)	as	

ontologies.	 Inspired	 by	 philosophy,	 the	 term	 ontology	 in	 computer	 science	 was	 first	

introduced	 by	 Grubber	 as	 conceptualization	 of	 a	 universe	 of	 discuss	 [145].	 More	

formally,	 an	 ontology	 is	 described	 as	 a	 “formal,	 explicit	 specification	 of	 a	 shared	

conceptualization”[146].	The	formal	specification	of	a	model	means	that	it	is	expressed	

without	ambiguity	 in	a	mathematical	 fashion,	 thus	making	 it	machine-understandable.	

This	 means	 that	 computers	 can	 process	 the	 concepts	 and	 relationships	 expressed	

inferring	 new	 knowledge	without	 human	 intervention.	 Ontologies	 provide	 a	 semantic	

layer	 that	 allows	 for	 associating	 meaning	 with	 data	 regardless	 of	 the	 underlying	

information	structure	or	syntax	[37].	Chapman	et	al.	summarize	the	three	main	features	

provided	by	the	Semantic	Web	[147][chapter1]:	

• Building	 knowledge	models	 capable	 of	 representing	 complex	 domains	making	

them	easier	to	process	and	maintain.	For	example,	the	Gene	Ontology	provides	a	

model	with	 the	 concepts	 and	 relationships	 necessary	 to	 define	 gene	 functions.	

These	concepts	include	gene	products,	cellular	components,	molecular	functions	

and	relationships	among	them.	

• Computing	 with	 knowledge:	 the	 formal	 specification	 of	 ontologies	 allows	

computers	to	reason	over	represented	knowledge	inferring	new	knowledge	and	

deriving	 conclusions.	 This	 facilitates	 the	 management	 of	 complex	 models.	 An	

example	 is	 the	 management	 of	 massive	 ontologies	 such	 as	 SNOMED-CT	 that	

contains	 around	 300,000	 concepts	 and	 more	 than	 1	 million	 relationships.	

Reasoning	over	a	reduced	set	of	assertions	allows	deriving	and	managing	all	the	

concepts	present	in	the	distribution	files	[143].	Also	the	SNOMED-CT´s	ontology	

(concept	model)	provides	the	compositional	grammar	to	define	new	concepts	by	

combining	 others	 (post-coordination).	 When	 this	 happens,	 reasoners	 can	 be	

used	to	classify	the	new	concept	in	its	corresponding	hierarchy.	

• Exchanging	information:	counting	in	a	common	model	to	specify	semantics	plays	

an	 important	 role	 in	 interoperability	 and	 integration	 of	 disparate	 knowledge	

models.	 For	 example,	 heterogeneous	 medical	 terminologies	 can	 be	 mapped	

using	the	semantic	web	establishing	equivalence	relationships.	An	example	is	the	

UMLS	Metathesaurus	that	integrates	a	large	amount	of	terminologies	[148]	and	

the	architecture	caCore	for	the	integration	of	resources	in	cancer	research	[149].	

		

So	far	the	use	of	semantics	in	CDS	systems	has	been	mostly	limited	to	the	definition	of	

background	 knowledge	 as	 reference	 ontologies	 (SNOMED-CT,	 Gene	 Ontology,	 Uniprot	
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etc.)	 [143]	 and	 some	 ontology	 based	 models	 for	 the	 specification	 of	 the	 decision	

algorithms	(e.g.	SAGE)[68].	Nowadays	the	trend	towards	encapsulating	the	CDS	artifacts	

behind	 a	 web	 service	 [13,14,66,150]	 makes	 the	 effective	 binding	 semantics	 to	 CIM	

elements	 even	 more	 appealing.	 	 Medical	 ontologies	 (e.g.	 SNOMED-Ct	 or	 GALEN)	 and	

terminologies	(LOINC,	ICPC)	are	used	for	that.	 	SOA	principles	for	CDS	promulgated	by	

Kawamoto	 and	 Lobach	 [150],	 and	 later	 implement	 by	 Dixon	 et	 al.	 [14]	 and	 openCDS	

[52],	decouple	the	CDS	artifact	from	any	other	HIS	allowing	to	make	it	available	for	any	

client.	For	the	exchange	of	information	between	clients	and	CDS	services	this	approach	

relies	 on	 messages	 defined	 by	 CIMs	 and	 annotated	 with	 standard	 terminologies	 as	

canonical	 models	 to	 identify	 the	 entities	 that	 the	 service	 consumes	 [66].	 However,	

although	 terminologies	 provide	 some	 degree	 of	 semantics	 to	 CIMs	 they	 are	 not	

contextualized;	 meaning	 that	 they	 link	 to	 an	 external	 knowledge	 model	 that	 has	 not	

direct	 relationship	with	 the	semantics	 implicit	 in	 the	CIM.	This	has	 implications	 in	 the	

automatic	analysis	of	their	interfaces,	the	search	in	CDS	repositories	and	the	mapping	to	

other	conceptual	models	as	described	in	the	next	section.	

	

5.1.1.	Limitations	of	SOA	and	CDS	specification	standards	
Encapsulation	 of	 CDS	 systems	 into	 Web	 services	 implies	 delegating	 development,	

maintenance	 and	 governance	 to	 a	 third	 party.	 However,	 this	 delegation	 involves	

challenges	 since	 the	 client	 does	 not	 have	 any	 control	 over	 the	 system	 deployed.	 This	

translates	 into	 difficulties	 to	 find	 services	 and	determine	 their	 behavior	 to	 decide,	 for	

example,	 if	 they	 are	 suitable	 to	 perform	 a	 particular	 task.	 The	 technologies	 used	 to	

implement	Web	services	provide	Interface	Definition	Languages	(IDLs)	such	as	the	Web	

Service	Description	Language	(WSDL),	Web	Application	Description	Language	(WADL)	

or	 Swagger.	 IDLs	 provide	 information	 about	 how	 a	 service	 must	 be	 invoked	 and	 the	

structures	 of	 input	 and	 output	 messages.	 However,	 these	 technologies	 operate	 at	 a	

syntactic	 level	 requiring	 the	 intervention	 of	 developers	 to	 manually	 search	 services,	

identify	 compositions	 of	 services	 and,	 in	many	 cases,	 to	 dive	 into	 the	 implementation	

details	 to	determine	 the	 functionality	of	 the	service	 [151].	 In	health	applications,	 these	

limitations	 become	 even	more	 prominent	 due	 to	 the	 complexity	 of	 the	 domain.	Dixon	

and	Wright	documented	some	of	the	limitations	found	when	sharing	CDS	services	across	

organizational	boundaries[14,65].	Those	problems	are	related	to	several	limitations	that	

appear	when	operating	those	services	across	health	networks	[67]:	
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• First,	it	is	not	possible	to	discover	the	service	using	expressive	queries.	For	example,	it	

is	not	possible	 to	 search	 for	CDS	services	 for	heart	diseases	prevention	and	 retrieve	

stroke	risk	prevention	CDS	because	it	is	a	subtype	of	heart	disease	prevention.	

• Second,	 when	 a	 service	 is	 discovered	 and	 its	 properties	 need	 to	 be	 explored	 to	

determine	 if	 it	 is	 suitable	 to	 perform	 a	 particular	 task,	 the	 lack	 of	 unambiguous	

specifications	does	not	allow	to	automatically	determining	the	precise	meaning	of	the	

interface	 concepts.	 This	 involves	 difficulties	 in	 establishing	 SIOp	 between	 the	 client	

and	 the	 service	 as	 reported	 by	 Dixon	 et	 al.	 [14].	 For	 example,	 it	 is	 not	 possible	 to	

automatically	 infer	 that	 two	 concepts	 expressed	 in	 different	 terminologies	 are	

semantically	 equivalent.	 Another	 example	 comes	 from	 the	 inability	 to	 explore	 the	

semantics	implicit	in	the	archetype	structure.	Let	us	consider	an	archetype	for	family	

history	 of	 diseases,	 which	 contains	 one	 element	 coded	with	 Diabetes.	 The	 intended	

semantics	are	that	the	patient	has	a	relative	with	diabetes	but	they	is	not	necessarily	

suffering	 the	condition.	To	know	the	exact	meaning,	 the	hierarchy	would	need	 to	be	

explored	 but	 this	 cannot	 be	 done	 automatically	 in	 a	 machine-understandable	 way	

provided	that	the	archetype	is	expressed	at	a	syntactic	level.	

• Third,	it	is	not	possible	to	explore	systems	independently	from	the	standard	that	was	

used	 in	 their	 implementation.	 For	 example,	 a	 CDS	 service	 operation	may	 receive	 an	

input	 message	 conforming	 an	 openEHR	 template.	 That	 input	 may	 be	 semantically	

equivalent	 (but	 syntactically	 different)	 to	 a	 document	 conforming	 HL7	 CDA	 in	 the	

client	 system.	Therefore,	 if	 the	 client	 system	 supports	 a	 different	 standard	 from	 the	

service	 (e.g.	 HL7	 CDA),	 it	will	 need	 to	 know	 both	 standards	 in	 detail	 to	 understand	

how	to	interoperate	with	the	service.	

• Fourth,	it	is	not	possible	to	explore	the	relationships	among	the	concepts	used	in	the	

shared	messages	 and	 those	 in	 other	 public	 ontologies.	 This	 disallows	 to	 understand	

the	service	operations	without	ambiguity	and	explore	 its	relation	with	other	models.	

For	example,	if	one	attempts	to	invoke	a	system	for	recommendation	of	treatments	for	

liver	 cancer,	 it	 is	not	possible	 to	automatically	 infer	 that	any	subtype	of	 liver	 cancer	

(hepatocellular	 carcinoma,	 cholangiocarcinoma	etc.)	 is	 a	 valid	 input;	 or	 if	 there	 is	 a	

CDS	for	drug	dosing	automatically	infer	that	both	Xarelto®	and	Aldocumar®	are	valid	

inputs	because	they	are	trade	names	of	anticoagulant	substances.	Furthermore,	on	the	

server	side,	 it	 is	not	possible	to	exploit	the	information	available	in	public	ontologies	

to,	 for	 example,	determine	what	mutations	make	a	 treatment	better	 than	another	 in	

certain	types	of	cancer.	This	lack	of	connection	with	other	knowledge	models	hampers	

to	combine	several	ontologies	to	define	fine	grained	semantics	for	example	combining	

the	time	ontology	with	SNOMED-CT	[67].	
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Not	only	the	limitations	intrinsic	to	the	syntactic	technologies	are	a	problem	in	exploring	

and	 sharing	CDS	 functionality.	 To	make	 it	worse,	 the	 syntactic	models	 used	 to	 specify	

CDSS	are	not	 common	 to	all	CDS	developers.	There	 is	a	huge	variety	of	 standards	and	

terminologies	 for	different	purposes	overlapping	 in	 functionality	[41,67].	For	example,	

for	 the	 definition	 of	 CIMs	 openEHR,	 HL7	 CDA,	 HL7	 VMR	 and	 HL7	 RIM	 VMRs	 can	 be	

found	 [22,25,54,152].	 The	 same	 occurs	when	 expressing	metadata	 for	KM	where	HL7	

KA,	GLIF	or	openEHR	GDL	propose	different	formats[47,53,69].	At	the	moment	different	

vendors	 and	 health	 organizations	 use	 different	 standards,	 therefore	 it	 does	 not	 seem	

realistic	to	design	technologies	dependent	on	one	standard	to	overcome	the	limitations	

previously	explained.	To	realize	the	vision	of	LHS	knowledge	implemented	as	shareable	

CDSS	they	need	to	be	developed	as	collaborative	efforts	[13,153].	This	leads	to	the	need	

of	specifying	CDS	systems	in	a	way	that	can	be	automatically	understood	regardless	of	

the	standards	used,	 interlinking	of	many	terminologies	to	infer	when	two	concepts	are	

the	same	and	mapping	local	terminologies	to	standard	terminologies	etc.	For	CDSS	to	be	

effectively	and	safely	executed	across	different	EHRs	 they	need	 to	be	not	only	human-

understandable	but	also	machine	computable	[34].	Sharing	CDS	in	wide	health	networks	

would	 limit	 the	 availability	 of	 direct	 support	 by	 implementers;	 therefore	 the	

development	 of	 new	 approaches	 to	 describe	 the	 services	 without	 ambiguity,	 in	 a	

machine-interpretable	 manner	 and	 independently	 from	 the	 details	 of	 each	

implementation	standard	becomes	crucial.		

One	may	argue	that	these	challenges	could	be	overcome	adopting	common	standards	by	

all	 health	 institutions	 and	 developers.	 However,	 if	 only	 one	 standard	 is	 imposed	 at	 a	

national	level,	this	will	jeopardize	the	ability	to	access	CDSS	that	are	previously	specified	

in	 another	 standard	 and	 will	 create	 a	 burden	 to	 implementers	 that	 prefer	 other	

implementation	options.	Furthermore,	even	if	all	organizations	in	a	country	were	using	

the	same	standard,	the	implementation	would	have	the	limitations	inherent	to	syntactic	

technologies	already	explained.	A	sensible	way	to	approach	the	challenges	presented	is	

to	build	on	existing	standards	extending	them	with	a	semantic	layer.	This	way	previous	

developments	 do	 not	 need	 to	 be	 readapted	 and	 impositions	 regarding	 one	 single	

standard	or	terminology	can	be	avoided.	

	

5.1.2.	Requirements	for	a	semantic	computing	framework	in	CDS	
The	semantic	web	allows	us	to	express	knowledge	at	a	conceptual	level	regardless	of	the	

syntactic	 implementation	[37].	 It	can	define	an	unambiguous	agnostic	conceptual	view	

of	 CDSS	 supporting	 rich	 semantics	 allowing	 the	 automatization	 of	 some	 terminology	
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mapping,	search	and	analysis	tasks.	But	in	order	to	generate	such	specification	not	only	

the	existing	medical	terminologies	are	needed.	If	we	attend	to	the	different	approaches	

to	specify	CDSS	[41]	it	is	possible	to	appreciate	that	some	allow	to	express	functionality,	

others	allow	to	specify	data	interfaces	(VMR)	and	other	KM	metadata.	A	semantic	model	

that	aims	for	specifying	CDS	services	that	can	be	shared	and	consumed	in	a	wide	health	

network	needs	to	be	able	to	specify	all	those	types	of	semantics.	Additionally,	the	model	

to	produce	such	specifications	cannot	be	defined	by	a	single	organism,	but	needs	to	be	

universally	 available	 and	 widely	 shared	 and	 maintained.	 Otherwise	 the	 cost	 of	

maintenance	 would	 be	 too	 high	 for	 only	 one	 institution[13].	 This	 leads	 to	 two	

requirements	 for	 generating	 CDS	 services	 semantic	 specifications:	 a)	 the	 first	

requirements	 is	 a	 methodology	 for	 the	 semantic	 description	 of	 CDS	 services	 that	

unambiguously	 identifies	 the	 concepts	 interlinked	 in	 their	 specification	 of	 data,	

functionality	and	KM;	b)	the	second	requirement	is	to	count	on	a	universally	accessible	

knowledge	base	 that	allows	 to	produce	such	semantic	 specifications	 independently	on	

any	underlying	standard	and	enables	to	interlink	the	concepts	and	terminologies	used	in	

the	CDS	specification	with	other	knowledge	models.	

The	first	requirement	(a)	is	covered	by	the	paradigm	of	SWS	that	provides	a	framework	

to	extend	Web	services	with	ontological	specifications,	thus	overcoming	the	limitations	

of	their	syntactic	nature[112,154].	The	second	requirement	(b)	can	only	be	covered	by	

published	 interlinked	 ontologies	 universally	 available.	 Conveniently	 since	 2009	 the	

Linking	Open	Data	project	 has	driven	 the	development	 of	 the	Web	of	Data	 [155].	 The	

Web	of	Data	is	formed	by	a	massive	set	of	published	interlinked	ontologies	that	include	

information	about	life	sciences,	geography	and	governments	among	many	others.	

	

5.2.	Methods	
5.2.1.	Semantic	Web	Services	the	perfect	symbiosis	
Sharing	 CDS	 functionalities	 regards	 a	 problem	 of	 software	 components	 reuse.	 The	

semantic	Web	research	has	approached	 that	problem	proposing	 the	paradigm	of	SWS.	

SWS	 were	 defined	 as	 extensions	 of	 Web	 services	 to	 provide	 unambiguous	 machine-

understandable	 descriptions	 of	 the	 service	 properties	 and	 interfaces	 [156].	 These	

descriptions	 are	 coded,	 as	 semantic	 annotations	 to	 allow	 SWS	 performing	 tasks	 that	

otherwise	would	require	human	intervention.	Examples	of	such	tasks	are	the	automatic	

discovery,	orchestration	and	composition	of	a	set	of	Web	services	in	order	to	accomplish	

a	 certain	 goal	 limiting	 human	 intervention	 merely	 to	 the	 precise	 specification	 of	 the	

outcomes	desired.	
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The	rich	semantics	that	describe	SWS	are	the	corner	stone	to	determine	which	activities	

can	be	automated	and	to	define	service	properties	without	ambiguity.	That	specification	

is	not	only	useful	to	automate	tasks	but	to	allow	invokers	deciding	whether	a	service	is	

appropriate	to	perform	some	processing	and	what	the	appropriate	way	of	invoking	that	

service	 is.	 There	 are	 two	main	 approaches	 to	 define	 service	 semantics	 top-down	 and	

bottom-up	[112].		

	

Top-down	approaches	start	by	modeling	the	semantic	dimensions	of	the	service	with	a	

rich	 conceptual	model	 and	 afterwards	 they	 ground	 it	 to	 the	 syntactic	 level.	 The	most	

prominent	models	 that	 follow	a	 top-down	approach	are	OWL-S	 [157]	 and	Web	Service	

Modeling	Ontology	(WSMO)	[158].	OWL-S	main	components	are	service,	service	profile,	

service	model	and	service	grounding	[159].	Service	is	the	main	component	that	links	to	

the	 other	 entities.	 The	 profile	 specifies	 the	 purpose	 of	 the	 service.	 The	 service	model	

specifies	 how	 the	 service	 works	 (functionality)	 and	 how	 to	 interoperate	 with	 it.	

Grounding	defines	how	to	access	 the	 implementation	of	 the	service	 from	the	semantic	

level.	 WSMO	 main	 components	 are	 ontologies,	 goals,	 mediators	 and	 web	 services	

[151,159].	 Ontologies	 provide	 the	 concepts	 and	 semantics	 to	 describe	 all	 WSMO	

components.	Goals	describe	the	task	and	objective	that	the	service	will	accomplish.	Web	

Services	 define	 the	 properties	 of	 the	 service	 such	 as	 functionality	 and	 deployment	

properties.	Mediators	act	as	connectors	to	match	heterogeneous	models.	

	

Rich	 ontology	 models	 that	 follow	 a	 top-down	 approach	 assume	 that	 the	 service	

semantics	 (data,	 functional	 and	 non-functional	 descriptions)	 are	 modeled	 before	

grounding	 them	 to	 the	 syntactic	 level	 (WSDL,	 Swagger,	 XML	 etc.)	 where	 the	 service	

internal	 logic	 is	 executed	 [160].	 However,	 this	 is	 rarely	 the	 case	 since	 typically	

organizations	implement	first	the	communication	technologies	of	the	service	as	a	SOAP	

or	RESTful	Web	service	and	deploy	 it.	Afterwards,	 it	may	be	necessary	 to	enhance	 the	

service	with	semantic	annotations	to	overcome	some	of	the	limitations	of	the	syntactic	

layer	 and	 the	 organization	 may	 add	 some	 semantic	 annotations	 to	 the	 existing	

implementation.	 This	 annotation	 process	 is	 complex,	 therefore	 for	 implementers	 it	 is	

convenient	 to	 add	 the	 minimum	 semantic	 descriptions	 to	 satisfy	 the	 implementation	

demands	and	enhance	them	when	needed	following	a	bottom-up	approach.	Bottom–up	

approaches	 depart	 from	 syntactic	 specifications	 of	 the	 service	 in	 an	 IDL	 (e.g.	 WSDL,	

WADL,	 Swagger	 etc.)	 and	 define	 methods	 to	 hook	 the	 IDL	 specification	 to	 semantic	

descriptions	 of	 the	 service.	 Several	 models	 are	 available	 to	 implement	 bottom-up	
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approach:	SAWSDL	is	used	for	SOAP	services[161];	whereas	MicroWSMO	[162]	and	SA-

Rest	[163]	are	used	for	RESTful	services.	

	

With	 the	 broad	 adoption	 of	 REST	 architectures	 the	 concepts	 developed	 to	 support	

bottom-up	 approaches	 needed	 to	 evolve	 in	 order	 to	 enable	 the	 annotation	 of	 RESTful	

services.	 Kopecký	 et	 al.	 [164]	 proposed	 the	 hRESTS	 microformat	 to	 enable	 the	

annotation	of	html	documents	describing	RESTful	Web	services.	Their	approach	exploits	

the	html	documents	that	describe	services	for	developers	by	adding	labels	that	allow	for	

describing	the	service	for	machines	as	it	is	done	in	WSDL	files.	In	order	to	hook	semantic	

descriptions	they	defined	an	extension	of	hRESTS	called	MicroWSMO.	

	

Both	SAWSDL	and	MicroWSMO	define	hooks	to	point	to	a	reference	ontology6	but	they	

leave	open	which	model	 is	referenced	to	define	 the	semantics	of	 the	service.	The	W3C	

standard	SAWSDL	does	not	define	any	particular	ontology	to	define	the	service	and	it	is	

up	 to	 the	 implementer	 to	 choose	which	model	will	 be	 used	 to	 attach	 semantics	 [160].	

Aware	 of	 the	 difficulties	 presented	 by	 original	 top-down	 models	 Vitvar	 et	 al.	 [160]	

defined	 WSMO-lite	 as	 a	 light	 weigh	 ontology	 to	 incrementally	 build	 SWS	 on	 top	 of	

SAWSDL	 or	 MicroWSMO.	 WSMO-lite	 adopted	 the	 model	 of	 WSMO	 but	 simplified	 it	

leaving	 aside	 complex	 aspects	 such	 as	 explicit	 behavioral	 semantics	 (internal	 service	

logic).	 Furthermore	 it	 relied	 in	 RDF	 syntax,	 thus	 adopting	 a	W3C	 standard	 but	 at	 the	

same	time	allowing	the	choice	of	more	expressive	languages	such	as	OWL,	RIF	or	WSML.	

	

The	different	models	 to	define	SWS	use	different	names	and	concepts	 to	 identify	each	

type	 of	 properties	 of	 the	 service.	 Nevertheless,	 regardless	 the	 name	 that	 each	 model	

uses,	there	are	four	main	types	of	semantics	common	to	all	of	them	[112]:	

• Data/information	model	 semantics:	 define	 the	 data	models	 of	 the	 input	 and	 output	

messages	of	the	service	

• Functional	semantics:	define	the	functionality	of	the	service	

• Execution	 semantics:	 define	 exceptional	 behaviors	 such	 as	 restrictions	 on	 the	

executions	of	the	service	or	runtime	exceptions	

• Non-functional	 semantics:	 define	 the	 properties	 of	 the	 service	 not	 defined	 by	 the	

former	 types.	E.g.	KM	or	 governance	 information	 such	as	 issuer,	 date	of	publication,	

version	of	the	service	etc.	

																																								 																					
6	In	the	SWS	literature	the	reference	ontology	that	is	used	to	atach	semantics	to	a	Web	service	description	is	in	most	
cases	referred	as	Reference	Model.	Here	that	term	has	been	avoided	since	it		is	important	not	to	confuse	it	with	the	
reference	models	that	are	used	to	define	CIMs	(openEHR	RM,	HL7	RIM	etc.).		
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The	 specification	 of	 all	 those	 semantic	 dimensions	 aims	 to	 enable	 the	development	 of	

mechanisms	 that	 allow	 publishing	 the	 service	 to	 make	 it	 available	 for	 clients;	 the	

discovery	of	 the	 service	by	 the	 clients,	 and	 the	 analysis	 of	 the	 service	by	 clients	 to	be	

able	to	interoperate	at	a	semantic	level	with	them	[156].	

The	 original	 vision	 of	 intelligent	 services	 that	 automatically	 combine	 their	

functionalities	to	provide	a	requested	outcome	is	not	yet	realized,	in	fact	the	adoption	of	

SWS	has	been	very	 limited	 [112].	Some	reasons	 for	 this	are	 the	complexity	 involved	 in	

Web	 services	 annotation,	 the	 incompatibility	 of	 services	 definition	models,	 the	 lack	 of	

publicly	available	ontologies	 to	annotate	 services,	 the	need	of	additional	machinery	as	

reasoners,	 and	 the	 complexity	 in	 transforming	 models	 to	 invoke	 them	 [112,165].	 For	

example,	 models	 such	 as	 WSMO	 or	 OWL-S	 allowed	 specifying	 accurate	 complex	

semantics	but	the	level	of	complexity	involved	in	their	definitions	required	highly	skilled	

professionals	to	define	them.	Some	of	these	limitations	can	now	be	overcome	thanks	to	

the	advent	of	the	Web	of	Data	that	provides	many	widely	available	ontologies	expressed	

in	W3C	standard	formats.	

	

5.2.2.	Linked	Data	and	the	Web	of	Data	
Linked	data	are	a	 set	of	principles	derived	 from	Semantic	Web	research	 to	enable	 the	

publication	of	data	on	the	Web	in	machine-interpretable	standard	formats	of	the	World	

Wide	Web	Consortium	(W3C)	[165–167].	Besides,	data	published	following	Linked	Data	

premises	is	also	identified	with	the	term	Linked	Data	[167].	Linked	data	is	based	on	four	

principles:	 (1)	 every	 resource	 exposed	 should	 be	 identified	 by	 a	 URI;	 (2)	 HTTP	 URIs	

should	be	used	 so	people	 can	 look	up	 for	 resources;	 (3)	 the	 resource,	when	accessed,	

should	offer	machine	computable	information	using	standards	such	as	RDF(S);	(4)	links	

to	 other	 URIs	 to	 discover	 related	 information	 should	 be	 offered	 [112].	 The	 gradual	

incorporation	of	these	principles	and	techniques	is	exposing	the	information	contained	

in	documents	as	interconnected	computable	data	that	can	be	navigated,	discovered	and	

reused	 using	 universal	 standard	 languages.	 This	 has	 driven	 the	 transformation	 of	 the	

Web	 of	 Documents	 into	 the	 so	 called	 Web	 of	 Data	 [154].	 The	 Web	 of	 Data	 can	 be	

envisioned	as	a	global	growing	repository	in	the	form	of	navigable	graphs	that	contain	

computable	 semantic	 descriptions	 of	 each	 object	 [154].	 The	 most	 prominent	

developments	in	extending	the	Web	with	the	Web	of	Data	have	been	carried	out	by	the	

Linked	Open	Data	 (LOD)	 Project	 [155]	 and	 its	 central	 dataset	 DBpedia	 [168].	 DBpedia	

makes	 available	 information	 in	 RDF	 about	 persons,	 places,	 locations	 species,	 diseases	

etc.	 and	 allows	 executing	 highly	 expressive	 queries	 over	 it.	 The	 Web	 of	 Data	 is	
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encouraging	 organizations	 to	 publish	 their	 data	 at	 a	 scale	 without	 precedents.	 With	

DBpedia	as	core,	the	Web	of	Data	has	grown	exponentially	incorporating	data	sets	from	

diverse	categories	such	as	geography,	drugs	or	government.	Particularly	relevant	are	the	

ontologies	for	life	sciences.	The	collection	of	Linked	Data	published	on	the	Web	is	known	

as	 the	 Linked	 Open	 Data	 cloud	 (LOD	 cloud).	 In	 its	 report	 of	 2014	 the	 LOD	 cloud	

contained	1014	datasets	[169],	of	which	only	the	core	(DBpedia)	contains	at	the	moment	

412,887,618	triples	[170].		Currently	it	doubles	its	size	every	10	months	[167].	The	Web	

of	 Data	 has	 demonstrated	 how	 the	 investment	 in	 light-weight	 semantic	 annotations	

brings	 benefits	 to	 organizations.	 This	 has	 led	 to	 the	 creation	 of	 an	 extensive	 global	

knowledge	 base	 which	 parts	 are	 sometimes	 widely	 exposed	 and	 other	 times	 behind	

enterprises	firewalls	[167].	

	
	

5.2.3.	Linked	Services:	the	symbiosis	between	Semantic	Web	Services	and	Linked	Data	
The	advent	of	the	Linked	Data	and	the	possibility	of	exploiting	its	knowledge	models	in	

combination	 with	 light	 weight	 models	 to	 gradually	 evolve	 implementations	 into	 SWS	

brought	renewed	passions	to	SWS	research.	The	knowledge	contained	in	the	LOD	cloud	

can	be	referenced	from	services	annotations	using	it	as	a	common	knowledge	base	and	

releasing	developers	from	modeling	tasks	of	complex	domains.	

	

Linked	Data	has	opened	 the	door	 to	produce	applications	 that	use	 its	massive	body	of	

knowledge	to	navigate	across	services	providing	a	processing	layer	to	the	Web	of	Data.	

Based	 on	 that,	 Pedrinaci	 et	 al.	 proposed	 to	 evolve	 the	 paradigm	 of	 SWS	 into	 Linked	

Services	 [112].	 	 Linked	 Services	 are	 based	 on	 the	 principles	 for	 publishing	 service	

annotations	(RDF(S)	vocabularies)	in	the	Web	of	Data	and	creating	services	that	process	

Linked	 Data	 [112].	 These	 services	 can	 easily	 be	 queried	 and	 invoked	 based	 on	 the	

semantics	that	they	expose	following	Linked	Data	principles.	

	

The	following	principles	summarize	the	conclusions	of	research	for	the	development	of	

models	to	expose	services	to	the	Web	of	Data	[165]:	

	
• Semantics	 are	 needed	 to	 allow	 the	 automatization	 of	 tasks	 during	 the	 Web	

service	 life	 cycle.	 Examples	 of	 these	 tasks	 are	 ontology	matching,	 determining	

how	 a	 service	 can	 be	 invoked	 or	 discovering	 services	 using	 intelligent	 queries	

etc.	
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• Finding	an	appropriate	 trade-off	between	expressivity	and	computation	power	

is	 paramount;	 therefore	 lightweight	 ontologies	 must	 be	 prioritized	 against	

complex	models.	This	is	needed	for	allowing	semantic	models	to	be	processed	by	

most	 applications	 and	 facilitate	 the	 semantic	 definition	 tasks	 to	 developers.	

Previous	 sections	 have	 presented	 how	 heavy	 semantic	 models	 with	 very	

advanced	capabilities	needed	to	evolve	into	simpler	models	(e.g.	WSMO-lite)	that	

could	 be	managed	 by	most	 triple	 stores	without	 needing	 specific	 reasoners	 to	

process	them.	

• The	annotation	of	services	must	be	as	simple	as	possible.	One	of	the	reasons	for	

SWS	 to	 be	 downplayed	 in	 the	 past	 was	 the	 difficulty	 in	 their	 adoption	 since	

specific	 knowledge	 on	 SWS	 frameworks	 was	 needed.	 In	 order	 to	 allow	 most	

developers	to	adopt	them,	models	need	to	be	as	explicit	and	simple	as	possible.	

Developers	 are	 often	 familiar	 with	 systems	 based	 on	 extensional	 logic	 (e.g.	

relational	 or	 object	 oriented	 models)	 but	 are	 less	 familiar	 with	 intensional	

definitions	 (e.g.	 description	 logics	 used	 for	 the	 definition	 of	 axioms	 in	

ontologies).	 Then,	models	 need	 to	 limit	 the	 use	 of	 heavy	 semantics	 definitions	

only	 to	 those	 scenarios	 where	 they	 cannot	 be	 specified	 by	 means	 of	 less	

expressive	but	simpler	languages	(RDF(S)).	

• SWS	should	build	upon	existing	 standards	 (e.g.	WSDL,	RDF	and	SPARQL).	 SWS	

should	 not	 be	 based	 in	 new	 emerging	 paradigms,	 but	 build	 on	 established	

technological	 standards.	 W3C	 standards	 are	 the	 ones	 used	 by	 nearly	 all	

enterprise	 developments	 and	 the	 semantic	 model	 must	 allow	 extending	

definitions	such	as	WSDL,	REST,	XML	etc.	

• Linked	 Data	 principles	 represent	 the	 best	 practice	 for	 publishing	 data	 on	 the	

Web	[171].	Linked	Data	guarantees	that	if	an	ontology	is	published	following	its	

principles,	 it	will	 be	possible	 to	discover	 it	with	queries	 that	 explore	 the	URLs	

describing	semantically	the	relations	with	other	ontologies.	

• Links	between	available	data	sets	are	needed	for	the	scalability	of	the	knowledge	

bases.	The	only	way	to	ensure	that	third	parties	can	understand	a	new	model	is	

to	 define	 it	 in	 terms	 of	 already	 accepted	 and	 publically	 available	 ontologies.	

Therefore	 any	 new	 development	 needs	 to	 be	 linked	 to	 existing	 models.	 For	

example,	linking	them	to	the	LOD	graph.	

	

The	 ability	 of	 Linked	 Services	 to	 add	 a	 processing	 layer	 over	 semantically	 annotated	

data	can	be	useful	to	offer	semantically	interoperable	descriptions	of	CDS	services	which	

interfaces	can	be	queried	and	explored.	
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5.2.3.1.	Minimal	Service	Model	
The	research	 in	Linked	Services	was	realized	 in	 the	EU	project	SOA4All	which	defined	

methods	 and	 provided	 the	 technological	 framework	 to	 integrate	 linked	 data	 and	 light	

weight	semantics	for	services	definitions.	In	order	to	publish	services	in	the	Web	of	Data	

a	 standard	 model	 that	 allows	 their	 discovery	 and	 their	 connection	 with	 linked	 data	

models	 is	 needed.	 This	 role	 is	 covered	 by	 the	 Minimal	 Service	 Model	 (MSM),	 a	 light	

weight	RDF(S)	ontology	 for	services	specification	based	on	WSMO-Lite	 [165].	MSM	is	a	

model	that	captures	the	maximum	common	denominator	among	the	existing	conceptual	

models	for	SWS	specification.	This	way	MSM	intends	to	be	model	agnostic	and	simple	to	

facilitate	 the	 annotation	 and	 rely	 on	 Linked	 Data	 to	 attach	 meaning	 to	 the	 service	

components.	 MSM	 supports	 the	 specification	 of	 functional,	 non-functional,	 data	 and	

execution	semantics.	

5.2.3.2.	iServe	
iServe	is	a	service	warehouse	that	together	with	MSM	realizes	the	principles	of	Linked	

Services	[172,173].	iServe	allows	for	the	publication,	discovery	and	exploration	of	SWS.	

It	allows	importing	services	specified	in	different	IDLs	(at	syntactic	level)	transforming	

them	 into	 MSM.	 iServe	 exposes	 service	 definitions	 as	 Linked	 Data,	 thus	 providing	

machine-interpretable	 definitions	 of	 services.	 iServe	 runs	 on	 top	 of	 a	 triple	 store	 or	

reasoned	but	provides	a	web	API	to	abstract	the	user	from	the	complexities	in	managing	

and	querying	semantic	models.	Users	can	perform	discovery	based	in	URLs	that	identify	

a	particular	concept	that	represents	the	data,	functional	or	non-functional	semantics	of	a	

service.	For	example,	one	may	provide	the	URL	that	identifies	a	SNOMED-CT	concept	of	

heart	 disease	 and	 the	 system	 will	 retrieve	 systems	 for	 the	 management	 of	 atrial	

fibrillation	 by	 applying	 subsumptive	 reasoning	 over	 the	 relation	 of	 heart	 disease	 and	

atrial	fibrillation.	

	

5.2.4.	It	is	not	all	about	semantics	
One	may	argue	that	with	the	powerful	expressiveness	of	semantic	web	technologies	the	

full	definition	of	a	CDS	service	(including	clinical	models	such	as	archetypes),	should	be	

done	 at	 a	 semantic	 level.	 Expressing	 archetypes	 with	 semantic	 web	 languages	 may	

enable	 reasoning	over	 them.	 	 CIMs	 in	 general	 and	 archetypes	 in	particular	 carry	 their	

own	 implicit	micro-ontology	 [56]	 that	 can	be	detached	and	expressed	as	 a	 conceptual	

model	 with	 Semantic	 Web	 technologies	 [67,113].	 In	 addition,	 CIMs	 also	 specify	 very	

expressive	 data	 constraints	 over	 the	 RM	 entities	 to	 model	 clinical	 information	 that	

reasoners	 cannot	 process	 in	 an	 effective	 way.	 For	 example,	 a	 component	 of	 the	

Archetype	 Definition	 Language	 (ADL)	 specification	 is	 the	 constrain	 ADL	 (cADL)	
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language	to	define	openEHR	archetypes[174].	Some	constraints	commonly	used	in	cADL	

for	archetypes	definition	allow	expressing	negations,	specific	cardinalities	 for	concepts	

relationships	or	restrictions	over	some	of	the	instances	that	may	populate	a	collection	at	

runtime.	Although	OWL	in	 its	Full	and	DL	version	allows	that	 level	of	expressivity,	 the	

model	results	 in	a	computation	 that	 is	not	 tractable	(i.e.	 it	will	no	 finish	 in	polynomial	

time).	 To	 overcome	 this	 problem	 there	 are	 several	 flavors	 of	 OWL	 depending	 on	 the	

modeling	 needs	 that	 restrict	 some	 of	 the	 mentioned	 constructs	 for	 the	 sake	 of	

tractability.	 	 That	 is	 the	 case	 of	 the	 OWL	 EL,	 which	 is	 the	 OWL	 flavor	 used	 by	 most	

biomedical	ontologies.	OWL	EL	sets	 restrictions	over	 the	use	of	 constructs	 for	 specific	

cardinalities,	 enumerations	 that	 involve	more	 than	one	 individual	or	negations	among	

others.	Therefore	archetypes	data	constraints	cannot	be	fully	expressed	in	OWL	flavors	

that	 guarantee	 tractability	 [117],	 thus	 introducing	 important	 barriers	 for	 large	

enterprise	developments.	

Besides	 computation	 limitations,	 there	 is	 also	 a	 practical	 reason	 for	 not	 taking	 that	

approach	to	only	rely	on	semantic	web	technologies.	The	reason	is	that	the	maturity	of	

enterprise	software	architectures	managing	complex	issues	related	to	transactions,	high	

availability,	concurrency,	robustness	etc.	The	semantic	web	has	been	available	during	20	

years	 with	 limited	 adoption	 by	 industry	 whereas	 enterprise	 models	 such	 as	 RDBMS	

have	 been	 covering	 the	 high	 demands	 of	 critical	 infrastructures	 for	 40	 years	 in	many	

scenarios	[175].		

A	 sensible	 approach	 is	 to	 mix	 the	 advantages	 of	 both	 syntactic	 and	 semantic	

architectures.	This	can	be	done	by	 the	considering	 the	semantic	model	as	a	 layer	over	

other	 application	 layers	 that	 provides	 mechanism	 for	 complex	 knowledge	 expression	

and	 analysis	 but	 not	 as	 a	 substitute	 of	 other	 necessary	 technologies	 and	models	 that	

provide	benefits	for	efficient,	robust	and	scalable	information	management.	

	

5.3.	Results	
As	described	before,	current	standards	for	representing	CDS	artifacts	and	services	have	

limitations	 as	 a	 consequence	 of	 the	 syntactic	 nature	 of	 the	 technologies	 used	 in	 their	

implementation.	 In	 fact,	 even	 the	 use	 of	 standard	 CIMs	 and	 terminologies	 has	 not	

resolved	 this	 due	 to	 a	 lack	 of	 unambiguous	 semantics	 in	 clinical	models	 specification	

[14].	 In	 this	 chapter,	 I	 propose	 to	 deal	 with	 these	 limitations	 by	 evolving	 CDS	 SOA	

implementations	 into	Linked	Services.	This	chapter	presents	a	 summary	of	 the	results	

from	 the	 paper	 Publication,	 Discovery	 and	 Interoperability	 of	 Clinical	 decision	 Support	

Systems:	a	Linked	Data	Approach	 [67].	 	 The	 paper	 presents	 a	machine-understandable	
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and	 standard-agnostic	 semantic	 model	 that	 allows	 the	 publication	 of	 CDS	 services	 as	

Linked	Data,	their	discovery	inside	health	networks	using	expressive	queries,	and	their	

analysis	browsing	ontological	descriptions.		

Previously,	 it	 was	 explained	 how	 in	 order	 to	 define	 services	 at	 a	 semantic	 level	 the	

specification	 of	 three	 types	 of	 semantics	 are	 need:	 data	 semantics	 for	 expressing	 the	

data	 consumed	 and	 produced	 by	 the	 service,	 functional	 semantics	 for	 expressing	 the	

functionality	 of	 the	 service,	 and	 non-functional	 semantics	 for	 expressing	 other	

properties	such	as	KM.	The	following	sections	show	a	summary	of	the	results	from	the	

paper	 [67]	 for	 building	 a	 semantic	 model	 that	 encompasses	 these	 three	 types	 of	

semantics.	 The	 semantic	model	 proposed	 builds	 on	 openEHR	 archetypes	 to	 drive	 the	

definition	of	data	semantics.	For	specifying	functional	semantics,	it	proposes	a	common	

taxonomy	of	functionalities	based	on	previously	published	taxonomies	and	SNOMED-CT.	

For	 specifying	 KM	 properties	 (non-functional	 semantics)	 the	 model	 identifies	 the	

common	 core	 of	 properties	 among	 existing	 standards,	 and	 provides	 the	 standard	

ontologies	available	to	specify	them	in	a	linked	data	fashion.	

5.3.1.	Data	Semantics	
The	 specification	 of	 data	 semantics	 involves	 the	 projection	 of	 archetypes	 as	machine-

understandable	models	that	allow	for	reasoning.	Provided	that	a	clinical	model	may	be	

used	 in	 several	 CDS	 service	 implementations,	 it	 is	 important	 that	 they	 are	 decoupled	

from	the	service	message	specification	that	MSM	provides	as	a	separate	Clinical	Models	

Ontology	(CMO).	At	the	same	time,	the	domain	ontologies	used	to	bind	clinical	meaning	

to	the	CMO	need	to	be	maintained	separately	so	they	are	independent	from	the	clinical	

models	using	them.	Therefore,	 three	 layers	can	be	defined	 for	 the	specification	of	data	

semantics:	 a)	 the	MSM	specification	 for	 input	and	output	messages	of	 each	service;	b)	

the	CMO	common	to	all	services	defined	based	on	standard	ontologies;	c)	the	standard	

domain	ontologies	used	to	attach	semantics	to	the	CMO.	This	separation	in	layers	avoids	

replicating	 ontology	 binding	 tasks	 by	 sharing	 the	 CMO	 across	 all	 clinical	 models,	

separate	models	maintenance	and	perform	separate	reasoning	when	needed	[67,176].	

Figure	11	shows	the	syntactic	and	semantic	levels	for	the	er	du	syk	service.	The	syntactic	

level	shows	an	excerpt	of	the	WSDL	that	specifies	the	operations	of	the	service	and	the	

XML	Schema	created	from	an	openEHR	template	for	representing	the	data	structure	of	

the	 input	message.	 The	 semantic	 level	 is	 divided	 into	 3	 layers	 for	 the	 specification	 of	

service	messages	specification,	clinical	models	and	domain	ontologies.		

The	 service	message	model	 shows	how	MSM	defines	 the	 structure	 of	 the	message	 for	

each	 service	 and	breaks	 it	 into	 smaller	 items	 (message	parts).	 	 Each	part	 can	be	 then	
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linked	to	the	clinical	model	layer	to	attach	semantics	to	them.	Figure	12	shows	how	the	

CMO	 is	 defined	 taking	 SNOMED-CT	 as	main	 domain	 ontology	 and	using	 other	 domain	

ontologies	when	 needed.	 An	 excerpt	 of	 the	 CMO	 is	 displayed	 in	 Figure	 12.	 The	 figure	

shows	how	the	clinical	models	Symptom	and	LaboratoryTestRequest	are	defined	using	

an	RDF(S)	 structure	 that	 represents	 the	concept	by	 referencing	SNOMED-CT	concepts.	

Gray	 ellipses	 represent	 SNOMED-CT	 classes	 and	 stripped	 ellipses	 represent	 other	

ontologies	 in	 the	LOD	cloud	or	 literals.	Linked	Data	principles	allow	referencing	every	

concept	of	any	model	with	a	valid	URL,	therefore	any	of	the	ontologies	 in	the	different	

layers	can	be	referenced	in	the	LOD	cloud	(if	they	are	previously	published)	or	a	private	

network.	 That	 guarantees	 that	 anyone	 with	 access	 to	 them	 can	 search	 by	 the	 KM	

properties,	 functionality	 or	 input/output	 semantics	 and	 follow	 the	msm:isGroundedIn	

link	to	know	how	to	invoke	the	service.	

	

Figure	11.	Syntactic	and	semantic	levels.	
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<?xml	version="1.0"?>
<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema"
...
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Figure	12.	Excerpt	of	the	Clinical	Models	Ontology.	

	

5.3.2.	Functional	Semantics	
In	 order	 to	 express	 the	 functionality	 of	 CDS	 services	 one	 needs	 to	 specify	 the	 clinical	

target	task	and	the	clinical	domain	of	application.	This	allows	specifying	functionalities	

such	 as	 CDS	 service	 for	 chronic	 disease	 management	 focused	 on	 diabetes.	 This	 makes	

necessary	 to	 follow	 a	 schema	 similar	 to	 the	 one	 proposed	 by	 Fox	 et	 al.	 for	 specifying	

clinical	 goals:	 Goal=<Verb:Object>	 [107].	 In	 the	 case	 of	 CDS	 services,	 the	 functionality	

specification	 needs	 to	 follow	 the	 schema	 Functionality=<Clinical	 Target	 task:	 clinical	

focus>.		

The	 semantic	 model	 should	 allow	 for	 defining	 CDS	 functionalities	 in	 a	 broad	 way	 so	

anyone	 can	 search	 and	 explore	 any	 service	 independently	 of	 the	 standard	 used	 in	 its	

development.	This	requires	building	an	ontology	of	any	functionality	that	any	developer	

has	found	(e.g.	chronic	disease	management,	prevention,	diagnosis	etc.)	and,	at	the	same	

time,	 link	 it	 to	 the	 clinical	 domain	where	 the	 functionality	 is	 applicable	 (e.g.	 diabetes	

mellitus).	Moreover,	 that	ontology	must	act	as	a	 lingua	 franca	 that	 is	 common	to	most	

CDS	developers.	 The	broadest	 terminology	 to	 specify	 clinical	 concepts	 is	 SNOMED-CT.	

SNOMED-CT	allows	expressing	the	clinical	focus	for	that	concept	by	using	the	hasFocus	

attribute	 of	 its	 compositional	 grammar.	 However,	 SNOMED-CT	 lacks	 of	 concepts	 to	

specify	CDS	target	tasks.	Only	the	general	concept	Decision	Making	Support	is	available.	

Figure	 13	 displays	 the	 semantic	 model	 implementation	 to	 allow	 the	 specification	 of	

functional	 semantics.	 In	 first	 place,	 the	 clinical	 target	 task	 needs	 to	 be	 specified.	 Gray	
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ellipses	 represent	 the	 clinical	 target	 task	 taxonomy	 developed	 by	 merging	 the	 CDS	

functionalities	 taxonomies	 found	 in	 the	 literature	 [177–183].	By	merging	 the	different	

classifications	available,	 the	 taxonomy	aims	to	guarantee	 the	maximum	coverage	of	all	

possible	functionalities.	In	second	place,	the	clinical	focus	needs	to	be	expressed	for	each	

target	task.	Therefore,	once	the	clinical	target	task	ontology	is	available,	it	is	possible	to	

use	 the	 clinical	 concepts	 that	 can	 be	 associated	 to	Decision	Making	Support	 to	 extend	

each	 of	 the	 concepts	 in	 the	 taxonomy	 (gray	 ellipses)	 with	 the	 clinical	 domain	 of	

application.	The	valid	concepts	that	can	be	post-coordinated	in	SNOMED-CT	for	Decision	

Making	 Support	 are	 the	 concepts	 in	 the	 Procedure	 and	 Clinical	 Finding	 hierarchies.	

Following	 the	 SNOMED-CT	 schema,	 the	 semantic	model	 proposed	 can	 use	 the	Clinical	

Finding	and	Procedure	hierarchies	to	extend	each	of	the	target	tasks	(gray	ellipses)	with	

the	possible	clinical	focus	proposed	by	SNOMED-CT	for	Decision	Support.	That	results	in	

a	poly-hierarchy	that	can	both	specify	the	target	task	in	the	available	literature	and	the	

clinical	 focus	allowed	by	SNOMED-CT.	Figure	14	shows	the	annotation	of	 the	er	du	syk	

service	 specifying	 that	 it	 is	 a	 service	 with	 functionality	 for	

Prevention_and_screening_focused_on_disorder_of_the_gastrointestinal_tract	 and	

Prevention_and_screening_focused_on_disorder_of_the_respiratory_system.	 The	

annotations	 are	 coded	 as	 	URLs	 referencing	 the	 functional	 taxonomy	 from	 the	 service	

specification.	 The	 development	 of	 the	 poly-hierarchy	 in	 RDF(S)	 provides	 an	

unambiguous	specification	of	the	system	functionality.		Intelligent	queries	over	it	can	be	

executed	 to	 search	 and	 explore	 services.	 For	 example,	 one	 may	 ask	 to	 retrieve	 all	

systems	for	Prevention_and_screening	and	retrieve	er	du	syk	by	subsumption	reasoning.	
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Figure	13.	Functional	classification	taxonomy	extended	with	clinical	focus.	

	

	

Figure	14.	Functional	annotation	of	the	service	Er	du	syk.	
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model	properties	selected	to	represent	the	maximum	common	denominator	among	the	

other	three	models.	Non-common	properties	among	standards	are	marked	with	hyphen	

and	 are	 not	mapped	 to	 the	 semantic	model.	 The	 properties	 from	 the	 semantic	model	

have	 been	 selected	 from	 public	 ontologies	 published	 in	 the	 LOD	 cloud	 for	 metadata	

specification	 such	 as	 the	 Dublin	 core	 or	 schema.org.	 Figure	 15	 shows	 the	 er	 du	 syk	

service	 annotated	 with	 the	 KM	 properties	 defined.	 	 The	 annotations,	 following	 linked	

data	principles,	use	ontologies	properties	expressed	as	URLs	to	 link	 the	value	 for	each	

property.	 The	 example	 shows	 how	 the	 service	 has	 been	 annotated	 with	 a	 semantic	

relation	 dcterms:bibliographicCitation	 to	 express	 the	 literature	 that	 supports	 the	

decision	 algorithm	 implementation.	 scham:provider	 allows	 to	 specify	 the	 institution	

issuing	the	system.	dcterms:hasVersion		allows	to	define	a	version	description	and	title	

with	two	further	semantic	relations.	

	
Arden	Syntax	 SAGE	 HL7	DSS	IG	 Standard	 ontology	 equivalents	

used	in	the	semantic	model	

Title	 Description	 Explanation	 rdfs:comment	

MLM	Name	 Label	 	 rdfs:label	

Arden	syntax	version	 	 	 -	

Version	 Revision	plan	
Release	
Version	

	 dcterms:hasversion	

Institution	 Issuing	organization	 Steward	Organization	
	

schema:provider	

Author	 	 Author	list	 dc:creator	

Specialist	 	 	 -	

Date		 	 Creation	date	
Last	Review	date	

dcterms:datesubmitted,	
dcterms:dateaccepted	

Validation	 	 	 -	

Purpose	 	 Purpose	 (implemented	 as	 functional	
semantics)	

Explanation	 	 	 dc:description	

Key	words	 	 FreeTextKeywordList	
CodedValueKeywordList	

dcterms:subject	

Citations	 	 	 dcterms:bibliographiccitation	

Links	 Endorsements	 	 rdfs:seealso	

Type	 Category	 	 dcterms:type	

Data	 	 	 -	

Priority	 	 	 -	

Evoke	 Usage	context	
Enrolment	criteria	

	 wl:condition	

Logic	 	 	 dcterms:conformsto	

Action	 	 	 -	

Urgency	 	 	 -	

	 Knowledge	development	 	 -	
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	 External	review	 	 -	

	 Recommendation	 	 -	

Table	3.	Non-functional	properties	for	KM	in	Arden,	SAGE,	HL7	DSS	and	in	the	semantic	model	(last	
column)[67]	

	

	

Figure	15.	Service	annotated	with	non-functional	semantics	for	knowledge	management.	

	

5.4.	Discussion	
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most	time	consuming	task.	Additionally,	maintenance	of	ontologies	can	be	a	very	tedious	

task	 [32].	 	With	 the	 separation	 of	 semantic	 layers	 each	model	 can	 evolve	 at	 different	

<msm:Service>

Er_du_syk_service

Respiratory	and	
gastrointestinal	
symptom	checker	

servicerdfs:label

Http://scds.telemed.no/services/
er_du_syk_cds_service.ttl#Version_1

_5

dcterms:hasVersion

Providing	a	set	of	symptoms,	the	
system	provides	an	estimation	of	

the	probability	of	infectious	
diseases	affecting	the	patient.	The	
estimation	is	provided	by	using	

patient	provided	data	and		
laboratory	data.

rdfs:comment

http://
www.ehealthresearch.no

schema:provider

2016-09-09

dcterms:dateSubmited

Macleod	J,	Douglas	G,	Nicol	EF,	
Robertson	C.	Macleod’s	clinical	

examination.	Edinburgh;	New	York:	
Churchill	Livingstone/Elsevier;	2009. dc:bibliographicCitation

	Er	du	syk	beta	version	
1.5

dcterms:title

openEHR	version	of	the	
symptom	checker	er	du	
syk.	Deployed	in	test	

environment

dcterms:description



	 75	

speeds	 and	 be	managed	 by	 different	 organizations.	 For	 example,	 the	 service	message	

layer	would	be	managed	by	application	developers,	 the	CMO	can	be	managed	by	some	

clinical	domain	experts	and	information	architects	and	the	maintenance	of	ontologies	is	

performed	by	different	organizations	such	as	the	Dublin	core,	IHTSDO	or	schema.org.	

Most	 of	 the	 effort	 in	 building	 the	 semantic	 specification	 of	 a	 system	 is	 related	 to	 data	

semantics	 specification.	 Conveniently,	 national	 CKMs	 and	 international	 CKMs	 have	

recently	 published	 a	 validated	 set	 of	 clinical	 models.	 The	 approach	 presented	 is	

designed	 to	 build	 upon	 those	 developments	 taking	 them	 as	 the	 basis	 that	 guides	 the	

semantic	model	definition.	

The	specification	of	semantic	models	as	Linked	Data	leads	to	the	definition	of	a	Linked	

Knowledge	 Base	 (LKB).	 The	 LKB	 provides	 a	 conceptual	 representation	 of	 all	 CDS	

properties	 regardless	 the	 standard	 used	 in	 its	 implementation	 expressed	 in	 a	 lingua	

franca	 widely	 available	 formed	 by	 all	 the	 ontologies	 in	 the	 LOD	 cloud.	 Figure	 16	

illustrates	how	the	semantic	models	of	different	CDS	services	are	 interlinked	by	a	LKB	

where	their	functionality,	data	interfaces	and	KM	properties	are	expressed.	For	example,	

the	figure	shows	how	the	Atrial	Fibrillation	CDS	KM	properties	and	data	interfaces	are	

specified	in	the	RDF(S)	graph	that	forms	the	LKB.		The	fact	that	all	CDS	services	use	w3C	

standard	formats	to	represent	the	services	at	an	implementation	level	can	be	exploited	

to	define	links	to	the	semantic	layer.	For	example,	whether	openEHR	archetypes	or	HL7	

templates	are	used	 to	represent	 the	CIMs	 that	 the	service	messages	contain,	when	 the	

system	is	implemented,	these	data	structures	are	represented	as	XML	schemas	that	can	

be	annotated	to	reference	the	semantic	layer.	Also,	regardless	of	the	logic	specification,	

the	 operations,	 messages	 etc.	 are	 described	 in	 an	 IDL	 such	 as	 WSDL	 or	 Swagger.	

Therefore	 any	 of	 these	 implementations	 can	 be	 referenced	 as	 URLs	 from	 MSM	 to	

perform	the	grounding.	This	provides	linkage	among	different	models	opening	the	door	

to	 infer	 equivalences	 among	 terminologies	 and	 properties	 used	 in	 different	

organizations.	 Having	 a	 common	 interlinked	 LKB	 encompassing	 diverse	 CDS	

implementations	 is	 key	 in	 facilitating	 the	 search,	 analysis	 and	 interoperability	 of	 CDS	

services[14].	

Concrete	examples	of	the	functionality	that	a	Semantic	model	provides	are:	

Publication	of	CDS	services	in	health	networks.	Linked	data	principles	are	a	set	of	best	

practices	to	publish	knowledge	models	that	can	be	applied	either	openly	in	the	WWW	or	

behind	enterprise	firewalls	[167].	Therefore	the	semantic	model	proposed	can	be	used	
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to	 expose	 CDS	 services	 developments	 in	 health	 networks	 allowing	 the	 organizations	

inside	that	network	to	find	and	analyze	them.		

	

Intelligent	queries	based	in	the	analysis	of	semantic	relations.		For	example,	query	for	all	

those	systems	developed	by	the	Norwegian	Centre	for	e-Health	Research	would	analyze	

the	 non-functional	 properties	 of	 services	 and	 retrieve	 er	 du	 syk.	 One	 may	 query	 by	

systems	 for	 prevention	 and	 screening	 and	 the	 functional	 hierarchy	would	 be	 crawled	

retrieving	er	du	syk.	Another	type	of	query	 is	by	data	semantics,	 for	example,	querying	

those	systems	which	output	is	a	list	of	possible	diagnoses	and	retrieve	er	du	syk.		

	

Unambiguous	descriptions	of	system	interfaces.	Describing	 input	and	output	messages	

as	interlinked	clinical	models	and	terminologies	allow	establishing	automatically	when	a	

concept	 is	 equivalent	 of	 another,	 a	 subtype	 or	 a	 super	 type.	 This	 is	 of	 paramount	

importance	for	establishing	semantic	interoperability	among	clients	and	invokers	of	CDS	

services	which	is	reported	as	a	mayor	challenge	[14].		

The	 discovery	 of	 systems	 published	 in	 health	 networks	 and	 the	 semantic	

interoperability	 among	 them	 allows	 sharing	 the	 functionality	 of	 knowledge	

implementations.	 That	 opens	 the	 door	 to	 collaborate	 in	 the	 development	 of	 new	

knowledge	 artifacts	 to	 rapidly	 assimilate	 new	 evidence	 in	 the	 form	 of	 CDS	

implementations.		
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Figure	16.	Semantic	model	integrating	CDS	services	
Linked	 Services	 in	 combination	 with	 biomedical	 domain	 ontologies	 allow	 developing	

semantic	 descriptions	 of	 CDSS	 interfaces	 and	 properties.	 When	 such	 ontologies	 are	

available	 in	 the	LOD	 cloud,	 they	 conform	a	universally	 available	 standard	 agnostic	KB	

that	allows	for	integrating	heterogeneous	CDS	systems	and	enables	reasoning	over	CDS	

ontological	specifications.	That	reasoning	can	be	used	to	discover	CDSS	 in	 large	health	

networks	 and	 analyze	 how	 to	 interact	with	 them	 alleviating	 technical	 interoperability	

challenges.	
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6.	Human-Computer	Perception	Model	
	

Summary:	Previous	chapters	have	presented	the	proposed	data	perception	model	and	the	

semantic	model.	 This	 chapter	 tackles	 the	 problem	 of	 patient	 provided	 information.	 This	

chapter	explains	the	methodology	designed	to	evaluate	the	user	interface	of	er	du	syk	in	a	

cost-effective	manner	combining	remote	testing	with	think-aloud	techniques.	The	contents	

of	the	chapter	are	based	on	the	results	of	PAPER	3.	

	

6.1.	Background	
Previous	 chapters	 have	 explained	 the	 challenges	 in	 data	 perception.	 Data	 perception	

concerns	 access,	 integration,	 transformation	 and	 abstraction	data	 from	heterogeneous	

data	sources	so	it	becomes	available	to	decision	models.	The	sources	of	data	may	be	very	

diverse	 encompassing	 EHRs,	 LIS,	 PHRs	 etc.	 The	 data	 perception	 model	 and	 semantic	

model	presented	make	use	of	openEHR	and	ontologies	such	as	SNOMED-CT	to	allow	for	

recording	 contextualized	 clinical	 data.	 But	 there	 are	 also	 challenges	 beyond	 these	

technical	dimensions.	In	chapter	1	I	explained	how	the	LHS	introduces	the	patient	as	an	

active	actor	in	the	decision	making	process.	Therefore,	data	used	in	CDS	is	very	likely	to	

be	 provided	 by	 patients	 and	 recorded	 following	 the	 standards	 and	 terminologies	

mentioned.	 When	 patients	 provide	 their	 data	 to	 a	 CDSS	 without	 the	 mediation	 of	 a	

clinician	 two	 situations	 may	 occur.	 The	 first	 situation	 occurs	 when	 objective	

measurements	 are	 involved.	 Objective	 measurements	 concern	 “data	 perceivable	 by	

persons	other	than	the	affected	individual”	[185].	When	the	clinician	does	not	mediate	

in	 the	 communication,	 objective	measurements	 are	 usually	 automatically	 recorded	 by	

displays	or	they	are	read	and	recorded	by	the	patient	without	interpretation.	Therefore,	

when	they	are	self-reported,	these	measurements	often	require	a	low	cognitive	effort	to	

be	 interpreted	 and	 reported.	 Examples	 of	 objective	 measurements	 are	 glucose	

measurements,	 blood	pressure	monitoring	 etc.	 [76].	 In	 such	 cases	data	 is	 read,	 stored	

and	it	can	be	integrated	and	abstracted	with	the	data	perception	mechanisms	presented.	

In	 these	 situations	 the	 context	 that	 transforms	 data	 into	 information	 can	 be	

automatically	attached	by	checking	 the	party	 (who	recorded	 the	data),	 the	 time	of	 the	

measurement,	 the	 units,	 the	 time	 of	 the	 day	 etc.	 All	 these	 variables	 are	 objective	

observations	 that	 may	 require	 some	 interpretation	 if	 they	 are	 not	 recorded	

automatically.		However	that	interpretation	requires	low	cognitive	effort.	
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The	 second	 situation	 occurs	 when	 subjective	 measurements	 are	 involved.	 Subjective	

measurements	 are	 those	 that	 need	 to	 be	 perceived	by	 the	 affected	 individual	 because	

they	 are	 not	 completely	 perceivable	 by	 examiners	 or	 sensors	 [186].	 In	 the	 previous	

example	the	observations	correspond	to	data	that	does	not	need	a	significant	cognitive	

effort	 to	 be	 interpreted	 by	 the	 patient.	 However,	 subjective	 measurements	 such	 as	

symptoms,	 signs,	 feelings,	 mood	 etc.	 require	 an	 interpretation	 by	 the	 patient	 to	

understand	what	 information	 the	 system	 is	 requesting	 and	 contextualize	 it.	 This	may	

not	be	a	straightforward	process	since	the	complexity	of	such	concepts	may	be	very	high	

for	 some	 patients.	 For	 example,	 in	 the	 case	 of	 er	du	syk,	 the	 backend	 contains	 clinical	

information	entities	modeled	with	archetypes	and	SNOMED-CT	[123].	In	order	to	record	

a	symptom,	many	attributes	need	to	be	specified.	Examples	are	the	onset	type	(sudden,	

rapid,	 gradual),	 time	 patterns	 (periodic,	 continuous	 etc.),	 location	 of	 the	 symptom,	

cessation	 etc.	 To	 report	 his	 health	 information,	 the	 patient	 needs	 to	 reason	 about	 the	

semiology	of	his	health	status.	This	involves	the	understanding	of	medical	concepts	(e.g.	

sputum),	 symptom	 time	 patterns,	 progression	 etc.	 Additionally,	 users	 are	 not	 a	

homogenous	 group.	 They	 have	 different	 ages,	 socio	 cultural	 levels	 and	 health	 literacy	

levels.	In	fact,	only	30%	to	60%	can	be	considered	literate[187].	Therefore	the	ability	for	

understanding	 and	 correctly	 report	 subjective	 health	 measures	 may	 vary	 from	 one	

subject	to	another.	

These	are	aspects	that	will	impact	the	quality	of	the	data	recorded	and,	by	extension,	the	

quality	of	the	advice	that	the	decision	model	will	provide.	

The	challenge	when	the	patient	dimension	is	introduced	in	the	CDS	perceptual	model	is	

not	technical	anymore,	but	a	problem	of	HCI.	If	the	patient	does	not	understand	what	the	

system	is	asking	for,	the	quality	of	data	provided	will	be	low.	This	will	cause	the	decision	

model	 to	provide	poor	 advise.	 That	 is	 a	 problem	 that	will	 affect	 any	CDS	 intervention	

that	gathers	subjective	data	directly	from	the	patient.	Symptom	checkers	such	as	er	du	

syk	are	one	of	the	applications	that	will	be	the	most	affected	by	these	problems.	A	user	

that	accesses	a	symptom	checker	faces	the	challenge	of	interpreting	the	information	that	

the	GUI	 is	 asking	 for.	 The	 success	 in	 that	 interpretation	will	 determine	 how	well	 that	

user	communicates	his	health	status	to	the	system.	Which,	in	turn	will	impact	the	quality	

of	the	advice	provided	by	the	system.		A	fact	that	will	influence	the	success	of	the	human	

interaction	 between	 the	 CDSS	 and	 the	 patient	 is	 the	 complexity	 of	 the	 information	

requested.		
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Symptom	checkers	 are	 in	 their	 first	 generation	 [119],	 nowadays	most	of	 them	usually	

request	 a	 basic	 set	 of	 data	 from	 the	 patient	 and	 provide	 advise	 based	 on	 static	

algorithms	 about	 the	 diseases	 that	may	 affect	 them.	 However,	 the	 next	 generation	 of	

those	 systems	 is	 expected	 to	 exploit	 information	 from	 several	 sources	 such	 as	

epidemiology	in	order	to	improve	their	performance	[119].	That	is	the	case	of	er	du	syk.		

In	addition,	er	du	syk	 relies	on	archetypes	and	ontologies	 to	define	 its	knowledge	base	

[123].	 If	 these	 models	 are	 used,	 the	 completeness	 of	 the	 information	 stored	 as	

archetypes	 can	 improve	 the	 decision	 algorithm.	 However,	 this	 makes	 data	 recording	

more	 complex	 to	 users	 provided	 that	 every	 symptom	 contains	 a	 large	 amount	 of	

contextual	data.	 In	such	a	complex	environment,	 it	 is	not	reasonable	 to	evaluate	a	GUI	

based	on	a	set	of	heuristics	[188]	and	expect	that	 it	will	be	successful	 in	guiding	users	

through	 the	 information	 recording	 process.	 Not	 even	 the	 thorough	 evaluation	 of	 the	

interface	by	experts	with	methods	such	as	cognitive	walk	through	will	be	able	to	asses	

where	 HCI	 challenges	 are	 likely	 to	 appear	 due	 to	 the	 heterogeneity	 among	 users.	 In	

essence,	everybody	with	an	internet	connection	may	use	a	symptom	checker	like	er	du	

syk,	 therefore	 potential	 users	 will	 have	 different	 ages,	 educational	 background,	

socioeconomic	status	and,	most	importantly,	health	literacy	levels.	

Evaluate	 the	 GUI	 with	 end	 users	 becomes	 necessary	 to	 detect	 and	 understand	 HCI	

barriers.	 However	 techniques	 involving	 end	 users	 are	 also	 the	most	 expensive	 [189].	

That	 is	 the	 case	 of	 think-aloud,	 the	 most	 spread	 technique	 when	 one	 needs	 to	

understand	the	cognitive	process	of	users	when	they	use	a	system	[189].	Performing	a	

test	of	a	 complex	GUI	with	 think	aloud	would	have	a	huge	cost.	The	complexity	of	 the	

interface	and	the	heterogeneity	of	users	would	lead	to	a	very	large	sample	for	covering	

the	evaluation	of	the	GUI.	For	example,	in	er	du	syk,	the	symptom	archetype	contains	14	

sections	 (some	 with	 subsections),	 and	 the	 respiratory	 module	 has	 9	 symptoms.	 This	

leads	 to	 126	 possible	 areas	 to	 test.	 Then,	 how	 can	 one	 determine	 if	 the	 patient	

perception	mechanisms	(GUI)	are	good	enough	to	deploy	a	CDSS?	Is	there	any	technique	

that	can	test	 this	kind	of	 interfaces	providing	 insights	of	end	users	experiences	and,	at	

the	same	time,	keep	evaluation	costs	under	control?	

Many	studies	in	usability	have	combined	different	types	of	usability	techniques	such	as	

expert	based,	heuristics,	think-aloud	with	end	users	etc.	to	cover	different	test	scenarios	

[70,118,190,191].	 However,	 little	 is	 known	 on	 how	 to	 deal	 with	 complex	 variable	

scenarios	such	as	 the	described	 for	er	du	syk.	 In	order	 to	endow	the	perceptual	model	

with	means	to	build	a	reliable	GUI	I	propose	a	usability	testing	technique	that	can	deal	
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with	 the	 complexity	 of	 interfaces	 to	 record	 patient	 subjective	 measures	 in	 a	 cost-

effective	manner.	

6.2.	Methods	
The	 technique	 proposed	 encompasses	 two	 phases.	 The	 first	 one	 is	 a	 Technology	

Acceptance	 Model	 (TAM)	 based	 study	 performed	 online	 with	 a	 large	 sample	 size.	 By	

keeping	the	test	online,	it	is	possible	to	count	on	a	large	heterogeneous	sample	of	users	

and,	at	the	same	time,	minimize	the	cost.	The	outcome	of	testing	in	the	first	phase	is	the	

areas	where	users	have	reported	barriers	for	technology	acceptance.		The	second	phase	

is	an	execution	of	 the	 think-aloud	protocol	with	a	 reduced	sample.	This	phase	aims	 to	

concentrate	think-aloud	testing	in	those	areas	that	were	detected	as	problematic	in	the	

first	 phase.	 The	 two	 phases	 aim	 to	 allow	 testing	 with	 a	 large	 variety	 of	 users	 but	

concentrate	 the	 most	 expensive	 method	 (think-aloud)	 only	 in	 parts	 with	 reduced	

technology	acceptance	to	diagnose	the	causes.	

6.2.1.	Technology	Acceptance	Model	
The	TAM	is	a	model	proposed	by	Davis	et	al.	[192]	that	aims	to	capture	a	measure	of	the	

ease	of	use	and	the	usefulness	perception.	TAM	relies	on	a	set	of	questions	where	half	

are	oriented	 to	measure	 the	ease	of	use	and	 the	other	half	 is	oriented	 to	measure	 the	

usefulness	perception.	

6.2.2.	Think	Aloud	
In	order	 to	understand	 the	process	of	 cognition,	 techniques	 that	 take	 into	account	 the	

user	 cognitive	 process	 are	 needed.	 The	 think-aloud	 procedure	 is	 the	 most	 extended	

technique	 to	understand	 the	 cognitive	process	of	users	when	using	a	 system	[193].	 In	

think	 aloud	 users	 are	 presented	 a	 use	 case	 to	 execute.	 During	 the	 execution	 they	 are	

asked	to	verbalize	their	interactions	(what	they	think,	what	frustrates	them,	what	they	

like/dislike,	 what	 causes	 confusion	 etc.).	 Verbalizations	 are	 usually	 transcribed	 and	

analyzed	qualitatively,	 thus	providing	 the	necessary	 input	 to	diagnose	why	a	usability	

problem	is	present.	Think-aloud	is	considered	to	detect	one	third	of	 the	problems	that	

heuristic	evaluation	identifies	[194].	However,	it	allows	to	detect	more	severe	problems	

and	 understand	 their	 cause;	 whereas	 expert-based	 methods	 do	 not	 [194].	 The	 main	

drawback	 of	 think	 aloud	 is	 its	 high	 cost	 and	 that	 it	 only	 reveals	 usability	 problems	

perceived	by	users.		

6.2.3.	Phase	1:	Problem	Detection	
The	 first	 phase	 aims	 to	 maximize	 the	 sample	 size	 of	 users	 to	 grant	 an	 appropriate	

coverage.	 In	 order	 to	 keep	 the	 cost	 of	 testing	 under	 control,	 the	 test	 should	 be	

performed	 remotely.	 This	 way	 recruitment	 and	 evaluation	 can	 be	 done	 relying	 on	
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autonomous	users	that	do	not	need	to	visit	the	usability	laboratory.	In	the	case	of	er	du	

syk	that	was	the	approach	followed.	Advertisements	were	posted	though	Facebook	Ads	

campaigns	 and	 at	 the	 university	 website.	 In	 the	 advertisements	 posted,	 they	 were	

instructed	to	visit	the	web	of	er	du	syk	and	record	some	demographic	data	and	a	set	of	

symptoms	 of	 their	 choice.	 At	 the	 end	 of	 the	 recording	 process,	 a	 questionnaire	 to	

evaluate	 technology	 acceptance	was	 presented.	 The	 questionnaire	was	 formed	 by	 the	

subset	 of	 questions	 adapted	 from	 the	 TAM	 ease	 of	 use	 set.	 In	 addition,	 a	 question	 to	

detect	problems	related	to	the	lack	of	familiarity	with	medical	concepts	was	added	(Q1).	

Table	 4	 contains	 the	 set	 of	 questions	 that	 conformed	 the	 evaluation	 questionnaire.	

Originally	 the	 study	 aimed	 for	 a	 sample	 of	 100	 users.	 However,	 after	 removing	

duplicates	by	checking	 the	 IPs	of	submission,	a	 total	of	53	submissions	had	completed	

the	questionnaire.		

Table	4.	TAM-based	questionnaire.	

Variable Type Possible values 

Q1. I think that the 

vocabulary that 

expresses the 

information in the 

symptom recording 

was familiar to me 

Quantitative 1 to 10 

Q2. I think that the 

symptom recording at 

"Are you ill?" is easy to 

use 

Quantitative 1 to 10 

Q3. I think "Are you ill?" 

is a useful tool to record 

my symptoms and 

health status 

Quantitative 1 to 10 

 

Q4. "Are you ill?" 

system worked as I 

expected for a symptom 

recording system 

Quantitative 1 to 10 

Q5. Overall, I am 

satisfied with the ease 

of recording the details 

of my symptoms and 

health status 

Quantitative 1 to 10 

Q6. Overall, I am 

satisfied with the 

amount of time I used 

Quantitative 1 to 10 
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to record my symptoms 

and health status 

Q7. Overall, I am 

satisfied with using the 

symptom recording at 

the "Are you ill?" 

Quantitative 1 to 10 

	

TAM	questionnaire	results	represent	a	measure	of	the	technology	acceptance.	Using	that	

results,	 it	 is	 possible	 to	 determine	 which	 areas	 have	 a	 significant	 impact	 on	 the	

technology	acceptance	by	regressing	the	areas	of	the	GUI	that	each	user	completed	and	

the	result	to	the	TAM	questionnaire	submitted	by	each	user.	One	may	consider	using,	for	

example,	a	linear	regression	model	to	establish	that	significance.	However,	a	closer	look	

to	 the	 problem	 reveals	 that	 this	 cannot	 be	 done	 in	 a	 straightforward	 manner.	 The	

dependent	 variable	 (technology	 acceptance)	 is	 divided	 into	 7	 variables	 that	 are	 the	

responses	to	the	questionnaire.	Therefore,	 to	 find	the	significance	of	each	GUI	variable	

to	 the	 TAM	 response	 it	 is	 required	 to	 apply	 multivariate	 techniques.	 An	 appropriate	

technique	is	the	Principal	Components	Analysis	(PCA).	PCA	will	help	to	summarize	that	

response	in	a	minimum	set	of	Principal	Components	(PCs).	Once	these	components	are	

found,	the	regression	of	the	variables	that	represent	GUI	sections	will	be	possible.	At	the	

end	of	 the	analysis,	 the	 regressions	will	 determine	what	 are	 the	variables	 (sections	of	

the	GUI)	with	significance	over	the	technology	acceptance.	Therefore	these	areas	are	the	

ones	that	need	to	be	further	analyzed	to	understand	why	they	are	significant	with	end	

users	in	phase	2.	

6.2.4.	Phase	2:	Problem	Diagnosis	
Phase	1	has	reduced	the	application	areas	to	evaluate	to	only	a	few	significant	ones.	This	

allows	 applying	 think-aloud	 in	 an	 optimal	 way	 in	 Phase	 2.	 In	 order	 to	 execute	 think	

aloud	 a	 new	 recruitment	 needs	 to	 be	 performed.	 In	 the	 case	 of	 er	du	syk,	recruitment	

was	 done	 though	 the	 university	 website.	 Five	 vignettes	 containing	 the	 symptoms	

corresponding	to	the	significant	areas	were	designed	with	the	help	of	a	GP	so	they	could	

represent	common	diseases	that	cause	such	symptoms.	Think-aloud	was	executed	with	

a	total	of	15	individuals.	The	procedure	was	stopped	when	the	findings	in	the	interviews	

were	 repeating.	The	experience	with	er	du	syk	 showed	 that	 think	aloud	 is	not	 an	easy	

procedure	 and	 needs	 preparation	 and	 training	 of	 both	 the	 interviewers	 and	 the	

interviewees.	The	experience	with	er	du	syk	determined	that	the	following	stages	need	

to	be	followed	for	optimal	results	in	think	aloud:	

1. Introduction to the system functionality and objective. 
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2. Explanation of what think-aloud is. First a video showing how to perform think 

aloud was displayed; and second, the participants practiced using a flight 

reservation website (unknown to them) until they performed properly. 

3. Execution of think-aloud over the system with a vignette. While the participant 

performed the think aloud, two interviewers wrote the moments of hesitation, 

doubts and comments about the system. 

4. Retrospective interview to analyze the problems noted by the two interviewers 

during the procedure. 

	

Think	 aloud	 sessions	 need	 to	 be	 videotaped	 and	 transcribed	 verbatim	 in	 order	 to	 be	

analyzed	 quantitatively.	 In	 er	 du	 syk	 the	 Framework	 method	 [195,196]	 was	 used	 for	

qualitative	 analysis	 with	 support	 of	 NVivo11	 software.	 	 Figure	 17	 shows	 the	 steps	

followed	in	each	of	the	phases.	

	

	

Q1

Q2

PC1
PC2

Q3 PC1

PC2

Dimensionality	
reduction	(PCA) Regression

Questionnaire	
results	in	7D	(only	
3D	in	the	figure)

Questionnaire	
results	in	2D

Symptom	submissions

Significances	of	
symptoms	and	
demographics

Think-aloud	use	cases	
design

Think-aloud	&	
retrospective	
interview	over	
significant	areas

HCI	barriers	
detected	and	
diagnosed

Areas	with	HCI	
barriers	detected

DETECTION

DIAGNOSIS

Online	questionnaire

Questionnaire	
results

E(TAM)	=	β0	+	β1	X1	+	β2	X2	+...

E(VOC)	=	β0	+	β1	X1	+	β2	X2	+...

	

Figure	17.	Detection	and	diagnose	phases.	
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6.3.	Results	
This	section	presents	the	results	of	applying	the	methodology	presented	in	order	to	

detect	and	diagnose	human	computer	interaction	barriers	in	er	du	syk.		

6.3.1.	Phase	I:	Problem	detection	
Applying	PCA	the	7	responses	of	TAM	were	reduced	to	only	 two.	One	summarized	the	

technology	acceptance	and	the	other	the	familiarity	of	vocabulary.	Figure	18	shows	the	

biplot	with	each	of	the	53	observation	(numbered	dots)	projected	in	the	2	dimensional	

space	formed	by	the	components.	We	have	moved	from	7	dimensions,	one	per	variable,	

to	only	2	that	summarize	the	variability	in	the	response.	The	red	vectors	represent	the	

gradients	that	provide	an	illustration	on	the	direction	of	variation	of	each	variable	(qi).	

The	smaller	 the	angle	between	vectors	 is,	 the	more	correlated	 their	variables	are.	The	

set	[q2,	q3,	q4,	q5,	q6,	q7]	corresponds	to	the	responses	to	questions	from	TAM	and	q1	

corresponds	the	familiarity	of	vocabulary.	It	is	possible	to	appreciate	how	q2	to	q7	are	

more	correlated	with	each	other	 than	q1.	The	direction	of	q2	to	q7	 is	better	 identified	

with	 dimension	 1	 that	 corresponds	 to	 PC1.	 Q1	 is	 better	 identified	 with	 the	 vertical	

dimension	 that	 corresponds	 to	 PC2.	 This	 interpretation	 was	 confirmed	 with	 the	

correlation	coefficients	of	each	PC	with	each	variable		(PAPER	3).	

	

	

Figure	18.	Biplot	of	Qi	values	projected	on	the	selected	principal	components.	
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The	coordinates	of	each	observation	in	each	dimension	are	called	scores	in	PCA.	Scores	

,in	this	case,	define	two	variables	with	2	clear	meanings:	a)	the	technology	acceptance;	

and	 b)	 the	 familiarity	 of	 vocabulary.	 At	 this	 moment,	 it	 is	 possible	 to	 regress	 the	

variables	 that	 represent	 the	 sections	 of	 the	 GUI	 with	 each	 of	 the	 scores.	 This	 will	

determine	 which	 of	 these	 sections	 have	 a	 significant	 effect	 over	 the	 technology	

acceptance	 (TAM	 model)	 or	 the	 familiarity	 of	 vocabulary	 (VOC	 model).	 Table	 5	 and	

Table	6	show	the	variables	with	positive	and	negative	contributions	to	the	TAM	and	VOC	

models.	All	the	variables	are	binomial	(0/1)	except	age	that	is	categorical	and	identifies	

each	 of	 the	 age	 groups	 that	 the	 application	 records.	 Green	 color	 represents	 variables	

that	were	 not	 significant	 at	 95%	 (p-value<0.05)	 but	 are	 close	 to	 being	 significant.	 An	

insufficient	 sample	 may	 decrease	 the	 significance	 of	 some	 variables.	 In	 this	 case	 the	

target	 amount	 of	 100	 users	 was	 not	 reached,	 therefore	 variables	 with	 borderline	

significances	 were	 also	 included	 in	 use	 cases	 .	 The	 full	 details	 of	 the	 analysis	 can	 be	

checked	in	PAPER	3.	

	

TAM	model	

VARIABLE	 CONTRIBUTION	TO	TAM	

WHEEZING	 NEGATIVE	

COUGH	 POSITIVE	

FEVER	 POSITIVE	

Table	5.Variables	with	significant	contribution	over	TAM	(PC1).	
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VOC	model	

VARIABLE	 CONTRIBUTION	TO	TAM	

ILL_PERSON	 NEGATIVE	

AGE	 POSITIVE	

WHEEZING	 NEGATIVE	

Table	6.	Variables	with	significant	contribution	over	VOC	(PC2).	

A	set	of	vignettes	containing	 the	variables	 that	appear	 in	 the	models	presented	before	

were	created.	

6.3.2.	Phase	II:	Problem	diagnosis	
Phase	 2	 consisted	 in	 executing	 a	 think-aloud	 procedure	with	 the	 set	 of	 vignettes	 that	

represent	health	conditions	containing	the	variables	that	contributed	to	the	technology	

acceptance	or	familiarity	of	vocabulary.	Participants	were	recruited	from	the	university	

website.	 After	 transcribing	 all	 interviews	 verbatim,	 they	 were	 analyzed	 with	 the	

framework	method.	Proceeding	inductively	the	index	of	problems	displayed	in	Table 7	

was	built.	
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Table 7. Framework index. 

	

The	 qualitative	 analysis	 diagnosed	 the	 causes	 for	 both	 positive	 and	 negative	

contributions	to	the	technology	acceptance	and	familiarity	of	vocabulary.		

6.3.2.1.	Negative	contributors	to	TAM	and	VOC	
	The	variable	with	negative	contributions	for	both	TAM	and	VOC	was	WHEEZING.	Main	

problems	were	related	to	the	bad	localization	of	the	archetype.	Archetypes	according	to	

the	openEHR	methodology	are	maximum	data	sets	that	need	to	be	constrained	limiting	

the	number	of	 attributes	 for	 each	use	 case.	 In	er	du	syk,	 some	attributes	of	 symptoms	

were	not	constrained.	For	example,	the	symptom	wheezing	contained	sections	that	were	

not	 relevant	 for	 them	 and	 caused	 confusion.	 Examples	 are	 timing	 pattern	 or	 the	

onset/cessation	 character.	 For	 VOC	 another	 variable	 with	 negative	 contribution	 was	

ILL_PERSON.	This	means	that	when	the	user	had	some	condition	at	the	time	of	recording	

his	 evaluation	 related	 to	 VOC	 was	 more	 negative.	 However,	 it	 was	 nor	 possible	 to	

diagnose	that	variable	since	ill	patients	would	be	needed	for	that.	
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6.3.2.2.	Positive	contributors	to	TAM	and	VOC 
FEVER	 had	 positive	 contribution	 for	 TAM	 due	 to	 a	 perfect	 localization.	 The	 symptom	

archetype	 elements	 were	 restricted	 to	 the	 values	 for	 the	 temperature,	 and	 site	 of	

measurement.	The	case	of	the	positive	contribution	of	COUGH	to	both	TAM	and	VOC	was	

again	 related	 to	 localization.	Nearly	all	 the	 components	 in	 the	 symptom	archetype	are	

relevant	 for	 cough.	 Therefore	 it	 was	 evaluated	 positively.	 	 Think	 aloud,	 besides	

explaining	 the	 problems	 also	 revealed	 other	 problems	 affecting	 to	 the	 technology	

acceptance	 not	 detected	 in	 the	 first	 phase.	 For	 example,	 sputum	 introduced	 problems	

related	to	lack	of	references	to	quantify	volume	and	color.	The	positive	contribution	of	

AGE	to	VOC	was	related	to	a	lack	of	attention	to	detail.	Think-aloud	revealed	that	senior	

users	had	less	attention	to	detail	going	through	complex	navigation	areas	in	a	superficial	

way	without	 trying	 to	understand	 the	 text.	This	 caused	 them	not	 to	detect	vocabulary	

problems	in	such	areas	evaluating	better	the	applications	despite	using	it	in	the	wrong	

way.	Young	users	tended	to	perform	a	more	thorough	analysis	of	sections	and	detected	

more	usability	barriers.	

6.3.2.3.	Other	issues	
Think	 aloud	 provided	 insights	 into	 other	 issues	 as	well.	 It	was	 determined	 that	 users	

need	 better	 feedback	 and	 guidance	 across	 sections	 so	 they	 know	 what	 information	

relates	to	each	section	unambiguously	and	when	they	have	finished	a	section.	Otherwise	

the	amount	of	detail	makes	them	loose	perspective	on	what	they	are	doing.	Users	also	

pointed	 out	 that	 the	 amount	 of	 detail	 made	 them	 feel	 anxious.	 They	 recommended	

informing	 about	 how	 much	 information	 they	 need	 to	 record	 before	 finish	 a	 section.	

Other	 issues	were	 related	 to	 lack	 of	 options	 and	 functionalities	 needed	 to	 record	 the	

precipitating	factor	and	some	extra	symptoms	that	they	considered	relevant.		

Users	were	compressive	with	the	amount	of	detail	of	the	system,	but	they	recommended	

reducing	 it.	Users	also	pointed	 to	 the	need	of	providing	more	examples	 in	order	 to	be	

able	 to	quantify	volumes,	understand	time	patterns	etc.	For	example,	sputum	could	be	

quantified	with	examples	such	as	 “half	a	 tea	spoon”.	Finally,	 think-aloud	allowed	us	 to	

appreciate	the	general	user	opinion	about	the	CDS	initiative.	All	users	except	one	were	

positive	and	considered	the	system	useful	to	avoid	unnecessary	GP	visits.	

6.4.	Discussion	
This	chapter	has	presented	a	methodology	to	evaluate	GUIs	used	as	human	perception	

models.	The	methodology	provides	an	evaluation	framework	to	determine	patients	HCI	

barriers	 in	CDS	user	 interfaces.	This	way	 it	can	be	determined	 if	 it	 is	safe	 to	deploy	or	

not	 a	 CDSS.	 Other	 studies	 have	 approached	 usability	 in	 CDSS	 by	 combining	 different	
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evaluation	techniques	[70,71,118,190,191].	These	techniques	have	approached	usability	

testing	successfully	in	their	scenarios.	However	usability	testing	in	scenarios	with	large	

heterogeneity	among	users	and	complex	interfaces	may	set	important	costs	restrictions	

is	 a	 rather	 unexplored	 area.	 The	 methodology	 presented	 aims	 to	 guarantee	 high	

coverage	relying	in	remote	testing	which	results	are	summarized	by	means	of	statistical	

methods	in	order	to	determine	what	are	the	areas	with	significant	contributions	to	TAM.	

Once	 they	 have	 been	 determined,	 think	 aloud	 can	 be	 concentrated	 in	 those	 areas	 to	

diagnose	the	causes.	

The	 application	 of	 the	 methodology	 to	 er	 du	 syk	 unveiled	 many	 important	 issues	 to	

consider.	 During	 design	 stage,	 it	was	 attempted	 to	 build	 a	 simple	 design	 and	 provide	

guidance	with	navigation	bars.	However,	users	pointed	to	the	need	of	simplifying	some	

sections	and	provide	even	clearer	navigation.	Users	like	reassurance	when	they	finish	a	

section.	 They	 like	 to	 know	exactly	where	 they	 are	 and	determine	 how	much	 time	 left	

they	 need	 to	 devote	 to	 get	 a	 result.	 Additionally,	 when	 many	 symptoms	 need	 to	 be	

recorded,	users	prefer	to	start	by	the	symptom	they	are	more	concern	about	and	leave	

those	that	they	are	less	worried	about	for	the	end.	It	is	appropriate	to	ask	users	directly	

stating	questions	rather	than	set	titles	as	simple	statements.	Users	like	to	have	examples	

nearly	 for	 every	 section	 to	 be	 sure	 they	 understood	 the	 information	 requested.	 Users	

also	demonstrated	to	be	comprehensive	with	challenges	faced	by	health	services	and	are	

willing	to	help	optimizing	their	use.	

Regarding	Phase	I,	several	variables	in	the	models	were	not	significant	and	the	R^2	was	

low.	 Low	 R^2	 are	 common	 psychology	 related	 models.	 Nevertheless,	 other	 studies	

should	consider	increasing	the	sample	size	in	PHASE	1	to	provide	clearer	significances	

of	variables	and	model.	After	all,	executing	advertisements	campaigns	and	posting	Ads	is	

a	relatively	cheap	measure.	Although	models	were	successfully	used	to	detect	areas	with	

low	 technology	 acceptance,	 they	 are	 not	 robust	 enough.	 For	 example,	 among	 all	 the	

response	 provided	 by	 all	 users	 there	 were	 4	 missing	 values	 (see	 PAPER	 3).	 After	 a	

discussion	 it	 was	 decided	 to	 imputate	 them	 as	 the	 average	 of	 the	 column.	 Although	

imputations	 is	 many	 times	 questioned,	 it	 was	 considered	 that	 dropping	 all	 the	

observation	 (7	 answers)	 for	 one	 missing	 answer	 would	 drive	 to	 more	 loss	 of	

information	than	imputating	the	missing	one.	If	these	observations	are	left	out,	the	TAM	

model	does	not	vary.	However,	in	VOC	model,	the	significance	of	ill_person	becomes	not	

significant,	 and	 the	 significance	of	wheezing	 and	age	 increase.	This	does	not	 influence	

the	results	of	the	methodology	or	the	er	du	syk	evaluation	since	all	these	variables	have	

been	double-checked	with	think-aloud	as	gold	standard	(except	really	ill).	However,	this	
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means	 that	VOC	model	 is	brittle	and	a	significantly	higher	sample	would	be	needed	 to	

have	more	 robust	 conclusions	 in	 Phase	 I.	 In	 other	 scenarios	where	 think	 aloud	 cases	

need	to	be	restricted	to	operate	at	minimum	costs	(leaving	borderline	significances	out),	

evaluators	 should	 consider	 increasing	 the	 sample	 in	 phase	 I.	 Otherwise	 significant	

sections	could	be	left	unexplored	in	think-aloud.	

Regarding	Phase	II	the	sample	size	was	considered	more	that	appropriate.	From	user	6	

onwards	 it	was	not	possible	 to	extract	new	 information,	 and	 the	 issues	detected	were	

often	repeated.	Think-aloud	was	used	to	understand	the	reasons	of	the	barriers	detected	

in	Phase	I	and	it	was	used	as	a	gold	standard	to	confirm	borderline	significances.	Phase	

II	unveiled	reasons	for	problems	such	as	the	interpretations	of	time	patterns,	the	need	of	

localization	of	many	symptoms,	and	the	need	of	considering	reducing	the	level	of	detail.	

With	regards	to	the	later,	further	studies	are	needed	to	determine	what	information	can	

be	omitted	without	affecting	the	accuracy	of	the	advice.	

The	 successful	 perception	 of	 data	 provided	 by	 patients	 depends	 on	 their	 appropriate	

understanding	of	the	concepts	requested	by	the	system.	Therefore,	HCI	barriers	need	to	

be	 carefully	 assessed.	When	 archetypes-based	 GUIs	 are	 designed	 to	 capture	 complete	

data	sets	and	applications	such	as	symptom	checkers	are	 involved,	 testing	may	be	 too	

expensive.	 The	 combination	 of	 remote	 testing	 with	 think-aloud	 can	 result	 in	 a	 cost-

effective	 technique.	 In	 a	 first	 phase,	 remote	 testing	 can	 help	 to	 operate	 over	 large	

samples	 determining	which	 areas	 have	 a	 large	 concentration	 of	 barriers.	 In	 a	 second	

phase,	 think-aloud	 can	 be	 restricted	 to	 areas	 with	 significant	 contributions	 to	 the	

technology	 acceptance	 minimizing	 costs.	 This	 way	 an	 appropriate	 coverage	 is	

guaranteed	and,	at	the	same	time,	the	causes	for	HCI	barriers	can	be	diagnosed.		
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7.	Conclusions	and	Future	Work	
	

Summary:	Previous	chapters	have	presented	the	different	developments	during	the	thesis	

to	 implement	 a	 semantic	 and	 a	 perceptual	 model	 for	 CDS	 in	 the	 Learning	 Healthcare	

System.	 This	 chapter	 summarizes	 the	 contributions	 made	 and	 presents	 the	 final	

conclusions.	

	

7.1.	Summary	of	accomplishments	
The	LHS	introduces	both	challenges	and	opportunities	for	CDS	research.	In	this	thesis	I	

have	proposed	several	models	and	methods	to	overcome	some	of	 these	challenges.	On	

the	one	hand,	the	proposed	perceptual	model	covers:	a)	data	integration	and	abstraction	

in	openEHR	environments;	b)	the	evaluation	of	GUI	for	patient-CDSS	interaction.	On	the	

other	 hand,	 the	 semantic	 model	 tackles	 the	 problem	 of	 defining	 CDS	 properties	 as	

machine-understandable	models	using	Linked	Data	principles	to	enable	their	semantic	

search,	 publication	 and	 analysis.	 Table	 8	 presents	 the	 alignment	 of	 the	 requirements	

presented	in	chapter	1,	the	research	gaps	presented	in	chapter	2	and	the	contributions	

presented	in	chapters	4,	5	and	6.	

Table	8.	Alignment	of	the	gaps	and	contributions	presented	in	this	dissertation.	

Requirement	 Research	gap	 Contribution	

R1-	
Requirement	
for	data	
perception 

	

GAP1:	 CDSS	 require	
architectures	that:	a)	integrate	
openEHR	with	more	powerful	
horizontal	 operators	 for	
distributed	 access;	 and	 b)	
provide	 technology	
independent	 abstraction	
mechanisms.	

Contribution	 1:	 In	 chapter	 4	 this	
dissertation	 proposed	 a	 methodology	
that	 combines	 Data	 Warehousing	
techniques	 with	 openEHR	
developments	 allowing	 access	 to	
heterogeneous	sources	and	technology	
independent	 abstraction	 by	 means	 of	
AQL.	

R2-	
Requirement	
for	semantic	
description 

	

GAP2:	 Current	 CDS	
specification	 standards	 and	
technologies	 do	 not	 provide	
the	 level	 of	 expressivity	
required	 to	 share	 CDS	
functionality	 across	
institutions.	

Contribution	 2:	 In	 chapter	 5	 this	
dissertation	 described	 a	 method	 to	
extend	 CDS	 services	 with	 machine-
interpretable	 semantic	 annotations	
that	 use	 the	 LOD	 cloud	 as	 common	
knowledge	 base.	 This	 allows	 the	
automatic	 analysis	 of	 their	 properties	
to	 understand	 how	 to	 interoperate	
with	them.	
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R3-	
Requirement	
for	human-
computer	
perception 

	

GAP3:	 CDSS	 GUIs	 used	 to	
capture	 patient	 data	 must	 be	
free	 of	 human-computer	
interaction	 barriers	 to	 safely	
deploy	 consumer-oriented	
CDSS.	

Contribution	 3:	 In	 chapter	 6	 this	
dissertation	 presented	 a	methodology	
to	 evaluate	 and	 detect	 HCI	 barriers	
between	patients	and	CDSS.	

	

	

7.2.	Thesis	contributions	
	

Data	perception	model	

The	methodology	presented	for	data	perception	provides	several	advantages:	

	

• The	 proposed	 architecture	 combines	 several	 existing	 developments	 to	 exploit	

the	advantages	of	each	of	them.	SNOW	is	used	as	an	horizontal	operator	to	grant	

access	to	distributed	sources,	LinkEHR	is	used	to	transform	the	integrated	view	

provided	 by	 SNOW	 into	 openEHR	 compliant	 extracts	 and	 the	 openEHR	

persistence	 platform	 Think!EHR	 is	 used	 to	 perform	 queries	 over	 standard	

datasets	 providing	 abstractions	 for	 CDS.	 This	 way,	 CDS	 data	 integration	 and	

abstraction	 can	 be	 performed	 along	 with	 the	 advantages	 provided	 by	 data	

warehousing	and	clinical	information	standards.	

	
• Another	 contribution	 is	 the	 use	 of	 AQL	 to	 define	 data	 abstractions	 using	

standard	 queries.	 This	 allows	 defining	 queries	 directly	 over	 standard	 data	

schemas,	independently	of	the	underlying	technology	of	persistence.	In	this	way,	

even	 if	 the	 persistence	 technology	 evolves,	 there	 is	 no	 need	 to	 change	 the	

abstraction	queries.	

	

• The	 last	contribution	 is	 to	provide	 insights	 into	how	models	 for	CDS	should	be	

managed	by	interacting	with	CKM	editors.	In	order	to	allow	users	to	understand	

the	data	perception	process	the	models	that	drive	it	need	to	be	widely	accessible	

and	well	governed.	
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Semantic	model	

The	 proposed	 semantic	 model	 contributes	 to	 CDSS	 by	 using	 the	 Linked	 Services	

paradigm	to	specify	their	functionality,	data	interfaces	and	KM	properties.	In	specific,	it	

proposes:	

• A	set	of	properties	to	describe	CDSS	KM	metadata.		

• An	 ontology	 of	 CDS	 functionalities	 that	 defines:	 a)	 a	 generic	 taxonomy	 of	

functionalities	 developed	 by	 merging	 pre-existing	 studies	 (e.g.	 CDS	 for	

prevention	 and	 screening);	 b)	 an	 extension	 of	 each	 functionality	 based	 on	

SMOMED-CT	to	specify	the	clinical	domain	of	application	(e.g.	focused	on	stroke	

prevention).	

• A	 method	 to	 guide	 the	 specification	 of	 the	 clinical	 semantics	 implicit	 in	

archetypes	as	machine-understandable	models.	

	

The	main	advantage	of	the	proposed	semantic	model	is	that	it	does	not	restrict	the	use	

of	ontologies	to	a	 fixed	set	of	biomedical	ontologies.	Rather	 it	exploits	 the	paradigm	of	

Linked	Services	and	 the	LOD	cloud	as	a	universal	machine-understandable	Knowledge	

Base.	Therefore,	by	means	of	 linked	data	principles,	 it	allows	to	link	CDS	specifications	

using	 any	 ontology	 in	 the	 Web	 of	 Data	 as	 a	 LKB	 that	 can	 evolve	 and	 be	 maintained	

independently	 of	 the	 CDSS	 implementation.	 This	 opens	 the	 door	 to	 use,	 not	 only	

biomedical	ontologies,	but	ontologies	 for	 time,	 space,	data	provenance	etc.	LKBs	allow	

for	 performing	 semantic	 discovery	 of	 CDSS,	 analyzing	 them	 and	 overcoming	

interoperability	challenges	related	to	ambiguity	in	CDSS´	interfaces	descriptions.	

Human	perception	model	

The	proposed	human-perception	Model	 contributes	 in	 several	aspects	 to	patient-CDSS	

communication:	

• This	 thesis	proposed	a	method	 to	evaluate	archetype	based	GUIs	 to	detect	HCI	

barriers	that	could	lead	to	negative	outcomes	of	the	CDSS.	The	proposed	method	

uses	remote	testing	to	detect	areas	with	significant	contributions	to	technology	

acceptance	 using	 large	 samples.	 Later,	 think-aloud	 is	 restricted	 to	 significant	

areas	 with	 a	 low	 sample	 size.	 The	 method	 allows	 dealing	 with	 end-user	

evaluation	in	a	cost-effective	manner.	
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7.3.	Generalizability	of	results	and	limitations	
The	methodologies	 and	 results	 presented	 in	 this	 dissertation	 focus	 on	 providing	 data	

perception,	semantic	and	human-computer	perception	models	to	enable	CDS	in	the	LHS.	

The	 developments	 presented	 build	 on	 pre-existing	 models	 and	 technologies	 such	 as	

terminologies,	EHR	architectures,	SWS	and	usability	testing	methods.	The	methods	are	

generic,	 therefore	they	can	be	applied	to	other	scenarios,	but	some	limitations	need	to	

be	overcome	in	future	works.	

Data	perception	model	

Regarding	 the	 data	 perception	 model,	 the	 infrastructure	 proposed	 for	 its	

implementation	 was	 tested	 in	 the	 er	 du	 syk	 project	 by	 integrating,	 standardizing	 and	

abstracting	 data	 from	 the	microbiology	 services	 of	 Troms	 and	 Finnmark	 regions.	 The	

data	processed	corresponded	to	a	population	of	circa	230,000	patients.	The	architecture	

can	be	directly	applied	to	other	openEHR	deployments	by	changing	the	set	of	archetypes	

that	model	the	information	and	connecting	SNOW	data	export	modules	to	other	sources.	

In	 fact,	 all	 the	 technologies	 involved	 have	 been	 extensively	 used	 in	 other	 scenarios	

demonstrating	 their	 scalability	 [27,134,197,198].	Nevertheless,	 these	 technologies	 and	

standards	 were	 originally	 designed	 for	 EHR	 information	 representation	 and	

communication,	whereas	 in	 this	dissertation	 they	are	used	 for	data	perception	 in	CDS.	

This	 imposes	 some	 requirements	 to	 the	 technologies	 and	 standards	 that	 were	 not	

considered	when	such	standards	were	developed.	The	first	 limitation	was	explained	in	

Chapter	4	and	it	is	related	to	the	expressivity	of	AQL.	AQL	was	not	originally	developed	

for	 data	 abstraction	 but	 for	 querying	 EHR	 extracts	 [98,99].	 Therefore,	 the	 set	 of	

operations	 provided	 for	 data	 aggregation	 are	 limited	 [98].	 Although	 the	 specifications	

and	 developments	 are	 evolving	 and	 may	 introduce	 some	 important	 features	 in	 the	

future,	current	limitations	may	require	using	languages	such	as	GDL	in	some	scenarios.	

Another	 limitation	 is	 the	way	of	 dealing	with	privacy	preserving	 requirements.	At	 the	

moment,	when	privacy	 requirements	are	high	 in	data	 sources,	only	aggregated	data	 is	

extracted	(e.g.	number	of	positive	pertussis	tests	in	Alta)	and	the	archetype	needs	to	be	

adapted	 to	 contain	 aggregations.	 This	 leads	 to	 a	model	 less	 reusable	 across	 use	 cases	

since	not	all	the	EHR	schema	is	available	to	perform	queries.	This	means	that	the	more	

abstract	 the	baseline	schema	 is,	 the	 less	 it	 is	possible	 to	adapt	 it	 to	different	scenarios	

with	queries.	In	order	to	allow	executing	any	query	over	a	fine-grained	EHR	schema,	if	

only	the	extraction	of	aggregations	is	allowed,	the	distributed	execution	of	AQL	queries	

would	be	needed.	Although	in	my	research	group	this	challenges	are	being	explored,	the	

methods	and	technologies	still	depend	on	a	broad	adoption	of	openEHR	[199,200].	If	the	
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adoption	of	openEHR	progresses,	eventually,	the	majority	of	HIS	could	be	queried	using	

AQL	 in	 a	 distributed	manner,	 thus	 guaranteeing	privacy.	Another	 limitation	 related	 to	

the	data	perception	architecture	proposed	is	the	lack	of	transactional	control	over	ETL	

operations.	In	order	to	overcome	it,	not	only	a	global	transaction	framework	is	needed,	

but	also	the	extract	passed	 from	one	stage	to	 the	next	one	should	treat	 information	as	

versioned	objects	by	means	of	the	openEHR	Extract	Model.		Finally,	at	the	end	of	chapter	

4,	I	briefly	introduced	the	need	of	adapting	published	openEHR	archetypes	for	some	CDS	

scenarios.	 I	discussed	how	the	work	presented	was	coordinated	with	CKM	editors	and	

provided	 insights	 on	 the	 best	 way	 of	 approaching	 such	 issue.	 However,	 modification	

patterns	and	guidelines	on	how	to	proceed	when	published	archetypes	are	modified	are	

needed.		

Semantic	model	

With	regards	to	the	semantic	model	proposed,	it	presents	a	generic	framework	to	allow	

for	 specifying,	 not	 only	 CDSS	 clinical	 semantics,	 but	 also	 any	 type	 of	 semantics	 (e.g.	

functional,	data	and	non-functional).	Provided	that	it	relies	on	the	LOD	cloud	as	generic	

Knowledge	 Base,	 any	 CDS	 specification	 can	 be	 interlinked	 with	 others	 leading	 to	 a	

common	LKB.	This	makes	the	CDS	semantic	specification	independent	of	the	underlying	

standard	used	in	the	CDS	implementation.	The	semantic	model	was	applied	to	define	er	

du	 syk	 semantics	 and	 7	 GDL-based	 CDSS	 for	 stroke	 prevention	 deployed	 by	 Cambio	

Healthcare	Systems	[67].	Although	the	systems	are	openEHR-based,	the	solution	can	be	

generalized	 straightforward	 by	 simply	 referencing	 other	 implementations	 from	 the	

semantic	 layer.	 For	 example,	 the	 same	 set	 of	 ontologies	 could	 be	 used	 to	 define	 data	

semantics	 for	HL7-based	CDSS	by	referencing	HL7	data	models.	The	technologies	used	

in	 its	 implementation	 have	 already	 been	 used	 in	 other	 domains	 than	 healthcare	

integrating	 heterogeneous	 systems	 [165].	 A	 possible	 limitation	 of	 the	 approach	

presented	may	appear	when	models	that	rely	on	more	expressive	semantics	need	to	be	

managed.	 The	 model	 presented	 mostly	 relies	 in	 light-weight	 semantics	 	 (RDF(S)	 and	

limited	 use	 of	 OWL)	 and	 therefore	 may	 not	 allow	 to	 exploit	 all	 the	 expressivity	 of	

ontologies	 such	 as	 SNOMED-CT.	 However,	 previous	 experiences	 in	 semantic	 web	

applications	development	[112,160]	have	shown	that,	in	many	cases,	it	is	convenient	to	

sacrifice	expressivity	to	make	implementation	easier	and	avoid	restricting	the	reasoners	

that	 can	be	used,	 thus	powering	scalability.	After	all,	when	a	 scenario	needs	advanced	

expressivity,	the	model	can	be	hosted	in	a	reasoner	capable	to	process	it	and	reference	it	

with	a	proper	URL	from	the	CDS	semantic	model	without	interfering	the	deployment.	
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Another	 limitation	 is	related	to	a	 topic	not	covered	 in	 this	 thesis.	CDSS	 in	general,	and	

Clinical	 Interpretable	 Guidelines	 in	 particular,	when	 are	 adopted	 by	 a	 new	 institution	

often	 need	 to	 be	 adapted	 to	 the	 internal	 policies	 and	 rules.	 This	 process	 is	 known	 as	

local	 adaption	 [15].	 Tackling	 local	 adaption	 at	 a	 semantic	 level	 with	 the	 methods	

proposed	 would	 require	 expressing	 internal	 guidelines	 logic	 as	 Linked	 Data	 models.	

This	would	have	benefits	as	automatic	comparison	of	guidelines	to	determine	if	they	are	

suitable	 to	 be	 adopted	 by	 a	 new	 institution.	However,	 that	 is	 a	 complex	 problem	 that	

remains	out	of	the	scope	of	this	dissertation.	

Human-Computer	perception	model	

With	 regards	 to	 the	 human-computer	 perception	 model	 this	 dissertation	 proposed	 a	

methodology	to	evaluate	GUIs	to	record	subjective	patient	health	information.	Er	du	syk	

exploited	 archetype	 repositories	 such	 as	 the	 Norwegian	 national	 CKM	 to	 build	 the	

models	 that	 drive	 the	 development	 of	 the	 CDS	 interface[123].	 The	 HCI	 evaluation	

method	 presented	 aims	 to	 deal	with	 the	 complexity	 of	 consumer-oriented	 CDSS	GUIs.		

These	systems	need	large	samples	of	users	for	testing	as	a	result	of	their	complexity	and	

users	 heterogeneity.	 The	methods	 proposed	 can	 be	 generalized	 not	 only	 to	 openEHR	

developments	but	to	any	HCI	evaluation	scenarios.	

In	the	application	of	the	methodology	to	er	du	syk	several	limitations	were	detected.	The	

GUI	 is	 designed	 based	 on	 a	 symptom	 archetype	 that	 represents	 a	 nationally	 agreed	

maximum	data	set.	The	first	attempt	was	to	generalize	as	much	as	possible	the	symptom	

registration	using	such	schema	for	most	symptoms.	However,	that	resulted	in	symptoms	

that	 asked	 users	 for	 attributes	 that	 were	 not	 related	 to	 them.	 Therefore	 a	 proper	

localization	and	adaption	of	the	archetype	to	each	symptom	is	needed	as	the	openEHR	

methodology	mandates.	The	methodology	was	successful	 in	 identifying	many	barriers.	

However,	phase	I,	where	remote	testing	is	performed,	needs	to	be	done	iteratively	until	

the	 models	 that	 detect	 significant	 contributions	 to	 the	 technology	 acceptance	 stop	

improving.		

7.4.	Concluding	remarks	
Enabling	 CDS	 in	 the	 LHS	 includes	 all	 the	 challenges	 that	 have	 been	 present	 during	

decades	in	the	development	of	CDSS	and	adds	even	more	complex	ones	derived	from	the	

inclusion	 of	 new	 actors	 and	 values.	 I	 have	 presented	 a	 set	 of	models	 to	 lay	 the	 basic	

pillars	to	build	complex	CDS	interventions	upon.	In	order	to	achieve	this,	it	is	necessary	

that	initiatives	such	as	the	ones	started	in	Norway	[59,122]	and	the	US	[201]	finish	the	

wide	deployment	of	health	 information	standards	 such	as	openEHR.	This	 is	needed	 to	

allow	 the	 decision	 model	 to	 access	 data	 from	 several	 data	 sources.	 Other	 challenges	
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require	 the	 formalization	 of	 CDS	 systems	 properties	 and	 establishing	 organizational	

bodies	[18].	The	semantic	model	proposed	provides	a	supporting	framework	that	can	be	

extended	with	ontologies	from	the	LOD	cloud	to	define	processes,	provenance	or	further	

contextual	 information.	 In	 fact,	 good	 contextualization	 is	needed	 to	determine	when	a	

particular	CDS	is	adequate	for	a	set	of	health	data.			

The	models	 presented	 are	 far	 from	being	 a	 silver	 bullet	 to	 exploit	 any	 type	of	 data	 in	

CDS.	 Nevertheless,	 they	 represent	 the	 minimum	 set	 of	 models	 to	 build	 upon.	

Developments	such	as	the	IoT,	the	Web	of	Data,	cognitive	computing	etc.	open	the	door	

to	exploit	many	information	flows	to	provide	better	health	as	envisioned	by	Sheth	[42].	

There	are	many	exciting	technical	advances	ahead.	Nevertheless,	in	my	opinion	the	most	

difficult	challenges	to	overcome	are	the	human	ones.	For	example,	a	common	repository	

and	 governance	 body	 of	 CDS	 is	 needed	 at	 a	 national	 or	 international	 level	 [13,18].	

Greenes	names	such	organization	Oversight	Body[18].	Such	governance	could	be	done	

in	a	distributed	way	relying	on	the	LKBs	presented.	But	it	would	require	the	alignment	

of	 many	 CDS	 initiatives	 such	 as	 openclinical.net,	 openCDS	 etc.	 Resources	 would	 be	

needed	 to	maintain	 such	 alignment	 and	 the	 governance	 body	 [13].	 A	 possible	way	 to	

orientate	it	may	be	to	think	in	funding	schemas	for	the	governance	body	similar	to	the	

ones	 of	 initiatives	 like	 IHTSDO	 that	 distributes	 SNOMED-CT.	 But	 for	 governments	 to	

invest	in	such	initiative,	the	benefits	would	need	to	be	very	clear.	It	is	the	responsibility	

of	CDS	researchers	and	vendors	 to	work	 towards	a	better	 integration	at	a	global	 scale	

that	 shows	 the	 benefits	 of	 CDS	 investment.	 A	 second	human	 challenge,	 crucial	 for	 the	

LHS,	is	the	involvement	of	patients	in	CDS	interventions.	We	still	know	very	little	about	

how	to	guide	 them	 in	using	consumer-oriented	CDSS.	Although	 the	methods	proposed	

can	evaluate	HCI	barriers,	more	knowledge	is	needed	to	determine	how	to	use	CDSS	for	

making	users	more	health	literate	and	helping	them	to	make	a	better	use	of	healthcare	

resources.	Furthermore,	we	need	more	knowledge	on	users	profiles	to	detect	when	the	

use	of	CDSS	for	self-care	is	not	adequate,	and	a	clinician	needs	to	intervene.			

Finally,	 all	 these	 technical	 and	 human	 interventions	 need	 to	 be	 performed	 within	 a	

framework	that	provides	a	clear	vision	on	where	CDS	need	to	head	in	the	LHS.	That	 is	

only	possible	with	the	contribution	of	social	science	researchers	that	need	to	establish	

the	direction	of	work	and	synthesize	the	views	of	all	the	actors	involved	[1].		
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