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Abstract
This master’s thesis introduces a framework for series expansions based on Mellin kind (MK)
statistics, which was introduced in [Nicolas, 2002].1 That is, we derive the analogies to the
classical Gram-Charlier and Edgeworth series, based on the log-moments and log-cumulants,
which are the natural sets of descriptors in MK statistics.

We introduce the MK Gram-Charlier series with arbitrary kernel ρ(x),

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)Pn(x)

]
ρ(x), (1)

where Bn(·) is the nth complete Bell polynomial and fX(x) is the probability density function
(PDF) of a non-negative random variable, which the series expansions seeks to approximate.
∆κ1 is the difference in log-cumulants between fX(x) and the kernel ρ(x), which is a known
PDF with certain constraints, including ρ(x) = 0 for x < 0. The functions Pn(x) depend on the
choice of kernel. In this thesis, we present the following choices of kernel.

The Mellin Kind Gamma Kernel Series Substituting ρ(x) with the gamma PDF γ(x;a, b) =
baxa−1e−bx/Γ(a) gives

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)Mn(x)

]
γ(x; a, b), (2)

where the functions Mn(x) = x−a+1ex(−Dx)n[xa−1e−x] are nth degree polynomials in x, defined
using the derivative operator D ≡ d/dx. We derive several results regarding Mn(x).

The Mellin Kind Beta Prime Kernel Series Substituting ρ(x) with the beta prime PDF
β′(x; a1, a2, b) = b(bx)a1−1/(B(a1, a2)(1 + bx)a1+a2), where B(a1, a2) is the beta function, gives

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)M ′

n

(
bx

1 + bx

)]
β′(x; a1, a2, b), (3)

where the functions M ′
n(·) are nth degree polynomials in bx/(1 + bx), given by

M ′
n

(
bx

1 + bx

)
=

(1 + bx)a1+a2

(bx)a1−1
(−Dxx)n

[
(bx)a1−1

(1 + bx)a1+a2

]
. (4)

The Mellin Kind Log-Normal Kernel Series Substituting ρ(x) with the log-normal PDF
Λ(x;µ, σ) = exp{−(log x− µ)2/(2σ2)}/(xσ

√
2π) gives

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)Hn(log x)

]
Λ(x; a, b), (5)

where Hn(log x) is the nth Hermite polynomial. Unlike the expansions of the gamma and beta
prime PDFs, this series is not new, as it was implicitly given in [Pastor, 2016]. We derived the
series independently from that work.

Under certain assumptions, the terms of the series expansion of Λ(x;µ, σ) can be rearranged to
give the MK Edgeworth series,

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn

(
κ3(−Dx)3

6
, . . . ,

κn+2(−Dx)n+2

(n+ 1)(n+ 2)

)]
Λ(x;µ, σ), (6)

1This reference is translated to English in [Nicolas and Anfinsen, 2012].
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where κn is the nth log-cumulant of the PDF fX(x) we seek to approximate. This series was first
derived in [Pastor et al., 2014] and we did not derive it independently of that work. However,
this thesis contains a different approach, leading to important differences in both the derivation
and the expression of the series.

We also applied the Bell polynomials to the classical series expansions of the standardized
Gaussian PDF α(x). That is, we expressed the Gram-Charlier as

fX(x) =

[
1 +

∞∑
n=3

1

n!
Bn(0, 0, cX,3, . . . , cX,n)Hn(x)

]
α(x), (7)

where cX,n is the nth order cumulant of X, and the Edgeworth series as

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn

(
cX,3(−D)3

6
, . . . ,

cX,n+2(−D)n+2

(n+ 1)(n+ 2)

)]
α(x), (8)

where (−D)nα(x) = Hn(x)α(x) allows for a computable result. These are, to our knowledge,
the first explicit expressions of the classical Gram-Charlier and Edgeworth series, which are
more than a century old.

We conducted a broad numerical investigation as to the performance of the MK series expansions
in approximating and estimating several target distributions, and fitting real-world data. We
focused on distributions which are relevant in radar imagery, but their general nature allows us
to draw conclusions which apply to all non-negative random phenomena.
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f(x)
F←→ FF(ω) FF(ω) = F [f(x)](ω). That is, f(x) and FF(ω) is a Fourier transform pair.

f(x)
M←→ FM(s) FM(s) =M[f(x)](s). That is, f(x) and FM(s) is a Mellin transform pair.

log x Natural logarithm of x (base e).

exp{x} The (natural) exponential function. ex is also sometimes used.

〈θ〉 Empirical (or sample) value of the parameter θ. For example, if the RVs
X1, . . . , Xn all have mean m, then the sample x1, . . . , xn has empirical mean
〈m〉 ≡

∑n
i=1 xi/n.
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Abbreviations
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Chapter 1

Introduction

1.1 Motivation
In the broadest sense, the purpose of this thesis is to advance the understanding of a modern
approach within the realm of theoretical statistics, which is used to approximate certain
probability densities. An immediate application is towards the analysis of satellite synthetic
aperture radar (SAR) images. For instance, we may wish to make an inference about certain
surface properties, like tracking sea ice or assessing if an agricultural area is at risk of experiencing
drought. Another example is monitoring deforestation in tropical forest areas where the
Norwegian government has paid for its preservation. These tasks can be accomplished by using
techniques such as classification, see [Doulgeris et al., 2008]; clustering, see [Doulgeris et al.,
2011]; and segmentation, see [Doulgeris, 2015]. All of these methods require a model for the
data in the image. Due to the stochastic nature of the pixel measurements, the model will
be a probability density. Thus, the modeling of probability densities is a central problem in
these applications, and there are currently several models being used. Some are very simple and
fast but lacking in accuracy, while others are complicated but more accurately describes the
underlying natural phenomena.

The purpose of this thesis was to examine whether a new statistical framework gives rise to novel
approximations to the complicated models, an endeavor in which we were successful. During
the course of this work, we have also made significant contributions to the understanding of this
framework, regarding both the theoretical foundations and the performance of the methods.
We have conducted comprehensive testing which indicates what types of scenarios in which the
methods are faster and/or more accurate than current methods. Our findings suggest that these
methods can improve speed and accuracy in some real-world applications. This can potentially
enable operational services to produce more accurate classification maps, by using the improved
tools at their disposal.

These methods would naturally be applicable to other fields as well. Ultrasound and laser
speckle imaging are other examples of coherent imaging techniques which experience the same
interference phenomenon as SAR images, and therefore have the same statistical characteristics.
In fact, the methods can potentially find use in entirely separate fields, as long as the data is
non-negative. In [Pastor et al., 2014], the authors used one of the models discussed in this thesis
to model wireless networks. Those measurements arise from a radically different process than in
coherent imaging, but both are associated with heavy-tailed distributions.

Getting more technical, the classical Gram-Charlier and Edgeworth series have been used to
model certain types of data for a long time, see e.g. [Blinnikov and Moessner, 1998]. Unrelated

1
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to these series, Mellin kind (MK) statistics was introduced in [Nicolas, 2002]. The supervisor for
this thesis, Stian N. Anfinsen, has applied MK statistics to Earth Observation (EO) problems,
e.g. in [Anfinsen and Eltoft, 2011]. During his work in the EO field, he identified the possibility
to improve on current methods, while also seeing a clear analogy between the Edgeworth series
in classical statistics and properties in MK statistics. The intuition that there could and should
exist such a series gave rise to this thesis.

1.2 Subjects and Goals
This thesis was preceded by a project paper, in which we aimed to derive a specific new
series expansion of the gamma distribution, using MK statistics. We successfully derived
that expansion, and during the course of that work we identified several related topics which
warranted further research, thus justifying this master’s thesis. The original goals for this thesis
were:

• Expand and generalize the work from the project paper, in order to create a framework
for MK series expansions.

• Investigate this framework and identify other MK series expansions.

• Thoroughly examine the performance of the discovered MK series expansions.

During the course of this work, we also made interesting discoveries which were unexpected
in the sense that they were not covered by the original goals. This included a significant
contribution to the classical Edgeworth series, and tools which can prove useful in other areas of
MK statistics. These, along with the other contributions of this thesis, are listed in Section 1.5.

Based on this work, we are working on two scientific papers. They are currently draft versions,
intended for imminent submission. One of them is appended to this thesis, as it includes
experiments which supplement those we conduct here.

1.3 Method
The starting point for this thesis was the aforementioned project paper. This also dictated the
working method, which in broad strokes were

1. Expand and refine the theoretical aspects of the MK series expansions framework.

2. Review the literature in search of new ideas.

3. Repeat steps 1 and 2 until the thesis presents a clear, concise, and comprehensive review
of the MK series expansions framework.

4. Perform numerical experiments to document strengths and weaknesses of the MK series
expansions.

Naturally, the work did not progress nearly as smoothly as the above list might suggest, with
dead ends, surprises, frustration, and satisfaction, usually when least expected.

1.4 Organization
This thesis is organized as follows. In Chapter 2, we review the theoretical background needed
for the rest of this thesis. In Chapter 3, we present the framework for the MK series expansions,
including the series themselves. In Chapter 4, we take some of the new ideas which were used
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in Chapter 3, and apply them to the classical series expansions. In Chapter 5, we perform
numerical experiments on the MK series expansions from Chapter 3. We conclude in Chapter 6.

The decision was made to limit Chapter 2 to only a review of the literature.1 That is, everything
in that chapter has been derived and described previously. Most of the content in the other
chapters is new material (introduced in this thesis), with all exceptions explicitly stated. As a
consequence of this, we introduce the classical Gram-Charlier and Edgeworth series in Section
2.4, but revisit them in Chapter 4 to propose our changes and improvements there.

The most notable departure from the above guidelines, is the inclusion of SAR specific theory
in Chapter 5. While the modeling of SAR data was a key motivation for this thesis, the derived
series expansion methods can just as easily be applied to similar models from entirely different
fields. Thus, SAR theory does not permeate this thesis, and is only mentioned when necessary,
e.g. to motivate an experiment.

Footnotes are primarily used for supplementary information, i.e. information that is not strictly
necessary to understand the material. In practice, this includes a lot of the formalism, which
cannot and should not be omitted entirely, but is not of interest to all readers and could
potentially be disruptive to the flow of the text. Also, a lot of the SAR specific information
has been relegated to footnotes, in recognition of the fact that some readers may find it not
interesting.

1.5 Contributions of This Thesis
To round off the introduction, we discuss and list the contributions of this thesis. This is for the
benefit of readers which are familiar with the theoretical background and are only interested in
the new findings we present.

The biggest contributions of this thesis are:2

• The derivation of the MK series expansion with arbitrary kernel.

• The demonstration of how the Mellin derivatives can be used in the context of MK
statistics.3

• The recursive definition in eq. (3.16) and lemma 1, which concern the relation between a
Mellin derivative and the arbitrary kernel.

• The MK gamma kernel series and MK beta prime kernel series, and subsequent results
about the polynomials which arise during their derivation, including lemmas 1, 2, 4, and 5.

• The novel use of the Bell polynomials, which gives explicit expressions for the MK series
expansions.

• The derivation of the classical Gram-Charlier series expansion with arbitrary kernel. This
mirrors our derivation of the MK series expansion, and includes lemma 3.

• The ideas of a series expansion with arbitrary kernel was carried over to the classical
Gram-Charlier series, including lemma 3.

1There are two exceptions to this rule, i.e. Chapter 2 includes two minor results which were derived during
the course of writing this thesis. They are listed at the end of Section 1.5.

2Several of these results are connected to the work in [Pastor et al., 2014], [Pastor et al., 2016], and [Pastor,
2016]. In Section 3.4.3 we discuss in detail how we derived the results to clarify what was done independently of
Pastor et al.

3Most sources do not name the Mellin derivatives, i.e. they are just differential operators with no clear link to
MK statistics. This can explain why they have not been used before in this context.



4 CHAPTER 1. INTRODUCTION

• The use of the Bell polynomials was also applied to the classical Gram-Charlier and
Edgeworth series, providing explicit expressions for these.

In addition to this, a few minor results were derived during the course of this work, some of
which can possibly be called small contributions. Examples of this are4

• A simpler proof of how the power function affects the log-cumulants, see Section 2.3.7.

• An alternate proof of how Faà di Bruno’s formula and the Bell polynomials represent the
relationship between (log-)moments and (log-)cumulants, see Section 2.5.3.

• A new (and much simpler) formula for the coefficients of the Gram-Charlier series around
the gamma kernel, see Section 4.2.3.

• A proof of the scalability of the generalized Laguerre polynomials in terms of their
Rodrigues formula and orthogonality property, see Appendix A.1.

4This list is not exhaustive, but it should be clear from the text which results were derived for this thesis,
and which were found in the literature.



Chapter 2

Theory

2.1 Terminology

The key foundation of this master’s thesis is the idea of Jean-Marie Nicolas to replace the Fourier
transform with the Mellin transform in the definition of the characteristic function. It was
originally presented in French in [Nicolas, 2002] and later translated to English in [Nicolas and
Anfinsen, 2012]. There, the terms first-kind statistics and second-kind statistics were assigned
to the classical (Fourier kind) and MK framework, respectively. However, this thesis will instead
adhere to the naming convention coined in [Anfinsen and Eltoft, 2011]. That is, classical
statistics refers to the framework where the characteristic function is the Fourier transform of
the probability density function, while MK statistics refers to the framework where the Mellin
transform is used instead. Also, the terms characteristic function and cumulant generating
function are used instead of first/second characteristic function. This choice of terminology is
deliberate and preempts any possible confusion about e.g. the second characteristic function
of the second kind, which will here be referred to as the Mellin kind (log-)cumulant generating
function, abbreviated to MK CGF. This more precisely conveys the nature of the functions,
instead of just numerically labeling them.

When referring to functions in classical statistics, the symbols used for the characteristic and
cumulant generating functions are upper case (Φ and Ψ respectively). The lower case symbols φ
and ϕ are used when referring to MK statistics. This is also in accordance with [Anfinsen and
Eltoft, 2011]. The moment and log-moment generating functions are not assigned their own
greek letters because they are seldom used in this thesis.

The classical linear moments and cumulants themselves are assigned the roman letters m
and c, while the greek letters µ and κ denote the logarithmic moments (log-moments) and
logarithmic cumulants (log-cumulants) respectively. Again, this mirrors [Anfinsen and Eltoft,
2011]. Historically, µ has often been assigned to the classical (linear) moments, but this deviation
from the norm can be justified by the limited presence of the classical descriptors in this thesis
and the benefit of clean and simple symbols for the MK descriptors, which are absolutely central
to this work. We let ς denote the classical variance, and σ denote its logarithmic counterpart.

The well-known probability density functions that are central to the thesis are assigned their own
greek letters, e.g. the Gaussian α(·). By convention α(x;m, ς) denotes the Gaussian distribution
with parameters m, ς, while α(x) denotes the standardized version, that is m = 0, ς = 1. The
same goes for the other distributions and will be specified as they are formally introduced later
in this chapter.

5



6 CHAPTER 2. THEORY

2.2 Classical Statistics

2.2.1 The Characteristic Function

Let X be a random variable (RV) with probability density function (PDF) fX(x).1 The
characteristic function (CF) ΦX(ω) of X is defined as the Fourier transform (FT)2 of its PDF:

ΦX(ω) = F [fX(x)](ω) =

∞∫
−∞

ejωxfX(x)dx = E{ejωX}, (2.1)

where E{·} is the expectation operator w.r.t. X, j ≡
√
−1 is the imaginary unit, and ω is a

real-valued transform variable, often interpreted as a frequency.

2.2.2 Moments
The moment generating function (MGF) is defined as

MGFX(ω) ≡ E{eωX}. (2.2)

I.e., the MGF and the CF are related by MGFX(ω) = ΦX(−jω) and this close relationship
means that for the purpose of this thesis, only the CF is needed to develop the theory and
avoiding use of the MGF will reduce confusion.3 The moments mn{X} can be defined in two
ways, in terms of the expectation of a power of X, and in terms of the derivative of the CF;

mn{X} = E{Xn} =

∞∫
−∞

xnfX(x)dx, (2.3)

mn{X} = (−j)n dn

dωn
ΦX(ω)|ω=0 . (2.4)

If all of the moments exist4, then we can define them as derivatives of the CF. This is based on
the Taylor series expansion of the exponential function ejωx around ω = 0, which can be used to
rewrite the integral in eq. (2.1) as

ΦX(ω) =
∞∑
n=0

mn
(jω)n

n!
. (2.5)

Note that m0 is included in this sum, and can be viewed either as the integral of the PDF
E{X0} =

∫∞
−∞fX(x)dx = 1 or ΦX(0), hence m0 = 1 trivially for any PDF. One use of this

"zeroth" moment is that any non-negative function f(x) divided by its integral (m0) can by
1A detailed review of basic concepts like the conditions for the existence of the PDF will not be included here.

The vast majority of books on the fundamentals of statistics and probability cover this in detail, e.g. [Kendall
et al., 1994].

2There are several ways to define the FT with regards to the sign in the exponential, the scaling and the
use of ordinary or angular frequency. The choices in the transform also defines the inverse, s.t. the inverse
F−1[F [f(x)]] = f(x). The definition used here is common for this purpose (see [Kendall et al., 1994]), as the CF
is exactly the FT of the PDF with these choices.

3The MGF is designed to have the convenient property that mn = MGF(n)(0), but as shown in this section
the CF has the same property with only an extra factor (−j)n.

4The existence of mn requires that the integral in eq. (2.3) converges for the corresponding xn [Kendall
et al., 1994]. There are several well-known distributions where some moments do not exist or are ∞, but the
distributions encountered in this thesis are mostly well behaved. When referring to mn in the following, it is
implied that it exists for that particular distribution unless otherwise stated.
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definition be interpreted as a PDF. The moments mn are often called the raw moments to
separate them from the centralized moments (also known as moments about the mean), defined
as

m̃n ≡ E{(X −m1)n}. (2.6)

That is, the centralized moments compensate for the mean of the RV, giving m̃1 = 0. With
respect to naming, the first raw moment m1 is the mean, while the second centralized moment
m̃2 = ς2 is the variance. Additionally, the standardized moments are the dimensionless quantities
defined as m̃n/ς

n, where m̃3/ς
3 is the skewness and m̃4/ς

4 is the kurtosis. To conclude the
discussion on moments, note the property that the set of all moments of an RV, if they exist,
almost always uniquely describes the PDF of the RV.5

2.2.3 Cumulants

In the same way as the moments can be found from the CF, the cumulants6 cn{X} are found
via the cumulant generating function (CGF)

ΨX(ω) ≡ log ΦX(ω). (2.7)

If the moments mn exist, then the cumulants also exist [Sundt et al., 1998] and the CGF can be
written as7

ΨX(ω) =
∞∑
n=1

cn
(jω)n

n!
, (2.8)

which also gives a method for finding the cumulants when the CGF is known:

cn = (−j)n dn

dωn
ΨX(ω)|ω=0 . (2.9)

The analogy to calculating moments from the CF is immediately clear. Another analogy with the
moments is that the set of all cumulants also describes a distribution uniquely. The relationship
between moments and cumulants is given in e.g. [Pitman, 2002] and [Rota and Shen, 2000] as

cn =
n∑
i=1

(−1)i−1(i− 1)!Bn,i(m1, . . . ,mn−i+1), (2.10)

mn = Bn(c1, . . . , cn). (2.11)

Here, Bn,i(m1, . . . ,mn−i+1) is the partial Bell polynomial and Bn(·) is the nth complete Bell
polynomial, which we will define in Section 2.5. Eq. (2.10) is a special case of Faà di Bruno’s
formula, which is described in [Johnson, 2002]8 and will be examined in Section 2.5.3. Note
that in order to compute cn, only m1, . . . ,mn up to order n is required and, similarly, to find
mn one only needs to know c1, . . . , cn.

5[Heyde, 1963] provides a rare counterexample where the set of all moments can belong to distinct distributions,
but the statement is still useful in order to provide insight to what the descriptive constants (e.g. the moments)
actually are.

6Both moments and cumulants are functions of the RV X through its PDF, as indicated by the notation
mn{X} and cn{X}. However, they are usually referred to just as mn and cn.

7Unlike the CF, the power series of the CGF does not include the term n = 0. Usually, the zeroth cumulant
is not defined even though the zeroth moment is. If c0 were to be defined, then c0 = 0 since log ΦX(0) = 1 for
all true PDFs, and the term n = 0 in the sum definition of the CGF would be zero anyway.

8Using the same notation as Johnson, f(t) is the CGF and g(t) = et, s.t. all derivatives of g(t) are also et
(greatly simplifying the expression) and g(f(t)) is the CF.
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Shift Invariance The cumulants of order n ≥ 2 are shift-invariant. That is to say that if the
RV X has cumulants cX,n and Y = a + X where a is some constant, then Y has cumulants
cY,1 = cX,1 + a and cY,n = cX,n for n ≥ 2. To see this, state the CF of Y in terms of the CF of X

ΦY (ω) = E{ejωY } = E{ejω(a+X)} = ejωaΦX(ω), (2.12)

and the cumulants are found via the CGF ΨY (ω) = log ΦY (ω) = jωa+ ΨX(ω) using eq. (2.9),

cY,n = (−j)n dn

dωn
[jωa+ ΨX(ω)]|ω=0 =

{
a+ cX,1 , n = 1,
cX,n , n ≥ 2.

(2.13)

Scaling Another property of the cumulants is that for constant a ∈ R6=0 the RV aX has
cumulants ancX,n, i.e. scaling X with a results in the nth-order cumulant being scaled with an.
To see this, start with

ΦaX(ω) = E{ejωaX} = E{ej(aω)X} = ΦX(aω), (2.14)

and use the power series definition of the cumulants in eq. (2.8) to see that

ΨaX(ω) = ΨX(aω) =
∞∑
n=1

(jaω)n

n!
cX,n =

∞∑
n=1

(jω)n

n!
(ancX,n), (2.15)

i.e. the cumulants of aX are ancX,n.

Upon encountering the cumulants for the first time, it is often questioned what they are, and
what their purpose is. The moments have a mathematical definition and physical and statistical
interpretations which are simple and well-established. The cumulants on the other hand, are
defined through the CGF (via the CF or the MGF) and in practice they are usually computed
as combinations of the empirical moments. However, both the moments and the cumulants are
sets of descriptive constants of a distribution which can be useful in describing or specifying it.
From this point of view, their value must be based on their usefulness, and as [Kendall et al.,
1994] notes, the cumulants are more useful than the moments. This will become apparent in
the following sections. The cumulants were first defined explicitly in [Thiele, 1889], and [Hald,
2000] recounts their early history.

2.2.4 The Sum of Independent RVs
Let X and Y be two RVs with PDFs fX(x) and fY (y) and joint PDF fX,Y (x, y). X and Y are
said to be independent if and only if

fX,Y (x, y) = fX(x)fY (y)∀x, y. (2.16)

From e.g. [Stark and Woods, 2012] we know that their sum Z = X + Y is then also an RV and
has PDF

fZ(z) =

∞∫
−∞

fX(x)fY (z − x)dx. (2.17)

This is the additive convolution9 of fX(x) with fY (y), usually written

fZ(z) = fX(x) ∗ fY (y). (2.18)
9Usually this is referred to as just convolution. In this thesis however, we encounter another type of convolution,

so it is necessary to use the prefix here.
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Let X model the signal and Y model the noise. If the noise is additive and independent of
the signal, then Z = X + Y is the measurable system output. This additive noise model is
very much used, and Z is commonly analyzed via the FT. The convolution property of the FT,
which can be found in e.g. [McClellan et al., 2003], says that

F [f(x) ∗ g(x)](ω) = F [f(x)](ω)F [g(x)](ω), (2.19)

i.e. the FT of a convolution of two functions is equal to the product of the FTs of each function.
Inserting the PDFs fX(x) and fY (y) for f(x) and g(x), we see that the CF of the sum of
independent RVs is the product of the CF of each of these RVs. That is, if X and Y have CFs
ΦX(ω) and ΦY (ω), then

ΦZ(ω) = ΦX(ω)ΦY (ω). (2.20)

Taking the logarithm on both sides, we get the CGF of Z:

ΨZ(ω) = ΨX(ω) + ΨY (ω), (2.21)

from which we can see that the cumulants of a sum Z = X+Y are the sums of the corresponding
cumulants of X and Y , i.e. cZ,n = cX,n + cY,n.

2.2.5 The Gaussian Distribution

Perhaps the most ubiquitous distribution is the Gaussian (normal), which has PDF

α(x;m, ς) =
1√
2πς

exp

{
−(x−m)2

2ς2

}
. (2.22)

At this point, we recall that omitting the parameters from α(·) denotes the standardized version
of the PDF, which for the Gaussian is m = 0, ς = 1, i.e.

α(x) =
1√
2π
e−

1
2
x2

. (2.23)

To convert between the two, see that

α(x;m, ς) =
1

ς
α

(
x−m
ς

)
. (2.24)

[Bryc, 2012] gives the CF and CGF of the Gaussian distribution as

ΦX(ω) = exp

{
jωm− (ςω)2

2

}
, (2.25)

ΨX(ω) = jωm− (ςω)2

2
. (2.26)

The cumulants are found from this using eq. (2.9): c1 = m, c2 = ς2 and cn = 0 ∀n > 2. This is a
unique property of the Gaussian distribution – there are no distributions where c1, c2, . . . , cn 6= 0
and ck = 0∀ k > n, for any n > 2. In other words, the CGF cannot be a polynomial of finite
degree n > 2, see [Lukacs, 1970]. Conversely, the even moments of the Gaussian distribution are
all non-zero (functions of ς), i.e. the cumulants describe this distribution in the simplest and
most elegant way possible.
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2.3 Mellin Kind Statistics
MK statistics was introduced in [Nicolas, 2002]. It is the foundation for this thesis, along with
the work of others like [Anfinsen and Eltoft, 2011] and [Pastor et al., 2014], who have expanded
and applied Nicolas’ findings. The elements of MK statistics which are key to this thesis will
now be presented. For a recent and very comprehensive guide to all aspects of MK statistics,
see [Nicolas, 2016].

2.3.1 The Mellin Transform

The Mellin transform (MT) is named after Finnish mathematician Hjalmar Mellin. The MT of
a function f(x) is

M[f(x)](s) ≡
∞∫

0

xs−1f(x)dx = FM(s)⇔ f(x)
M−→ FM(s), (2.27)

where s ∈ C is a complex transform variable.

2.3.2 The Inverse Mellin Transform

As explained in [Flajolet et al., 1995], the fundamental strip is the largest open strip 〈a, b〉 for
Re(s) in which the integral in (2.27) converges. It is a vertical strip in the complex plane defined
by its boundaries on the real line, hence the name. The inverse MT is defined in the same
reference as

f(x) =M−1[FM(s)](x) =
1

2πj

c+j∞∫
c−j∞

x−sFM(s)ds. (2.28)

This integral is along a vertical line in the complex plane, given by a constant real value c ∈ R.
The inverse MT exists when {c ∈ R : a < c < b}, i.e. when s ∈ Sf , where Sf is the fundamental
strip.

2.3.3 A MT Example: Euler’s Gamma Function

When examining the MT, a simple first example is Euler’s gamma function Γ(s), usually referred
to just as the gamma function. It is defined as

Γ(s) ≡
∞∫

0

xs−1e−xdx, (2.29)

for s complex with positive real part, see [Davis, 1959] for more information.10 Combining eqs.
(2.27) and (2.29), we see that the gamma function is simply the MT of e−x, i.e.

e−x
M←→ Γ(s). (2.30)

2.3.4 Some General Properties of the Mellin Transform

There are several good publications concerning the MT. [Bertrand et al., 2000] include some
derivations of the general properties of the MT. From its definition, the MT is trivially linear,
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Table 2.1: Some basic Mellin transform properties.

f(x) FM(s) =M[f(x)](s) Constraint

Scaling f(bx) b−sFM(s) b > 0, s ∈Sf
Multiplication xnf(x) FM(s+ n) s+ n ∈Sf

Differentiation Dnf(x) (−1)n
n∏
k=1

(s− k)FM(s− n) n ∈Z≥0, s− n ∈Sf

i.e. if f(x)
M←→ FM(s) and g(x)

M←→ GM(s), then af(x) + bg(x)
M←→ aFM(s) + bGM(s) for

constant a, b. Other properties central to this thesis are listed in Table 2.1.

These properties can be combined to give

Dnxnf(x)
M←→ (−1)n

n∏
k=1

(s− k)FM(s), n ∈ Z≥0, (2.31)

under the constraint that s ∈ Sf , which is just the original constraint for f(x)
M←→ FM(s).

2.3.5 The Mellin Kind Characteristic Function

The Mellin kind characteristic function (MK CF) φX(s) of a non-negative RV11 X was defined
in [Nicolas, 2002] as the MT of its PDF fX(x):

φX(s) =M[fX(x)](s) =

∞∫
0

xs−1fX(x)dx = E{Xs−1}, (2.32)

where the expectation is again w.r.t. X. Also, the PDF fX(x) is the inverse MT of the MK CF,

fX(x) =M−1[φ(s)](x). (2.33)

From its definition in eq. (2.27) it is clear that the MT only makes sense for non-negative RVs.
There are several important PDFs designed for such RVs, including the log-normal and gamma
distributions, both of which will be discussed later in this thesis. Indeed, as demonstrated
in [Nicolas, 2002], the MT seems to be fundamentally better suited to the distributions of
non-negative RVs, compared to the FT. The intuition behind this is that since the MT works on
exactly the values of x where fX(x) is non-zero, it is tailored to these distributions in a sense.
On the other hand, we see from the FT definition in eq. (2.1), that it is better suited to PDFs
supported on the whole real line.

2.3.6 Log-Moments
The log-moments µn are defined in [Nicolas, 2002] as

µn{X} = E{(logX)n} =

∞∫
0

(log x)nfX(x)dx. (2.34)

10It is named after the famous mathematician Leonhard Euler who presented the integral form in [Euler, 1738].
11Formally, X is said to be non-negative if fX(x) = 0∀x < 0, i.e. if its PDF is supported on (a subset of) R≥0.
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They can be retrieved from the MK CF by rewriting the transform kernel xs−1 = e(log x)(s−1) in
eq. (2.32) to get

φX(s) =

∞∫
0

e(log x)(s−1)fX(x)dx, (2.35)

then inserting the power series expansion for the exponential function as a function of s at s = 1,
which gives

φX(s) =

∞∫
0

∞∑
n=0

[(log x)(s− 1)]n

n!
fX(x)dx. (2.36)

Finally, we reverse the order of integration and summation12 to recognize the integral definition
of the log-moments from eq. (2.34), and see that

φX(s) =
∞∑
n=0

(s− 1)n

n!

∞∫
0

(log x)nfX(x)dx =
∞∑
n=0

µn
(s− 1)n

n!
. (2.37)

As in the classical case, this requires of the existence of all µn, and implies that

µn =
dn

dsn
φX(s)

∣∣∣∣
s=1

. (2.38)

This illustrates that the log-moments are the MK statistics equivalent of the (classical) moments
mn.

The log-moments were used before the introduction of the MK CF. For example, it is well known
that for data samples {x1, . . . , xn} from a gamma distribution with known scale but unknown
shape, the sample log-mean

〈µ〉 ≡ 1

n

n∑
i=1

log xi (2.39)

is a sufficient statistic for the shape parameter, see [Pitman, 1937]. Note that by definition, the
log-mean13 is the first-order log-moment, i.e. µ = µ1 = E{logX}.

2.3.7 Log-Cumulants
The log-cumulant generating function (or MK CGF) is defined as ϕX(s) = log φX(s). If all
log-cumulants κn exist, we have

ϕX(s) =
∞∑
n=1

κn
(s− 1)n

n!
, (2.40)

κn =
dn

dsn
ϕX(s)

∣∣∣∣
s=1

. (2.41)

For a detailed description of the conditions for the existence of log-moments and log-cumulants,
it is again referred to [Nicolas, 2002]. In the same article, Nicolas argues that since the log-
cumulants are constructed the same way as the classical cumulants, the relationships between

12This is required in the classical case as well, and [Kendall et al., 1994] discuss when this reversal is
mathematically valid. It is beyond the scope of this thesis to discuss this at length; the representations used are
valid unless otherwise stated.

13This deviates from [Nicolas, 2002], where the term log-mean referred to a different entity. This naming
convention was used (seemingly for the first time) in [Pastor et al., 2016].
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µ1, . . . , µn and κ1, . . . , κn must be the same as in the classical case, i.e.

κn =
n∑
i=1

(−1)i−1(i− 1)!Bn,i(µ1, . . . , µn−i+1), (2.42)

µn = Bn(κ1, . . . , κn). (2.43)

Scale Invariance The log-cumulants of order n ≥ 2 are scale invariant. That is, if X has
log-cumulants κn, then for some positive14 constant a, the log-cumulants of aX are κaX,1 =
κX,1 + log a and κaX,n = κX,n for n ≥ 2. This is analogous to the shift invariance of the classical
cumulants. The straightforward proof was provided in [Pastor et al., 2014], and starts with the
MK CF definition from eq. (2.32) for aX,

φaX(s) = E{(aX)s−1} = as−1E{Xs−1} = as−1φX(s), (2.44)

which gives the MK CGF

ϕaX(s) = log(as−1) + log φX(s) = (s− 1) log a+ ϕX(s). (2.45)

Using the definition in eq. (2.41), the log-cumulants of aX are

κaX,n =

{
log a+ κX,1 , n = 1,

κX,n , n ≥ 2,
(2.46)

i.e. the log-cumulants of order n ≥ 2 are scale-invariant, while the first order log-cumulant is
shifted by log a.

Power Transformation For the power transformation RV Y = Xa, where a ∈ R 6=0 is a
constant, the log-cumulants of order n ≥ 2 are

κY,n = anκX,n. (2.47)

A rigorous proof can be found in [Nicolas, 2016], but mimicking the approach of the scaling
property of the classical cumulants in Section 2.2.3 is also possible. We see that φY (s) =
E{Xa(s−1)} implies that (s − 1) is scaled by a in the MK CGF and using the power series
definition from eq. (2.40) gives

ϕY (s) =
∞∑
n=1

κn
[a(s− 1)]n

n!
=
∞∑
n=1

(anκn)
(s− 1)n

n!
, (2.48)

where the log-cumulants of Y are recognized as anκX,n.

To summarize, shifting the RV X affects the cumulants like scaling X affects the log-cumulants,
and scaling X affects the cumulants like applying the power transformation to X affects the
log-cumulants. Even the proofs are similar – this demonstrates the logarithmic nature of MK
statistics.

After introducing the cumulants in Section 2.2.3, it was argued that their merit should be based
on their usefulness as sets of descriptive constants. This also applies to the log-moments and
log-cumulants, which are even further removed from a simple and intuitive interpretation of
what they are. When introducing them, [Nicolas, 2002] demonstrated their usefulness in some
cases, while others like [Anfinsen and Eltoft, 2011], [Krylov et al., 2013] and [Pastor et al., 2016]
have recently extended their use to a wider range of applications. This thesis seeks to add to
this growing body of research.

14For a = 0 the RV aX is fixed to 0, and for a < 0 it is a negative RV and hence unsuited to MK statistics.
Thus, the requirement a > 0 does not reduce the generality of the result.
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2.3.8 The Product of Independent RVs
Revisiting the model with independent RVs X, Y , what if the noise is multiplicative? That is,
what if the measurable output is the RV Z = X · Y ? The usual approach has been to work with
logZ = logX + log Y , which reduces the problem to the well-known additive case. Using MK
statistics, a new approach was presented in [Nicolas, 2002]. The PDF of Z is stated in [Nicolas,
2002] as

fZ(z) =

∞∫
0

fX(x)fY

(z
x

) dx

x
, (2.49)

which is the multiplicative convolution, also known as the Mellin convolution, denoted

fZ(z) = fX(x)∗̂fY (y). (2.50)

Again referring to [Nicolas, 2002], a fundamental property of the MT is that

M[fX(x)∗̂fY (y)](s) =M[fX(x)](s)M[fY (y)](s), (2.51)

which is very similar to the FT additive convolution property in eq. (2.19). The implication of
this is that the standard transform domain analysis of the additive model is possible for the
multiplicative model, if the MT is used instead of the FT. In particular, if the MK CFs of X, Y
are φX(s), φY (s) then the MK CF and CGF of Z are

φZ(s) = φX(s)φY (s), (2.52)
ϕZ(s) = ϕX(s) + ϕY (s). (2.53)

This implies that in the case of multiplicative noise, the log-cumulants are additive, i.e.

κZ,n = κX,n + κY,n. (2.54)

The quotient of Z = X/Y of two independent RVs was also discussed in [Nicolas, 2002]. We
will not recite the entire review of that case, but one property is of interest later in this thesis:
The log-cumulants of the quotient are given by

κZ,n = κX,n + (−1)nκY,n, (2.55)

that is, the odd log-cumulants are the differences and the even log-cumulants the sums of the
corresponding log-cumulants of the constituent RVs.

2.3.9 The Gamma Distribution
The gamma distribution has several parametrizations, and this thesis uses two of the most
common ones. Let X be a gamma distributed RV. Its PDF with shape parameter L > 0 and
location parameter m = E{X} is then

γ(x;L,m) =

{(
L
m

)L xL−1

Γ(L)
exp

{
−Lx

m

}
x ≥ 0,

0 x < 0,
(2.56)

where Γ(·) is the gamma function from Section 2.3.3. The alternative parametrization uses
shape a > 0 and scale b > 0, giving the PDF

γ(x; a, b) ≡ baxa−1

Γ(a)
e−bx , x ≥ 0, (2.57)
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where γ(x; a, b) = 0 ∀x < 0 is again the case. To convert between the two, see that a ↔ L,
b ↔ L/m. The shape/location parametrization in γ(x;L,m) is common for modeling SAR
data, where m is the mean radar intensity and L has a physical interpretation as "(equivalent)
number of looks", see [Anfinsen et al., 2009] for more information. It represents the averaging
done in the image formation, thus it is a global parameter in the sense that it is constant for the
whole image and independent of the surface properties. This is in contrast to the local location
parameter, which is assumed uniform only for segments of the image corresponding to exactly
one class in the scene (forest, farmland etc.). The practical implication is that the number of
looks can be estimated based on the entire image, and for modern sensors and methods this
allows us to treat L as a known parameter.

The gamma distribution has classically been fitted to data using the maximum likelihood (ML)
estimates as discussed in [Choi and Wette, 1969]. In general, this thesis adheres to a convention
where fX(x) is a PDF model based on assumptions and observations of a physical process.
Conversely, the distributions which are assigned greek letters, e.g. γ(x; a, b), α(x;m, ς) etc. are
kernels, i.e. they are tools which can be tailored arbitrarily for specific purposes, in this case
to facilitate the series expansions. As with the Gaussian kernel, omitting the scale by writing
γ(x; a) refers to the standardized case b = 1, which we often use in this thesis for the sake of
brevity. The PDF is then simplified to

γ(x; a) =
xa−1

Γ(a)
e−x , x ≥ 0, (2.58)

and since the scaling is simply a multiplication bx of the argument, subsequent generalizations to
arbitrary scale are usually trivial mathematical exercises. In this thesis we do not explicitly use
versions with standardized shape, but it can be noted that a = 1 reduces γ(·) to the exponential
PDF, which is simply be−bx.

The gamma distribution is an example of a PDF eligible for the MT. An analysis like the
one conducted in [Nicolas, 2002] reveals several nice and interesting properties of the gamma
distribution that can be derived via the MT. First, the classical and the MK CFs are

ΦX(ω) =

(
L

m

)L exp
{
jL arctan

(
mω
L

)}(
ω2 +

(
L
m

)2
)L

2

, (2.59)

φX(s) =
(m
L

)s−1 Γ(s+ L− 1)

Γ(L)
. (2.60)

Nicolas even used the MK CF to derive the classical moments in a much simpler way than using
the classical CF, namely

mn = φX(n+ 1) =
(m
L

)n Γ(L+ n)

Γ(L)
. (2.61)

The log-cumulants are of particular interest in this thesis, and are given by

κγ,n =

{
ψ(0)(L) + log

(
m
L

)
n = 1,

ψ(n−1)(L) n ≥ 2,
(2.62)

where ψ(n)(L) is the polygamma function, defined in e.g. [Abramowitz and Stegun, 1964] as

ψ(n)(x) = Dn+1
x log Γ(x). (2.63)

In some applications, e.g. SAR, multiplicative models15 including gamma distributions are used,
often resulting in distributions which are very complicated to evaluate and analyze. For instance,

15For a full overview of the log-cumulants in the multiplicative models, see [Bombrun et al., 2011] and [Anfinsen
and Eltoft, 2011]. [Deng et al., 2016] provides a physical interpretation of the models.



16 CHAPTER 2. THEORY

the product of two independent gamma distributed RVs are by definition K distributed, see
[Nicolas, 2002]. The K PDF includes a modified Bessel function of the second kind, which
can be both analytically and numerically prohibiting. By the properties of MK statistics, the
log-cumulants associated with the K distribution are the sums of log-cumulants of its constituent
RVs. Due to the simplicity of the expression for the log-cumulants of a gamma distributed RV,
the expression for the log-cumulants of a K distributed RV is also simple.

Finding the MT of the gamma distribution is straightforward when combining eq. (2.29) with
the scaling and multiplication properties from Table 2.1:

φγ(s) =M[γ(x; a, b)](s) =
ba

Γ(a)

∞∫
0

xs−1xa−1e−bxdx = ba−s
Γ(s+ a− 1)

Γ(a)
. (2.64)

That is, the constant multiplier is preserved and the gamma function is shifted due to xa−1,
while the scaling b results in a factor b−s.

2.3.10 The Beta Prime Distribution
If X1 and X2 are independent with PDFs γ(x; a1, b1) and γ(x; a2, b2), their ratio X2/X1 is beta
prime16 distributed with PDF

fX2/X1(x) = β′
(
x; a1, a2,

b2

b1

)
≡ b2/b1

B(a1, a2)

(
b2
b1
x
)a1−1

(
1 + b2

b1
x
)a1+a2

, x, a1, a2, b1, b2 ≥ 0. (2.65)

where β′(x; a1, a2, b) = 0 ∀x < 0 and B(·) is the beta function

B(a1, a2) =
Γ(a1)Γ(a2)

Γ(a1 + a2)
. (2.66)

We define b ≡ b2/b1 for brevity, i.e.

β′(x; a1, a2, b) ≡
b

B(a1, a2)

(bx)a1−1

(1 + bx)a1+a2
, x, a1, a2, b > 0. (2.67)

The beta prime distribution has numerous parametrizations, perhaps since there are several ways
to interpret it. One of the most well-known is the F distribution, which is a reparametrization
of the unit scale beta prime distribution. In [Frery et al., 1997], the authors argue that
the generalized beta prime distribution describes the intensity SAR distribution of extremely
heterogeneous (e.g. urban) areas, but they called it the G0 distribution and used yet another
parametrization. In [Dubey, 1970], the author derived the beta prime distribution as a special
case of the compound gamma distribution. That is, if X is gamma distributed for fixed scale
(conditional PDF γ(·)), but the scale itself is a RV which also follows the gamma distribution.
Dubey found that X is then beta prime distributed, but used a parametrization which was
different still. These alternative interpretations are not included merely to confuse the reader,

16Regarding naming conventions, this distribution is also known as the beta distribution of the second kind.
However, the literature usually reserves these terms for the unscaled versions (b = 1), with scaling and/or the
power transformation reserved for distributions with the prefix generalized. Thus, we deviate slightly from
these conventions, but if X has the unscaled PDF β′(x; a1, a2), then bX for constant b > 0 simply has PDF
β′(x; a1, a2, b), i.e. the conversion is trivial in practice, but essential for our use. For more details, see e.g.
[Nicolas, 2016], where β′(x; a1, a2, b) is the special case (unit power parameter) of what he called the generalized
F distribution.
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but to illustrate the many uses of β′(x; a1, a2, b). Our quotient definition in eq. (2.67) emphasizes
how it can be used in multitemporal imaging (change detection), where two independent images
of the same scene are analyzed with the null hypothesis that the scene has not undergone
change. If each image is assumed gamma distributed, the test statistic will follow the beta prime
distribution, and values very different from unity suggest a rejection of the null hypothesis,
indicating that something has changed in the scene.

The classical moments were derived in [Goovaerts and De Pril, 1980], where they found that
only the moments of order n < a2 exist. Deriving the log-cumulants is comparatively much
simpler, as [Nicolas, 2002] included a general expression for the quotient of two independent
RVs. If X follows the beta prime distribution, we have from [Nicolas, 2016] that

κβ′,n =

{
ψ(0)(a1)− ψ(0)(a2)− log b n = 1,

ψ(n−1)(a1) + (−1)nψ(n−1)(a2) n ≥ 2.
(2.68)

Recall from Section 2.3.9 that the shape parameter is interpreted as the number of looks in SAR
imagery, and that it is global and independent of the scene. This has even greater implications
for the beta prime distribution, as we can assume that a1 = a2 = L, i.e. the number of looks is
equal for both images. This is the case regardless of whether the scene has undergone change,
and its global nature allows us to treat it as known. We can then use the parametrization

β′(x; a, b) ≡ bΓ(2a)

[Γ(a)]2
(bx)a−1

(1 + bx)2a
, x, a, b > 0, (2.69)

where we used a instead of L since this PDF will be used as a kernel later in this thesis. The
log-cumulants from eq. (2.68) are simplified to

κβ′,n =


− log b n = 1,

2ψ(n−1)(a) n = 2, 4, 6, . . . ,
0 n = 3, 5, 7, . . . ,

(2.70)

i.e. the odd log-cumulants, except for the first, are all zero.

2.3.11 The Log-Normal Distribution
The non-negative RV X follows a log-normal distribution if logX follows a Gaussian distribution,
that is

α(log x;m = µ, ς = σ) =
1√
2πσ

exp

{
−(log x− µ)2

2σ2

}
, (2.71)

where µ ≡ E{logX} = µ1 is the log-mean and σ2 ≡ E{(logX − µ)2} = κ2 is called the
log-variance. Let Λ(x;µ, σ) denote the PDF of X, commonly called the log-normal distribution.
It becomes

Λ(x;µ, σ) =
1

x
√

2πσ
exp

{
−(log x− µ)2

2σ2

}
, x > 0, (2.72)

and obviously Λ(x;µ, σ) = 0 ∀x ≤ 0. The factor x−1 is explained in [Kendall et al., 1994] as
arising from the conservation of differential probability

Λ(x;µ, σ) = α(log x;µ, σ)

∣∣∣∣d log x

dx

∣∣∣∣ =
α(log x;µ, σ)

x
. (2.73)

The standardized version has zero log-mean and unit log-variance, i.e.

Λ(u) =
1

u
√

2π
exp

{
−(log u)2

2

}
. (2.74)
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In order to convert between the two, use

log u =
log x− µ

σ
⇒ u = (xe−µ)1/σ, (2.75)

which can be interpreted as scaling being the logarithmic equivalent of shifting (accounting for
the log-mean of the data), and the power transformation being the logarithmic equivalent of
scaling (accounting for the log-variance of the data). The relationship between the standardized
and non-standardized log-normal PDFs is

Λ
(
(xe−µ)1/σ

)
=

1√
2π

(xe−µ)−1/σ exp

{
−(log x− µ)2

2σ2

}
, (2.76)

1

xσ
(xe−µ)1/σΛ

(
(xe−µ)1/σ

)
=

1

x
√

2πσ
exp

{
−(log x− µ)2

2σ2

}
, (2.77)

as also [Pastor et al., 2016] states. In terms of x and u, the conversion is simply

u

xσ
Λ(u) = Λ(x;µ, σ). (2.78)

The log-normal distribution is another example of a distribution well suited to the MT, in
that it has both problematic behavior w.r.t. the classical framework and simple and elegant
results using MK statistics. [Heyde, 1963] demonstrated how the set of all (classical) moments
of the log-normal distribution exists, but does not uniquely define a distribution. That is, other
distributions than the log-normal may have the same moments. This is an unusual property, as
mentioned in Section 2.2.2. In [Tellambura and Senaratne, 2010], the authors discuss the CF
and moment generating function of the log-normal distribution, which have serious limitations
w.r.t. their existence and lack exact closed-form expressions. Using MK statistics however, many
of the elegant properties of the Gaussian distribution from Section 2.2.5 are mirrored: The MK
CF of a log-normally distributed RV is given in [Nicolas, 2016] as

φΛ(s) = eµ(s−1)eσ
2 (s−1)2

2 , (2.79)

giving the log-cumulants

κΛ,n =


µ n = 1,
σ2 n = 2,
0 n ≥ 3.

(2.80)

2.4 The Classical Statistics Series Expansions

In this section, the series expansions using the (classical) moments and cumulants will be
presented. An important reference is [Wallace, 1958], where the author summarizes the his-
torical aspects back to the original works [Chebyshev, 1860], [Gram, 1883], [Chebyshev, 1890],
[Edgeworth, 1905], [Charlier, 1905], and [Charlier, 1906]. [Hald, 2000] also recounts the history
of the Gram-Charlier series, with an emphasis on the cumulants. The derivation and even the
notation has not changed significantly since [Wallace, 1958], as seen in the modern and more
comprehensive reference [Kendall et al., 1994]. This section presents the approach and results of
these references, while we suggest some changes and improvements to these classical methods in
Chapter 4.
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2.4.1 The Chebyshev-Hermite Polynomials

The series expansions were originally derived using an orthogonality property of the Chebyshev-
Hermite (or just Hermite) polynomials Hn(x). This property allows us to write the PDF fX(x)
as

fX(x) =
∞∑
n=0

ξnHn(x)α(x), (2.81)

and easily evaluate as many of the coefficients ξ0, ξ1, . . . as we want. Before proceeding with the
derivation of the series, we investigate the necessary aspects of these polynomials.

The nth degree Hermite polynomial Hn(x) is defined in terms of the derivatives of the standard-
ized Gaussian PDF in eq. (2.23), given in [Kendall et al., 1994] as

(−Dx)
nα(x) = Hn(x)α(x), (2.82)

where the factor (−1)n ensures that the leading coefficient is 1.17 The Rodrigues formula18 for
Hn(x), which connects the polynomials to the derivatives of the Gaussian kernel, can be found
in e.g. [Rottmann, 2003] or easily derived from eq. (2.82) as

Hn(x) = (−1)ne
x2

2 Dne−
x2

2 . (2.83)

The first few Hermite polynomials are

H0(x) = 1, (2.84)
H1(x) = x, (2.85)
H2(x) = x2 − 1, (2.86)
H3(x) = x3 − 3x, (2.87)
H4(x) = x4 − 6x2 + 3, (2.88)
H5(x) = x5 − 10x3 + 15x, (2.89)
H6(x) = x6 − 15x4 + 45x2 − 15, (2.90)
H7(x) = x7 − 21x5 + 105x3 − 105x. (2.91)

As [Rottmann, 2003] remarks, Hn(x) is a solution to the differential equation

D2
xy − xDxy + ny = 0, (2.92)

for n ∈ Z≥0. Also, the Hermite polynomials are orthogonal w.r.t. α(x) in the sense that

∞∫
−∞

Hk(x)Hn(x)α(x)dx = n!δkn, (2.93)

where

δkn =

{
1 k = n,
0 k 6= n,

(2.94)

is the Kronecker delta function. This property will be used when deriving the Gram-Charlier
series.

17The leading coefficient is the coefficient of the term of the highest power in the polynomial, i.e. in the nth
degree polynomial Pn(x) = cxn + Pn−1(x), the leading coefficient is c.

18The term Rodrigues formula is used for any polynomial definition of this form, as explained in [Askey, 2005].
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2.4.2 The Gram-Charlier Gaussian Kernel Series
As before, let fX(x) denote the PDF of X. If we assume that the PDF can be written in terms
of the derivatives of the Gaussian kernel, then eq. (2.82) allows us to replace the differential
operator with the known Hn(x) polynomials and get eq. (2.81). To find the coefficients ξn, we
multiply both sides with Hk(x), integrate from −∞ to +∞ and swap the order of integration
and summation. Using also the orthogonality property, we get

∞∫
−∞

fX(x)Hk(x)dx =

∞∫
−∞

∞∑
n=0

ξnHk(x)Hn(x)α(x) =
∞∑
n=0

ξnk!δkn = ξnn!, (2.95)

ξn =
1

n!

∞∫
−∞

fX(x)Hn(x)dx. (2.96)

Since Hn(x) is a known polynomial of x, each coefficient ξn is a linear combination of the
moments mn. For standardized X (shifted to m1 = 0, scaled to ς2 = 1), the first few coefficients
are found using eqs. (2.84) through (2.91)

ξ0 = 1, (2.97)
ξ1 = ξ2 = 0, (2.98)

ξ3 =
1

6
m3, (2.99)

ξ4 =
1

24
(m4 − 3), (2.100)

ξ5 =
1

120
(m5 − 10m3), (2.101)

ξ6 =
1

720
(m6 − 15m4 + 30), (2.102)

ξ7 =
1

5040
(m7 − 21m5 + 105m3). (2.103)

In [Kendall et al., 1994] the authors represented the coefficients in terms of the cumulants cn:

ξ0 = 1, (2.104)
ξ1 = ξ2 = 0, (2.105)

ξ3 =
1

6
c3, (2.106)

ξ4 =
1

24
c4, (2.107)

ξ5 =
1

120
c5, (2.108)

ξ6 =
1

720
(c6 + 10c2

3), (2.109)

ξ7 =
1

5040
(c7 + 35c3c4), (2.110)

where eqs. (2.10) and (2.11) can be used to convert between the two representations. Naturally,
the true moments and cumulants of the distribution we seek to model are usually not known to
us, and we must use the empirical values instead. Inserting the coefficients into eq. (2.81) gives
the Gram-Charlier series around the Gaussian kernel

fX(x) = α(x)

[
1 +

1

6
c3H3(x) +

1

24
c4H4(x) + · · ·

]
, (2.111)
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where the cumulant-based representation of the coefficients was used. Each term in the series
compensates for the nth cumulant cn of X, since the Gaussian kernel has cα,n = 0 for n ≥ 3.
The Gram-Charlier series can be adjusted to account for non-standardized RVs, but here
X is assumed standardized for brevity.19 Using the cumulant representation simplifies the
Gram-Charlier series, since the coefficients ξn have simpler expressions when stated in terms of
cumulants for n ≥ 4.

2.4.3 The Laguerre Polynomials

The generalized (or associated) Laguerre polynomials are denoted L(a)
n (x), where n ∈ Z≥0. They

are solutions to Laguerre’s equation

xy′′ + (a+ 1− x)y′ + ny = 0, (2.112)

which can be found in [Szeg, 1939]. The same reference also gives the Rodrigues formula as

L(a)
n (x) =

x−aex

n!
Dn[xa+ne−x]. (2.113)

Shifting a→ a− 1, we can rewrite this as

L(a−1)
n (x)

xa−1

Γ(a)
e−x =

1

n!Γ(a)
Dn[xa−1+ne−x], (2.114)

where 1/Γ(a) can be moved inside the argument of Dn[·] since it is a constant factor w.r.t. x.
Then, we recognize the gamma kernel γ(x; a) with scale b = 1 from eq. (2.58) to see that

L(a−1)
n (x)γ(x; a) =

1

n!
Dn[xnγ(x; a)] for x ≥ 0. (2.115)

This is analogous to the how the Hermite polynomials were defined in eq. (2.82), with the
difference being a factor (−1)n/n! and the multiplication of the kernel with xn.

The first few generalized Laguerre polynomials are

L
(a)
0 (x) = 1, (2.116)

L
(a)
1 (x) = − x+ a+ 1, (2.117)

L
(a)
2 (x) =

x2

2
− (a+ 2)x+

(a+ 1)(a+ 2)

2
, (2.118)

L
(a)
3 (x) = − x3

6
+

(a+ 3)x2

2
− (a+ 2)(a+ 3)x

2
+

(a+ 1)(a+ 2)(a+ 3)

6
, (2.119)

L
(a)
4 (x) =

x4

24
− (a+ 4)x3

6
+

(a+ 3)(a+ 4)x2

4
− (a+ 2)(a+ 3)(a+ 4)x

6
(2.120)

+
(a+ 1)(a+ 2)(a+ 3)(a+ 4)

24
.

In the same way that the Hermite polynomials are orthogonal w.r.t. the Gaussian kernel in eq.
(2.93), the Laguerre polynomials are orthogonal20 w.r.t. xae−x:

∞∫
0

L(a−1)
n (x)L

(a−1)
k (x)xa−1e−xdx = Γ(a)

(
n+ a− 1

n

)
δnk = Γ(a)

Γ(n+ a)

Γ(n+ 1)Γ(a)
δnk, (2.121)

∞∫
0

L(a−1)
n (x)L

(a−1)
k (x)γ(x; a)dx =

Γ(n+ a)

Γ(n+ 1)Γ(a)
δnk. (2.122)

19See Section 4.2.2 for the necessary corrections for non-standardized X.
20This result can be found in [Szeg, 1939], while e.g. [Fowler, 1996] generalizes the binomial coefficient to allow

for non-integer a.
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Recall that γ(x; a) assumes unit scale, but in order to tailor the kernel to data, arbitrary scale b
is necessary. Appendix A.1 contains some straightforward proofs that the orthogonality property
of eq. (2.122) and the Rodrigues formula of eq. (2.113) are extended to the scaled kernel by
replacing L(a−1)

n (x) with L(a−1)
n (bx). This allows us to use the two-parameter γ(x; a, b) in the

following.

2.4.4 The Gram-Charlier Gamma Kernel Series

Historically, the Gaussian distribution has been almost exclusively the kernel of choice for
the Gram-Charlier series. After developing the Gram-Charlier series with a Gaussian kernel,
[Kendall et al., 1994] mentions that the same approach is possible with two other pairs of
orthogonal polynomials and kernels. The most important pair for this thesis is the Laguerre
polynomials and gamma kernel pair,21 with their orthogonal relationship stated in eq. (2.122).
The Gram-Charlier series with a gamma kernel was also derived in [Gaztanaga et al., 2000],
where it was given a different name. [Inglada and Mercier, 2007] suggested (but did not present)
a series expansion around the gamma kernel, if the data were more heavy-tailed than the SAR
data they used.

Letting fX(x) be the PDF of a non-negative RV X, assume that the PDF can be written in
terms of (scaled) Laguerre polynomials and the gamma kernel, i.e.

fX(x) =
∞∑
n=0

ξnL
(a−1)
n (bx)γ(x; a, b). (2.123)

Repeating the steps in Section 2.4.2 and using the orthogonality property of eq. (2.122), gives
an expression for the coefficients ξn

∞∫
0

fX(x)L
(a−1)
k (bx)dx =

∞∫
0

∞∑
n=0

ξnL
(a−1)
k (bx)L(a−1)

n (bx)γ(x; a, b) =
∞∑
n=0

ξn
Γ(n+ a)

Γ(n+ 1)Γ(a)
δkn,

(2.124)

ξn =
n!

n−1∏
i=0

(a+ i)

∞∫
0

fX(x)L(a−1)
n (bx)dx, (2.125)

where the integration limits now reflect the non-negative nature of X.22 Like Hn(x), the Laguerre
polynomials are known polynomials in x, reducing the integral to a linear combination of the
moments mn of X. The first few coefficients are

ξ0 = 1, (2.126)

ξ1 = − b
a
m1 + 1, (2.127)

ξ2 =
b2

a(a+ 1)
m2 −

2b

a
m1 + 1. (2.128)

21The other pair is the Jacobi polynomials and the beta distribution, see [Durbin and Watson, 1951]. Note
that the beta distribution is closely related to the beta prime distribution, which we discussed in Section 2.3.10,
although Durbin and Watson used the unit scale version.

22Also, since n is a non-negative integer we have Γ(n+ 1) = n! and Γ(n+ a)/Γ(a) =
∏n−1
i=0 (a+ i).
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In practice, the Laguerre polynomials and gamma kernel are scaled and shaped to match the
data by solving the equations

m1 =
a

b

m2 =
a(a+ 1)

b2

⇒
a =

〈m1〉2

〈m2〉 − 〈m1〉2
=
〈m1〉2

〈ς〉2

b =
〈m1〉

〈m2〉 − 〈m1〉2
=
〈m2〉
〈ς〉2

, (2.129)

for a and b by replacing m1 and m2 with the empirical moments 〈m1〉 and 〈m2〉. Then, the
coefficients are simplified to

ξ0 = 1, (2.130)
ξ1 = ξ2 = 0, (2.131)

ξ3 = − b3

a(a+ 1)(a+ 2)
m3 + 1, (2.132)

ξ4 =
b4

a(a+ 1)(a+ 2)(a+ 3)
m4 −

4b3

a(a+ 1)(a+ 2)
m3 + 3, (2.133)

where we usually have to insert the empirical moments, as we discussed in Section 2.4.2. The
Gram-Charlier gamma kernel series is

fX(x) =

[
1 +

∞∑
n=3

ξnL
(a−1)
n (bx)

]
γ(x; a, b). (2.134)

In Section 4.2.3, we present some observations and results which simplify this classical method
and provides some additional insight.

2.4.5 The Edgeworth Series

Inherent to all series expansion methods is the fact that the truncated series seldom represents
a true PDF. That is, the approximation can take negative values, it may not integrate to 1, or
both. The Edgeworth series does not attempt to correct this, but as [Blinnikov and Moessner,
1998] showed, it does significantly improve on the Gram-Charlier series, both with few terms
and asymptotically.

There are several ways to derive the Edgeworth series – [Blinnikov and Moessner, 1998] had
one approach, [Kendall et al., 1994] had another. In this thesis, we derive the Edgeworth
series the same way as [Hall, 2013]. Edgeworth sought to modify the Gaussian kernel so that
the asymptotic behavior described by the central limit theorem was faster. Let Z1, Z2, . . . , Zr
be independently identically distributed (IID) RVs with mean m, variance ς2 and higher-order
cumulants cn = ςnλn. In the same way that the moments were standardized in Section 2.2.2,
λn = cn/ς

n are the cumulants scaled by the corresponding inverse power of the standard
deviation. The use of λn simplifies the Edgeworth series derivation and expression. Let

X =
1√
r

r∑
i=1

Zi −m
ς

(2.135)

denote the standardized sum (i.e. zero mean, unit variance) of Z1, Z2, . . . , Zr.23 Now, combining

23The central limit theorem states that as r →∞ then fX(x)→ α(x), where α(x) is the standardized Gaussian
kernel.
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equations (2.7) and (2.8), the CFs of X and the kernel α(x) are

ΦX(ω) = exp

{
∞∑
n=1

cX,n
(jω)n

n!

}
, (2.136)

Φα(ω) = exp

{
∞∑
n=1

cα,n
(jω)n

n!

}
, (2.137)

where cX,n is the nth-order cumulant of the distribution fX(x). Combining these, it is possible
to express the CF of the unknown PDF fX(x) as a function of the known CF of the Gaussian
kernel, i.e.

ΦX(ω) = exp

{
∞∑
n=1

[cX,n − cα,n]
(jω)n

n!

}
Φα(ω). (2.138)

Now the elegant properties of the cumulants can be exploited:

1. The cumulants of order n ≥ 2 are shift-invariant (Section 2.2.3).

2. Scaling a RV with ς−1 like in eq. (2.135) implies that cn is scaled by ς−n (Section 2.2.3).

3. The cumulants of a sum of independent RVs are the sums of the cumulants of each RV
(Section 2.2.4).

4. The cumulants of α(x;m, ς) are cα,n = 0 for n ≥ 3 (Section 2.2.5).

5. Since X by definition has zero mean and unit variance, its first and second order cumulants
are the same as those of a RV which follows the standardized α(x).

Using all of these properties gives the cumulant differences

cX,n − cα,n =

{
0 n = 1, 2,
λn

r
n
2−1 n ≥ 3.

(2.139)

The first two cumulant differences follow directly from property 5. Disregarding order n = 1,
property 1 says that Zi −m has the same cumulants as Zi (i.e. ςnλn). Property 3 then says
that the sum of all Zi has cumulants rςnλn, as they are r IID RVs. Since X is this sum, scaled
with (

√
rς)−1, property 2 gives the cumulants of X as λn/r

n
2
−1. Finally, property 4 says that

for n ≥ 3, the cumulant differences are just the cumulants of X.

The FT property (−D)nf(x)
F←→ (jω)nFF(ω) now allows for an inverse FT on the CF, giving

an expression for the PDF

fX(x) = exp

{
∞∑
n=3

λn

r
n
2
−1

(−D)n

n!

}
α(x). (2.140)

Using the power series representation of ex, this can be thought of as an infinite sum of infinite
sums,

fX(x) = α(x)
∞∑
k=0

[
∞∑
n=3

λn

r
n
2−1

(−D)n

n!

]k
k!

. (2.141)

The question becomes how to prioritize which terms are included in the finite truncation.
It is possible to recover the Gram-Charlier series by sorting the terms by their order of D.
Edgeworth’s idea was to sort the terms by their dependency on r instead:

fX(x) = α(x)+r−
1
2

[
1

6
λ3H3(x)

]
α(x)+r−1

[
1

24
λ4H4(x) +

1

72
λ2

3H6(x)

]
α(x)+O

(
r−

3
2

)
, (2.142)
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where the r-factors disappear when inserting the empirical cumulants for λn/r
n
2
−1.

Compared to the Gram-Charlier series in eq. (2.111), the Edgeworth series approximation
when disregarding terms of O(r−3/2) differs only by the term λ2

3H6(x)/72, corresponding to
k = 2, n = 3 in eq. (2.141). X is by definition standardized, but allowing for non-standardized
data is done the same way as for the Gram-Charlier series, see Section 4.2.2.

[Blinnikov and Moessner, 1998] provided a formula for finding the terms associated with any
given power of r−

1
2 , but it is omitted from this thesis for the sake of brevity. Chapter 4 provides

a novel and perhaps simpler way of representing both the Gram-Charlier and Edgeworth series
and also contains some observations on this classical approach, including a more thorough
explanation of the derivation leading up to eq. (2.138).

2.5 The Bell Polynomials and the Stirling Numbers

This section introduces the Bell polynomials and Stirling numbers, but will be limited to the
properties which are required later in this thesis. For a more thorough and in-depth review, see
e.g. [Johnson, 2002].

2.5.1 Defining the Bell Polynomials

The Bell polynomials are named in honor of Eric Temple Bell, who introduced them in [Bell,
1927] under the name partition polynomials. The partial Bell polynomials Bn,r(·) are defined in
e.g. [Mihoubi, 2008] as

Bn,r(x1, x2, . . . , xn−r+1) =
∑
Kr

n!
n−r+1∏
i=1

1

ji!

(xi
i!

)ji
, (2.143)

where the sum is over the set Kr of all combinations of non-negative integers j1, j2, j3, . . . which
satisfy

j1 + j2 + j3 + · · · = r, (2.144)
j1 + 2j2 + 3j3 + · · · = n. (2.145)

For given values of n and r, the integers ji with index i > n− r + 1 must all be zero. Thus, the
sums above can be truncated at jn−r+1, which implies that the partial Bell polynomial Bn,r(·)
has argument x1, x2, . . . , xn−r+1, as indicated in eq. (2.143).

The nth complete Bell polynomial Bn(x1, . . . , xn) is defined in [Mihoubi, 2008] as

Bn(x1, . . . , xn) =
n∑
r=1

Bn,r(x1, x2, . . . , xn−r+1). (2.146)

In this thesis, the complete Bell polynomials are the most used, so the prefix is usually omitted.
In any case the notation clearly distinguishes between the two versions, since the subscripts (n
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and n, r) differ. The first complete Bell polynomials are

B0 = 1, (2.147)
B1(x1) =x1, (2.148)

B2(x1, x2) =x2
1 + x2, (2.149)

B3(x1, . . . , x3) =x3
1 + 3x1x2 + x3, (2.150)

B4(x1, . . . , x4) =x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4, (2.151)

B5(x1, . . . , x5) =x5
1 + 10x2x

3
1 + 15x2

2x1 + 10x3x
2
1 + 10x3x2 + 5x4x1 + x5, (2.152)

B6(x1, . . . , x6) =x6
1 + 15x2x

4
1 + 20x3x

3
1 + 45x2

2x
2
1 + 15x3

2 + 60x3x2x1 + 15x4x
2
1 + 10x2

3 (2.153)
+ 15x4x2 + 6x5x1 + x6.

Finally, recall that the Bell polynomials were used in eqs. (2.10), (2.11), (2.42) and (2.43) for
converting between (log-)moments and (log-)cumulants.

2.5.2 A Property of the Bell Polynomials

Using an expression from [Mihoubi, 2008] and recognizing the power series of ex gives

exp

{
∞∑
k=1

xk
sk

k!

}
=
∞∑
n=0

Bn(x1, . . . , xn)
sn

n!
. (2.154)

This is the key property of the Bell polynomials w.r.t. this thesis, and it will be used on several
occasions.

2.5.3 The Bell Polynomials and Faà di Bruno’s Formula

The use of Bell polynomials in this thesis is in fact just an alternative representation of a special
case of Faà di Bruno’s formula. In its most general form, Faà di Bruno’s formula extends the
chain rule of differentiation to higher derivatives. It is presented in [Johnson, 2002] as

Dn
s g(f(s)) =

∑
Kn

n!Dr
tg(t = f(s))

n∏
i=1

1

ji!

(
Di
sf(s)

i!

)ji
, (2.155)

where Dr
tg(t = f(s)) means that g(·) is differentiated r = j1 + · · ·+ jn times w.r.t. to f(s), not

s.24 The sum is over the set Kn, which is similar to the set Kr used in eq. (2.143), but r is
allowed to take any integer value.25 This allows us to combine eqs. (2.143) and (2.146) to get

Bn(x1, . . . , xn) =
∑
Kn

n!
n∏
i=1

1

ji!

(xi
i!

)ji
, (2.156)

i.e. using Kn fulfills the same purpose as a summation over every possible Kr. The connection
between log-moments and log-cumulants26 is obtained as a special case of eq. (2.155), where

24A simple example is g(s) = es, f(s) = as with constant a. Then Dr
sg(f(s)) = Dr

se
as = areas, but the

exponential function is its own derivative, i.e. Dr
tg(t) = g(t), so Dr

tg(t = f(s)) = g(f(s)) = eas.
25Eqs. (2.144) and (2.145) only have solutions for r ∈ {1, 2, . . . , n}, which implies that other values of r do not

contribute to Kn.
26As this relationship is exactly the same for the classical moments and cumulants with identical results as the

MK case, only the latter is reviewed here.
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f(s) is the MK CGF ϕ(s) and g(t) = et, i.e. g(f(s)) is the MK CF φ(s). Then, all derivatives
of g(t) w.r.t. t also equal φ(s), which greatly simplifies the expression to

Dn
sφ(s) =

∑
Kn

n!φ(s)
n∏
i=1

1

ji!

(
Di
sϕ(s)

i!

)ji
. (2.157)

Eqs. (2.38) and (2.41) state that when evaluated at s = 1, the nth derivative of φ(s) is µn and
the nth derivative of ϕ(s) is κn. Also, φ(1) = 1 trivially, so eq. (2.156) gives

µn =
∑
Kn

n!
n∏
i=1

1

ji!

(κi
i!

)ji
= Bn(κ1, . . . , κn), (2.158)

which completes a proof of eq. (2.43). While this relationship is previously known (in terms
of the classical descriptors), other sources like [Pitman, 2002] proves it in a different way. We
performed the above derivation27 because the result is so central to this thesis (if such an obvious
mathematical traversal can be called a derivation). Also, in doing so we introduced notation
which is used in the important references [Blinnikov and Moessner, 1998] and [Pastor et al.,
2014].

2.5.4 Defining the Stirling Numbers
Named after James Stirling, the Stirling numbers of the second kind are denoted by either
S(n, k) or

{
n
k

}
, with the latter form adopted by this thesis. These are the only kind of Stirling

numbers that will be used in this thesis, allowing us to simply refer to them as the Stirling
numbers. [Lengyel, 1994] interprets them as the number of possible ways to partition n labelled
objects into k subsets which are nonempty and unlabelled, with the explicit definition{

n

k

}
=

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in, (2.159)

where
(
k
i

)
is the binomial coefficient. Some general observations can be made:

•
{
n
n

}
= 1∀n ∈ {0, 1, 2, . . . }, since there is exactly one way to partition n objects into n

unlabelled and non-empty subsets (one object into each subset).

•
{
n
k

}
= 0∀ k > n, since there can be no such partition without any empty subsets.

•
{
n
0

}
= 0∀n > 0, since there is no way to distribute a positive number of objects into zero

subsets.

•
{
n
1

}
= 1, since all objects must then go into the only subset.

The first few Stirling numbers are presented in Table 2.2.

2.5.5 A Property of the Stirling Numbers
According to [Wagner, 1996], the Stirling numbers satisfy the equation

n∑
k=0

{
n

k

} k−1∏
i=0

(x− i) = xn, (2.160)

which we will use in Appendix A.2.1.
27This result was listed in Section 1.5 as a minor contribution of this thesis.
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Table 2.2: The first few Stirling numbers. The terms where n = 0 or k = 0 are excluded since
they are all 0 with the exception of

{
0
0

}
= 1. These special cases are discussed in the text.

k = 1 k = 2 k = 3 k = 4 k = 5

n = 1 1 0 0 0 0

n = 2 1 1 0 0 0

n = 3 1 3 1 0 0

n = 4 1 7 6 1 0

n = 5 1 15 25 10 1

2.6 Dissimilarity Measures of PDFs
It is essential to qualitatively and quantitatively assess the methods presented in this thesis, as
their merit cannot be based on mathematical elegance alone. [Blinnikov and Moessner, 1998]
show how the classical series expansion methods are prone to severe divergence in several cases.
In those instances it is enough to simply say that the methods have qualitatively failed, but
otherwise, quantitative studies are necessary to rank competing methods. Specifically, this
involves assigning numerical values to the dissimilarity of two PDFs.

2.6.1 Terminology: Divergence, Distance and Metric
Before presenting the dissimilarity measures, a quick review of the relevant terminology is
appropriate. Consider a function d(f(x), g(x)) which maps the dissimilarity of f(x) and g(x) to
R, and may satisfy any number of the following properties from [Theodoridis and Koutroumbas,
2009]:

1. d(f(x), g(x)) ≥ 0, non-negativity.

2. d(f(x), g(x)) = 0⇔ f(x) = g(x), definiteness.

3. d(f(x), g(x)) = d(g(x), f(x)), symmetry.

4. d(f(x), g(x)) ≤ d(f(x), h(x)) + d(h(x), g(x)), triangular inequality.

This thesis adopts the terminology of [Frery et al., 2014] where

• d(f(x), g(x)) is a metric only if all four properties hold.

• d(f(x), g(x)) is a distance if only the triangular inequality is relaxed.

• d(f(x), g(x)) is a divergence measure if it is also non-symmetric (i.e. d(·) is only non-
negative definite).

These definitions are not ubiquitous, with e.g. [Theodoridis and Koutroumbas, 2009] having a
slightly different naming convention. However, the chosen nomenclature is more than sufficient
for this thesis, facilitating simple and precise discussions about the dissimilarity measures
encountered.

Regarding the choice of dissimilarity measures, [Frery et al., 2014] discussed this in the context
of SAR data. That article is concerned with matrix-variate data, but it can be assumed relevant
to this thesis since the gamma distribution is a special case of the matrix-variate Wishart
distribution considered by Frery et al. Also, if the methods of this thesis are later extended to
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the matrix-variate case (building on the theory in [Anfinsen and Eltoft, 2011]), the observations
and choices of measures made in this sections are easily generalized to match that situation.

2.6.2 The Kullback-Leibler Distance

The Kullback-Leibler distance is a natural choice when measuring distances between distributions.
It is based on the Kullback-Leibler divergence, which itself is a popular dissimilarity measure,
and is discussed in e.g. [Theodoridis and Koutroumbas, 2009] and [Frery et al., 2014]. The
Kullback-Leibler divergence d̃KL(f(x), g(x)) between two PDFs f(x), g(x) is defined as

d̃KL(f(x), g(x)) ≡
∫
f(x) log

f(x)

g(x)
dx, (2.161)

where the integral is over the whole domain, in practice R1 in the univariate case, with a
straightforward generalization to matrix-variate RVs. The notation d̃ is used to clarify that it
is (just) a divergence measure, i.e. that it is non-symmetric. This thesis will instead use the
symmetrized Kullback-Leibler distance

dKL(f(x), g(x)) ≡ 1

2

[
d̃KL(f(x), g(x)) + d̃KL(g(x), f(x))

]
, (2.162)

which can also be found in [Frery et al., 2014].

2.6.3 The Bhattacharyya Distance

In order to ensure that the results are assessed comprehensively, an alternative measure is
needed. We will use the Bhattacharyya distance, as we assume that it is good measure for
our experiments, based on its success in relatively similar scenarios in [Frery et al., 2014]. The
Bhattacharyya distance is given in [Kailath, 1967] as

dB(f(x), g(x)) ≡ − log

∫ √
f(x)g(x)dx, (2.163)

where the integral is again over the whole domain. It is clear from the definition that the Bhat-
tacharyya distance satisfies all the properties of a distance measure and that dB(f(x), g(x)) ≤ ∞.
[Kailath, 1967] also points out that dB(·, ·) does not in general satisfy the triangular inequality,
but that √

1− exp{−dB(·, ·)} =

√
1−
∫ √

f(x)g(x)dx (2.164)

does, making it a metric by the conventions followed here.28

When comparing two particular cases of the same distribution (e.g. two gamma distributions
with different shapes and scales), it is often advisable to rewrite eqs. (2.162) and (2.163) in
terms of the distribution parameters, as done in [Frery et al., 2014]. However, this thesis is
mostly concerned with comparing different distributions, several of which have analytically
very complicated PDFs, like the K distribution. The remedy is to simply evaluate the PDFs
(both true and estimated) at each value of the discretized x, and use eqs. (2.162) and (2.163) to
compute the distances directly by numerical integration.

28The closely related Hellinger distance is also assessed in [Frery et al., 2014]. Like the metric in eq. (2.164), it
is easily retrieved from the Bhattacharyya distance. That is, the results in this thesis can trivially be converted
to other well-known measures, including metrics.



30 CHAPTER 2. THEORY

2.6.4 Caveats Related to the Series Expansion Methods
Most reviews of the classical Gram-Charlier and Edgeworth methods of approximating and
estimating PDFs, like [Blinnikov and Moessner, 1998], comment on the following qualitative
properties of the series expansions:

• They are not true PDFs, i.e. they can take negative values and generally do not integrate
to unity.

• They are susceptible to divergence, especially in the tail(s).

• Increasing the number of terms does not necessarily decrease the error.

These problems are inherent to all series expansion methods, including those presented in this
thesis, and require special attention when applying dissimilarity measures.

The most prominent issue is the possibility of non-positive estimates in the series expansion
methods, i.e. g(x) = f̂(x) ≤ 0 for some x. This can potentially cause extreme values or failures
in eqs. (2.163) and (2.162), which uses ratios and logarithms. This is a problem inherent to
the methodology, causing problems also in applications like likelihood ratio testing or change
detection, where reciprocals of f̂(x) appear.

A more subtle issue stems from the fact that with the series approximation methods, f̂(x) does
not necessarily integrate to 1. If

∫
R f̂(x)dx > 1, the Bhattacharyya distance in eq. (2.163) is

artificially lowered, even yielding negative distance values in some situations.

Both issues are corrected for by altering the PDF estimates. We replacing non-positive values
with machine epsilon29 and subsequently standardize the estimates by their integrals.

29Approximately 2.22 · 10−16 for the double precision data type used here.



Chapter 3

Mellin Kind Series Expansion Framework

Recall the close analogy between classical and MK statistics, which we examined in Sections 2.2
and 2.3. In the classical case we have the Gram-Charlier and Edgeworth series, as presented in
Section 2.4, and the motivation behind this thesis can be summarized as wanting to explore if
there exists analogies to these series expansions, within MK statistics.

3.1 Fundamentals
We will now introduce a framework for the MK series expansion methods, starting with a MK
Gram-Charlier series with arbitrary kernel distribution ρ(x). The derivation closely follows the
classical case outlined in Section 2.4, using results from Chapter 2.

3.1.1 The Analogy With the Classical Series Expansion Methods
Let X be a non-negative RV with PDF fX(x), i.e. fX(x) = 0∀x < 0. In addition, all
log-cumulants of X must exist. Then, the MK CF φX(s) is given by eq. (2.40) as

φX(s) = exp{ϕX(s)} = exp

{
∞∑
k=1

κX,k
(s− 1)k

k!

}
, (3.1)

where κX,k is the kth-order log-cumulant of X. In the same way, let ρ(x) denote an arbitrary
kernel1 with MK CF

φρ(s) = exp{ϕρ(s)} = exp

{
∞∑
k=1

κρ,k
(s− 1)k

k!

}
, (3.2)

where κρ,k is the kth-order log-cumulant of an RV which follows the kernel PDF ρ(x). Analytical
expressions for the log-cumulants of a great many distributions are found in [Nicolas, 2016],
while [Nicolas and Anfinsen, 2012] is a translated version of Nicolas’ original work [Nicolas,
2002] which discusses fewer distributions, but is available online in English.

In the same way the CFs were combined in eq. (2.138) when deriving the classical series series,
equations (3.1) and (3.2) can be used to give the MK CF of the unknown PDF fX(x) as

φX(s) = exp

{
∞∑
k=1

[κX,k − κρ,k]
(s− 1)k

k!

}
φρ(s), (3.3)

1Naturally, the kernel has to have support R>0 and all its log-moments (and thus log-cumulants) must exist.
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i.e. it is stated in terms of the known MK CF for the kernel, and the log-cumulants of X. This
expression can be simplified by defining the log-cumulant differences ∆κk ≡ κX,k − κρ,k. Using
the result in eq. (2.154) gives2

φX(s) =

[
∞∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn)
(s− 1)n

n!

]
φρ(s). (3.4)

The factors Bn(·)/n! are constants w.r.t. s and are, along with the summation, not affected
by the linear inverse MT. However, a MT property for inverse transformations of (s− 1)n is
necessary in order to proceed.

3.1.2 A Mellin Derivative

At this point in the classical case in Section 2.4.5, the convenient FT property (−D)nf(x)
F←→

(jω)rFF(ω) allowed for an inverse transform resulting in an expression for fX(x). Table 2.1 does
not include a result which is directly applicable to eq. (3.4), but [Bateman et al., 1954] has the
following MT property on page 308:

(Dx)n f(x)
M←→ (−1)n(s− 1)nFM(s), (3.5)

where (Dx)nf(x) must be continuous from 0 to ∞ for any non-negative integer n. This MT
property apparently contradicts eq. (2.31), if not for the fact that (Dx)n is non-commutative, i.e.
(Dx)nf(x) 6= Dnxnf(x). These are operators based on the derivative operator D, and the two
operators we will use the most in this thesis are xD and Dx. Higher powers of these operators
are, in general, not commutative. To demonstrate how to evaluate these operators, we expand
the case n = 2:

(Dx)2f(x) = (Dx)(Dx)f(x) = (Dx)[f(x) + xDf(x)] = f(x) + 3xDf(x) + x2D2f(x) (3.6)
D2x2f(x) = D2[x2f(x)] = D[2xf(x) + x2Df(x)] = 2f(x) + 4xDf(x) + x2D2f(x) (3.7)

and the difference of f(x) + xDf(x) is clear.

In [Boyadzhiev, 2009], (Dx)n is actually referred to as a Mellin derivative, presumably due to
its MT properties. This terminology will be used here as well, and the subject is reviewed in
more detail in Section 3.3.1 and Appendix A.2.1.

3.1.3 The Mellin Kind Gram-Charlier Series With Arbitrary Kernel

Using the MT property of the Mellin derivative, the MK Gram-Charlier series with arbitrary
kernel ρ(x) can now be completed. Assuming that (Dx)nρ(x) is continuous on R≥0 for all
n ∈ Z≥0, the result in eq. (3.5) can be applied to eq. (3.4) to give

fX(x) =

[
1 +

∞∑
n=1

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx)n

n!

]
ρ(x), (3.8)

where (−Dx)n = (−1)n(Dx)n. The term corresponding n = 0 always equals 1 (recall that
B0 = 1), so that term was separated from the sum. This also emphasizes that it is a series
around the kernel ρ(x), based on Mellin derivatives of that kernel and the differences between

2This use of the Bell polynomials can also be applied to the classical case, as is demonstrated in Section 4.1.
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the log-cumulants of X and the kernel log-cumulants. Finally, the series is truncated to provide
an approximation or estimate

fX,N(x) =

[
1 +

N∑
n=1

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx)n

n!

]
ρ(x) ≈ fX(x). (3.9)

This arbitrary kernel approach is applied to the classical case in Chapter 4.

3.1.4 The Mellin Derivative and the Arbitrary Kernel

In practice it is necessary to rewrite (−Dx)nρ(x), in the same way eq. (2.82) allowed Hn(x)α(x)
to replace (−D)nα(x) in the classical Gram-Charlier series. Inserting the arbitrary kernel and
its MK CF into eq. (3.5) gives

(−Dx)nρ(x)
M←→ (s− 1)nφρ(s). (3.10)

This can be used to indirectly define the functions Pn(x) as

Pn(x)ρ(x) = (−Dx)nρ(x), (3.11)

that is, they are designed to satisfy

Pn(x)ρ(x)
M←→ (s− 1)nφρ(s). (3.12)

As the notation indicates, Pn(·) is an nth degree polynomial in (some function of) x, at least
for all of the PDF kernels we explore in this thesis. Eq. (3.11) can easily be manipulated to
isolate Pn(·),3

Pn(x) =
1

ρ(x)
(−Dx)nρ(x), (3.13)

where the factors in the kernel that are independent of x cancel each other out.

We now derive a recursive definition of Pn+1(x), starting with

Pn+1(x) =
1

ρ(x)
(−Dx)(−Dx)nρ(x) =

1

ρ(x)
(−Dx)Pn(x)ρ(x). (3.14)

In order to simplify this expression, we view this as the differentiation (w.r.t. x) of the product
of Pn(x) and xρ(x), i.e.

Pn+1(x) =
1

ρ(x)
[−Pn(x)Dxρ(x)− xρ(x)DPn(x)] , (3.15)

where −Dxρ(x) = P1(x)ρ(x) is recognized to give

Pn+1(x) = Pn(x)P1(x)− xDPn(x). (3.16)

This allows us to compute subsequent Pn(x) if we have determined P1(x) using eq. (3.13).

3This mirrors the Rodrigues formulas in eqs. (2.83) and (2.113), with the Mellin derivative Dx replacing the
differential operator D. We use the term Rodrigues formula for these expressions in the following.
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3.2 The Mellin Kind Gamma Kernel Series
Now, the gamma kernel γ(x; a, b) defined in eq. (2.57) will be used to give a first example of
a MK series expansion. It was termed the Mellin kind gamma kernel (MKGK) series in the
project paper which preceded this thesis. We insert γ(x; a, b) for the arbitrary kernel ρ(x) in eq.
(3.9) to get

fX,N(x) =

[
1 +

N∑
n=1

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx)n

n!

]
γ(x; a, b), (3.17)

and the last hurdle is to replace (−Dx)nγ(x; a, b) with a more practical expression.

3.2.1 The Laguerre Polynomials and the Mellin Transform
In the classical case in Section 2.4.4, the Laguerre polynomials were used. We now review a
negative result in order to demonstrate that the same polynomials are not directly applicable in
the MK framework.

In order to find the MT of L(a−1)
n (x)γ(x; a), we combine eqs. (2.31), (2.64), and (2.115) to get

L(a−1)
n (x)γ(x; a) =

1

n!
Dn[xnγ(x; a)]

M←→ (−1)n

n!

n∏
k=1

(s− k)φγ(s), (3.18)

where φγ(s) is the MK CF of the gamma distribution, found in eq. (2.64).4 However, it is
observed that the right-hand side of eq. (3.18) is not on the same form as the right-hand side of
eq. (3.10), which indicates that we cannot use L(a−1)

n (x) here.

Also, it is easy to verify that the Laguerre polynomials satisfy eq. (3.16) for n = 0, but not for
n = 1. That is, L(a−1)

n (x) is not the right replacement for Pn(x) for any choice of kernel.

3.2.2 The Mn(x) Polynomials
Instead following the instructions outlined in Section 3.1.4, we introduce Mn(x), indirectly
defined in terms of the unit scale gamma kernel from eq. (2.58) via

Mn(x)γ(x; a) = (−Dx)nγ(x; a). (3.19)

Mn(x) is an nth degree polynomial in x, a fact we prove later in this section. Like in eq. (3.13),
we can easily find the Rodrigues formula for Mn(x) as

Mn(x) =
Γ(a)

xa−1e−x
(−Dx)n

[
xa−1e−x

Γ(a)

]
= x−a+1ex(−Dx)n[xa−1e−x]. (3.20)

We used the unscaled version γ(x; a) for brevity, but it is straightforward to show that we get
the scaled version of γ(x; a, b) by substituting x→ bx in eq. (3.20). This is done the same way
as for the Rodrigues formula of the generalized Laguerre polynomials in Section 2.4.3, but is
even easier since (Dx)n is scale invariant. That is, for u = bx we have

(Duu)n =

(
d

dbx
bx

)n
=

(
1

b

d

dx
bx

)n
=

(
d

dx
x

)n
= (Dxx)n. (3.21)

4The project paper was solely focused on the MKGK series and had a slightly different approach to its
derivation. There, eq. (3.18) was the starting point and we subsequently found a linear combination of the
Laguerre polynomials which had MT (s− 1)nφγ(s). This result is reproduced in this thesis in Appendix A.2.1.
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Replacing x with bx in eq. (3.19) gives

Mn(bx)
ba−1xa−1e−bx

Γ(a)
= (−Dxx)n

[
ba−1xa−1e−bx

Γ(a)

]
, (3.22)

and since b is unaffected by (Dxx)n, it is possible to multiply both sides with b and move the
scaling factor inside the square brackets on the right-hand side to get

Mn(bx)
baxa−1e−bx

Γ(a)
= (−Dxx)n

[
baxa−1e−bx

Γ(a)

]
, (3.23)

Mn(bx)γ(x; a, b) = (−Dxx)nγ(x; a, b), (3.24)

showing the scalability of eq. (3.19).

In order to find the explicit expressions for the Mn(·) polynomials, both the result in eq. (3.16)
and the Rodrigues formula eq. (3.20) are valid approaches, leading to

M0(x) = 1, (3.25)
M1(x) =x− a, (3.26)
M2(x) =x2 − (2a+ 1)x+ a2, (3.27)
M3(x) =x3 − 3(a+ 1)x2 + (3a2 + 3a+ 1)x− a3, (3.28)
M4(x) =x4 − (4a+ 6)x3 + (6a2 + 12a+ 7)x2 − (4a3 + 6a2 + 4a+ 1)x+ a4, (3.29)

where the scaling was again fixed to b = 1 for brevity.

Lemma 1 Mn(x) is an nth degree polynomial in x.

Proof We can insert Mn(x) into the recursive definition in eq. (3.16) to get

Mn+1(x) = Mn(x)M1(x)− xDMn(x), (3.30)

and from eq. (3.26) we know that M1(x) is a 1st degree polynomial in x. Assuming that Mn(x)
is an nth degree polynomial in x, Mn(x)M1(x) is trivially an (n+ 1)th degree polynomial. Also,
DMn(x) must be an (n− 1)th degree polynomial, i.e. xDMn(x) is of degree n. Thus, if Mn(x) is
an nth degree polynomial, then Mn+1(x) is an (n+ 1)th degree polynomial, but M1(x) is a 1st
degree polynomial, so we have now proved by induction that Mn(x) is an nth degree polynomial
in x. This result is general in the sense that it applies to any kernel in which P1(x) in eq. (3.16)
is a 1st degree polynomial in x.

Like the Hermite polynomials, the leading coefficient of Mn(x) is 1∀n. This property is proven
in Appendix A.2, where the connection with the Laguerre polynomials is also examined.

Finally, observe thatMn(x)γ(x; a) and therefore also (Dx)nγ(x; a) is continuous for any n ∈ Z≥0.5
This ensures that the series expansion will also be continuous.

The discovery and formulation of Pn(x) in general and the Mn(x) polynomials specifically is a
contribution of this thesis.

3.2.3 Defining the Mellin Kind Gamma Kernel Series
Now, eq. (3.24) inserted into eq. (3.17) gives the MKGK series

fX,N(x) =

[
1 +

N∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)Mn(bx)

]
γ(x; a, b). (3.31)

5In the classical case, Dnγ(x; a) is discontinuous at x = 0 for some values of n, which is why the "kernel" in
Section 2.4.4 is xnγ(x; a). We revisit this issue in Section 4.2.3.
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3.2.4 Choosing the Kernel Parameters
In the classical case in Section 2.4.2, the parameters of the Gaussian kernel α(x) were chosen to
match fX(x) by setting the kernel mean and variance equal to the empirical (observed) values.
Thus, cX,n − cα,n = 0 for n = 1, 2, thereby removing some terms from eq. (2.111).

For the MKGK series, it is proposed to choose a and b s.t. ∆κn = 0 for n = 1, 2. The resulting
estimates are not optimal, in the sense that they differ from the ML estimators of a and b.6
However, a significant advantage of this choice is the resulting simplification of the expressions,
due to the nature of the Bell polynomials. In fact, if all arguments of the Bell polynomials are
non-zero, then

6∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn) (3.32)

has 30 terms. If ∆κ1 = ∆κ2 = 0, this is reduced to only 6 terms since 24 of the terms have a
dependency on at least one of the first two arguments. We will in the following refer to kernels
who satisfy ∆κ1 = ∆κ2 = 0 as tailored, since they match the frist two log-cumulants of the data.

Finding the parameters of the tailored γ(x; a, b) can be done using the estimation algorithm
known as the method of log-cumulants (MoLC). The MoLC will be briefly presented here – see
[Krylov et al., 2013] for an in-depth review including application to the gamma and log-normal
distributions and numerous other PDFs of non-negative RVs. The expressions for the first two
log-cumulants of γ(x; a, b) are found by reparametrizing eq. (2.62):

κγ,1 = ψ(0)(a)− log b, (3.33)

κγ,2 = ψ(1)(a). (3.34)

We know that ∆κn = 0⇒ κγ,n = κX,n, and that we must estimate the unknown κX,n. For κX,1,
the standard estimator based on the data {x1, . . . , xn}, is the empirical or sample log-mean7

〈κX,1〉 = 〈µX,1〉 =
1

n

n∑
i=1

log xi. (3.35)

This is also the minimum variance unbiased estimator. For κX,2, the sample log-variance

〈κX,2〉 = 〈σ2〉 =
1

n

n∑
i=1

(log xi − 〈µX,1〉)2, (3.36)

is the globally minimum variance estimate. However, it is slightly biased, so the scaled version
n
n−1
〈σ2〉, which is the minimum variance unbiased estimator, is also sometimes used. Using the

empirical log-cumulants 〈κX,1〉 and 〈κX,2〉 gives us

〈κX,1〉 = ψ(0)(â)− log b̂, (3.37)

〈κX,2〉 = ψ(1)(â). (3.38)

These two equations are solved for the estimates â and b̂. In practice, â is computed numerically,
since the polygamma function is not invertible. When we have a value for â, the final step is to
directly compute b̂ = exp{ψ(0)(â)− 〈κX,1〉}.

6The ML estimators are not trivial for the gamma distribution, as discussed in [Choi and Wette, 1969],
and for other distributions they may be very difficult to ascertain. [Nicolas and Anfinsen, 2012] discusses the
strengths and weaknesses of different estimators for the gamma distribution parameters.

7From eq. (2.42) it is easy to see that κ1 = µ1 and κ2 = σ2.
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The MKGK series with tailored kernel is

fX,N(x) =

[
1 +

N∑
n=3

1

n!
Bn(0, 0,∆κ3, . . . ,∆κn)Mn(x)

]
γ(x; a, b), (3.39)

where ∆κn = 〈κX,n〉 − κγ,n.

3.2.5 The MKGK Series With Realistic Numbers of Terms
From a practical point of view, we must ask how many terms in the MKGK series should usually
be included. More precisely: What is the highest order log-cumulants difference that should be
accounted for, or equivalently, what is a "good" value of N in eq. (3.39)? A few precautions are
necessary: The series can diverge, like [Blinnikov and Moessner, 1998] demonstrated for the
classical methods. Moreover, the empirical log-cumulants are usually estimates of the true log-
cumulants and therefore associated with bias and variance, depending on the estimator and the
sample size.8 [Kendall et al., 1994] notes that for the classical cumulants, sampling fluctuations
renders estimates of cn unreliable for n > 4. In [Krylov et al., 2013], the authors show how the
log-cumulants are less sensitive to outliers in small datasets, due to their logarithmic nature.
They are however not concerned with higher order log-cumulants like those encountered in the
MKGK series, so the disadvantage associated with high values of N is still an open question,
and one we revisit in Chapter 5. For now we will merely demonstrate how certain properties of
the Bell polynomials affect the MKGK series as N increases.

N = 0, 1, 2 : The correction arising from ∆κ1 and ∆κ2 is embedded in the tailored gamma
kernel, giving

fX,0(x) = fX,1(x) = fX,2(x) = γ(x; a, b). (3.40)

This happens since the gamma kernel has two parameters, and it is analogous to adjusting the
mean and variance of a Gaussian kernel to fit the data.

N = 3:

fX,3(x) =

[
1 +

∆κ3

6
M3(bx)

]
γ(x; a, b) (3.41)

This is analogous to correcting for the skewness of the data in the classical case, as κX,3 represents
logarithmic skewness.

N = 4:

fX,4(x) =

[
1 +

∆κ3

6
M3(bx) +

∆κ4

24
M4(bx)

]
γ(x; a, b) (3.42)

This is analogous to additionally correcting for the kurtosis of the data in the classical case,
since κX,4 is the logarithmic kurtosis.

N = 6: Omitting N = 5 for the sake of brevity, the sixth term is interesting because it introduces
the first non-linear term:

fX,6(x) =

[
1 +

∆κ3

6
M3(bx) +

∆κ4

24
M4(bx) +

∆κ5

120
M5(bx) +

∆κ6 + 10∆κ2
3

720
M6(bx)

]
γ(x; a, b).

From eqs. (2.147) through (2.153) we see that 10∆κ2
3 is the first non-linear term in the sequence

of Bell polynomials which does not depend on either ∆κ1 or ∆κ2.
8See [Kendall et al., 1994] for a review of different estimators, like the standard sample mean or the unbiased

k statistic.
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N = 7 : The final term which we present explicitly, N = 7 introduces the first cross-term,
∆κ3∆κ4:

fX,7(x) =

[
1 +

∆κ3

6
M3(bx) +

∆κ4

24
M4(bx) +

∆κ5

120
M5(bx) (3.43)

+
∆κ6 + 10∆κ2

3

720
M6(bx) +

∆κ7 + 35∆κ3∆κ4

5040
M7(bx)

]
γ(x; a, b).

From the series presented here, the analogy with the classical case in Section 2.4.4 is very clear,
as is the eventual introduction of non-linear and cross terms in the log-cumulant differences.
For a tailored kernel, the Bell polynomials of order n ≤ 5 are actually reduced to linear terms
in ∆κn, resulting in this relatively simple representation of the MKGK series.

3.3 The Mellin Kind Log-Normal Kernel Series
Inserting the log-normal kernel PDF Λ(x;µ, σ) from eq. (2.72) into eq. (3.9) gives

fX,N(x) =

[
1 +

N∑
n=1

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx)n

n!

]
Λ(x;µ, σ). (3.44)

We know that Λ(x;µ, σ) has support R>0 and in the next section it will become clear that
(−Dx)nΛ(x;µ, σ) is continuous for all n ∈ Z≥0. That is, Λ(·) is a valid choice of kernel, and as
we will see in the following, it is a highly interesting choice as well.

3.3.1 The Logarithmic Hermite Polynomials

It is now necessary to evaluate (−Dx)nΛ(x;µ, σ) in eq. (3.44). However, we can in this case find
an expression in terms of known polynomials and avoid the need to use the recursive definition
in eq. (3.11). To keep the derivation simple, we start with the standardized Λ(x), and extend
the result to arbitrary log-mean and log-variance afterwards.

See first that the log-normal kernel in eq. (2.74) is related to the Gaussian kernel in eq. (2.23) by

Λ(x) =
1

x
α(log x). (3.45)

Applying (−Dx)n to both sides gives us

(−Dx)nΛ(x) = (−Dx)n
1

x
α(log x) = (−1)n(Dx)n

1

x
α(log x) = (−1)n(Dx)n−1Dα(log x)

= (−1)n
1

x
x(Dx)n−1Dα(log x) =

1

x
(−xD)nα(log x),

(3.46)

where the final step was to group the terms differently. That is, we moved the parenthesis in
x(Dx) · · · (Dx)D to write (xD) · · · (xD) instead. To evaluate the effects of applying (xD)n to
α(log x), note that d log x/dx = x−1, i.e. dx/d log x = x, giving

(−xD)nα(log x) = (−xD)n−1(−xD)α(log x) = (−xD)n−1(−x)
dα(log x)

dx

= (−xD)n−1

(
− dx

d log x

)
dα(log x)

dx
= (−xD)n−1

(
− d

d log x

)
α(log x),

(3.47)
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where the chain rule for calculating the derivate of the composition of two functions was used.
We can repeat this n times and use the result in eq. (3.46) to reveal the key relation

(−Dx)nΛ(x) =
1

x

(
− d

d log x

)n
α(log x). (3.48)

Substituting x with log x in the definition of the Hermite polynomials in eq. (2.82) gives(
− d

d log x

)n
α(log x) = Hn(log x)α(log x), (3.49)

and from the relationship of the log-normal and Gaussian PDFs in eq. (3.45) we clearly see that

(−Dx)nΛ(x) =
1

x
Hn(log x)α(log x) = Hn(log x)Λ(x). (3.50)

This can be used in a standardized version of eq. (3.44).

Finally, note that two of the results in this section are valid for any function f(x), namely that

(Dx)n
1

x
f(x) =

1

x
(xD)nf(x), (3.51)

and
(xD)nf(x) =

(
d

d log x

)n
f(x). (3.52)

While it is certainly possible that other authors have derived these results, it should be pointed
out that the present derivation was done independently. One of the most significant contributions
of this thesis is to illuminate the roles of the Mellin derivatives in MK statistics, since they have
not been used in this context before. The above results are a part of this contribution.

3.3.2 Non-Standardized Log-Normal Data
Let log u = (log x− µ)/σ as in Section 2.3.11, and apply the result in eq. (2.78) to get

(−Dxx)nΛ(x;µ, σ) = (−Dxx)n
u

xσ
Λ(u). (3.53)

Since d log u
d log x

= 1/σ, eq. (3.52) implies that

(−xDx)
n = (−uDu)

n 1

σn
, (3.54)

and the result in eq. (3.51) gives

(−Dxx)nΛ(x;µ, σ) =
1

x
(−xDx)

nu

σ
Λ(u) (3.55)

(−Dxx)nΛ(x;µ, σ) =
1

x
(−uDu)

n 1

σn
u

σ
Λ(u) (3.56)

(−Dxx)nΛ(x;µ, σ) =
u

xσ

1

σn
(−Duu)nΛ(u). (3.57)

We can now use eq. (3.50) to insert Hn(log u) and see that

(−Dxx)nΛ(x;µ, σ) =
u

xσ

1

σn
Hn(log u)Λ(u), (3.58)

and the derivation is completed by re-inserting for log u in the Hermite polynomials and
recognizing the non-standardized Λ(x;µ, σ) from eq. (2.78) to yield

(−Dxx)nΛ(x;µ, σ) =
1

σn
Hn

(
log x− µ

σ

)
u

xσ
Λ(u) =

1

σn
Hn

(
log x− µ

σ

)
Λ(x;µ, σ). (3.59)

In Appendix A.3, we derive this generalized result directly, i.e. without examining the standard-
ized case first.
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3.3.3 Defining the Mellin Kind Log-Normal Kernel Series
Using the result from eq. (3.59) to replace (−Dx)n with the logarithmic Hermite polynomials in
eq. (3.44) gives the Mellin kind log-normal kernel (MKLK) series

fX,N(x) =

[
1 +

N∑
n=1

1

n!σn
Bn(∆κ1,∆κ2, . . . ,∆κn)Hn

(
log x− µ

σ

)]
Λ(x;µ, σ). (3.60)

Upon inspection of the coefficients in eq. (2.111), it is clear that this is perfectly analogous to
the classical Gram-Charlier series with Λ(x) replacing α(x) and Hn(log x) replacing Hn(x). In
Chapter 4, the approach used here is applied to the classical case, shedding further light on the
connection between classical and MK statistics.

3.3.4 The Obvious Choices of the Kernel Parameters
As with the MKGK series, we can use MoLC estimates of the kernel parameters to achieve
∆κ1 = ∆κ2 = 0. Eq. (2.80) reveals that this amounts to equating the log-mean and log-variance
in Λ(x;µ, σ) to the first and second order empirical log-cumulants, i.e.

µ̂ = 〈κX,1〉, (3.61)

σ̂2 = 〈κX,2〉. (3.62)

This is conceptually the same as computing the tailored shape and scale parameters of the
MKGK series using eqs. (3.37) and (3.38), but we see that for the log-normal kernel, this exercise
is trivial.9 This matches the classical case, where the mean and variance of the Gaussian kernel
are set equal to the first and second empirical cumulants.

Eq. (2.80) also tells us ∆κn = κX,n ∀n ≥ 3, since κΛ,n = 0 for n ≥ 3. In other words, the first
two log-cumulant differences are both zero, and all higher order log-cumulant differences are
reduced to only the log-cumulants of X. This simplifies the MKLK series to

fX,N(x) =

[
1 +

N∑
n=3

1

n!σn
Bn(0, 0, κX,3, . . . , κX,n)Hn

(
log x− µ

σ

)]
Λ(x;µ, σ), (3.63)

where we again have to substitute κX,n with 〈κX,n〉, unless we know the true distribution of X.

3.3.5 The MKLK Series With Realistic Numbers of Terms
After the thorough review concerning the terms in the MKGK series in Section 3.2.5, this section
will be brief and merely state the MKLK series with N = 7:

fX,7(x) =

[
1 +

κ3

6σ3
H3

(
log x− µ

σ

)
+

κ4

24σ4
H4

(
log x− µ

σ

)
+

κ5

120σ5
H5

(
log x− µ

σ

)
(3.64)

+
κ6 + 10κ2

3

720σ6
H6

(
log x− µ

σ

)
+
κ7 + 35κ3κ4

5040σ7
H7

(
log x− µ

σ

)]
Λ(x;µ, σ).

Since the log-cumulants of Λ(x;µ, σ) of order n ≥ 3 are all zero, there is no ambiguity in writing
κn instead of κX,n. Note the striking resemblance with eq. (2.111).

9As we discuss later in this thesis, there is also much less ambiguity in the choice of estimates due to the fact
the first two empirical log-cumulants are also the ML estimates for the log-mean and log-variance.
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3.4 The Mellin Kind Edgeworth Series
When reviewing the classical series expansion methods in Section 2.4, both the Gram-Charlier
series (Gaussian kernel) and the Edgeworth series could be derived from the double infinite sum
in eq. (2.141). In this section, we apply a similar approach using MK statistics. This leads us
to the same series expansion as the one first derived in [Pastor et al., 2014] and [Pastor et al.,
2016], but our derivation and expression of the series differs from those works.

3.4.1 The Log-Cumulant Differences
Section 2.4.5 lists the five properties of the classical cumulants used to justify rewriting the
cumulant differences as λn/rn/2−1. In this section, we conduct the same investigation w.r.t. the
log-cumulants, and use the result to derive the Mellin kind Edgeworth (MKE) series.

First, the underlying assumption must be stated. Saying that X is the standardized sum of IID
RVs Z1, . . . , Zr, like in eq. (2.135), does not make directly sense in a MK statistics situation.
Even if we impose the restriction that Zi must be non-negative (to ensure a non-negative X),
summation is not a concept which is suited for the logarithm operation, in the sense that
log(a+ b) is not associated with any useful mathematical relationship. Physically, the additive
model is better suited to the classical methods in any case. Instead, assume that the logarithm
of X is the standardized sum of Z1, . . . , Zr, that is

logX =
1√
r

r∑
i=1

Zi −m
ς

, (3.65)

where the only assumptions on Z1, . . . , Zr are that they are IID with classical mean m, classical
variance ς2 and higher order cumulants cn = ςnλn, just like in Section 2.4.5. Thus, the only real
restriction on the constituent RVs is that they are IID, they are even allowed to take negative
values.

The easiest way of finding the log-cumulants of X is to acknowledge that since the moments
of logX and the log-moments of X are both defined as E{(logX)n}, they must obviously be
equal. We also know from eqs. (2.10) and (2.42) that the relationship between the log-moments
and log-cumulants matches that of their classical counterparts, so the log-cumulants of X must
equal the cumulants of logX, which in turn is the same standardized sum as in Section 2.4.5.
Still, deriving this result from the relevant log-cumulant properties can be instructive, and is
done in the following.

Starting with a list which is equivalent to the one in Section 2.4.5, we summarize the properties
needed to proceed:

1. The log-cumulants of order n ≥ 2 are scale-invariant (Section 2.3.7).

2. Applying the power transformation X1/ς to the RV X results in a scaling of the log-
cumulants κX,n with ς−n (Section 2.3.7).

3. The log-cumulants of a product of independent RVs are the sums of the log-cumulants of
each RV (Section 2.3.8).

4. The log-cumulants of Λ(x;µ, σ) of order n ≥ 3 are all zero. (Section 2.3.11).

5. Since logX by definition has zero mean and unit variance, X has zero log-mean and
unit log-variance, i.e. its first and second order log-cumulants are the same as those of
a RV which follows the standardized Λ(x). For non-standardized logX, this property is
mirrored by Λ(x;µ, σ) when µ and σ are tailored to the data (in practice set to the first
and second empirical log-cumulant).
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Combining properties 4 and 5 trivially gives

∆κn = κX,n − κΛ,n =

{
0 n = 1, 2,

κX,n n ≥ 3.
(3.66)

To examine κX,n, we start with eq. (3.65), multiply both sides with ς
√
r, and then apply the

exponential function to isolate X as

X ς
√
r =

r∏
i=1

eZi−m = e−rm
r∏
i=1

eZi ⇒ X = e−
√
rm
ς

(
r∏
i=1

eZi

) 1
ς
√
r

, (3.67)

and we can recognize the multiplicative situation from Section 2.3.8. Before applying the
remaining properties, the log-cumulants of eZi are required. The log-moments are simply

µ{eZi ,n} = E
{(

log eZi
)n}

= E{Zn
i } = m{Zi,n}. (3.68)

That is, by the definitions of the moments and log-moments in eqs. (2.3) and (2.34), the
log-moments of eZi equal the moments of Zi. Since the combinatoric relationship between the
two sets of logarithmic descriptors is the same as for the classical descriptors, the log-cumulants
of eZi must also equal the cumulants of Zi. In other words, we can see that

κ{eZi ,n} = cZi,n = ςnλn (3.69)

by combining eq. (3.68) with eqs. (2.10) and (2.42). Thus, property 3 implies that the log-
cumulants of

∏r
i=1 e

Zi are rκ{eZi ,n} = rςnλn, and since κX,1 is not of interest, property 1 states

that the scaling factor e−
√
rm
ς can be disregarded. Finally, property 2 is applied to give for n ≥ 2:

κX,n =
1

(ς
√
r)n

rςnλn =
λn

r
n
2
−1
, (3.70)

and the final result is practically identical to the classical result in eq. (2.139), namely

∆κn = κX,n − κΛ,n =

{
0 n = 1, 2,
λn

r
n
2−1 n ≥ 3.

(3.71)

3.4.2 Deriving the Mellin Kind Edgeworth Series
With the given assumptions on the underlying nature of the data, it is now possible to complete
the derivation of the MKE series. Starting from eq. (3.3), the arbitrary kernel is replaced with
the log-normal kernel,

φX(s) = exp

{
∞∑
k=1

∆κk
(s− 1)k

k!

}
φΛ(s), (3.72)

and the result in eq. (3.71) gives

φX(s) = exp

{
∞∑
k=3

λk

r
k
2
−1

(s− 1)k

k!

}
φΛ(s). (3.73)

As in the classical case, the Edgeworth series distinguishes itself from the Gram-Charlier by
arranging the terms by their power of r−1/2. Since 1/r

k
2
−1 =

(
r−1/2

)k−2, an index shift k → k−2
is necessary, i.e.

φX(s) = exp

{
∞∑
k=1

λk+2

(r1/2)
k

(s− 1)k+2

(k + 2)!

}
φΛ(s). (3.74)
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By rewriting (k+ 2)! = k!(k+ 1)(k+ 2), the power series representation in terms of r−1/2 is now
recognized as

φX(s) = exp

{
∞∑
k=1

λk+2(s− 1)k+2

(k + 1)(k + 2)

(
r−1/2

)k
k!

}
φΛ(s) = exp

{
∞∑
k=1

ξk(s− 1)

(
r−1/2

)k
k!

}
φΛ(s),

(3.75)
where we define the coefficients ξk for the sake of brevity as

ξk(s− 1) ≡ λk+2(s− 1)k+2

(k + 1)(k + 2)
, (3.76)

and we note that they are independent of r.

Up to this point, the approach has not been significantly different from that of [Pastor et al., 2014]
and [Pastor et al., 2016], except w.r.t. notation and the fact that the format of those references
required a much more condensed derivation. Now, however, one of the key contributions of this
thesis is to use the Bell polynomials via the property in eq. (2.154) to write the MKE series in a
new and more compact way:

φX(s) =

[
∞∑
n=0

Bn(ξ1(s− 1), ξ2(s− 1), . . . , ξn(s− 1))

(
r−1/2

)n
n!

]
φΛ(s). (3.77)

Since all coefficients ξn(s− 1) are scaled powers of (s− 1), all Bn(·) are polynomials of (s− 1),
and the linear property of the MT ensures that an inverse transform using eq. (3.5) is permitted
like in Section 3.3. That is,

fX(x) =

[
∞∑
n=0

Bn(ξ1(−Dx), ξ2(−Dx), . . . , ξn(−Dx))

(
r−1/2

)n
n!

]
Λ(x;µ, σ), (3.78)

where

ξn(−Dx) =
λn+2(−Dx)n+2

(n+ 1)(n+ 2)
. (3.79)

Explicitly, the truncated MKE series is

fX(x) =

[
1 +

∞∑
n=1

Bn

(
λ3(−Dx)3

6
, . . . ,

λn+2(−Dx)n+2

(n+ 1)(n+ 2)

) (
r−1/2

)n
n!

]
Λ(x;µ, σ), (3.80)

where the use of the non-standardized Λ(x;µ, σ) again requires scaling with σ−n when inserting
the Hermite polynomials. Also, the powers of r can be re-matched to their corresponding powers
of λ, as they were just a temporary tool. Then, finally

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn

(
κ3(−Dx)3

6
, . . . ,

κn+2(−Dx)n+2

(n+ 1)(n+ 2)

)]
Λ(x;µ, σ), (3.81)

which is the most compact form of the MKE series. Eq. (3.59) gives the relationship needed to
replace (−Dx)n+2 with the Hermite polynomials in order to implement the series. The first few
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terms are

fX(x) = Λ(x;µ, σ) +
1

r1/2

[
λ3

6σ3
H3

(
log x− µ

σ

)]
Λ(x;µ, σ) (3.82)

+
1

r

[
λ2

3

72σ6
H6

(
log x− µ

σ

)
+

λ4

24σ4
H4

(
log x− µ

σ

)]
Λ(x;µ, σ)

+
1

r3/2

[
λ3

3

1296σ9
H9

(
log x− µ

σ

)
+

λ3λ4

144σ7
H7

(
log x− µ

σ

)
+

λ5

120σ5
H5

(
log x− µ

σ

)]
Λ(x;µ, σ)

+
1

r2

[
λ4

3

31104σ12
H12

(
log x− µ

σ

)
+

λ2
3λ4

1728σ10
H10

(
log x− µ

σ

)

+

(
λ3λ5

720
+

λ2
4

1152

)
1

σ8
H8

(
log x− µ

σ

)
+

λ6

720σ6
H6

(
log x− µ

σ

)]
Λ(x;µ, σ)

+ O

(
1

r5/2

)
.

Here, r was retained to illustrate how each successive term is associated with an incremented
power of r−1/2. Combining the factors λn with their corresponding power of r allows the
(empirical) log-cumulants to be inserted when fitting the MKE series to data. Note the similarity
with the classical result in eq. (2.142). Also, we see that to correct for only the log-cumulants of
order ≤ N , we need to discard terms of order r−

N−1
2 . This will later allow us to compare the

MKE series with the other series expansions.

3.4.3 The Work of Pastor et al.

Eq. (3.81) is exactly the same result as in [Pastor et al., 2014], but the derivation is different
in several key areas. Where this thesis introduced10 Bell polynomials as an alternative way to
represent the combinatoric aspect of the series, other authors have used eq. (2.155) directly.
Examples of this are [Blinnikov and Moessner, 1998], who used it on the classical Edgeworth
series, and [Pastor et al., 2014], [Pastor, 2016] who used it on what is here called the MKE
series. Pastor presented the series again in [Pastor et al., 2016] in a compact but easily readable
format under the name EEL. That series is reproduced below, but we have slightly modified the
notation to match the rest of this thesis:

fX(x) =

[
1 +

∞∑
n=1

∑
Kn

1

σn+2r
Hn+2r

(
log x− µ

σ

) n∏
i=1

1

ji

(
κi+2

(i+ 2)!

)ji]
Λ(x;µ, σ) (3.83)

Kn =

{
(j1, . . . , jn; r) : ji ∈ Z≥0,

n∑
i=1

iji = n, r =
n∑
i=1

ji

}
. (3.84)

We see that Kn is the same set as in Section 2.5.3. That is, the representation in eq. (3.81)
avoids the use of the set Kn, while eq. (3.83) avoids the use of Bell polynomials. The latter also
permits the insertion of the Hermite polynomials. This cannot be done before evaluating the
Bell polynomials in eq. (3.81), as [(−Dx)n]2 must be replaced with H2n(·), not [Hn(·)]2.

Another and perhaps more significant difference between the two approaches is how fX(x) is
retrieved from the MK CF. In [Pastor et al., 2014], [Pastor et al., 2016], and [Pastor, 2016], the

10Author’s comment: While it is impossible to be absolutely certain that it has never been done, personally I
have not found the Bell polynomials used this way before, even in the classical Gram-Charlier or Edgeworth
series.
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author(s) used a change of transform variables s− 1 = jω. For the two RVs X and Y , where
Y = logX, they used the fact that the MK CF of X equals the classical CF of Y , that is

φX(s) = E{Xs−1} = E{Xjω} = E{ejωY } = ΦY (ω), (3.85)

where the MK CF and CF are recognized from their definitions in eqs. (2.32) and (2.1). This
is a general result, first proven in [Nicolas, 2002]. A key insight on behalf of Pastor et al. was
that this could also be applied to the MK CF of the standardized kernels Λ(x) and α(x). From
there, they used the inverse FT was used to recover fY (y), and going from fY (y) to fX(x) was
just a matter of converting from α(log x) to Λ(x).

This is in contrast to our approach, where the Mellin derivatives allowed us to use the inverse
MT to derive the (same) MKE series. That is to say, two of the contributions of this thesis is to
highlight the use of the Mellin derivatives, and to provide a derivation of the MKE series which
is wholly within the framework of MK statistics. Hopefully, this can contribute to the popularity
of Dx in the context of MK statistics, but also the MKE series, which our experiments in
Chapter 5 promote as a formidable method.

Authors Comment At this point it is necessary to be completely forthright about the process
behind this thesis and the preceding project paper, in order to clarify what was developed
independently of Pastor et al.

Before assigning this subject to me, the supervisor of this thesis, Stian N. Anfinsen, provided
copies of [Pastor et al., 2014], [Pastor et al., 2016], and [Pastor, 2016] among a great many
publications (he was an examiner of the latter). The primary task was to develop a MK series
expansion of the gamma kernel, based on an intuition that it was the analogy to the classical
series expansions. The MKGK series was derived successfully and independently. We can claim
this, since we frankly believed that the different approach we took necessarily would lead to a
different result. The original derivation of the MKGK series, as presented in the project paper,
was significantly different from the version presented here.

During the early stages of work on this thesis, we tried to expand the MKGK series to a
full framework for MK series expansions, still under the conviction that our approach would
lead to fundamentally different results than the work of Pastor et al. Shortly after deriving
the MKLK series,11 I realized that the result was identical to what Pastor et al. called the
Gram-Charlier series using log-cumulants,12 which they stated using Y = logX, the inverse FT,
and Dn

y as explained above. From there, the dots were connected, so to speak, i.e. I recognized
the importance of the relationship in eq. (3.85) and subsequently understood how the two
derivations was related.

To summarize, the MKLK series was developed independently of Pastor et al., but it is identical
to the series they called the Gram-Charlier series using log-cumulants. The MKE series however,
was decided not derived independently. Our use of the Bell-polynomials in both the classical
and MK series expansions on the other hand, is original work, presented for the first time in
this thesis. The MK Gram-Charlier series with arbitrary kernel, the MKGK series, and the
series expansion in Section 3.5 have not been discussed before in any capacity, to the best of my
knowledge.

See also Chapter 1 for more information about the contributions of this thesis.
11The MKGK series in its present form took a few months to derive, with the inverse MT of (s− 1)nφγ(s)

using the little known Mellin derivative proving the most significant hurdle. With the knowledge of (Dx)n etc.,
the MKLK series was derived in a matter of hours, with the biggest challenge being the rigorous proof of eq.
(3.59), which was completed in a few days.

12It appears that, [Pastor et al., 2014], [Pastor et al., 2016], and [Pastor, 2016] uses the log-normal kernel
exclusively.
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3.5 The Mellin Kind Beta Prime Kernel Series
Another candidate for replacing ρ(x) in eq. (3.9) is the beta prime distribution β′(x; a1, a2, b)
from eq. (2.67). Compared to the gamma and log-normal kernels, the beta prime PDF has an
additional parameter, serving as an example of a series expansion around a more complex kernel.
We define the Mellin kind beta prime kernel (MKBK) series as

fX,N(x) =

[
1 +

N∑
n=1

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx)n

n!

]
β′(x; a1, a2, b). (3.86)

3.5.1 The M ′
n(·) Polynomials

We will now examine the functions which can replace (−Dx)n in eq. (3.86). That is, we will
define M ′

n(·) (read "M-prime") as the functions arising from replacing ρ(x) with β′(x; a1, a2, b)
in eq. (3.11). As we will show shortly, M ′

n(·) is an nth degree polynomial in bx
1+bx

, hence we refer
to them as M ′

n

(
bx

1+bx

)
.

Let M ′
n

(
bx

1+bx

)
be implicitly defined by

M ′
n

(
bx

1 + bx

)
β′(x; a1, a2, b) = (−Dx)nβ′(x; a1, a2, b). (3.87)

The Rodrigues formula is again found by isolating the polynomials and letting the constant
factors cancel each other out

M ′
n

(
bx

1 + bx

)
=

(1 + bx)a1+a2

(bx)a1−1
(−Dxx)n

[
(bx)a1−1

(1 + bx)a1+a2

]
, (3.88)

and we know from eq. (3.21) that Dxx is scale invariant, i.e. we can substitute u = bx and
Duu = Dxx. The recursive formula in eq. (3.16) is applicable, and inserting M ′

n

(
u

1+u

)
gives

M ′
n+1

(
u

1 + u

)
= M ′

n

(
u

1 + u

)
M ′

1

(
u

1 + u

)
− uDuM

′
n

(
u

1 + u

)
, (3.89)

and we note that xDx is easily found to be scale invariant by the same reasoning as in eq. (3.21).
To use the result in eq. (3.89), we must first find M ′

1(·) from eq. (3.88), that is,

M ′
1

(
u

1 + u

)
=

(1 + u)a1+a2

ua1−1
(−Duu)

[
ua1−1

(1 + u)a1+a2

]
=

[
(a1 + a2)

u

1 + u
− a1

]
. (3.90)

This is in fact all that is required to find M ′
n(·) for arbitrary n using eq. (3.89). For example, to

find M ′
2(·) we need

−uDuM
′
1

(
u

1 + u

)
= −(a1 + a2)

u

(1 + u)2
= −(a1 + a2)

u+ u2 − u2

(1 + u)2

= (a1 + a2)

[(
u

1 + u

)2

+
u

1 + u

]
,

(3.91)

which gives

M ′
2

(
u

1 + u

)
=

[
M ′

1

(
u

1 + u

)]2

− uDuM
′
1

(
u

1 + u

)
= (a1 + a2)2

(
u

1 + u

)2

− 2(a1 + a2)a1
u

1 + u
+ a2

1(a1 + a2)

[(
u

1 + u

)2

+
u

1 + u

]

= (a1 + a2)(a1 + a2 + 1)

(
u

1 + u

)2

− (2a1 + 1)(a1 + a2)
u

1 + u
+ a2

1.

(3.92)
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The next two M ′
(·) polynomials are

M ′
3

(
u

1 + u

)
= (a1 + a2)(a1 + a2 + 1)(a1 + a2 + 2)

(
u

1 + u

)3

− 3(a1 + 1)(a1 + a2)(a1 + a2 + 1)

(
u

1 + u

)2

+ a1(a1 + a2)(3a1 + 1)
u

1 + u
− a3

1,

(3.93)

and

M ′
4

(
u

1 + u

)
= (a1 + a2)(a1 + a2 + 1)(a1 + a2 + 2)(a1 + a2 + 3)

(
u

1 + u

)4

− (a1 + a2)(a1 + a2 + 1)[(a1 + a2 + 2)(3a1 + 1) + 3(a1 + 1)]

(
u

1 + u

)3

+ (a1 + a2)[3(a1 + 1)(a1 + 2)(a1 + a2 + 1) + a1(3a1 + 1)(a1 + a2)]

(
u

1 + u

)2

− a1(a1 + a2)[4a1(a1 + 1) + 1]
u

1 + u
+ a4

1.

(3.94)

Recall from Section 2.3.10 that in SAR imagery, we can assume that the shape parameters of
multitemporal images are equal, with modern estimates so good that they are considered equal
to the true values, i.e. â1 = â2 = L. The recursive definition in eq. (3.89) is still applicable, but
the polynomials are greatly simplified to

M ′
1

(
u

1 + u

)
=

[
2L

u

1 + u
− L

]
, (3.95)

M ′
2

(
u

1 + u

)
= 2L(2L+ 1)

(
u

1 + u

)2

− 2L(2L+ 1)
u

1 + u
+ L2, (3.96)

M ′
3

(
u

1 + u

)
= 2L(2L+ 1)(2L+ 2)

(
u

1 + u

)3

− (12L3 + 18L2 + 6L)

(
u

1 + u

)2

(3.97)

+ (6L3 + 2L2)
u

1 + u
− L3,

M ′
4

(
u

1 + u

)
= 2L(2L+ 1)(2L+ 2)(2L+ 3)

(
u

1 + u

)4

−(24L4 + 56L3 + 42L2 + 10L)

(
u

1 + u

)3

+(24L4 + 46L3 + 42L2 + 12L)

(
u

1 + u

)2

−(8L4 + 8L3 + 2L2)
u

1 + u
+L4.

(3.98)

Lemma 2 M ′
n

(
u

1+u

)
is an nth degree polynomial in u

1+u
.

Proof This is not as straightforward as for the Mn(x) polynomials in Section 3.2.2, but the
proofs are quite similar. Assuming that M ′

n

(
u

1+u

)
is an nth degree polynomial in u

1+u
, we start

with the recursive definition of M ′
n+1(·) in eq. (3.89) and immediately see that since M ′

1

(
u

1+u

)
is

a first degree polynomial in u
1+u

, then

M ′
n

(
u

1 + u

)
M ′

1

(
u

1 + u

)
(3.99)
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is of degree n+ 1. For uDuM
′
n

(
u

1+u

)
, the chain rule of differentiation states that

Du

(
u

1 + u

)n
=

1

u

n

1 + u

(
u

1 + u

)n
, (3.100)

and multiplying with u we can rewrite this as

uDu

(
u

1 + u

)n
=
n+ nu− nu

1 + u

(
u

1 + u

)n
=

(
u

1 + u

)n [
n− n u

1 + u

]
. (3.101)

This means that if M ′
n

(
u

1+u

)
is of degree n, then uDuM

′
n

(
u

1+u

)
is of degree n+ 1, and M ′

n+1

(
u

1+u

)
is also of degree n + 1. Since we have already evaluated M ′

1

(
u

1+u

)
in eq. (3.90), our proof by

induction is complete.

3.5.2 Defining the Mellin Kind Beta Prime Kernel Series
As with the previously presented series, we insert the result from eq. (3.87) into eq. (3.86) to
get a workable expression for the MKBK series:

fX,N(x) =

[
1 +

N∑
n=1

1

n!
Bn(∆κ1,∆κ2, . . . ,∆κn)M ′

n

(
bx

1 + bx

)]
β′(x; a1, a2, b). (3.102)

While also being another tool with which to approximate PDFs, the MKBK series demonstrates
the flexibility of the MK series expansion framework – expanding a more complicated and
three-parameter kernel is possible with only minor issues.

If we can assume a1 = a2 = L, β′(x; a1, a2, b) in eq. (3.102) is replaced with β′(x;L, b) from eq.
(2.69), as discussed in Section 2.3.10. Recall from Section 3.5.1 that the M ′

n(·) polynomials are
found in the same way as for the three-parameter case, but are significantly simplified.

3.5.3 Choosing the Kernel Parameters
Compared to the MKGK, MKLK and MKE series, the kernel in the MKBK series has an
additional parameter. This allows us to choose the parameters s.t. the tailored kernel satisfies
∆κ1 = ∆κ2 = ∆κ3 = 0. This is achieved by choosing the MoLC parameter estimates. That is,
the first three log-cumulants of β′(x; a1, a2, b) are found from eq. (2.68) via

κβ′,1 = ψ(0)(a1)− ψ(0)(a2)− log b, (3.103)

κβ′,2 = ψ(1)(a1) + ψ(1)(a2), (3.104)

κβ′,3 = ψ(2)(a1)− ψ(2)(a2). (3.105)

By the same reasoning as in Section 3.2.4, we replace κβ′,n with the empirical log-cumulants
〈κX,n〉. Then, we have a set of three equations which must be solved for the three unknowns
â1, â2, and b̂. In practice, the shape parameter estimates â1 and â2 have to be computed
simultaneously with an iterative numerical procedure,13 with b̂ solved trivially based on â1, â2,
and 〈κX,1〉.14

13In [Li et al., 2011] the authors faced the same problem with a separate three-parameter distribution. They
used the asymptotic formula for the polygamma function to get approximate, but explicit expressions for the
MoLC estimates, resulting in a much faster computation. There is nothing that suggest such an approach is
impossible for the beta prime distribution, but it is beyond the scope of this thesis to attempt it.

14The built-in Matlab functions for solving sets of equations were prohibitively slow, but a specialized
program written in C for finding the MoLC shape estimates of the K distribution was provided by the supervisor
for this thesis, Stian N. Anfinsen. He received it from Olivier Harant and Lionel Bombrun, who at the time
worked at Grenoble Institute of Technology. The program was relatively easily modified to account for the
slightly different expression for the log-cumulants of the beta prime distribution.
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With the kernel tailored, the MKBK series is simplified to

fX,N(x) =

[
1 +

N∑
n=4

1

n!
Bn(0, 0, 0,∆κ4,∆κ5, . . . ,∆κn)M ′

n

(
bx

1 + bx

)]
β′(x; a1, a2, b). (3.106)

If a1 = a2 = L, the beta prime kernel has only two parameters, and eq. (2.70) gives the MoLC
estimates

〈κX,1〉 = − log b̂, (3.107)

〈κX,2〉 = ψ(1)(L̂), (3.108)

but also that
κβ′,3 = κβ′,5 = · · · = 0. (3.109)

This resembles the equations for the gamma kernel parameters in Section 3.2.4, but is slightly
simpler. Finding L still involves numerical approaches since there is no exact way of inverting
the polygamma function, but it does not involve solving for two shape parameters simultaneously
as in the general case.15 The MKBK series with equal shape parameters and tailored kernel is

fX,N(x) =

[
1 +

N∑
n=4

1

n!
Bn(0, 0,∆κ3,∆κ4, . . . ,∆κn)M ′

n

(
bx

1 + bx

)]
β′(x;L, b). (3.110)

3.5.4 The MKBK Series With Realistic Numbers of Terms
The MKBK series expansion of the tailored three-parameter kernel, with N = 8 is

fX,8(x) =

[
1 +

∆κ4

24
M ′

4

(
bx

1 + bx

)
+

∆κ5

120
M ′

5

(
bx

1 + bx

)
+

∆κ6

720
M ′

6

(
bx

1 + bx

)
(3.111)

+
∆κ7

5040
M ′

7

(
bx

1 + bx

)
+

∆κ8 + 35∆κ2
4

40320
M ′

8

(
bx

1 + bx

)]
β′(x; a1, a2, b).

Compared to the MKGK and MKLK series in Sections 3.2.5 and 3.3.5, we see that ∆κ3 = 0
means that fX,N(x) = β′(x; a1, a2, b) also for N = 3 (i.e. the first correction is for ∆κ4), and
that the first non-linear term which is non-zero is delayed until N = 8.

In the case of a1 = a2 = L, we have ∆κ3 6= 0 and then

fX,7(x) =

[
1 +

∆κ3

6
M ′

3

(
bx

1 + bx

)
+

∆κ4

24
M ′

4

(
bx

1 + bx

)
+

∆κ5

120
M ′

5

(
bx

1 + bx

)
(3.112)

+
∆κ6 + 10∆κ2

3

720
M ′

6

(
bx

1 + bx

)
+

∆κ7 + 35∆κ3∆κ4

5040
M ′

7

(
bx

1 + bx

)]
β′(x;L, b),

where we found in Section 2.3.10 that κβ′,n = 0⇒ ∆κn = κX,n for n = 3, 5, 7, . . . .

15Also, from Section 2.3.10 we know that this assumption leads to all the kernel log-cumulants of odd order
(except the first, naturally) being zero.





Chapter 4

The Classical Series Expansions Revisited

Comparing the classical methods in Section 2.4 and the novel approach in Section 3.1 raises
the question: Can some of the techniques be applied to the classical case? E.g.: Is there a
classical equivalent to the MK Gram-Charlier series with arbitrary kernel in eq. (3.9)? This
section demonstrates which results are applicable to the classical case, and which are not.

4.1 Bell Polynomials, Moments and Cumulants
Recall from Section 2.4 that the classical methods were introduced in the late 19th and early
20th century. The Bell polynomials were introduced in [Bell, 1927], and were naturally not
available to Gram, Charlier, Edgeworth, and their peers. Now it is time to examine how the Bell
polynomials can convey the combinatoric relationships in the classical series expansion methods.

Combining eqs. (2.7) and (2.8) gives the CF of the RV X in terms of the cumulants cX,k of X,
i.e.

ΦX(ω) = exp

{
∞∑
k=1

cX,k
(jω)k

k!

}
. (4.1)

Applying eq. (2.154) gives

ΦX(ω) =
∞∑
n=1

Bn(cX,1, cX,2, . . . , cX,n)
(jω)n

n!
, (4.2)

where the moments mn = Bn(cX,1, . . . , cX,n) are recognized from either eq. (2.5) or (2.11).
As mentioned above, this relationship was known before the Bell polynomials were defined.
According to [Hald, 2000], it was known already when the cumulants1 were first given an
explicit definition in [Thiele, 1889]. Eq. (4.2) is also not particularly useful in itself, as the
Bell polynomials can simply be replaced with the moments. However, when deriving the
Gram-Charlier and Edgeworth series, Bn(·) proves to be a very useful tool.

To see why it is useful to apply the Bell polynomials, we need to thoroughly examine the
derivation of the Gram-Charlier and Edgeworth series. Let ρ(x) be a PDF whose cumulants all
exist and is continuously differentiable an arbitrary number of times.2 Letting cρ,n denote the

1Then called semi-invariants.
2That is, in addition to the existence of all its cumulants, ρ(x) must be non-negative everywhere, integrate to

unity and its derivative Dnρ(x) of order n must exist and be continuous for all n ∈ Z≥0.
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cumulants of ρ(x), its CF can be given as

Φρ(ω) = exp

{
∞∑
n=1

cρ,n
(jω)n

n!

}
. (4.3)

Then the CF of the unknown PDF fX(x) is expressed in terms of the known CF and cumulants
of the kernel and the easily estimated cumulants of X. We have done these operations before,
to arrive at eqs. (2.138) and (3.3), but we will now take care to show every intermediate step, in
order to afterwards show why this requires that we use the cumulants, and not the moments.
The cumulants allow us to manipulate

ΦX(ω) =

exp

{
∞∑
n=1

cX,n
(jω)n

n!

}
exp

{
∞∑
n=1

cρ,n
(jω)n

n!

} Φρ(ω) (4.4)

ΦX(ω) = exp

{
∞∑
n=1

cX,n
(jω)n

n!
−
∞∑
n=1

cρ,n
(jω)n

n!

}
Φρ(ω) (4.5)

ΦX(ω) = exp

{
∞∑
n=1

[cX,n − cρ,n]
(jω)n

n!

}
Φρ(ω). (4.6)

This approach is not possible with moments, as eq. (4.4) would be replaced with the ratio of
sums from eq. (2.5), i.e.

ΦX(ω) =

∞∑
n=0

mX,n
(jω)n

n!

∞∑
n=0

mρ,n
(jω)n

n!

Φρ(ω), (4.7)

which does not permit the same steps as the cumulant representation between eqs. (4.4) and
(4.6). In order to recover an expression for the unknown fX(x), the FT property (−D)nf(x)

F←→
(jω)nFF(ω) must be applied. This requires that the exponential function in eq. (4.6) is reduced
to a polynomial in (jω)n. The most general form is to use the power series definition

exp{x} ≡
∞∑
k=0

xk

k!
, (4.8)

which gives

ΦX(ω) =
∞∑
k=0

[
∞∑
n=1

[cX,n − cρ,n] (jω)n

n!

]k
k!

Φρ(ω), (4.9)

and afterward the inverse FT yields

fX(x) =
∞∑
k=0

[
∞∑
n=1

[cX,n − cρ,n] (−D)n

n!

]k
k!

ρ(x). (4.10)

The Gram-Charlier series is then completed by sorting these terms in order of their power of D.3

3Recall that the Edgeworth series instead sorts by r, which was introduced into the expression for the
cumulants.
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We now propose to use the Bell polynomials instead. It is well known that Bn(c1, . . . , cn) = mn,
but the idea is to instead apply it to the cumulant differences cX,n − cρ,n in eq. (4.6). This
operation is not linear, i.e. Bn(cX,1 − cρ,1, . . . , cX,n − cρ,n) and mX,n −mρ,n are not generally
equal. As it turns out, the Bell polynomials represent the simplest way of sorting the terms in
eq. (4.10) by their order of D. This will be demonstrated in the next section.

4.2 The Gram-Charlier Series with Arbitrary Kernel
Using the Bell polynomial of eq. (2.154) in eq. (4.6) gives

ΦX(ω) =

[
∞∑
n=0

Bn(cX,1 − cρ,1, . . . , cX,n − cρ,n)
(jω)n

n!

]
Φρ(ω). (4.11)

The part in the square brackets is a formal power series in (jω)n, so fX(x) can be retrieved via
the inverse FT as

fX(x) =

[
1 +

∞∑
n=1

Bn(cX,1 − cρ,1, . . . , cX,n − cρ,n)
(−D)n

n!

]
ρ(x), (4.12)

where the term corresponding to n = 0 is always 1 and was put outside the sum to highlight
the fact that it is an expansion around the kernel. This is then truncated to a finite number of
terms N to give the Gram-Charlier series with arbitrary kernel

fX,N(x) =

[
1 +

N∑
n=1

Bn(∆c1, . . . ,∆cn)
(−D)n

n!

]
ρ(x) ≈ fX(x), (4.13)

where ∆cn = cX,n − cρ,n. This is analogous to eq. (3.9).

4.2.1 The Differential Operator and the Arbitrary Kernel
We know from Section 2.4.1 that (−D)nα(x) can be replaced with Hn(x)α(x) in the Gaussian
case, but what can we say about (−D)nρ(x) in general? It turns out that it is possible to
derive a general recursion relation, like with the MK framework in Section 3.1.4. Mirroring that
approach, we indirectly define Pn(x) by

Pn(x)ρ(x) = (−D)nρ(x), (4.14)

which gives the Rodrigues type formula

Pn(x) =
1

ρ(x)
(−D)nρ(x), (4.15)

where the typical case is that there are constant factors in ρ(x) which cancel. We see that

Pn+1(x) =
1

ρ(x)
(−D)(−D)nρ(x) =

1

ρ(x)
(−D)Pn(x)ρ(x), (4.16)

and evaluate this as using the product rule of differentiation to get

Pn+1(x) =
1

ρ(x)
[−Pn(x)Dρ(x)− ρ(x)DPn(x)]. (4.17)

Finally, we recognize −Dρ(x) = P1(x)ρ(x) to get the recursive definition

Pn+1(x) = Pn(x)P1(x)−DPn(x). (4.18)

Lemma 3 If P1(x) is linear (a first degree polynomial) in x, then Pn(x) is an nth degree
polynomial in x.
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Proof Assuming that Pn(x) is an nth degree polynomial in x, we see that Pn(x)P1(x) is of
degree n+ 1 trivially. Naturally, the derivative operator reduces the degree of a polynomial by
one, i.e DPn(x) is of degree n − 1. Thus, by eq. (4.18) we have that Pn+1(x) is an (n + 1)th
degree polynomial in x if Pn(x) is of degree n. The initial condition was that P1(x) is a first
degree polynomial, and assuming that Pn(x) is of degree n for arbitrary n implies that it is true
for n+ 1. Thus the proof by induction is complete.

4.2.2 The Gaussian Kernel

Selecting the Gaussian PDF α(x) as the kernel is by far the most common example of the
Gram-Charlier series. It results in several significant simplifications in eq. (4.13), and the
Hermite polynomials Hn(x) are easily identified from their definition in eq. (2.82). For X
standardized (zero mean, unit variance),

fX,N(x) =

[
1 +

N∑
n=1

1

n!
Bn(∆c1, . . . ,∆cn)Hn(x)

]
α(x). (4.19)

Choosing the kernel parameters s.t. ∆c1 = ∆c2 = 0 has been standard procedure since the
Gram-Charlier series was first derived. Also, the Gaussian kernel property that cα,n = 0 ∀n ≥ 3
further simplifies the expression. Thus, the Gram-Charlier Gaussian kernel series is

fX,N(x) =

[
1 +

N∑
n=3

1

n!
Bn(0, 0, cX,3, . . . , cX,n)Hn(x)

]
α(x), (4.20)

since the terms corresponding to n = 1, 2 are zero when the kernel is tailored to the data. This
can trivially be verified to be the same series as in Section 2.4.2.

For X non-standardized, i.e. arbitrary mean and variance, the Gram-Charlier series must
be corrected. We recall that for u = x−m

ς
, eq. (2.24) gives the relationship between the

non-standardized and standardized Gaussian kernels as

α(u) =
1

ς
α(x;m, ς). (4.21)

The definition of the Hermite polynomials in eq. (2.82) in terms of the non-standardized argument
is

(−Du)
n1

ς
α

(
x−m
ς

)
= Hn

(
x−m
ς

)
1

ς
α

(
x−m
ς

)
, (4.22)

where the factors ς−1 cancel. In order to substitute this into the Gram-Charlier series, we need
to replace Du with Dx, but Dx = Du/ς, so

(−Dx)
nα(x;m, ς) =

1

ςn
(−Du)

nα(x;m, ς) =
1

ςn
Hn

(
x−m
ς

)
α(x;m, ς), (4.23)

and the Gram-Charlier Gaussian kernel series for non-standardized data is

fX,N(x) =

[
1 +

N∑
n=3

1

n!ςn
Bn(0, 0, cX,3, . . . , cX,n)Hn

(
x−m
ς

)]
α(x;m, ς). (4.24)

The Edgeworth series is corrected the same way, i.e. by replacing Hn(x) with ς−nHn

(
x−m
ς

)
, and

α(x) with α(x;m, ς).
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4.2.3 The Gamma Kernel
The gamma kernel γ(x; a, b) is not directly applicable to eq. (4.13), as Dnγ(x) is discontinuous at
x = 0 for high enough n.4 Thus, the manipulation from eq. (4.11) to eq. (4.12) is not permitted.
In the MK statistics situation in Section 3.2.3, γ(x; a, b) does not have this problem, as x = 0 is
the lower bound in the MT in eq. (2.27).

However, this thesis can provide some new insight on this method as well, namely a simplification
using the confluent hypergeometric function of the first kind.5 Its definition is given in e.g.
[Daalhuis, 2010] as

1F1(a; b;x) =
∞∑
k=0

a(a+ 1) · · · (a+ k − 1)xk

b(b+ 1) · · · (b+ k − 1)k!
, (4.25)

with the convention that empty products (k = 0) equal 1. [Daalhuis, 2010] also notes that 1F1(·)
is related to the Laguerre polynomials by

1F1(−n; a;x) =
n!

a(a+ 1)(a+ 2) · · · (a+ n− 1)
L(a−1)
n (x). (4.26)

As n is a non-negative integer, 1F1(−n; a;x) is a polynomial in x of degree n. This can be seen
from its definition as

1F1(−n; a;x) =
n∑
k=0

n(n− 1) · · · (n− k + 1)(−1)kxk

a(a+ 1)(a+ 2) · · · (a+ k − 1)k!
, (4.27)

that is, since n(n − 1) · · · (n − k + 1) = 0∀ k > n, the sum can be truncated to the terms
k = 0, 1, . . . , n.

In the current literature the confluent hypergeometric function has not been applied to the
Gram-Charlier series expansion before now.6 Replacing x with bx, the property from eq. (4.26)
can be inserted into the result for the coefficients of the Gram-Charlier gamma kernel series in
eq. (2.125) to give

ξn =
n!

n−1∏
i=0

(a+ i)

∞∫
0

fX(x)L(a−1)
n (bx)dx =

∞∫
0

fX(x)1F1(−n; a; bx)dx = E{1F1(−n; a; bx)}, (4.28)

where the expectation is w.r.t. x. This permits a compact explicit formula for the Gram-Charlier
gamma kernel series:

fX(x) =

[
1 +

∞∑
n=3

E{1F1(−n; a; bx)}L(a−1)
n (bx)

]
γ(x; a, b). (4.29)

To evaluate each ξn in practice, we simply replace the powers xk in the definition of 1F1(−n; a+
1;x) with the moments mk to get an explicit formula for the coefficients,

ξn =
n∑
k=0

mk
n(n− 1) · · · (n− k + 1)(−1)kbk

a(a+ 1)(a+ 2) · · · (a+ k − 1)k!
, (4.30)

4Formally, applying the inverse FT to Φγ(ω) is not permitted because the (jω)nΦγ(ω) is not integrable for
high enough n, as

∫
R |(jω)nΦγ(ω)|dω <∞ is not satisfied.

5Also known as Kummer’s function, after the man who introduced them in [Kummer, 1837].
6This is obviously a statement with the caveat that it is not possible to know everything about the current

state of the literature. However, the Gram-Charlier series with a gamma kernel is very little used, and [Gaztanaga
et al., 2000], which does discuss the series, contains no mention of the hypergeometric functions at all.
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where the term k = 0 is 1 for any n. Tailoring the gamma kernel by using eq. (2.129) simplifies
the terms k = 1, 2 significantly, giving

ξn = 1− n+
n(n− 1)

2
+

n∑
k=3

mk
n(n− 1) · · · (n− k + 1)(−1)kbk

a(a+ 1)(a+ 2) · · · (a+ k − 1)k!
(4.31)

ξn =
(n− 1)(n− 2)

2
+

n∑
k=3

mk
n(n− 1) · · · (n− k + 1)(−1)kbk

a(a+ 1)(a+ 2) · · · (a+ k − 1)k!
(4.32)

Alternatively, the hypergeometric functions are readily available in textbooks, mathematics
software and online.

4.3 The Edgeworth Series
As mentioned in Section 2.4.5, [Blinnikov and Moessner, 1998] provided a formula for finding
the terms associated with each power of r−1/2 in eq. (2.142). In this section, an alternative
formula based on the Bell polynomials is presented.

The premise for the Edgeworth series is that the cumulant differences can be formulated as in
eq. (2.139), allowing us to go from eq. (4.6) to

ΦX(ω) = exp

{
∞∑
k=3

λk

r
k
2
−1

(jω)k

k!

}
Φα(ω). (4.33)

As in [Blinnikov and Moessner, 1998], the power series in the expression for the CF ΦX(ω) must
be viewed not in terms of (jω), but rather in terms of r−1/2. Mirroring our approach in Section
3.4.2, this is achieved with an index shift k → k − 2, and coincidently this also implies that the
summation starts from k = 1. Then,

ΦX(ω) = exp

{
∞∑
k=1

λk+2

(r1/2)
k

(jω)k+2

(k + 2)!

}
Φα(ω), (4.34)

and using (k + 2)! = k!(k + 1)(k + 2) gives

ΦX(ω) = exp

{
∞∑
k=1

λk+2(jω)k+2

(k + 1)(k + 2)

(
r−1/2

)k
k!

}
Φα(ω) = exp

{
∞∑
k=1

ξk(jω)

(
r−1/2

)k
k!

}
Φα(ω),

(4.35)
where the coefficients ξk are defined as

ξk(jω) =
λk+2(jω)k+2

(k + 1)(k + 2)
, (4.36)

i.e. they are independent of r. Up to this point, the derivation has loosely followed [Blinnikov
and Moessner, 1998], albeit with significant differences in notation. Now, however, the Bell
polynomials are proposed as a simpler way of achieving a polynomial representation in terms of
(jω). Using eq. (2.154) gives

ΦX(ω) =

[
∞∑
n=0

Bn(ξ1(jω), . . . , ξn(jω))

(
r−1/2

)n
n!

]
Φα(ω). (4.37)
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Upon closer inspection, all Bn(·) are polynomials of (jω) since all ξn(jω) are monomials of (jω).
Like in Section 2.4.5, the linearity of the FT now permits an inverse transform to recover the
PDF, using the property that (−D)nf(x)

F←→ (jω)nFF(ω) to get

fX(x) =

[
1 +

∞∑
n=1

Bn(ξ1(−D), . . . , ξn(−D))

(
r−1/2

)n
n!

]
α(x), (4.38)

where
ξn(−D) =

λn+2(−D)n+2

(n+ 1)(n+ 2)
. (4.39)

Explicitly, for X standardized,

fX(x) =

[
1 +

∞∑
n=1

Bn

(
λ3(−D)3

6
, . . . ,

λn+2(−D)n+2

(n+ 1)(n+ 2)

) (
r−1/2

)n
n!

]
α(x), (4.40)

and the result eq. (4.23) can be used to easily extend this to non-standardized data the usual
way. The first few terms were stated in eq. (2.142). Again it is possible to recombine the powers
of r with their corresponding λn to retrieve the cumulants, i.e.

fX(x) =

[
1 +

∞∑
n=1

1

n!
Bn

(
c3(−D)3

6
, . . . ,

cn+2(−D)n+2

(n+ 1)(n+ 2)

)]
α(x). (4.41)

As with the MKE series, (−D)n cannot be replaced with Hn(x) in this representation, as the
non-linear terms of Bn(·) would then result in e.g. [Hn(x)]2 instead of the correct H2n(x).

4.4 Author’s Comment
I have not seen the Bell polynomials used when deriving the Gram-Charlier or Edgeworth series
before. In fact, my general impression is that the derivation of these series expansions is usually
presented in ways which are more complicated than necessary. The derivation should highlight
their similarity by emphasizing the fact that they differ only in the order that they include the
terms in the double infinite sum in eq. (2.141).

For someone not intimately familiar with the theory, it is easy to misinterpret the Gram-Charlier
series in eq. (2.111) as

fX(x) =

[
1 +

∞∑
n=3

cn
n!
Hn(x)

]
α(x). (4.42)

This arises from the fact that eq. (4.20) is simplified because Bn(0, 0, cX,3, . . . , cX,n) = cX,n for
n ≤ 5. It is then important to also emphasize that this is just the result of the properties of
the tailored Gaussian kernel. The use of the Bell polynomials seeks to convey this non-trivial
combinatoric relationship in a simple and concise way.

The Bell polynomials were also used in the Edgeworth series in eq. (4.40) in a representation
which to my knowledge has not been presented or discussed before. This is proposed as an
alternative to [Blinnikov and Moessner, 1998], where the authors presented the same Edgeworth
series without using the Bell polynomials. Recall from Section 2.5 that the complete Bell
polynomials are sums of a sum of products of powers of functions of the cumulants, with the
inner sum being over the set K of all combinations of integers which solve two equations. This
complicated mathematical relationship is compressed into just Bn(·), which is readily available
for any reasonable n for anyone wanting to implement the Edgeworth series. To put things
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bluntly, eq. (4.40) is much more suited to a world where the Bell polynomials can be found on
the Internet in a matter of seconds.

It can be discussed whether the use of Bell polynomials helps the reader to actually understand
the series, but it is my belief that this novel way of presenting the Gram-Charlier and Edgeworth
series has some distinct advantages. Namely, it is very clear what the differences between the two
methods are, and the resulting expressions are explicit and compact. In fact, the Gram-Charlier
series has traditionally been presented by merely stating that the terms are collected according
to their power of D, while Bn(·) actually does this.

Another topic is the failure of eq. (4.13) to extend to the gamma kernel. Fundamentally, it
is an example of the limitations of the classical methods when it comes to non-negative RVs.
The problem comes directly from attempting to apply the FT to a function with support on
R≥0, and it is no longer surprising that the MT seems better suited to these functions. If no
other kernels than the Gaussian are used for the Gram-Charlier series, it can perhaps be just as
instructive to start directly with α(x).

The positive result that was presented w.r.t. the gamma kernel in Section 4.2.3 is a novel
approach to computing the coefficients ξn. The result in eq. (4.29) is the most compact explicit
representation of the series that I am aware of, and it came about from having to actually
implement the series. I needed to hard-code the coefficients to save time on the simulations
themselves, but using the currently available methods was cumbersome, to say the least. In
my experience, the fastest way of computing ξn was to find 1F1(−n; a + 1;x) online. At the
time of writing, the function can be evaluated using the web interface of Wolfram Alpha, e.g.
http://www.wolframalpha.com/input/?i=Hypergeometric1F1(-7,a%2B1,x) for n = 7, and
replacing the powers of x with the corresponding moments from there. A trick is the fact that
the contribution of the terms k = 0, 1, 2 combined is always (n− 1)(n− 2)/2 for the tailored
kernel, as shown in Section 4.2.3.

http://www.wolframalpha.com/input/?i=Hypergeometric1F1(-7,a%2B1,x)


Chapter 5

Results

5.1 Preliminaries
Before presenting any results, we will review the methods and PDFs used, and comment on the
relevant results included in a paper we have written based on the work in this thesis.

5.1.1 Method – Approximation and Estimation
The first part of this chapter is concerned with approximating a known target PDF, i.e. both the
distribution family and its parameter values are available to the series expansions. This means
that the kernel parameters and log-cumulant differences are exact, with the latter computed
from the theoretical log-cumulants κX,n of the target PDF in each case.

In the second part of this chapter, the series expansions only have access to random data
generated/synthesized from the target PDFs. That is, the distributions are unknown,1 and thus
the kernel parameters and log-cumulants have to be estimated, e.g. by 〈κX,n〉. For the latter,
this is usually done by computing the empirical log-moments of the data sample {x1, x2, . . . , xn},
namely

〈µN〉 ≡
1

n

n∑
i=1

(log xi)
n, (5.1)

and converting these to the empirical log-cumulants using eq. (2.42), but we assess alternative
approaches as well.

On a slightly technical note, when discretizing x we chose grid resolutions which ensured that
there would be around 10,000 x-values, and it has been verified that this is sufficient to ensure
that the results are not affected by the discretization. We limited x to the values where the
target PDF was at least 1/1000 of its maximum. This means that we have not focused on the
ability of the methods to model the tails of the target PDFs. This was a deliberate choice, as it
quickly became clear to us that the MK series expansions generally perform poorly in the tails,
due to perturbations caused by the polynomial corrections.2 This mirrors the classical series
expansions, as demonstrated in [Blinnikov and Moessner, 1998]. Thus, we chose to assess the
performance for the values of x where the methods can feasibly be applied.3

1Naturally, we know the target PDFs and can evaluate the success of the series with the distances from
Section 2.6.

2This arbitrary choice affects the quantitative results, but we performed some additional testing to verify
that it did not have too much impact on our conclusions. If anything, the threshold could reasonably have been
more restrictive, and this would presumably have cast a more favorable light on the MK series expansions.

3The Cornish-Fisher expansion is better suited to approximation of the tails, see [Hill and Davis, 1968] for

59
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5.1.2 The Target PDFs

Throughout this chapter we will approximate and estimate several different distributions, with
multiple sets of parameters for each. This is to ensure that the conclusions are not biased due
to certain series expansions performing exceptionally for particular target PDFs. We chose to
use a handful of PDFs which are based on transformations and/or generalizations of the gamma
distribution. These are commonly encountered in coherent imaging, e.g. SAR. We use the
shape and location parametrization from eq. (2.56), as we are simulating data. We recall from
Section 2.3.9 that the shape is interpreted as the number of looks, a global parameter which is
estimated based on the entire image.4 Finally, we remark that for some of the transformations
and generalizations of γ(x;L,m), the location m does not equal the mean E{x}. This fact will
be noted for each distribution it applies to.

Gamma Distribution The most basic target PDF used is the gamma distribution with shape
(number of looks) and location parametrization from eq. (2.56).

Inverse Gamma Distribution If X is gamma distributed with shape L and location m, we
say that Y = 1/X follows the inverse gamma distribution with PDF

γ−1(y;L,m) =

(
L

m

)L
1

Γ(L)
y−L−1 exp

{
− L

my

}
, (5.2)

where γ−1(y;L,m) = 0 for y ≤ 0. The present notation is a combination of [Nicolas, 2016] and
[Li et al., 2011], adapted to be consistent with the rest of this thesis. The mean E{Y } of an
inverse gamma distributed RV does not equal its location parameter m, but, as both references
point out,

E{Y } =

{
1
m

L
L−1

L > 1,

∞ otherwise. (5.3)

Naturally, the mean of 1/Y is m, since 1/Y is by definition gamma distributed with location m.
The log-cumulants of an inverse gamma distributed RV were already in [Nicolas, 2002] found to
be

κγ−1,n =

{
−ψ(0)(L) + log

(
L
m

)
n = 1,

(−1)nψ(n−1)(L) n ≥ 2.
(5.4)

Generalized Gamma Distribution With X still gamma distributed, we say that Z = Xd

follows the generalized gamma distribution (GΓD) with PDF

GΓD(z;L,m, ν) =

(
L

m

)Lν |ν|
Γ(L)

zLν−1 exp

{
−
(
Lx

m

)ν}
, (5.5)

where GΓD(z;L,m, ν) = 0 for z ≤ 0 and the power parameter ν is non-zero (but can be
negative). The notation used here is again an adaptation of several references to maintain
consistency throughout this thesis. For more information on the GΓD, see [Stacy, 1962], where
it was originally introduced; [Tadikamalla, 1979], for a random sampling procedure; [Nicolas,
2016], for a summary of its classical statistics and MK statistics; and [Li et al., 2011], where
the authors present a clever and fast method of fitting GΓD(·) using the MoLC while avoiding

the classical version and [Pastor et al., 2016] for the MK statistics version.
4In real-world applications, the current estimators for L have such good accuracy that it can be realistic to

consider it a known quantity when estimating the target PDFs based on the data. Hence, some of our testing
will be conducted with the true value of L available to the series expansions in estimation scenarios.
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the cumbersome iterative numerical approach. These two most recent sources include the
distribution log-cumulants

κGΓD,n =

{
ψ(0)(L)

ν
+ log

(
m
L

)
n = 1,

ψ(n−1)(L)
νn

n ≥ 2.
(5.6)

The last two distributions we use as targets arise from the doubly stochastic product model,
namely the K and G0 distributions. They were proposed in [Jakeman and Pusey, 1978] and
[Frery et al., 1997] as the models for SAR intensity of heterogeneous and extremely heterogeneous
scenes, respectively. This indicates that they are good candidates for our analysis, as the goal is
to forecast the performance of the methods in real-world scenarios.

K Distribution Recall from Section 2.3.9, that the product of two gamma distributed RVs is
K distributed. That is, it has PDF

K(x;L,m,M) =
2LM

mΓ(L)Γ(M)

(
LMx

m

)M+L
2
−1

KM−L

(
2

√
LMx

m

)
, x, L,m,M > 0. (5.7)

where KM−L(·) is the modified Bessel function of the second kind with order M − L and
K(x;L,m,M) = 0 for x ≤ 0. As discussed in [Nicolas, 2002], the K distribution is most easily
analyzed using MK statistics. From the review of the product model in Section 2.3.8, we see that
K(x;L,m,M) is the Mellin convolution (from eq. (2.50)) of two γ(·) PDFs.5 The log-cumulants
of a K distributed RV are then readily retrieved using the additive nature of the MK CGF in
the product model, specifically eq. (2.53), yielding

κK,n =

{
ψ(0)(L) + ψ(0)(M) + log

(
m
LM

)
n = 1,

ψ(n−1)(L) + ψ(n−1)(M) n ≥ 2.
(5.8)

G0 Distribution If the depicted scene is extremely heterogeneous, e.g. an urban area, [Frery
et al., 1997] argues that theK distribution is not applicable, instead proposing theG0 distribution
with PDF

G0(x; g, L,M) =
LLΓ(L−M)xL−1

gMΓ(L)Γ(−M)(g + Lx)L−M
, x, g > 0 , M < 0, (5.9)

with G0(x; g, L,M) = 0 for x ≤ 0. As mentioned in Section 2.3.10, the beta prime distribution
in eq. (2.67) is actually an alternative parametrization of the G0 distribution. However, our
inclusion of the beta prime distribution in this thesis is not redundant, as it is used exclusively
as a kernel. The G0 distribution, on the other hand, is used as a target PDF, e.g. to simulate
real-world data.6

The log-cumulants are naturally just a re-parametrized version of the beta prime log-cumulants
in eq. (2.68), i.e.

κG0,n =

{
ψ(0)(L)− ψ(0)(−M)− log

(
g
L

)
n = 1,

ψ(n−1)(L) + (−1)nψ(n−1)(−M) n ≥ 2.
(5.10)

5These PDFs have shapes L and M , and location 1 and m, respectively. The former has unit mean by
convention, since it is not possible to discern the contribution to the mean from the constituent RVs.

6This is same situation as with the two parametrizations of the gamma distribution – one is reserved for use
as a kernel, the other for data.
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5.1.3 Results Included in the Appendix

Based on the findings in this thesis, we have written drafts for two papers, with the intention of
submitting them to scientific journals. One of these contains an extensive analysis of the MKGK,
MKLK and MKE series. That analysis compares these series expansions to other methods of
approximating and estimating PDFs. These other methods include a wide array of classical and
state-of-the-art methods, ranging from simple to complicated, and from fast to computationally
demanding. This comparison allowed us to assess the merits of the MK series framework under
the premise that it must provide some advantage over the competing methods.

Instead of repeating the same experiments, or doing something very similar, the current version
of that paper is included in the appendix of this thesis. Thus, we can here devote full attention
to only the MK series expansions.

5.2 Approximation

In this section, we assess the mathematical properties of the MK series expansions, by approxi-
mating known target PDFs. In order to get a basic understanding of the methods, we first present
two cases which are analyzed in-depth. Then, we perform a broader (but shallower) analysis
with severaltarget PDFs. This will hopefully shed some light on whether some methods are
better suited to model certain types of distributions. Finally, we vary the number of correcting
terms in the series to assess the convergence of the methods.

5.2.1 Two Introductory Examples

We start by plotting two target PDFs, their approximations, and the corresponding errors. This
will hopefully give us a sense of what the MK series expansions are, what they look like and
how they modify their kernel, before we move on to more substantial testing.

The kernel parameters were tailored by requiring ∆κ1 = ∆κ2 = 0, and for the beta prime kernel
∆κ3 = 0 also. The series are corrected for log-cumulant differences up to order 4.7 This choice is
largely arbitrary, however it is not unfounded. Correcting only up to order 3 renders the MKLK
and MKE series identical, and does not allow for any terms beyond the kernel in the MKBK
series. Conversely, [Kendall et al., 1994] comments that estimates of the classical cumulants
beyond the fourth are unreliable due to sample fluctuations, so our initial assumption is that
the most realistic comparison is limited to the first four log-cumulants.8

Figure 5.1 is the first case we examine, and the immediate impression from the top two plots is
that all methods are fairly successful. In fact, the methods are so successful that it is hard to
discern each individual approximation. In order to compare the methods, we can examine the
approximation error in the bottom plots instead. The K distribution has positive linear skewness
which is manifested in the top left plot as a heavy right tail. As this trait is shared among
virtually all distributions associated with non-negative RVs, it is not a very useful observation.
Hence, we also plotted the PDF on the logarithmic scale to evaluate its logarithmic skewness,

7Specifically, this implies N = 4 in the MKGK series, like in eq. (3.42), N = 4 also in the MKLK series in
eq. (3.63), discarding terms of order r−3/2 and beyond in the MKE series in eq. (3.82), and N = 4 again in the
MKBK series in eq. (3.106).

8We will test this assumption thoroughly later in this chapter, but we initially expect that when estimating
unknown distributions, the error resulting from the sample fluctuations outweigh the benefit of the correcting
terms beyond ∆κ4. Even though we now approximate known distributions, we use the same, realistic truncation.
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Figure 5.1: The four MK series expansions used to approximate the K distribution with
parameters L = 16, m = 10, and M = 10. The solid lines are the kernels, and the dashed lines
are the series expansions correcting for ∆κ3 and ∆κ4.

quantitatively κ3. Alternatively, we can compute κK,3 using eq. (5.8) to see that it is negative.9
Visually, this corresponds to seeing that the left tail is heavier than the right, when x is plotted
on a logarithmic scale.

The relative approximation errors (lower left) are naturally quite low for x ∈ [4, 18], i.e. when
the target PDF is at its highest. When the target PDF approaches zero, the relative errors
increase in magnitude, but the absolute errors (lower right) tend to zero. We can easily see that,
in terms of absolute errors, all series improve on their kernels, with the MKE series seemingly
outperforming the others.

The second case examined is the GΓD, presented in Figure 5.2. We see that the approximations
struggle to fit the target PDF, i.e. it is a far bigger challenge than the first case. In terms of the
absolute approximation errors, they are of the same magnitude as in Figure 5.1, but that target
distribution had much larger probability density values. The result is naturally that the relative
errors in the lower left plot tells the true story of methods struggling to model the target PDF,
in several instances failing completely.

9By properties of ψ(2)(·), both gamma and K distributed RVs always have negative κ3. The literature on MK
statistics and SAR sometimes refers to logarithmic skewness relative to the gamma distribution, e.g. [Anfinsen
et al., 2011]. A K distributed RV always has negative κ3 relative to its constituent gamma RVs.



64 CHAPTER 5. RESULTS

Figure 5.2: The four MK series expansions used to approximate the GΓD with parameters
L = 4, m = 10, and ν = 0.5. The solid lines are the kernels, and the dashed lines are the series
expansions correcting for ∆κ3 and ∆κ4.

From the top left plot we see that the target PDF has a very heavy tail and that the MKGK
series diverges completely. From the top right plot we see that the logarithmic skewness is again
negative (this can be verified with eq. (5.6)), but it also gives us an interesting perspective as to
what is happening with the MKGK series. Specifically, the correcting terms reduces the large
approximation error of the gamma kernel below 100, but the resulting perturbations cause a
divergence around 102, and even negative PDF approximation values on some parts of the x
axis. This trade-off can seemingly be justified by a visual inspection of the top right plot, but
on the linear scale the improvements all but disappear and the perturbations are enhanced. The
same happens with the MKBK series, but on a much smaller scale. As we will see in the next
section, the numerical dissimilarity measures also indicate that only the MKLK and MKE series
are better than their kernel in this case.10

5.2.2 Approximations to Numerous Target PDFs Tabulated
In this section, we perform a broad comparison with the series expansions applied to four distinct
sets of known parameters for each of the five target PDFs discussed in Section 5.1.2. In several

10However, changing the power parameter to ν = 2 but leaving the others unchanged, results in a target PDF
for which the MKGK series is the top performer. This could indicate that its emphasis on the low x values is
sometimes justified.
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cases, one of the kernels coince with the target PDF, i.e. the MKGK series expansion of the
gamma kernel is used to model a gamma distribution, or the MKBK series expansion of the
beta prime kernel is used to model distributions that are special cases of β′(·). Note also that
the respective series have no correcting terms, as all log-cumulant differences are zero. In these
cases, the only information in dKL(·) is the inaccuracy stemming from our computations, e.g.
errors of magnitude 10−16 resulting in dKL(·) ∼ 10−8. As this is not of interest to us here, we
simply state the methods as "exact" in these cases.

We present only the Kullback-Leibler distance dKL(·) between the approximations and the target
PDFs. The other dissimilarity measures discussed in Section 2.6 were largely in agreement with
dKL(·), but did not have as good contrast, especially when several methods performed well. In
the cases where the Bhattacharyya distance disagreed w.r.t. which approximation was closest to
the true PDF, we will explicitly state this.

Table 5.1: Approximating a broad range of target distributions with MK series expansions,
Kullback-Leibler distance to the true PDF. The kernels are tailored and the series expansions
correct for ∆κ3 and ∆κ4, best method in bold.

γ(x; θ), θ=[L,m] γ−1(x; θ), θ=[L,m] GΓD(x; θ), θ=[L,m, d] K(x; θ), θ=[L,m,M ] G0(x; θ), θ=[L, g,M ]

Method\θ [4, 1] [4, 10] [4, 1] [4, 10] [4, 10, 0.5] [4, 10, 2] [4, 10, 1] [4, 10, 10] [4, 1,−10] [4, 10,−10]

MKGK kernel Exact Exact 7.34·10−2 7.34·10−2 1.49·10−2 4.81·10−3 6.61·10−3 4.22·10−3 8.54·10−3 8.54·10−3

MKGK series Exact Exact 5.69·10−2 5.69·10−2 1.10·100 7.20·10−4 1.54·100 2.14·10−2 2.89·10−2 2.72·10−2

MKLK kernel 1.83·10−2 1.83·10−2 1.87·10−2 1.87·10−2 1.59·10−2 1.91·10−2 3.87·10−2 9.26·10−3 5.66·10−3 5.66·10−3

MKLK series 2.61·10−3 2.61·10−3 2.29·10−3 2.29·10−3 2.52·10−3 2.56·10−3 2.27·10−2 7.70·10−4 3.87·10−4 3.87·10−4

MKE series 4.02·10−3 3.76·10−3 8.90·10−3 8.34·10−3 4.06·10−4 6.09·10−3 3.91·10−3 1.62·10−4 1.59·10−4 1.59·10−4

MKBK kernel Exact Exact Exact Exact 1.00·10−3 6.91·10−3 2.50·10−4 9.69·10−5 Exact Exact

MKBK series Exact Exact Exact Exact 1.98·10−3 6.69·10−3 1.35·10−3 6.21·10−5 Exact Exact

γ(x; θ), θ=[L,m] γ−1(x; θ), θ=[L,m] GΓD(x; θ), θ=[L,m, d] K(x; θ), θ=[L,m,M ] G0(x; θ), θ=[L, g,M ]

Method\θ [16, 1] [16, 10] [16, 1] [16, 10] [16, 10, 0.5] [16, 10, 2] [16, 10, 1] [16, 10, 10] [16, 1,−10] [16, 10,−10]

MKGK kernel Exact Exact 1.89·10−2 1.89·10−2 4.55·10−3 1.75·10−3 6.83·10−4 2.74·10−3 1.88·10−2 1.88·10−2

MKGK series Exact Exact 2.26·10−3 2.26·10−3 1.01·10−2 4.72·10−4 2.36·10−2 8.57·10−4 3.50·10−3 3.50·10−3

MKLK kernel 4.69·10−3 4.69·10−3 4.74·10−3 4.74·10−3 4.50·10−3 4.75·10−3 5.36·10−2 3.38·10−3 6.83·10−4 6.83·10−4

MKLK series 1.45·10−4 1.45·10−4 1.30·10−4 1.30·10−4 1.54·10−4 1.39·10−4 4.00·10−2 8.43·10−5 6.53·10−6 6.53·10−6

MKE series 1.31·10−5 1.31·10−5 1.32·10−5 1.32·10−5 1.34·10−5 1.30·10−5 6.93·10−3 6.23·10−6 4.03·10−6 4.03·10−6

MKBK kernel Exact Exact Exact Exact 1.15·10−4 7.79·10−3 4.62·10−6 4.31·10−5 Exact Exact

MKBK series Exact Exact Exact Exact 4.09·10−5 7.35·10−3 2.92·10−5 1.04·10−5 Exact Exact

The results are presented in Table 5.1, and from these we can get several insights about the series
expansions. Immediately, the MKE series stands out as the top performer in most cases. In fact,
when using the Bhattacharyya distance, the MKE series provides the closest approximation
also for the four cases where L = 16 with the γ(·) and γ−1(·) distributions, and GΓD(·) with
θ = [4, 10, 2]. On the other hand, the MKE series must share its title of best performer with
the MKLK series in the case of the G0 distribution with θ = [16, 10,−10] – the two were
not separable at the present uncertainty levels in terms of dB(·). Otherwise, the dissimilarity
measures were in agreement.

Fitting a beta prime PDF kernel to the γ(·) and γ−1(·) distributions is an interesting problem.
To see why, we combine eqs. (2.62) and (2.68) to see that tailoring the beta prime kernel to the
gamma target PDF implies that

∆κ2 = 0⇒ ψ(1)(a1) + ψ(1)(a2) = ψ(1)(L), (5.11)

∆κ3 = 0⇒ ψ(2)(a1)− ψ(2)(a2) = ψ(2)(L). (5.12)

Clearly, a1 = L and ψ(1)(a2) = ψ(2)(a2) = 0. According to [Abramowitz and Stegun, 1964],
ψ(1)(a2) has only one positive real root, at a2 ≈ 1.46. It is easily verified that this value is
not a root of ψ(2)(a2). However, [Abramowitz and Stegun, 1964] also contains asymptotic
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formulas which show that ψ(1)(a2)→ 0 and ψ(2)(a2)→ 0 as a2 →∞. Similarly, we can use the
log-cumulants of the inverse gamma distribution from eq. (5.4) to see that

∆κ2 = 0⇒ ψ(1)(a1) + ψ(1)(a2) = ψ(1)(L) (5.13)

∆κ3 = 0⇒ ψ(2)(a1)− ψ(2)(a2) = −ψ(2)(L), (5.14)

and by the same argument as before, a2 = L, while a1 →∞. We tried a few numerical methods,
and all of them correctly found a1 = L for the gamma target PDF and a2 = L for the inverse
gamma target PDF. All of the methods produced very high values for the other shape parameter
(as expected, since the true value was ∞), with the level of accuracy determining exactly how
high. These values invariably caused problems within the gamma functions in the beta prime
kernel PDF in eq. (2.66). Specifically, Γ(a1 +a2) was evaluated as infinity, but this was remedied
with the usual tricks.11 Then, the MKBK kernel and series actually modeled the gamma and
inverse gamma distributions exactly, theoretically explained in e.g. [McDonald, 1995] by the fact
that β′(·) is reduced to γ(·) or γ−1(·) when a2 →∞ or a1 →∞, respectively. To summarize,
the MKBK kernel and series exactly modeled gamma and inverse gamma distributions, but
required a careful implementation to do so.

From the γ(·) and γ−1(·) distributions we can isolate the effect of varying only the location m
or the shape L. If the latter is kept constant while m is varied, the results are unchanged except
for the MKE series with L = 4. All other parameters equal, we see that the approximations
are generally more accurate for L = 16 than for L = 4 – in many cases the difference is several
orders of magnitude.

The K distributions with θ = [4, 10, 1] and θ = [16, 10, 1] are different from the rest as they are
nonzero at x = 0. As we can see, these cases are well modeled by the beta prime distribution in
particular, but the MKBK series failed to improve on its kernel. In general, the MKBK series
seems like a good candidate to model the K distribution, perhaps since both distributions have
two shape parameters.

For the G0 distribution, the parameter g acts in the same way as the location, i.e. the methods
are, with a single exception, identical for g = 1 and g = 10.

The MKGK series improved on its kernel in 9 of the 16 cases where it did not exactly model
the target PDF, the MKBK series improved on its kernel in 5 of 8 cases, but the MKLK and
MKE series improved on the log-normal kernel in all 20 cases. It is still too early to draw any
conclusions on the matter, but this might be due to the fact that the log-cumulants of order
n ≥ 3 of the log-normal distribution are all zero. Recall that the resulting simplification is that
the log-cumulant differences equal the target PDF’s log-cumulants.

5.2.3 Convergence, Two Examples

We will now examine if and how the MK series expansions converge as the number of correcting
terms are increased. In [Blinnikov and Moessner, 1998], the authors performed a similar analysis
of the classical Edgeworth and Gram-Charlier series expansion of the Gaussian kernel.

We start with two visual examples, that is, we plot the PDFs as we correct for each successive
log-cumulant difference. We limit ourselves to a single method applied to two different target
PDFs, simply to demonstrate how convergence and divergence looks, with a much more thorough
and broader approach in the next section.

11We had to evaluate the logarithm of the beta prime PDF without the scaling beta function, apply the
exponential function and finally normalize the PDF by its numerical integral.
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Figure 5.3: The MKGK series expansions used to approximate two K target distributions,
correcting the tailored kernel with up to N = 6 (left) and N = 8 (right) in eq. (3.39). Target
PDF f(x) and MKGK series approximations f̂(x) (top), errors f(x)− f̂(x) (bottom).

The cases are presented in Figure 5.3, where the plots are colored on a scale from blue (for the
kernel) to red (N = 8), with even N values given solid lines and odd N given dashed lines for
clarity.

When looking at all the PDF approximations at once, it is hard to draw conclusions beyond the
fact that the MKGK series expansion diverges in the case where M = 1 and that it models the
K distribution with M = 10 very well. Therefore, we also included plots of the approximation
errors, which gives us some more insight. The errors oscillate around 0 in a periodic manner,
and an interesting observation is that the extrema of these oscillations are shifted on the x axis
as the number of correcting terms is increased. Naturally, when the MKGK series expansion
converges to the target PDF, the oscillations are also damped, and when it diverges they are
amplified. As we will see in the next section, the MKGK diverges from the first correcting term
when approximating K(x;L = 16,m = 1,M = 1) and starting at N = 7 when approximating
K(x;L = 16,m = 1,M = 10). Upon close inspection of Figure 5.3, it is also possible to see this
visually.

5.2.4 Convergence, Numerous Target PDFs
Now it is time to conduct a thorough investigation of the convergence of all the series expansions,
and for a wide range of target distributions. As the targets, we use the same 20 PDFs as in
Section 5.1, with a special emphasis on four of them, which we present first.

Recall that throughout Chapter 3 we suggested choosing the kernel parameters that satisfy
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∆κ1 = ∆κ2 = 0 (we assess other methods of choosing the kernel parameters later). That is to
say that the baseline for our experiment is to correct for the first two log-cumulant differences.
The tailored beta prime kernel even corrects for ∆κ3, i.e. the MKBK series starts to modify its
kernel one term later than the other series.

In Figure 5.4 we present plots of the two dissimilarity measures discussed in Section 2.6, and also
the maximum absolute error, for the MK series expansions used to approximate four different
target PDFs. The γ−1 and G0 distributions are special cases of the beta prime kernel, so the
MKBK series is omitted in those instances. We clearly see that the MKE and MKLK series are
identical when correcting only for ∆κ3, which we already knew since eq. (3.41) is identical to eq.
(3.82) when discarding terms of O(r−1).

As in the previous section, the MKE series is the stand-out performer. In Figure 5.4 it has
the remarkable property that the approximation is improved with each successive term, for all
targets and dissimilarity measures. The MKGK series seemingly converges for the γ−1(·) case,
but for the other targets it diverges beyond ∆κ5, ∆κ6, or even with the very first correcting
term. The MKBK series is only presented for two of the cases, diverging in one and converging
in the other. Indeed, it seems like this GΓD is very challenging for all but the MKE series. In
general, the MKLK series is more stable than the others, neither converging nor diverging with
particular conviction.

The dissimilarity measures are largely in agreement, barring a few subtle differences. This allows
us to only present one of them in the following, and we see that the Kullback-Leibler distance
has the best contrast when the distance between the series expansions and the target PDF
becomes very small.

In Figure 5.5 we present the convergence of rest of the cases from Table 5.1, i.e. the 16 cases
which were not included in Figure 5.4.

We can make many of the same observations as in Section 5.2.2: The series expansions are
seemingly invariant to the location parameter m in the γ(·) and γ−1(·), and the same can be
said for the g parameter in the G0 distribution. All series generally perform better for L = 16
than L = 4, and this extends to a faster and more regular convergence, e.g. the GΓDs with
m = 10 and ν = 2.

Perhaps the biggest difference from Figure 5.4 is that Figure 5.5 contains examples of the MKE
series not improving with each successive correction term. Still, the general trend is that the
MKE series’ advantage over the other methods increases with each extra term, providing the
best approximation for all but one target PDF when correcting for up to ∆κ5. However, it is
important to note that the MKE series is more complex than the other series. That is, correcting
for up to ∆κ5, we known from Section 3.3.5 that the MKLK series is

fX(x) ≈
[
1 +

κ3

6σ3
H3

(
log x− µ

σ

)
+

κ4

24σ4
H4

(
log x− µ

σ

)
+

κ5

120σ5
H5

(
log x− µ

σ

)]
Λ(x;µ, σ),

(5.15)
and from Section 3.4.2 we know that the corresponding MKE series is

fX(x) ≈

[
1 +

κ3

6σ3
H3

(
log x− µ

σ

)
+

κ2
3

72σ6
H6

(
log x− µ

σ

)
+

κ4

24σ4
H4

(
log x− µ

σ

)
(5.16)

+
κ3

3

1296σ9
H9

(
log x− µ

σ

)
+

κ3κ4

144σ7
H7

(
log x− µ

σ

)
+

κ5

120σ5
H5

(
log x− µ

σ

)]
Λ(x;µ, σ),

where we have arranged the terms in the order they arise when evaluating the successive Bell
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Figure 5.4: The four MK series expansions used to approximate four different target distributions,
correcting for up to ∆κ8.
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Figure 5.5: The MK series expansions used to approximate the target PDFs from Table 5.1,
excluding those included in Figure 5.4. As in that figure, the MKGK series is blue, the MKLK
series is orange, the MKE series is black, and the MKBK series is green. The dissimilarity
measure used is the Kullback-Leibler distance.

polynomials in eq. (3.81).12 We see that the MKE series contains all three correcting terms
of the MKLK series, but also three additional terms, correcting for κ2

3, κ3κ4, and κ3
3. In this

scenario the targets PDFs are known, so there is no uncertainty in the log-cumulants, and this
additional complexity is not punished. Indeed, based on the performance we have seen in this
section we can say that the extra terms are definitely merited.13

5.2.5 Alternative Choices of the Kernel Parameters

The time has come to assess the validity of the method of choosing the kernel parameters used
throughout Chapter 3. In Section 3.2.4 we argued that the nature of the Bell polynomials
results in significant simplifications if we choose the kernel parameters s.t. ∆κ1 = ∆κ2 = 0 (in

12Recall that κΛ,n = 0 for all n ≥ 3, which allowed us to simply use κn without ambiguity when expanding
the log-normal kernel.

13In Section 5.3, we estimate the log-cumulants with an incurred uncertainty in each correcting term. Based
on the findings in Table 5.1 and Figures 5.4 and 5.5, it was very interesting to see whether the additional
complexity of the MK series was still merited. As a spoiler of sorts, we can mentioned that when there was
enough data points to justify a correction for ∆κ4, the MKE series outperformed the MKLK in almost all the
cases we examined.
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practice using the MoLC), and we called these the tailored parameter values.14 This choice
naturally cannot be based on convenience (in the sense of mathematical simplicity) alone, and
we will now test whether our choice is associated with an advantage in accuracy as well.

In the classical case, alternative choices of the kernel parameters have not received much attention.
This can in large part be explained by the fact that the Gaussian has almost exclusively been
the kernel of choice, and the ML estimates of the mean and variance are in fact equal to the
method of moments estimates which give ∆c1 = ∆c2 = 0.15 A correction for the bias of the
ML variance estimate of the Gaussian distribution has been known since [Gauss, 1823], i.e.
even before the development of the Gram-Charlier and Edgeworth series. However, the use of
unbiased variance estimates in the series expansions is not common. [Kendall et al., 1994] do
not comment on the particular case of the biased variance estimate, but the authors write (in a
very general context):

“[We] have retained the terms in D and D2 because the approximation may perhaps be slightly
improved by taking m and [ς2] in the [kernel] distribution not quite equal to the mean and
variance of [the target distribution].”

To summarize, the lack of attention to alternative parameter choices in the classical case can
reasonably be attributed to the popularity of the Gaussian kernel. Its ML and method of
moments parameter estimators overlap, and with the exception of a scaling factor n

n−1
, they are

also the minimum variance unbiased estimators. In addition to this, ∆c1 = ∆c2 = 0 is required
in the classical Edgeworth series, just as ∆κ1 = ∆κ2 = 0 is required to develop the MKE series.

Regarding the classical Gram-Charlier series around the gamma kernel, the authors of [Gaztanaga
et al., 2000] did not discuss alternatives to the parameter choice in eq. (2.129).

In Figures 5.6 through 5.10 we display the effects (on the Kullback-Leibler distance to the target
PDF) of varying each kernel parameter separately. We display relative parameter values, where
the reference is the tailored value at unity.

Regarding the cases which were "exact" in Table 5.1, we can now compare the MKGK series to
the gamma target PDF in Figure 5.6, as it is only exact for the tailored parameter values.16

The MKBK series, however, is included for the G0 distribution but omitted for the γ(·) and
γ−1(·) PDFs. For the latter two cases, one of the beta prime shape parameters will tend to ∞,
as we discussed in Section 5.2.2. While it could be possible to vary the finite shape parameter,
the MKBK series breaks down as the beta prime kernel is reduced to the gamma or inverse
gamma PDF. This is easy to see from the Rodrigues formula of the M ′(·) polynomials in eq.
(3.88), which obviously assumes that both a1 and a2 are finite.

For the MKGK, MKLK, and MKBK series, non-tailored parameter values imply that the
correction terms start already with ∆κ1, i.e. n = 1 in eqs. (3.31), (3.60), and (3.102). That is,

14It is perhaps clearer why one would consider alternative choices of the kernel parameters when the target
PDF is unknown. Then, we have to estimate the parameters, and the MoLC estimator is not usually the same
as e.g. the ML estimator, and it might have bias which we could want to correct for. This will be discussed more
in detail when we repeat this analysis with unknown target PDFs.

15The ML estimates of the Gaussian distribution is found in many (if not most) statistics textbooks, e.g.
[Kendall et al., 1994]. Recall from Section 2.2.5 that c1 = m and c2 = ς2, which we replace with their empirical
counterparts as appropriate. The sample mean is the minimum variance unbiased estimator for m. That is,
〈m〉 = m̂ML. The sample variance 〈ς2〉 is actually biased, but scaling it with n

n−1 , where n is the number of
samples, gives the minimum variance unbiased estimator.

16As we can see, dKL(·) is not zero as it theoretically should be, but between 10−8 and 10−7. This is only
due to numerical inaccuracies in the implementation, and thus serves as an ultimate benchmark for non-exact
methods with the present precision.
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N = 2 now corresponds to

fX,N(x) =

[
1 + ∆κ1M1(bx) +

∆κ2
1 + ∆κ2

2
M2(bx)

]
γ(x; a, b), (5.17)

for the MKGK series, and the corresponding versions when the log-normal or beta prime kernel
is used instead. The MKE series however, is fundamentally based on the assumption that the
first two log-cumulant differences are zero, as we discussed in Section 3.4.1. There is no easy
way to amend eq. (3.81) in order to correct for non-zero ∆κ1 or ∆κ2, so we do not attempt to.
That is, we simply change the kernel parameters without making further changes to the series
expansions. This is a significant difference in approach to the other series, and we must keep
this in mind when analyzing the results.

Gamma Distribution Starting with Figure 5.6, it is interesting to observe that the MKGK
series seems very sensitive to changes in the shape a; its accuracy at 1.1 of the tailored value
is of the same magnitude (10−2) as when the target PDF is inverse gamma in Figure 5.7. For
the scale b, however, we observe something interesting (recall that the µ = L/b, and since L is
constant when b and µ are varied, they are each others inverse). When increasing the number
of correcting terms N , the MKGK series becomes remarkably resilient to fluctuations in b and
µ, achieving accuracies comparable to the exact solution at below 10−7 even when b is at 0.8 or
1.25 relative to the tailored value. This in encouraging w.r.t. modeling of SAR data: As we
discussed in Section 2.3.9, the number of looks L can often be estimated based on the entire
image, i.e. very precisely. Perhaps the MKGK series can then correct for inaccuracies in the
location estimates – we return to this subject later.

The other methods in Figure 5.6, the MKLK and MKE series, are more sensitive to changes in
the log-mean µ than the log-variance σ2. This is a trend we recognize with the other target
PDFs also, especially the K and G0 distributions. Another trend which is exemplified with the
γ(·) target PDF is the fact that when the kernel parameters are not tailored, the benefit of
correcting that kernel is lost, or even negative in the form of increased distances to the target
compared to the bare kernel. This is apparent for the MKLK series with µ greater than its
tailored value and the MKE series with σ2 below its tailored value in Figure 5.6, but also in
several other cases. With µ at double its tailored value, the MKLK series again seemingly
outperforms its kernel, but these are errors well above 100 = 1.17 When the errors are of this
magnitude, we should be careful when drawing conclusions – saying that a method with an
error of 4 is better than one with an error of 6 is a bit pointless when the fact of the matter is
that both those methods have diverged severely and thus failed.

Inverse Gamma Distribution The story told by Figure 5.7 is not very different from the
experiment with the gamma distribution, except that the MKGK series is not exact and thus
behaves differently. It is less sensitive to variations in the shape parameter, even achieving
slightly higher accuracies for non-tailored values, depending on the number of correcting terms
N . In general, the MKGK series expansion improves on its kernel when modeling γ−1(·).

Generalized Gamma Distribution Moving on to the three-parameter target PDFs, we recall
from Table 5.1 and Figure 5.2 that this parametrization of the GΓD was challenging to model,
a fact which is reflected in Figure 5.8. The MKLK and MKE series behave similarly as for the
γ(·) and γ−1(·) targets, while the MKGK and MKBK series seem chaotic. There is, however,
insight to be had from a closer inspection. Clearly, N = 6 for the MKGK series was too many
correcting terms while N = 2 seems like the best choice. However, non-tailored parameter values

17These are divergent cases, e.g. the MKGK series in Figure 5.2 was visually far from its target, and was
tabulated in Table 5.1 at 1.10(·100).
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greatly improve the approximations for both N = 2 and N = 4. Indeed, with L at 1.1 times
its tailored value, the MKGK series with N = 2 is comparable to the best approximation of
the MKLK series, although the latter peaks in performance with its tailored parameters and
for N = 6. Since the MKGK is improved both for higher L and higher µ, it is interesting to
test whether there are further improvements to be had if both parameters are higher than their
tailored value simultaneously. In this case, further testing determined that there is a slight
benefit.18 The MKBK series experiences something remarkable, for N = 4 and a1 at 1.1 times
its tailored value, the distance to the target is reduced by more than an order of magnitude to
1.27 · 10−4, which would have made it the top performer in that case w.r.t. Table 5.1. As with
the MKGK series, further testing showed that the distance can be slightly improved still by
altering the parameters simultaneously.

K Distribution As we commented already in Section 5.2.1, the K distribution with the
parametrization L = 16, m = 10, and M = 10 is seemingly easier for the series expansions to
approximate than the above GΓD. This observation is reinforced when examining Figure 5.9,
since the general theme is that the accuracy is increased as N is incremented. As before, the
MKLK and MKE series are far more sensitive to changes in the log-mean than the log-variance
parameter and achieve their smallest distance to the target PDF for the tailored values. They
again lose most, if not all, of the benefit of correcting the kernels when the parameters are far
from their tailored values. Further testing strongly suggests that simultaneously varying both µ
and σ2 does not improve either of the series expansions of the log-normal kernel.

The MKGK again performs better without non-tailored kernels, competing with the accuracy of
the MKLK series, which is certainly in contrast to what one would believe after reading Table
5.1. Allowing the kernel scale and shape to deviate from their tailored values simultaneously
further improved the MKGK series again. For the MKBK series with N = 4, scaling the tailored
a1 with 0.9 reduced the distance from 1.04 ·10−5 to 9.37 ·10−8, which is an extreme improvement.
This is also much better than the corresponding MKE series, which was the top performer in
that case in Table 5.1. A similar distance was achieved with N = 6, again with a1 lower than
its tailored value. It was slightly better than the MKE series corrected for the up to the same
log-cumulant order, but we must be careful about drawing conclusions, as the effects of our
discretization of x and other aspects of our implementation cannot be disregarded at this level
of accuracy.

G0 Distribution Finally, we have the G0 target distribution in Figure 5.10. In terms of the
MKGK, MKLK and MKE series, there is not much to add to the already extensive analysis.
The MKGK is slightly better for non-tailored parameter values, the MKLK and MKE series are
more sensitive to variations in the log-variance than the log-mean, and there is no benefit to
correcting the non-tailored log-normal kernels. The fact that the MKLK and MKE series so
consistently peak at their tailored values can perhaps be linked to the observation that they
always improved on their kernels in Table 5.1. Recall that in Section 5.2.2 we speculated that
this consistency could be due to the fact that the log-cumulant differences of order n ≥ 3 are
reduced to the target log-cumulants.

The MKBK series is now exact, and is thus interesting as a comparison to when the MKGK
series modeled the gamma distribution in Figure 5.6. The story is much the same, the MKGK
series is extremely successful in correcting for non-exact values of any of the three parameters.

18Examining this exhaustively is beyond the scope of this thesis, but possibly a subject for future work.
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5.2.6 Alternative Kernel Parameter Values in a SAR Scenario
Continuing our investigation on alternative parameter values from the previous section, we
now test the mathematical feasibility of a radically different reason for having non-tailored
parameters; Can the series expansions be used to correct for a the effects of a physical process?

Specifically, we concentrate on a SAR scenario. Expanding on the discussion about the number
of looks L and the K distribution from Sections 2.3.9, 2.3.10, and 5.1.2, say we have a SAR
image of a scene containing different classes. As we described when introducing the gamma
distribution, L is for SAR images a global value which depends on the processing scheme in the
image formation and represents the level of averaging or smoothing. The mean radar intensity
m is a local property of the surface, quantifying the mean level of backscatter. If we assume
completely homogeneous classes, i.e. that every pixel corresponding to e.g. "snow" will reflect
the same amount of the radar pulse on average (in the direction of the sensor), then the gamma
distribution model is valid. However, this idealistic assumption is usually quite naive, as classes
like "forest" and "ocean" will certainly contain variations in the local radar reflectivity. This
heterogeneity leads to a multiplicative model, represented in the K distribution by the texture
shape parameter M . For more information on this subject, see e.g. [Oliver and Quegan, 2004].

In order to account for heterogenous classes, the traditional approach has been to depart from
γ(x;L,m) and use K(x;L,m,M) instead. The question now is, can we keep using the simpler
gamma PDF, but employ the MKGK series expansions as a way of correcting for the physical
variations usually modeled by M? To conclude that this is possible, we would naturally have
to conduct a thorough examination on a variety of real-world data. Here, we must limit our
ambitions to simply seeing if it is at all feasible, by using non-tailored parameters values in a
comparison similar to the one in Figure 5.3.

Figure 5.11: The MKGK series expansion around a non-tailored kernel with N ≤ 8 in eq.
(3.31), used to approximate four K target distributions. The kernel used was in all cases
γ(x;L = 4,m = 10), i.e. the same parameter values as the target PDF instead of those giving
∆κ1 = ∆κ2 = 0. Target PDF f(x) and MKGK series approximations f̂(x) (top), errors
f̂(x)− f(x) (bottom). The figure legend is placed below the plots.

Figure 5.11 contains the results of this mathematical experiment. From looking at the plots, we
see that approach has failed for M = 1 and M = 5 but succeeded for M = 10 and M = 20. In
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the latter two cases, the benefit of correcting for the non-zero ∆κ1 and ∆κ2 is great, and when
M = 20 the MKGK series further converges as N increases further. For M = 1, the method is
violently divergent, a scenario which is quite common also in the linear case, see [Blinnikov and
Moessner, 1998]. When M = 5, it seems like the MKGK series is close to converging for lower
values of N , but in the end fails.

Why this dependency on M? It turns out there is both a physical and a mathematical
explanation.

In [Frery et al., 1997], the authors discussed heterogeneous and homogeneous targets in depth,
and they noted that M →∞ indeed corresponds to the special case of a homogeneous target,
i.e. it is reduced to the gamma distribution. For the mathematical explanation, we refer to the
expression of the log-cumulant differences

∆κn = κK,n − κγ,n, (5.18)

with the constituent log-cumulants given by eqs. (5.8) and (2.62), we get

∆κn =

{
ψ(0)(M)− logM n = 1,

ψ(n−1)(M) n ≥ 2.
(5.19)

As mentioned when we discussed the cases n = 2, 3 in Section 5.2.2, the asymptotic formulas for
ψ(n−1)(M) are found in [Abramowitz and Stegun, 1964]. We can see from these formulas that
as M →∞, ∆κn → 0 for all n.19 Naturally, this is equivalent with the statement that K(·) is
reduced to γ(·) as M →∞, as the set of all log-cumulants uniquely define a distribution, i.e. if
∆κn = 0∀n, then the PDFs are the same.

To summarize, Figure 5.11 indicates that if the area is slightly heterogeneous, the MKGK series
can provide a good alternative when it comes to modeling the PDF, with the greatest benefit
occurring already at N = 2. In the rightmost plots, we can see that retaining the values of L
and m from the K PDF and correcting for ∆κ1 and ∆κ2 is actually more accurate than the
tailored kernel. This warrants additional testing and will be revisited later in this thesis, when
the target PDFs are unknown.

5.3 Estimation
In this section, we remove the knowledge of the target PDFs from the series expansions. For
instance, say we want to apply the MKGK series expansion to a K(·) target. When the target
PDF was known, the log-cumulant differences in eq. (3.39) were ∆κn = κK,n − κγ,n. Now,
however, κK,n must be estimated, i.e. replaced by the empirical log-cumulants 〈κX,n〉 via eq.
(5.1) as described in Section 5.1.1.

When we analyzed the use of the MK series expansions as approximations to known target
PDFs, we called that a mathematical analysis. As we now introduce uncertainties into κX,n,
we can think of this as a statistical analysis. We can certainly expect a general reduction in
accuracy as the primary effect of this introduction of uncertainty. From previous experience, we
know that parameter uncertainty punishes the complex models more, so a key point of interest
in this section is whether the benefit of additional correcting terms is eroded, compared to e.g.
Figure 5.4.

19A detailed review of the asymptotic formulas of the polygamma function is beyond the scope of this discussion,
but from [Abramowitz and Stegun, 1964] we know that as M →∞, ψ(0)(M)→ logM and ψ(n−1)(M)→ 0 for
n ≥ 2.
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This section is organized as follows. We repeat the experiments of Figures 5.1 and 5.2 and
Table 5.1, and briefly comment on these to get a basic understanding of using the MK series
expansions methods for estimation versus approximation. We use 1,000 synthesized/generated
data points in place of actual observations, and tabulate the mean of 1,000 iterations.20 We
then move on to an examination of convergence, repeating the experiments of Sections 5.2.3
and 5.2.4, while varying the number of data points. Finally, we examine estimates other than
those we get from the MoLC, and visit a SAR-specific scenario.

5.3.1 Revisiting the Introductory Examples

Figure 5.12: The four MK series expansions used to estimate the K distribution with parameters
L = 16, m = 10, and M = 10, based on 1,000 synthesized data points. The solid lines are the
kernels, and the dashed lines are the series expansions correcting for ∆κ3 and ∆κ4.

Figure 5.12 shows the repetition of the experiment from Figure 5.1, with target PDF now
unknown. We see that the error is increased slightly, with a bigger increase for the series
expansions than their kernels. This is pretty much as expected, with the series expansions being
affected more since they are more complex in the sense that they have a higher number of
parameters to estimate than the bare kernels. Note that Figure 5.12 is only a single realization
(with 1,000 data points), but when we later tabulate values we take the mean of the dissimilarity
measures of 1,000 iterations.

20It would certainly be interesting to present also the variance of the methods, but this was omitted for the
sake of brevity.
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Figure 5.13: The four MK series expansions used to estimate the GΓD with parameters L = 4,
m = 10, and ν = 0.5, based on 1,000 synthesized data points. The solid lines are the kernels,
and the dashed lines are the series expansions correcting for ∆κ3 and ∆κ4.

Figure 5.13 shows the estimation equivalent of the experiment from Figure 5.2, and the results
are very similar. The differences are only apparent when carefully and directly comparing the
error plots. Again we must stress that we have presented only a single realization. Repeating the
experiment with different data samples gave us empirical log-cumulants which usually deviated
more from their theoretical values, resulting in larger errors.

5.3.2 Estimations of Numerous Target PDFs Tabulated

In this section, we repeat the experiments from Section 5.2.2 with the target PDFs unknown
this time, and we present the mean of the Kullback-Leibler distance of 1,000 iterations. One
important difference is that the methods which exactly modeled targets in Table 5.1, can now
be assessed as they will have some estimation error even though they coincide with the target
PDF.

Table 5.2 presents our results. As in Section 5.2.2, there is some discord between the Bhat-
tacharyya and Kullback-Leibler distances. Notably, the measures disagree on whether the
MKLK or MKE series is the best expansion of the log-normal kernel. Recall that in Section
5.2.2, the MKE series in several cases had lower dB(·) but higher dKL(·). This happens here as
well, but we also have some instances where dB(·) favors the MKLK series when dKL(·) favors
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Table 5.2: Estimating a broad range of target distributions with MK series expansions, Kullback-
Leibler distance to the true PDF. The kernels are tailored and the series expansions correct for
∆κ3 and ∆κ4, mean of 1,000 iterations, best method in bold.

γ(x; θ), θ=[L,m] γ−1(x; θ), θ=[L,m] GΓD(x; θ), θ=[L,m, d] K(x; θ), θ=[L,m,M ] G0(x; θ), θ=[L, g,M ]

Method\θ [4, 1] [4, 10] [4, 1] [4, 10] [4, 10, 0.5] [4, 10, 2] [4, 10, 1] [4, 10, 10] [4, 1,−10] [4, 10,−10]

MKGK kernel 1.02·10−3 1.05·10−3 7.47·10−2 7.47·10−2 1.59·10−2 5.85·10−3 7.82·10−3 5.22·10−3 9.63·10−3 9.55·10−3

MKGK series 2.15·10−2 2.40·10−2 1.63·10−1 1.70·10−1 1.13·100 8.70·10−3 1.90·100 2.98·10−2 3.85·10−2 3.65·10−2

MKLK kernel 1.93·10−2 1.93·10−2 1.96·10−2 1.97·10−2 1.68·10−2 2.01·10−2 3.71·10−2 1.02·10−2 6.68·10−3 6.62·10−3

MKLK series 5.42·10−3 6.60·10−3 5.59·10−3 7.58·10−3 6.41·10−3 5.63·10−3 7.88·10−2 3.25·10−3 2.64·10−3 2.64·10−3

MKE series 9.89·10−3 1.01·10−2 1.40·10−2 1.43·10−2 4.25·10−3 1.13·10−2 2.07·10−2 3.94·10−3 2.93·10−3 2.88·10−3

MKBK kernel 2.11·10−3 2.19·10−3 1.94·10−3 1.98·10−3 2.27·10−3 8.01·10−3 2.08·10−3 1.44·10−3 1.47·10−3 1.41·10−3

MKBK series 6.65·10−3 8.35·10−3 1.10·10−2 1.28·10−2 8.67·10−3 9.63·10−3 1.10·10−1 4.69·10−3 3.12·10−3 3.46·10−3

γ(x; θ), θ=[L,m] γ−1(x; θ), θ=[L,m] GΓD(x; θ), θ=[L,m, d] K(x; θ), θ=[L,m,M ] G0(x; θ), θ=[L, g,M ]

Method\θ [16, 1] [16, 10] [16, 1] [16, 10] [16, 10, 0.5] [16, 10, 2] [16, 10, 1] [16, 10, 10] [16, 1,−10] [16, 10,−10]

MKGK kernel 1.02·10−3 9.78·10−4 1.99·10−2 1.93·10−2 5.57·10−3 2.61·10−3 1.92·10−3 3.75·10−3 1.99·10−2 1.98·10−2

MKGK series 3.43·10−3 3.53·10−3 4.93·10−3 4.97·10−3 1.58·10−2 2.49·10−3 8.46·10−1 7.44·10−3 1.00·10−2 9.83·10−3

MKLK kernel 5.69·10−3 5.65·10−3 5.74·10−3 5.56·10−3 5.48·10−3 5.75·10−3 5.22·10−2 4.37·10−3 1.66·10−3 1.68·10−3

MKLK series 2.42·10−4 2.44·10−3 3.17·10−3 3.10·10−3 2.28·10−3 2.58·10−3 1.76·10−1 2.18·10−3 2.86·10−3 2.69·10−3

MKE series 2.87·10−3 2.92·10−3 3.89·10−3 3.83·10−3 2.39·10−3 3.11·10−3 3.72·10−2 2.33·10−3 2.84·10−3 2.64·10−3

MKBK kernel 1.52·10−3 1.51·10−3 1.58·10−3 1.49·10−3 1.15·10−3 8.79·10−3 2.41·10−3 1.42·10−3 1.39·10−3 1.41·10−3

MKBK series 2.32·10−3 2.32·10−3 2.74·10−3 2.71·10−3 3.37·10−3 1.13·10−2 1.47·10−1 2.56·10−3 3.12·10−3 2.88·10−3

the MKE series.

We see that for the cases in Table 5.2 where one of the kernels align with the target PDFs,
that kernel is the best method (the gamma kernel for the gamma target and so on). Then,
the correcting terms do not improve the accuracy, which is to be expected as the additional
complexity is not warranted when the kernel coincides with the target. A comparison of Tables
5.1 and 5.2 illustrates how the kernels in general suffer less than their series expansions when the
parameters/log-cumulants must be estimated. Mirroring the same trend we saw in Section 5.2.2,
only the log-normal kernel is somewhat reliably improved by the series expansions correcting for
both ∆κ3 and ∆κ4. We will in later sections examine whether other number of correcting terms
are better, and if this depends on the quantity of data points.

The MKBK kernel must be especially discussed, as it is the top performer in so many of the
cases. However interesting, comparing the MKBK kernel to the other methods is perhaps not
fair. For one, it corrects for the first three log-cumulant differences, while the other methods
correct for the first two (the kernels) or the first four (the series expansions). As we will see in
the next section, this can actually be very significant. Also, the sheer complexity of computing
the MKBK series kernel parameters, which we discussed in Section 3.5.3, is far beyond that of
the other kernels. This puts the MKBK kernel in the same category as the fitted MoLC K or
generalized gamma distributions.21 Our original goal was to see if the series expansion methods
were more accurate than fitting the simple two-parameter kernels, or faster than fitting complex
three-parameter PDFs, and they are definitely much faster.22 That is to say, the validity of the
MK series expansion framework is not in doubt due to the performance of the fitted beta prime
kernel.

5.3.3 Convergence and the Number of Data Points

Naturally, we must expect that the convergence is weaker now than when the target PDFs were
known in Sections 5.2.3 and 5.2.4, due to the extra uncertainty. Additionally, we know that

21This is the category of three-parameter distributions, where the MoLC parameter estimates have to be found
simultaneously by numerically iterative procedures, or approximated as in [Li et al., 2011].

22Even without rigorous testing w.r.t. the time used by each method, we can safely say that even the optimized
versions of fitting these three-parameter distributions are orders of magnitude slower than the series expansions
of the gamma and log-normal kernels.
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estimating a high number of parameters with few observations, is generally not a recipe for
success. The time has come to assess how the convergence of the four MK series expansions is
affected by having to estimate the log-cumulant differences.

Figure 5.14 mirrors Figure 5.4 in an estimation setting, but also includes the gamma target
PDF omitted from Figure 5.4.23 The results represent some of the most interesting findings in
this chapter, as it gives valuable insight as to the best number of correcting terms w.r.t. the
chosen method and the quantity and type of data.

The general impression from Figure 5.14 is that the convergence is much weaker than when the
target distributions were known, but the trends from Figure 5.4 are recognizable. For instance,
the MKGK series converges up to N = 5 or N = 6 for the same 3 target PDFs as in Figure
5.4, albeit only if the number of data points is sufficient. Also, recall that we used 1,000 data
points in Table 5.2, and we can see that correcting only for ∆κ3 would have been better than
also correcting for ∆κ4.

Regarding the log-normal kernel, corrections beyond N = 3 in the MKLK series rarely decrease
the distance to the target PDF, and only marginally when it does. We see in Figure 5.14 that
there is rarely any reason for choosing the MKLK series instead of the generally superior MKE
series introduced in [Pastor et al., 2014]. Admittedly, the former was better in all cases when
there was only 100 data points, but that is hardly relevant as neither series expansion improved
when correcting for log-cumulants beyond the third. We recall that when correcting the tailored
kernel for only ∆κ3, the MKLK and MKE series coincide as

fX(x) ≈
[
1 +

κ3

6σ3
H3

(
log x− µ

σ

)]
Λ(x;µ, σ). (5.20)

We will refer to this as the log-normal kernel corrected for logarithmic skewness, to emphasize
that it is a special case of both the MKLK and MKE series. When the quantity of data points
is increased, it can be advisable to use the MKE series to correct for also ∆κ4 or even ∆κ5.

The MKBK series does not converge in any of the 5 cases, regardless of the quantity of the
observations. To be fair, it can exactly model the γ(·), γ−1(·) and G0(·) distributions, and we
have presented plenty of evidence that corrections to exact models only increases the error. Still,
these findings seriously question the statistical merit of the MKBK series. That is, fitting the
three-parameter beta prime PDF is an accurate method, and we have shown how to correct the
kernel with a series expansion, but not that these corrections are useful in realistic scenarios.

Another observation we can make from Figure 5.14, is that correcting for ∆κ4 in Table 5.2 was
not always justified. That is, with only 1000 data points available, the methods often performed
better when corrected only for ∆κ3.

5.3.4 Alternative to the MoLC Parameter Estimates
As we briefly mentioned in Section 5.2.5, the MoLC estimators are not the only possible choice,
and we will expand on that discussion presently. Recall from Chapter 3 that the MoLC estimates
have the benefit of greatly reducing the number of correcting terms needed to correct the kernel
up to given order log-cumulant differences. However, other estimators can have other benefits,
as the MoLC estimators are not always unbiased nor do they necessarily have the least variance.

Perhaps the most natural alternatives are the ML estimates. The basic idea is to take the PDF,
which is a function of a variable given parameters, and view it instead as the likelihood function

23The experiment was repeated using the Bhattacharyya distance, with qualitatively very similar results, i.e.
the results did not warrant inclusion.
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Figure 5.14: The MK series expansions estimating the same five target PDFs as in Figures 5.6
through 5.10. Plot of dKL(·) vs. orders of log-cumulants corrected for, mean of 1,000 iterations.
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of parameters given data. The ML estimates are the parameter values which maximizes the
likelihood function, hence the name. This is explained thoroughly in most statistics textbooks,
e.g. [Kendall et al., 1994].

The MKLK and MKE Series The log-normal distribution mirrors the Gaussian distribution
in the sense that the ML estimates of the log-mean µ and log-variance σ2, are the same
as the MoLC estimates, see [Cohen Jr., A. C., 1951] or [Krishnamoorthy, 2006]. That is,
µ̂ML = µ̂MoLC = 〈µ〉 and σ̂2

ML = σ̂2
MoLC = 〈σ2〉. In fact, 〈µ〉 is also the minimum variance

unbiased estimator for µ, and n
n−1
〈σ2〉, where n is the number of observations, is the minimum

variance unbiased estimator for σ2, see [Aitchison and Brown, 1963].24 We will now briefly
explore whether it is beneficial to correct the bias of the empirical variance.

Table 5.3: Estimating five target distributions with the log-normal kernel corrected for logarithmic
skewness, using both the biased MoLC/ML log-variance estimate 〈µ〉, and the bias-corrected
log-variance estimate n

n−1
〈µ〉 (the minimum variance unbiased estimate for n data points).

Kullback-Leibler distance to the true PDF, mean of 10,000 iterations.

γ(x;L=4,m=10) γ−1(x;L=16,m=10) GΓD(x;L=4,m=10,d=0.5) K(x;L=16,m=10,M=10) G0(x;L=16,g=2,M=−10)

Data Points Biased Unbiased Biased Unbiased Biased Unbiased Biased Unbiased Biased Unbiased

100 2.295·10−2 2.282·10−2 2.682·10−2 2.661·10−2 1.918·10−2 1.909·10−2 2.384·10−2 2.391·10−2 2.944·10−2 2.936·10−2

1,000 4.709·10−3 4.704·10−3 4.166·10−3 4.163·10−3 3.398·10−3 3.384·10−3 1.927·10−3 1.931·10−3 2.789·10−3 2.790·10−3

10,000 2.438·10−3 2.437·10−3 1.801·10−3 1.801·10−3 2.076·10−3 2.075·10−3 2.435·10−4 2.434·10−4 4.058·10−4 4.059·10−4

Table 5.3 shows the results of our experiment. Note that we have increased the number of
iterations to 10,000, which allows us to include an additional digit in our measurement to better
differentiate between the methods. To better compare the methods, we applied both approaches
to each of the generated samples, instead of generating 10,000 samples for the biased estimator
and another 10,000 samples for the unbiased one. Also, we only corrected for the logarithmic
skewness ∆κ3 as we learned in Section 5.3.3 that this is realistically the best choice for this
number of data points.

Our findings indicate a small but consistent advantage from choosing the unbiased estimator,
except for the K(·) target. This is interesting in its own right, and it also raises the question of
whether this advantage is mirrored in the classical series. On the other hand, the difference is
largest for only 100 data points, and we know from Section 5.3.3 that even correcting for only
∆κ3 based on just 100 data points is not always warranted. When we have larger samples, the
differences between using the biased and unbiased estimates all but vanish. This is perhaps
not surprising, as the estimates themselves become more and more similar as n

n−1
→ 1. Thus,

in terms of the sample size, it seems that the benefit of using the unbiased estimate vanishes
around the same time as we get enough enough data points to justify corrections to the kernel
at all.

The MKGK Series Estimating the gamma kernel parameters is much more intricate than
in the log-normal and Gaussian distributions. Working with SAR data adds another layer of
complexity, as some estimators can use data from the whole image, as we discussed in Section
5.2.6. There, we elaborated on how the K distribution model parameters are the global number
of looks L, and the local mean m and texture-related M . We also performed an experiment
where the values of L and m were used in the gamma kernel, and the MKGK series expansion
tasked with modeling the texture. Those results were promising, so we will continue along that
road here, providing the MKGK series with the true value of L in lieu of a global estimate.

24These properties are matched perfectly by the classical Gaussian distribution. Recall that we speculated as
to whether this lack of ambiguity in the choice of estimators is the reason why non-tailored kernel parameters
have received so little attention in the classical case.



5.3. ESTIMATION 87

Solving for the location or mean m in eq. (2.62), we see that the MoLC estimator, given by the
restraint that κγ,1 = 〈κX,1〉, is

m̂MoLC = L · exp
{
〈κX,1〉 − ψ(0)(L)

}
, (5.21)

where we recall that the first order log-cumulant equals the log-mean, i.e. 〈κX,1〉 = 〈µX,1〉. On
the other hand, [Oliver and Quegan, 2004] points out that if we have a sample {x1, . . . , xn} of n
data points, then the ML estimate of m is the sample (linear) mean

m̂ML = 〈m〉 ≡ 1

n

n∑
i=1

xi. (5.22)

The ML estimate for L is more complicated, see [Choi and Wette, 1969], but we assume it to be
known, as discussed above.

We can also find support for using the linear sample mean in the physical SAR model. The basic
idea is that the measured quantity is a RV Y = X · T , where X and T are independent RVs
representing the speckle noise and texture, respectively.25 By convention, T is chosen to have
unit mean. At this point we note that if X has PDF γ(x;L,m) and T has PDF γ(t;M, 1), Y
follows the K distribution with PDF K(y;L,m,M). Since X and T are (assumed) independent,
the linear mean of Y is simply

E{Y } = E{X} · E{T} = E{X} · 1 = E{X}, (5.23)

which is reflected in the fact that the mean of the K distribution is m. Regarding the log-mean,
we have that

E{log Y } = E{logX}+ E{log T}, (5.24)

but this is not especially helpful as there are no guarantees as to the numerical value of E{log T}.
That is, the linear mean is the same for the observable RV and the unobservable X, a property
which the log-mean does not have. For a more thorough review of the physical SAR model, see
e.g. [Oliver and Quegan, 2004] or [Deng et al., 2016].

Now we will continue our discussion from Section 5.2.6, i.e. we will examine whether the MKGK
series can perform the role of modeling the texture T . Our focus now is whether the MoLC or
sample mean (ML) estimates of m are best suited in this regard.

Figure 5.15 teaches us a few things. The most immediate insight is that the non-tailored kernels
are more viable for lower L and higherM , which in a SAR scenario is interpreted as X explaining
a bigger proportion of the variance compared to T . Additional testing with other values of L
and M confirmed this trend, which we provided mathematical and physical explanations for in
Section 5.2.6.

In Figure 5.11 we saw convergence for known L and m when approximating the target K(x;L =
4,m = 10,M = 20). This is not the case when m must be estimated, regardless of whether
we use m̂MoLC or m̂ML. Obviously, this is because the estimation uncertainty overshadows the
benefit from the exact correcting terms. One thing we do recognize from the K(x;L = 4,m =
10,M = 20) target in Figure 5.11, is that the non-tailored kernels with N = 2 outperforms the
tailored kernel, at least when the number of data points is high enough. This is in agreement
with the physical interpretation of the doubly stochastic product model. When simply fitting the
tailored gamma kernel, the additional variance contributed by the texture variable T is falsely

25The speckle phenomena is not actually noise in the usual sense, but a consequence of the measurement
process. Unfortunately, delving deeper into this discussion is beyond the scope of this thesis.
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attributed to the speckle noise X. This results in a fundamentally wrong shape parameter value,
which is unable to fully capture to heavy-tailed nature of the physical process. However, the
general message is that the tailored kernels performed better than the non-tailored ones, although
the latter are more true to the physical model, probably due to the estimation uncertainty
introduced.26 Also, letting the shape vary for each class within the image is considerably slower
than fixing it to a global value.

When the number of data points is low however, the MKGK series with tailored kernel is clearly
better suited than the alternatives. This can likely be attributed to the fact that tailoring
the kernel greatly reduces the number of terms in the MKGK series, as explained in Section
3.2.4. When the number of data points is low, each term is associated with a large degree of
uncertainty, so fewer terms is almost always better.

The same effect is present in a much more subtle way when comparing the two non-tailored kernels
and their series expansions. Close examination reveals that m̂ML is slightly, but consistently,
better than the corresponding m̂MoLC for N = 0. However, m̂MoLC leads to better results for
N > 0. We can interpret this in the following way: m̂ML = 〈m〉 is more accurate than m̂MoLC,
but using m̂ML leads to ∆κ1 6= 0. On the other hand, m̂MoLC ensures that ∆κ1 = 0, which
eliminates a great many terms in the MKGK series. The fact that m̂ML is better for N = 0, but
not for N > 0, is due to the fact that the benefit of its superior accuracy does not outweigh the
inaccuracies contained in the terms that vanish when using m̂MoLC.

5.3.5 The MKBK Series Used in a SAR Change Detection Scenario

Recall that we discussed the use of the beta prime distribution in SAR change detection already
in Section 2.3.10, and arrived at a simplified beta prime PDF with two parameters in eq. (2.69).27

Based on our experiment in the previous section, we can now ask whether it is possible use
the MKBK series expansion of the two-parameter beta prime kernel in eq. (3.110) to model
the quotient of two SAR images of a heterogeneous area. The images are again represented by
synthesized K distributed data, i.e. we task the MKBK series with fitting the distribution of the
quotient of two IID K distributed RVs.28 We also used the G0 distribution to represent the SAR
images. It was proposed on a mathematical basis in [Frery et al., 1997] for modeling extremely
heterogeneous (urban) areas, with a physical explanation provided as recently as [Deng et al.,
2016]. While a thorough review of SAR change detection is beyond the scope of this thesis,
[Inglada and Mercier, 2007] discussed some approaches,29 [Moser and Serpico, 2009] used the
MK statistics in a capacity, and [Akbari. et al., 2016] is a recent example of how approximative
PDF models are essential in the SAR change detection field.

If, as we claimed already in Section 2.3.9, the K distribution is analytically and numerically
demanding, it is certainly well outside the realm of feasibility to work with the PDF of the

26We tested this with other parameter values as well, and the results indicate that this approach could be
promising, at least for certain values of L.

27To recapitulate, the two-parameter beta prime PDF β′(x;L, b) is the PDF followed by the quotient of two
IID gamma RVs, each with shape L. As we discussed in Section 5.2.6, a gamma RV represents a SAR image of a
homogeneous area, so two IID gamma RVs represent a pair of independent SAR images of the same area, which
has not undergone change between the two acquisitions (or two indistinguishable areas).

28An alternative motivation is to say that each image follows the Wishart distribution, which is the extension
of the gamma distribution to multiple dimensions. Then, division is no longer possible and we must instead
multiply the inverse matrix of the first image with the second. To get a scalar statistic, it is customary to take
the trace of the resulting matrix product, which will itself be not exactly beta prime even though the images are
exactly Wishart.

29Interestingly, Inglada and Mercier found the classical Edgeworth series to be successful in SAR change
detection.
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quotient of two K distributed RVs in a simple and fast way.30 Therefore, we deemed it necessary
to estimate the target PDF using the non-parametric kernel density method,31 when computing
the distances to the MKBK series. For the target PDF estimate we used 1,000,000 data points,
in order to ensure a highly accurate estimate with negligible distance to the true target.

Figure 5.16: The MKBK series expansion of β′(x;L, b) from eq. (3.110), used to model synthesized
data representing SAR change images. That is, the data points are the quotients of IID RVs
following K or G0 distributions, as specified in the subfigure titles. The analytically complicated
target PDF was replaced with a kernel density estimate based on 1,000,000 data points, and
the measure is the Kullback-Leibler distance to this target PDF, mean of 1,000 iterations.

In Figure 5.16, we present the results of applying the MKBK series expansion of the two-
parameter β′(x;L, b) to synthesized SAR change detection scenario. Specifically, modeling the
target PDFs are the distributions followed by the quotient of either two IID K distributed RVs,
or two IID G0 distributed RVs. The distribution parameters are the same as in Tables 5.1 and
5.2, except that we saw how the series expansions methods were invariant to the g parameters
in G0(·), so we instead present two cases where M = −20.

The immediate impression is that the method is fairly successful, provided the samples are
large enough. The two K distribution cases with M = 1 are exceptions in this regards, but we
recall that the K(·) targets with low values of M have been extremely challenging for the series
expansion methods throughout this chapter, and that the dependency on M was discussed in
more detail in Section 5.2.6. However, there are only slight benefits to be had from the series
expansions for 10,000 data points, and no benefits if the samples are even smaller.

An interesting point can be raised if we revisit the expression for the theoretical log-cumulants of
the quotient of two independent RVs in eq. (2.55). Let X denote the target RV, i.e. X = X1/X2,
where X1 and X2 are IID, and let κXi,n denote the nth-order log-cumulant of X1 and X2. Then

30As with several other complicated product and quotient distributions, the Meijer G function is required to
get an expression for the PDFs, see [Nicolas, 2011].

31We take the liberty of omitting an explanation of kernel density estimation, as it is not strictly relevant to
this thesis. Among the original references concerning this method are [Rosenblatt, 1956] and [Parzen, 1962],
with modern takes on this popular technique easily found online.
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eq. (2.55) gives

κX,n = κXi,n + (−1)nκXi,n =

{
2 · κXi,n n even,

0 n odd. (5.25)

Inserting the expression for the log-cumulants of the two-parameter beta prime kernel in eq.
(2.70) gives us the log-cumulant differences

∆κn = κX,n − κβ′,n =


log b n = 1,

2 · (κXi,n − ψ(n−1)(a)) n = 2, 4, 6, . . . ,
0 n = 3, 5, 7, . . . .

(5.26)

In other words, the odd log-cumulants except the first are all zero. This effect actually manifests
itself in Figure 5.16 as well. Observe how there is never any improvement when going from
N = 2 to N = 3; this is presumably because ∆κ3 = 0, so any "correction" performed by the
MKBK series at that stage only introduces estimation error. Across all subfigures, we see that
this increase in error becomes smaller as the samples become larger, i.e. when 〈κX,n〉 → κX,n = 0.
This effect is also noticeable when going from N = 4 to N = 5, and to a lesser degree when
going from N = 6 to N = 7. Presumably, the results in Figure 5.16 would be improved by
taking eq. (5.26) into account.

Based on eq. (5.26), we can also satisfy ∆κ1 = 0 by setting b = 1, regardless of the sample at
hand. That is, under the assumption that we have two independent images of an area which
has not undergone change, we can reduce the beta prime kernel to a single parameter by fixing
b = 1 in eq. (2.69):

β′(x; a) ≡ Γ(2a)

[Γ(a)]2
xa−1

(1 + x)2a
, x, a > 0. (5.27)

This results in an elegant series expansion. For example, we could choose the kernel parameter
a s.t. ∆κ2 = 0. But from eq. (5.26) we know that ∆κ3 = ∆κ5 = 0, and by the properties of the
Bell polynomials, so then only one correcting term is required to correct for up to ∆κ5. That is,
the MKBK series in eq. (3.102) is simplified to

fX(x) =

[
1 +

∆κ4

4!
M ′

4

(
x

1 + x

)
+

∆κ6

6!
M ′

6

(
x

1 + x

)
+

∆κ2
4 + ∆κ8

8!
M ′

8

(
x

1 + x

)
+ · · ·

]
β′(x; a).

(5.28)
This has the remarkable property that the single-parameter β′(x; a) can be corrected for up to
∆κ5 with a single correcting term.

Additionally, we can use take similar approach as in Section 5.2.6, setting the kernel shape a
equal to the global estimate of the target parameter L and task the MKBK series expansion
with modeling the effects of the texture. For instance, assume that X1 and X2 are IID K with
parameters L,m,M , i.e. that κXi,n = κK,n ∀n. Combining eq. (5.8) and (5.26) with b = 1 and
a = L gives

∆κn = κX,n − κβ′,n =

{
2 · ψ(n−1)(M) n even,

0 n odd. (5.29)

This is reminiscent of eq. (5.19), and the discussion in Section 5.2.6 is highly relevant for this
case as well.

To summarize, we said in previous sections that correcting three-parameter beta prime kernel
with the MKBK series expansion seems unsuited at modeling the target PDFs from Section
5.1.2, by virtue of being too slow and complex. When it comes to SAR change detection on the
other hand, the MKBK series not only shows promising experimental results, but also significant
possibilities when it comes to simplifying the kernel and its series expansion.
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5.4 Experiments on Real SAR Data
We end this chapter with a few examples of the series expansion methods applied to real SAR
data. First, we fit the MK series expansions to data from different classes in a single SAR image.
Then, we use the MKBK series to SAR change detection as described in Section 5.3.5.

The SAR data we use is a single polarimetric image of San Fransisco.32 This image is diverse
and big enough to be the only one we need for this thesis. It is a single look image, i.e. L = 1,
and applying a simple averaging filter gives us realistic data for the cases L = 4 and L = 16.33

5.4.1 Modeling SAR Image Data

A Water Region The first region we look at is by far the largest, comprising over a quarter
million pixels.

Figure 5.17 presents the image of San Fransisco with the "water" region framed and enlarged.
It is clear that the selected region is heterogeneous in the sense that it has texture, but that it
consists of only a single class.34 We can perhaps recognize some swells, which are far too big to
be considered texture, but must be tolerated when the tradeoff is such a large region and vast
amount of pixels.

Qualitatively, we can see from the bottom plots in Figure 5.17 that the log-normal kernels and
its two series expansions struggle heavily to fit the data when x→ 0, since Λ(x;µ, σ)→ 0 as
x → 0 regardless of the parameter choices. For L = 4 we can see both the log-normal and
gamma kernels struggling to fit the data, but while the series expansions of the former offer
significant improvement, the MKGK series overcompensates around the mode and reverberates
in the tail.35 As we have come to expect, the series expansion methods perform well for L = 16
with this many data points. However, we see the same tendency to overcompensate in the
MKGK series and its kernel, albeit to a much smaller degree.

Table 5.4: The MK series expansions fitted to the blue channel intensities in the "water" region
of our SAR image, Kullback-Leibler distance to a kernel density estimate based on the entire
region. The kernels are tailored and the series expansions correct for ∆κ3 and ∆κ4, mean of 100
iterations where 100, 1,000 or 10,000 data points were drawn at random, best method in bold.

L = 1 L = 4 L = 16

Method\Data Points 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

MKGK kernel 1.28·10−2 2.54·10−3 1.23·10−3 2.41·10−2 1.47·10−2 1.36·10−2 1.69·10−2 7.46·10−3 6.46·10−3

MKGK series 2.76·100 8.67·10−1 1.09·10−1 1.26·10−1 8.11·10−2 7.59·10−2 4.99·10−2 1.23·10−2 4.93·10−3

MKLK kernel 6.18·10−2 5.13·10−2 5.02·10−2 1.43·10−2 5.81·10−3 4.71·10−3 1.16·10−2 2.18·10−3 1.30·10−3

MKLK series 3.68·10−1 9.36·10−2 3.79·10−2 2.88·10−2 2.41·10−3 4.81·10−4 3.07·10−2 2.25·10−3 2.07·10−4

MKE series 1.13·10−1 1.45·10−2 7.91·10−3 3.47·10−2 2.19·10−3 2.77·10−4 3.60·10−2 2.49·10−3 2.07·10−4

MKBK kernel 1.71·10−2 2.03·10−3 2.87·10−4 1.23·10−2 2.00·10−3 7.05·10−4 1.29·10−2 1.58·10−3 2.88·10−4

MKBK series 2.05·10−1 1.18·10−1 5.17·10−2 3.44·10−2 2.62·10−3 3.30·10−4 3.37·10−2 2.97·10−3 2.25·10−4

32Polarimetric SAR data consists of multiple channels, corresponding to different combinations of the emitted
and incident radiation polarizations. These channels can be combined linearly in the Pauli basis, to better match
physical interpretations of the surface, see [Cloude, 2010] for more information. As the methods presented in this
thesis are limited to information from a single channel, we choose the best one w.r.t. each class we examine here.

33Due to the inevitable spatial correlation between neighboring pixels, averaging four pixels lead to non-integer
equivalent number of looks L < 4, and similarly, averaging 16 pixels leads to L < 16, see [Anfinsen et al., 2009].

34Very shallow ocean and oil slicks are examples of ocean areas with fundamentally different properties w.r.t.
radar reflectivity.

35We saw the same thing happen already in Figure 5.2, where the MKGK series corrected for the gamma
kernel on the left side of the mode, causing perturbations in the tail. This behavior motivates further exploration
of non-tailored kernel parameter estimates, which might result in a more balanced approach.
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Figure 5.17: The SAR image with the chosen "water" region framed (top left), and an enlarged
version of the "water" region (top right). The entire image is 2,800 by 2,800 pixels, with the
"water" region consisting of over a quarter million pixels. Bottom: Histograms of all blue channel
intensities within the "water" region, and the MK series expansions correcting for ∆κ3 and ∆κ4.
We included the raw single-look data (left), and averaged data corresponding to L = 4 (center)
and L = 16 (right).

Table 5.4 presents the quantitative results when drawing samples at random from the "water"
region. Each sample consisted of 100, 1,000, or 10,000 different data points, but each data
point could be part of several samples. The choice was made to draw each data point in the
sample independently.36 As there was just over a quarter million pixels in the selected region,
we can expect there to be some correlation arising from re-use of data points with a sample size
of 1,000. For sample size 10,000 we expect significant correlation, since each data point was
included in almost four samples on average. We measured the Kullback-Leibler distance to a

36The alternative was to draw random subregions, and use all pixels in those regions to get geographically
adjacent data points to test on.
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kernel density estimate based on all pixels in the region.37

The immediate impression from Table 5.4 is dominated by the strength of the bare kernels, which
outperform the series expansions in 7 of the 9 cases. However, as we have argued before, the
beta prime kernel is not really comparable to the other kernels due to its much more complicated
and computationally demanding nature. Disregarding the MKBK kernel and series, the results
are very much in line with our findings for synthesized data. That is, we need more than 100 or
even 1,000 data points to warrant correcting for up to ∆κ4,38 and the series expansions of the
log-normal kernel is clearly the most reliable when it comes to improving on the kernel.

One key observation from this section is how the log-normal kernel and its series expansions
struggle to fit PDFs which are non-zero at x = 0, here corresponding to single look data.. This
is the result of the fact we observed in Figure 5.17, i.e. x→ 0⇒ Λ(x;µ, σ)→ 0 ∀µ, σ, which we
discussed above.

Although it is not surprising that the three cases with 100 data points in Table 5.4 were best
estimated by kernels, we should note that the three cases were best modeled by three different
kernels, supporting the notion that SAR data analysts must master a variety of methods.

A Park Region The second region we look at is much smaller than the first, and is perhaps
more realistic in that regard with its almost 18,000 pixels.

Figure 5.18 presents our "park" region, which is in fact a segment of the Golden Gate Park. We
can see that the entire region belongs to a single, heterogeneous class, but there are some visible
features, presumably clearings and groves. From the histograms and fitted series expansions we
see largely the same trends as in Figure 5.17, even though we can see from the histograms that
we have much fewer data points in this instance.

Table 5.5: The MK series expansions fitted to the green channel intensities in the "park" region
of our SAR image, Kullback-Leibler distance to a kernel density estimate based on the entire
region. The kernels are tailored and the series expansions correct for ∆κ3 and ∆κ4 (with an
explicit exception), mean of 100 iterations where 100, 500 or 1,000 data points were drawn at
random, best method in bold.

L = 1 L = 4 L = 16

Method\Data Points 100 500 1,000 100 500 1,000 100 500 1,000

MKGK kernel 3.05·10−2 1.83·10−2 1.64·10−2 3.30·10−2 2.22·10−2 2.11·10−2 1.83·10−2 7.77·10−3 7.09·10−3

MKGK series 3.79·100 3.53·100 3.22·100 1.29·100 7.86·10−1 6.05·10−1 3.34·10−1 8.21·10−2 4.27·10−2

MKLK kernel 3.94·10−2 2.80·10−2 2.65·10−2 1.98·10−2 1.04·10−2 9.53·10−3 2.52·10−2 1.58·10−2 1.49·10−2

MKLK series, N = 3 2.15·10−2 8.68·10−3 8.09·10−3 2.77·10−2 3.50·10−3 1.92·10−3 4.92·10−2 9.89·10−3 6.78·10−3

MKLK series 1.36·10−1 1.35·10−1 2.45·10−1 3.34·10−2 4.21·10−3 2.84·10−3 1.32·10−1 1.02·10−2 7.46·10−3

MKE series 5.13·10−2 4.02·10−2 1.07·10−1 5.02·10−2 5.21·10−3 2.59·10−3 1.15·10−1 1.49·10−2 8.05·10−3

Table 5.5 presents the numerical results of our experiment on the "park" region. Compared to
the experiment on the much larger "water" region, we reduced the number of samples drawn to
100, and limited the maximum number of observations in each sample to 1,000.

We omitted the beta prime kernel and the MKBK series expansion, to get a comparison between
the methods whose complexity and computational demand are similar. For the record, the
fitted beta prime kernel was in most cases better than all other methods, and sometimes quite
clearly. The MKBK series expansion failed to improve on the estimates of its kernel. Instead,

37We also measured the Bhattacharyya distance, but omitted those findings as they were practically identical
to dKL(·).

38Repeating the experiment while correcting only for ∆κ3 gave better estimates in many cases, especially for
100 and 1,000 data points. This is also in line with our previous findings. As before, we still correct for ∆κ4 in
Table 5.4 to distinguish between the MKLK and MKE series, and between the MKBK series and its kernel.
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Figure 5.18: The SAR image with the chosen "park" region framed (top left), and an enlarged
version of the "park" region (top right). The entire image is 2,800 by 2,800 pixels, with the
"park" region consisting of almost 18,000 pixels. Bottom: Histograms of all green channel
intensities within the "park" region, and the MK series expansions correcting for ∆κ3 and ∆κ4.
We included the raw single-look data (left), and averaged data corresponding to L = 4 (center)
and L = 16 (right).

we included the log-normal kernel corrected for logarithmic skewness, which we recall from
Section 5.3.3 is a special case of both the MKLK and MKE series, occurring at N = 3 in the
former. Surprisingly, this series was the top performer for the single look data, improving on
the weakness the expansions of Λ(x;µ, σ) had for L = 1 in Table 5.4.

Other than that, we can make many of the same observations as with Table 5.4, e.g. higher
numbers of data points justifies more correcting terms, the MKGK series struggles to improve
on its kernel, and so on. Finally, we note that repeating the experiment using the Bhattacharyya
distance gave results which were more favorable towards the MKE series. Specifically, the latter
outperformed the MKLK series in all but one case, although the differences were not large. This
is in line with previous experiments.

An Urban Region The last region we investigate is an urban area, which in terms of size lies
between the first two regions, at just above 80,000 pixels.
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Figure 5.19: The SAR image with the chosen "urban" region framed (top left), and an enlarged
version of the "urban" region (top right). The entire image is 2,800 by 2,800 pixels, with the
"urban" region consisting of more than 80,000 pixels. Bottom: Histograms of all red channel
intensities within the "urban" region, and the MK series expansions correcting for ∆κ3 and
∆κ4. We included the raw single-look data (left), and averaged data corresponding to L = 4
(center) and L = 16 (right).

Figure 5.19 gives an overview of the "urban" region we chose. We can see that the area is
quite heterogeneous, but belonging to a single class. The only distinguishable features are the
roads, which manifest as a mesh, and some pockets of green, presumably from small local parks.
The histograms indicate that this is a more challenging case than the two previous ones. We
could perhaps have expected this, as [Frery et al., 1997] associated urban areas with extremely
heterogeneous data, which is modeled with low values of the parameter M . Throughout this
chapter we have seen that, all else equal, lower values of M reduced the accuracies of the MK
series expansion, e.g. in Table 5.2.
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Table 5.6: The MK series expansions fitted to the red channel intensities in the "urban" region
of our SAR image, Kullback-Leibler distance to a kernel density estimate based on the entire
region. The kernels are tailored and the series expansions correct for ∆κ3 and ∆κ4 (with an
explicit exception), mean of 100 iterations where 100, 1,000 or 5,000 data points were drawn at
random, best method in bold.

L = 1 L = 4 L = 16

Method\Data Points 100 1,000 5,000 100 1,000 5,000 100 1,000 5,000

MKGK kernel 8.32·10−2 6.96·10−2 6.83·10−2 1.79·10−1 1.62·10−1 1.61·10−1 1.44·10−1 1.31·10−1 1.30·10−1

MKGK series 3.83·100 3.73·100 3.73·100 3.39·100 3.32·100 3.32·100 2.91·100 2.88·100 2.88·100

MKLK kernel 1.47·10−2 5.08·10−3 4.58·10−3 2.19·10−2 1.32·10−2 1.27·10−2 2.30·10−2 1.44·10−2 1.38·10−2

MKLK series, N = 3 2.65·10−2 4.71·10−3 4.02·10−3 2.32·10−2 6.75·10−3 5.79·10−3 1.73·10−2 3.16·10−3 2.15·10−3

MKLK series 7.85·10−2 5.57·10−3 3.13·10−3 2.40·10−2 6.44·10−3 5.37·10−3 1.90·10−2 3.19·10−3 2.18·10−3

MKE series 4.98·10−2 4.54·10−3 2.62·10−3 3.82·10−2 1.12·10−2 9.75·10−3 2.83·10−2 5.16·10−3 3.58·10−3

Table 5.6 contains the results of our experiment on the "urban" region. The number of data
points and iterations was again dictated by the total number of pixels in the region. We chose to
omit the MKBK kernel and series again, in order to compare only the simpler, faster methods.
It should be noted that that beta prime kernel provided the best PDF estimate in only four
cases (two when using the Bhattacharyya distance), and was then only marginally better than
the second best method.39

Regardless of the dissimilarity measure used, the MKLK and MKE series matched each other
in terms of the results. Again we recognize the trends that more data and higher values of L
justify more correcting terms.

5.4.2 Modeling in a SAR Change Detection Scenario

We now continue to explore the use of the MKBK series in SAR change detection, building
on the experiment of Section 5.3.5. We use the regions we picked out in the previous section,
focusing on the cases L = 4 and L = 16. We omitted the case L = 1 as change detection on
single look data was simply too difficult to model with these methods.40 For each region, we
split the pixels into two groups, shuffled them and created quotient data points, simulating the
ratio of two observations of unchanged regions.41 First we present histograms with fitted MKBK
series expansions with varying numbers of correcting terms. Then we repeat those experiments
100 times, using smaller samples, and tabulate the mean distances to the target PDF. The latter
is again substituted by kernel density estimates based on the entire region.

As in Section 5.3.5, we use the MKBK series under the assumptions that the shapes are equal,
i.e. a1 = a2 = L. This is completely true in the present experiment, since we are examining
quotients of pixels from the same region of a single image. We also take into account eqs. (5.26)
and (5.29), where we found that b = 1 and ∆κn = 0 for n odd. Recall that this resulted in the
highly simplified MKBK series in eq. (5.28).

Figure 5.20 presents the histograms of the quotient data we produced for L = 4 and L = 16 in the
regions from the previous section. The plots corresponding to the "water" region demonstrates

39The Bhattacharyya distance agrees with dKL(·), in that the log-normal kernel corrected for logarithmic
skewness performs very well in this scenario.

40We find support for this claim in [Rignot and van Zyl, 1993], where the authors comment that the intensity
quotients works best with large L. In the same article they discuss a different technique which is suitable to
single look data.

41Naturally, realistic applications would have to deal with the fact that two distinct acquisitions usually do not
have perfectly identical statistical properties. That is, the images might be taken from slightly different angles,
vegetation is subject to seasonal changes and so on. Accounting for these effects by comparing two distinct
images is a natural extension of this experiment, but beyond the scope of this thesis.
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Figure 5.20: Histograms and fitted MKBK series expansions, based on data quotients produced
from all pixels in each of the regions presented in Section 5.4.1. The MKBK series expansions
are based on the assumptions discussed in Section 5.3.5, which culminated in eq. (5.28).

how well the beta prime kernel fits the data.42 In the following, we make the situation more
challenging by basing the PDF estimates on smaller samples. Also, our purpose here is to
(potentially) validate the approach in ideal situations, leaving it to future work to assess whether
the series expansion can correct for effects such as slight changes in image angles and vegetation
seasonality.

We recall from the previous section that the "park" region contained significantly fewer pixels.
This is clearly apparent in the jaggedness of the histograms in Figure 5.20. This seems to have
resulted in more distinct estimates, i.e. larger differences between the kernel, N = 4 and so on,
at least for L = 4. When it comes to the actual PDF estimates, we see that the MKBK series
with N = 4 and N = 8 tries to model the sharper peak of the "park" histogram with L = 4,43

while the other corrections are minimal, or even detrimental.

The "urban" region was bigger than the "park" region, but significantly more heterogeneous
than either of the other two. This manifested itself in data with very high variance,44 and seemed
to cause problems for the MKBK series expansion, especially for L = 4. Our implementation
was questionable for the "urban" region, as it inevitably produced some quotients where one of
the pixels corresponds to a street and the other to a building (or a small park). These effects
would not be as prevalent in real urban change detection. Besides, urban areas exhibit more
deterministic (less stochastic) scattering, and different methods are warranted, namely coherent
change detection.

In Figure 5.21, we present the results of an experiment designed to assess the viability of the
42Recall that β(x;L) is the distribution followed by the quotient of two IID gamma RVs with shape L.
43The same effect is present in the "water" data with L = 4, but to a much smaller degree.
44We observed values of x > 1,000 for L = 4 and x > 200 for L = 16, but we had to truncate the histograms

at x = 7 for the sake of clarity.
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Figure 5.21: The convergence of the MKBK series expansion from eq. (5.28), applied to samples
of different sizes drawn from the data sets presented in Figure 5.20. Kullback-Leibler distances,
mean of 100 iterations.

one-parameter MKBK series expansions from eq. (5.28). Thus, this is an extension of the
experiment from Figure 5.16 to real data. As the number of pixels was essentially halved in the
process, we must expect significant correlation in the samples, since the data points are heavily
reused.

We see in Figure 5.21 that our approach proved successful for the "water" region, when using
the largest sample size of 10,000. Coincidentally, this region also was the least heterogeneous,
as discussed in the previous section. Applying the same method to the "park" region was not
successful, and comparing the plots between the two regions might indicate that the relatively
smaller sample sizes do not justify using any correcting terms. We also experience failure for
the "urban" region, in spite of the slightly larger sample sizes. Presumably, this is due to the
undesirable effect of our implementation and the extremely heterogeneous nature of urban SAR
data, which we discussed above. We base this on our experience throughout this chapter, as we
have seen a link between the degree of heterogeneity and the ability of the series expansions
to accurately model the data. We saw signs of this already in Section 5.2.6, and the same
tendency was present in Sections 5.3.5 and 5.4.1. In the "urban" histograms in Figure 5.20 we
were warned that correcting the beta prime kernel would probably be counterproductive.

To summarize, our findings were not unexpected based on our experiments on synthesized data
and our impressions from the histograms in Figure 5.20. The single-parameter MKBK series
does appear to have merit if the regions are large enough and not too heterogeneous. We have
seen three examples which demonstrate both success and failure. 10,000 data points appears
to be the point where we can be reasonably hopeful when applying the MKBK series. As the
18,000 pixel "park" region in Figure 5.18 demonstrates, the spatial resolutions of modern sensors
are already at a point where this threshold is not unrealistic, with future improvements only
working in favor of the series expansions.





Chapter 6

Conclusion

The time has come to conclude. The goals we listed in Section 1.2, have all been accomplished.
However, it turned out that the MKE series, presented in [Pastor et al., 2014] outperformed all
our novel series expansions. Thus, we could say that the main contributions of this thesis is the
MK series expansion framework and the experiments, which strongly supports the theoretical
and practical merit of the MKE series in particular.

The design of the experiments in Chapter 5 was based on a conscious choice to cover a wide range
of topics in this limited format. Perhaps the biggest compromise was to present only the mean
of the distances between the PDF estimates and the true targets in Section 5.3. Naturally, it is
relevant whether some methods have larger estimation variances than others, and to determine
whether one method was significantly better than the others, in the strict, statistical sense of
the word. On the other hand, this would have ballooned e.g. Section 5.3.2 to the point where
we would have had to omit other sections. The intention was to give the reader an overview of
what the MK series expansions are, and what they could possibly be used for. From that point
of view, the somewhat shallow nature of some of the experiments was deemed necessary.

The experiments were also designed such as to demonstrate both where the MK series expansion
fail and where they succeed. For example, if a series expansion always converged, we reduced
the number of data points or tweaked the target distribution to the point where we could
demonstrate failure also.

This chapter is organized as follows. We present our conclusions on the theoretical aspects of
this thesis first, and afterwards we turn to the experimental aspects. We end this chapter with
some suggestions for future work.

6.1 Conclusions about the Theoretical Contributions

6.1.1 The MK Series Expansion Framework

The central topic for this thesis was the framework for series expansions of PDFs using MK
statistics, and the entirety of Chapter 3 was devoted to this subject.

The most concise way to summarize the MK series expansions framework would be to say that
it is an almost perfect logarithmic scale analogy of the classical series expansions. The moments
and cumulants are replaced by their logarithmic counterparts, the derivative operator Dx is
replaced by Dxx, which is closely related to xDx = Dlog x, the Gaussian kernel is replaced by the
log-normal kernel to arrive at the MKE series, and Hn(x) is replaced by Hn(log x).
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By introducing a full framework for the MK series expansions, we will hopefully draw more
attention to the MKE series, which was introduced in [Pastor et al., 2014]. We have also shown
that the MKE can be derived using the inverse MT, i.e. wholly inside the realm of MK statistics.

We laid the foundation for the MK series expansion in Section 3.1.3, by using the arbitrary
kernel ρ(x). We introduced Pn(x) as the functions implicitly defined by applying the Mellin
derivative to the arbitrary kernel, thereby giving expressions we could evaluate for the series
expansions. We derived a recursive formula for Pn+1(x), which turned out to be useful when we
later derived specific series expansions.

Then, we replaced ρ(x) with γ(x), Λ(x), and β′(x) to provide relevant examples of the series
expansions. The MKGK series showed how a series expansion of the gamma kernel was made
possible by MK statistics.1 The MKLK series demonstrated a strong analogy to the classical
Gram-Charlier Gaussian kernel series, and serves as a useful intermediate step when trying to
understand the MKE series. The MKBK series is a proof of concept of a three-parameter kernel,
since there are numerous potential kernels with three parameters (or more). The MKBK series
was also reduced to two or even a single parameter in a practical scenario.

In each of the series expansions, we evaluated the corresponding special cases of Pn(x). For the
MKGK series, we named them Mn(x). We proved that Mn(x) is an nth degree polynomial in x
with leading coefficient 1, and how they are linear combinations of the generalized Laguerre
polynomials and a type of confluent hypergeometric functions.2 For the MKLK series, we showed
how that specific instance of Pn(x) is actually the well-known Hermite polynomial, but with
log x replacing x in the argument. For the MKBK series, we named them M ′

n(·), and showed
that they are nth degree polynomials in bx/(1 + bx).

To derive this framework, we had to employ what we called the Mellin derivatives Dxx and
xDx = Dlog x. Based on the current literature, it appears that these derivative operators have
not been used in the context of MK statistics before.

6.1.2 Use of the Bell Polynomials

Throughout Chapter 3, we used the Bell polynomials Bn(x) to represent combinatoric rela-
tionships in the series expansions, which arises due to the very nature of the log-moments
and log-cumulants. This allowed us to present concise and explicit expressions for the series
expansions. Without the use of Bn(x), we would have had to resort to implicit definitions such
as stating “we collect the terms of like power in Dxx”, or by using sets. The most significant
simplification was seen in the MKE series, where the Bell polynomials were used to represent
more complex combinatorics than in the other series expansions.

These findings are also directly applicable to the classical Gram-Charlier and Edgeworth series
expansions. Using the Bell polynomials in these classical methods was the basis of Chapter 4.
The result is what appears to be the first explicit definition of Gram-Charlier and Edgeworth
series. As these classical methods are applicable for nearly Gaussian data, which is a much
more common situation than the non-negative case, this contribution might eventually prove to
be the most significant of this thesis.

1Recall that the classical Gram-Charlier gamma kernel series of Section 2.4.4 did not actually expand γ(x),
but used xnγ(x) as the kernel for the nth term.

2Some of these proofs and relationships were placed in the appendix.
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6.1.3 Other Contributions to the Classical Series Expansions

In addition to the introduction of the Bell polynomials, we made some smaller contributions
w.r.t. the classical series expansion methods. In Chapter 4, we derived the Gram-Charlier series
with an arbitrary kernel, and subsequently the Edgeworth series. This derivation was different
from other approaches in the literature, not only in its use of Bn(x), but also in the sense
that we emphasized the most general situation first. Then, the derivation branched out to the
Gram-Charlier Gaussian kernel series and the Edgeworth series. This clarifies how the two series
are in fact very similar, and a direct consequence of choosing the Gaussian kernel.

For the classical series expansion of the gamma kernel, we pointed out that the confluent
hypergeometric function of the first kind allows for a much simpler expression for the coefficients
of the series.

6.2 Conclusions from the Experiments
In the paper which is appended to this document, we compare the MKGK, MKLK, and MKE
series expansions with competing methods, in experiments which are complimentary to those
included in this thesis. As the MKE series was recently discovered, the experiments in that
paper and this thesis constitutes a significant contribution to understanding the performance of
that series, while the other MK series expansions have not been assessed before at all.

We let the target PDFs be known at first (the approximation setting), and then unknown
(the estimation setting). As we expected beforehand, the convergence was degraded when the
information about the target PDFs was withheld from the methods, and more so when the
number of data points was low. Recall that our quantitative performance assessments disregard
the tails of the distribution, as we qualitatively concluded that the MK series expansion methods
are unsuited for this purpose.3

In general, our experiments promote the MKE series from [Pastor et al., 2014] as the standout
performer, not least due to its flexibility in modeling all the different target distributions we have
tested the series expansions on. The fact that expansions of the log-normal kernel outperform
expansions of the gamma kernel for target PDFs which are so closely related to γ(·), is perhaps
counterintuitive. We feel that this is due to two attributes of Λ(x;µ, σ): The log-cumulants,
listed in eq. (2.80), are the simplest possible for any two-parameter PDF, with the key property
that κΛ,n = 0 ∀n ≥ 3. This entails that the log-cumulant differences in the series expansions are
reduced to the target log-cumulants, which appears to be significant. The other factor is that
the MoLC estimates of µ and σ2 coincide with the ML estimates. They are also the minimum
variance unbiased estimates, barring a practically insignificant correction to the log-variance
estimate. Support for this claim is found in Figures 5.6 through 5.10, where the MoLC estimates
were always clearly the best parameter values in the MKLK and MKE series, with a lot more
ambiguity in the MKGK and MKBK series.

6.2.1 The MKLK and MKE Series

When the number of data points was low, corrections beyond ∆κ3 were rarely warranted.
Correcting only for ∆κ3, as in eq. (5.20), the MKLK and MKE series coincide at what we called
the log-normal kernel corrected for the logarithmic skewness.

3This mirrors their classical counterparts, see [Blinnikov and Moessner, 1998]. To recapitulate, we chose to
compare only the regions of x where f(x) was above 1/1000th of its maximum value. Different threshold values
would have given different results, but additional testing verified that this effect was not too significant.
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When the number of data points was high enough that further corrections improved the PDF
estimates, the MKE series outshone the MKLK series. This mirrors the performance of the
classical Gram-Charlier and Edgeworth series expansions of the Gaussian kernel. We can
postulate that also the roles of the MKLK and MKE series will come to match their classical
counterparts, with the MKLK series mainly serving as an intermediate step in the derivation of,
and way of better understanding, the MKE series.

We have validated the use of the MKE series expansion on real SAR data. Except when the
number of data points was very low, the accuracy was usually better than the gamma kernel and
MKGK series, competing with the computationally much more demanding fitted beta prime
distribution.

6.2.2 The MKGK Series

The initial results of the MKGK series was quite frankly disappointing, both in terms of
general accuracy and convergence properties. However, experimenting with non-tailored kernel
parameters revealed that alternative parameter choices were associated with higher accuracy,
often comparable to that of the MKLK series.

In Sections 5.2.6 and 5.3.4 we explored a SAR-specific scenario. The gamma kernel parameters
were assigned values corresponding to physical quantities,4 and the MKGK series was tasked
with modeling another physical process which affects the measurements. In practice, L would
be a highly accurate global estimate, and for each class we wish to model, we only need to
estimate the mean m. As we saw in Section 5.3.4, we can then improve the resulting estimates
by correcting for ∆κ1 and ∆κ2. Based on Figure 5.15, this approach might even exceed the
accuracy of the much slower method of fitting both parameters freely to the data from each
class.

In other words, these results were encouraging, indicating that the MKGK series could find
itself useful in specific problems. This was in stark contrast to the results of simply fitting the
MKGK series with tailored kernel to SAR data, which was unsuccessful.

6.2.3 The MKBK Series

At one point in Section 5.3.3, we said that the three-parameter beta prime kernel was not suited
for a series expansion in most real-world applications. This was based on the failure of the series
to improve on the kernel. We suspect that this is due to the kernel itself being so complex (i.e.
based on three estimated parameters), that the additional model complexity of correcting terms
is overshadowed by the error resulting from estimating so many quantities.

However, the MKBK series was more successful in the application to SAR change detection in
Sections 5.3.5 and 5.4.2. With a few assumptions, the beta prime kernel was reduced to two or
even a single parameter, eliminating the need for a time consuming numerical solution of a set
of equations to find the parameter estimates. The performance was in some cases encouraging,
provided that the area was not too heterogenous and that a sufficient number of data points
were available.

6.2.4 Modeling Real Data

Throughout Chapter 5, we saw how the MK series expansions required relatively large amounts
of data to incur improvement. A rule of thumb could be that with approximately 10,000 data

4As opposed to the values imposed by the constraint ∆κ1 = ∆κ2 = 0
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points we can begin to expect better accuracy from the series expansions than their kernels. As
we saw when choosing the "park" region in Figure 5.18, modern sensors are capable of producing
SAR images with large number of pixels for relatively small areas.

In more general terms: As the technological development continues, the MK series expansions
will become more relevant, due to the ever increasing number of data points. We know that this
increase permits more complex models, but fitting a three-parameter PDF is usually extremely
demanding compared to two-parameter PDFs.5 The series expansions, on the other hand, can
utilize the information from higher order log-cumulants in a very efficient manner. That is, the
series expansion methods allows us to use more complex models, without a sudden spike in
computational requirements. We saw this happening in our experiments when the MKE series
approaches the accuracy of fitted three-parameter distributions which require exponentially
time.

6.3 Future Work
We end this chapter with some suggestions for future work based on the subjects in this thesis.

• Expand the synthesized and real data experiments of Chapter 5. Specifically, an analysis
which includes the variance of the estimation errors. This permits an assessment of whether
one method is significantly better than the others for certain target PDFs, in the strict,
statistical sense of the word. Another factor is the computation time associated with each
method, which this thesis discussed only in very broad strokes. Also, target PDFs included
in this thesis are naturally far from exhaustive, and PDFs from other fields should be
evaluated, e.g. data which is nearly log-normal.

• Further explore use of the MKGK and MKBK series in SAR-specific scenarios, as in
Sections 5.2.6, 5.3.4, and 5.3.5.

• Insert other kernels in both the classical and MK series expansion with arbitrary kernel.
Candidates for an MK series expansion are e.g. the inverse gamma or beta PDFs.6

• Expand the MK series expansion framework w.r.t. log-cumulant diagrams. In the literature
on MK statistics, distributions are often arranged according to their positions in a log-
cumulant diagram, see [Nicolas, 2002], [Anfinsen and Eltoft, 2011], [Anfinsen et al., 2011],
[Bombrun et al., 2011], [Deng et al., 2016], and [Deng and López-Martínez, 2016]. It
would be interesting to see if the location of the data in the diagram might predict the
performance of the various series expansion methods. Also, the method of parameter
estimation in [Anfinsen et al., 2011] is an interesting alternative, at least for the MKGK
series.

• Extend the MK series expansion framework to matrix-variate RVs and data. A natural
starting point for this would be [Anfinsen and Eltoft, 2011].

• Conduct a mathematical analysis of the error bounds of the MK series expansions. This
would presumably follow a similar path to the corresponding work on the classical series,
including [Esseen, 1945] and [Hsu, 1945], which was summarized in [Wallace, 1958].

• Attempt to apply the Bell-polynomials to the classical Cornish-Fisher expansion, which
was presented in [Cornish and Fisher, 1938] and generalized in [Hill and Davis, 1968]. The
Cornish-Fisher expansion is well suited to modeling the tails of distributions, an attractive

5Estimating three-parameter PDFs, such as K(·) and β′(·), often requires solving two equations simultaneously
with a numerical iterative procedure.

6This is not not the same as the beta prime kernel, but a closely related PDF.
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property when trying to detect objects or phenomena which manifests as extreme values
of X. This expansion has already been extended to MK statistics in [Pastor et al., 2016],
but use of Bn(x) (or other polynomials) could perhaps simplify the rather complicated
derivation and expression.7

• Explore the relationship between M ′
n(x) and the Jacobi Polynomials. A classical Gram-

Charlier series of the beta kernel using the Jacobi polynomials can be found in e.g. [Durbin
and Watson, 1951]. Since we have proven the relationship between the Mn(x) polynomials
used in the MKGK series, and the Laguerre polynomials used in the classical Gram-Charlier
gamma kernel series, it is natural to ask whether there exists a relationship between M ′

n(x)
and the Jacobi polynomials. Alternatively, a MK series expansion of the beta kernel might
result in Pn(x) which are somehow related to the Jacobi polynomials.

• Investigate the properties of the functions Pn(x), which were introduced in Section 3.1.4.
What types of kernels ρ(x) result in Pn(x) which are nth degree polynomials of (functions
of) x? What does this tell us about which kernels are possible or even good candidates
for the MK series expansion? This can also be done for the corresponding classical case in
Section 4.2.1.

7[Kendall et al., 1994] has an alternative derivation of the Cornish-Fisher expansion, which starts with the
Edgeworth series expansion. This can provide a simpler avenue for applying the Bell polynomials, compared to
using the original work in [Hill and Davis, 1968].



Appendix A

Supplementary Theoretical Results

A.1 The Laguerre Polynomials Scaled

A.1.1 Orthogonality

It will be shown here how the Laguerre polynomials’ orthogonality property can be extended
to the two-parameter gamma PDF γ(x; a, b) in eq. (2.57). Substituting x→ bx in eq. (2.122)
shows how scaling x also in L(a−1)

n (x) retains the property of the unscaled functions, namely
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where d(bx) = b dx was used.

A.1.2 Rodrigues Formula

We want to scale the argument of the Rodrigues formula by again substituting u = bx. The
effect on the differential operator becomes

Dn
u =

dn

dun
=

1

bn
dn

dxn
= b−nDn

x. (A.4)

Thus, by substitution into eq. (2.113) we obtain

L(a−1)
n (bx) =

1

n!
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x[ba−1+nxa−1+ne−bx], (A.5)

where the powers of b cancel, giving
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Dn
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By multiplying both sides with ba/Γ(a), which is constant w.r.t. x, this can be written as

L(a−1)
n (bx)

baxa−1e−bx

Γ(a)
=

1

n!
Dn
x

[
xn · b

axa−1e−bx

Γ(a)

]
, (A.7)

and if we restrict ourselves to x ≥ 0, we can recognize that

L(a−1)
n (bx)γ(x; a, b) =

1

n!
Dn
x[xnγ(x; a, b)]. (A.8)

A.2 Observations on Mn(x)

A.2.1 Mn(x) as Linear Combinations of Laguerre Polynomials
Lemma 4 The polynomials Mn(x) defined in eq. (3.20) are linear combinations of the general-
ized Laguerre polynomials, i.e.

Mn(x) =
n∑
k=0

{
n

k

}
(−1)kk!L

(a−1)
k (x), (A.9)

where
{
n
k

}
denotes the Stirling numbers.

Proof First, an identity regarding Dkxkf(x) for an arbitrary function f(x) is proven. By
applying the derivative operator and the product rule of differentiation, we see that

Dkxkf(x) = Dk−1[kxk−1f(x) + xkDf(x)] = Dk−1xk−1[(k + xD)f(x)]. (A.10)

This can be repeated, most easily by evaluating g(x) = (k + xD)f(x), giving

Dkxkf(x) = Dk−2xk−2[(k − 1 + xD)g(x)] (A.11)
= Dk−2xk−2[(k − 1 + xD)(k + xD)f(x)].

The general formula is now apparent as

Dkxkf(x) =

[
k∏
i=1

(xD + i)

]
f(x). (A.12)

A useful identity is that

(Dx− xD)f(x) = Dxf(x)− xDf(x) = f(x) + xDf(x)− xDf(x) = f(x), (A.13)

where the product rule was used again. It can be formulated without explicitly including f(x),
that is

Dx− xD = 1. (A.14)

This identity gives an alternative version of eq. (A.12) by shifting the index

Dkxkf(x) =

[
k−1∏
i=0

((xD + 1) + i)

]
f(x) =

[
k−1∏
i=0

(Dx+ i)

]
f(x). (A.15)

Now the proof of lemma 4 can be completed. Using eq. (2.160) on (−Dx)n gives

(−Dx)n =
n∑
k=0

{
n

k

} k−1∏
i=0

(−Dx− i). (A.16)
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Note that for any sequence of coefficients ξ0, ξ1, . . . , ξk−1, we have

k−1∏
i=0

(−ξi) = (−1)k
k−1∏
i=0

(ξi), (A.17)

that is, the sign can be separated from the factors. Applying this to eq. (A.16) gives

(−Dx)n =
n∑
k=0

{
n

k

}
(−1)k

k−1∏
i=0

(Dx+ i), (A.18)

where the expression from eq. (A.15) is recognized to give

(−Dx)n =
n∑
k=0

{
n

k

}
(−1)kDkxk. (A.19)

Multiplying both sides with the gamma kernel γ(x) completes the proof by using the definitions
of Mn(x) and L(a−1)

n (x) from eqs. (3.19) and (2.115)

(−Dx)nγ(x; a) =
n∑
k=0

{
n

k

}
(−1)kDkxkγ(x; a) (A.20)

Mn(x)γ(x; a) =
n∑
k=0

{
n

k

}
(−1)kL

(a−1)
k (x)γ(x; a) (A.21)

Mn(x) =
n∑
k=0

{
n

k

}
(−1)kk!L

(a−1)
k (x) QED. (A.22)

A.2.2 The Leading Coefficient of Mn(x)

Lemma 5 Mn(x) has leading coefficient 1 ∀n.

Proof The only term containing xn in eq. (A.9) is (−1)n/n!L
(a−1)
n (x), since L(a−1)

k (x) is a kth
degree polynomials.1 The leading coefficient of L(a−1)

k (x) is (−1)k/k! giving Mn(x) leading
coefficient {

n

n

}
(−1)nn!

(−1)n

n!
= 1, (A.23)

where it was used that
{
n
n

}
= 1 ∀n. Note that the Hermite polynomials in the classical

Edgeworth series are also defined to have leading coefficient 1.

A.2.3 Mn(x) and a Confluent Hypergeometric Function

Using the notation from [Daalhuis, 2010], Tricomi’s confluent hypergeometric function2 U(a, b, x)
has a close relationship with the Mn(x) polynomials, namely

U(−n, a, x) = (−1)nn!L(a−1)
n (x), (A.24)

1This is an alternative way of proving that Mn(x) is an nth degree polynomial, but it is less general than our
proof in Section 3.2.2, which we recall extends to all cases where P1(x) are first degree polynomials in x.

2This is not the same confluent hypergeometric function 1F1(a; b;x) which was used in Section 4.2.3. U(a, b, x)
was introduced in [Tricomi, 1947].
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where n must be a non-negative integer when used in the subscript of L(a−1)
n (x). Introducing the

function U(−n, a, x) slightly simplifies much of the preceding derivation, e.g. eq. (A.9), which is
reduced to

Mn(x) =
n∑
k=0

{
n

k

}
U(−k, a, x). (A.25)

However, this was deemed potentially confusing and is only mentioned here in case there are
readers who are already familiar with the confluent hypergeometric functions or are particularly
interested.

A.3 The Logarithmic Hermite Polynomials
In Section 3.3 we derived (−Dx)nΛ(x) = (−Dx)nΛ(x) first for the standardized kernel, then
generalizing that result to general log-mean and log-variance. Here we will derive the result for
the non-standardized Λ(x;µ, σ) directly, and we start by letting

u =
log x− µ

σ
, (A.26)

which gives
du

d log x
=

1

σ
⇒ d

du
=

d

d log x

d log x

du
=

d

d log x
σ, (A.27)

or, using different notation and the result in eq. (3.52),

Du = σ(xDx). (A.28)

The definition of the Hermite polynomials in eq. (2.82) gives

(−Du)
nα(u) = Hn(u)α(u), (A.29)

and as shown above, Du can be substituted along with u to give

σn(−xDx)
nα

(
log x− µ

σ

)
= Hn

(
log x− µ

σ

)
α

(
log x− µ

σ

)
, (A.30)

where u = (log x− µ)/σ was also used. The standardized Gaussian kernel is substituted with
the non-standardized version using eq. (2.24)

σn(−xDx)
n 1

σ
α(log x;µ, σ) = Hn

(
log x− µ

σ

)
1

σ
α(log x;µ, σ), (A.31)

where the factors σ−1 cancel. The relationship between the non-standardized version of the
log-normal and Gaussian kernels is the same as for the standardized versions, i.e. Λ(x;µ, σ) =
x−1α(log x;µ, σ) as stated in eq. (2.73). Thus, the result in eq. (3.51) is applied in the same
way as in the standardized situation, now giving

xσn(−Dxx)nΛ(x;µ, σ) = Hn

(
log x− µ

σ

)
α(log x;µ, σ) (A.32)

(−Dxx)nΛ(x;µ, σ) =
1

σn
Hn

(
log x− µ

σ

)
1

x
α(log x;µ, σ) =

1

σn
Hn

(
log x− µ

σ

)
Λ(x;µ, σ).

(A.33)

This derivation was done directly in the sense that the result for the standardized case in eq.
(3.50) was not used. Only the results in eqs. (3.51) and (3.52) were necessary to directly derive
the result for non-standardized Λ(x;µ, σ).
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A.4 Program Code
The program code use to produce the figures and tables in Chapter 5, has been made available
online at https://github.com/TorgeirBrenn/Mellin-Kind-Series-Expansions/. The pro-
gram used was Matlab, with one script for each experiment, designed to create the desired
figure or table cells. These script are perhaps not particularly interesting, but a lot of the
functionality was separated into custom functions. These functions can prove useful for others,
and they are listed with a short description below. All functions were written by me, Torgeir
Brenn, except where otherwise stated.

avgfilter.m A simple averaging filter.

betaprimepdf.m The beta prime distribution PDF.

bhattadist.m The Bhattacharyya distance.

Bpoly.m The Bell polynomials.

emplc.m The empirical log-cumulants.

g0pdf.m The G0 distribution PDF.

g0rnd.m G0 random number generator.

gcgamfit.m Fitting the Gram-Charlier gamma kernel series.

ggdpdf.m The GΓD distribution PDF.

ggdrnd.m GΓD random number generator.

hermitefast.m The Hermite polynomials, optimized.

hermiteHprob.m The Hermite polynomials.

hermoutprod.m The Hermitian outer product.

igampdf.m The inverse gamma distribution PDF.

igamrnd.m Inverse gamma random number generator.

imagees.m Stretching suitable for SAR images.

kdistfit.m∗ Fitting the K distribution.

kdistfitexact.m∗∗ Fitting the K distribution to a known target.

kldist.m The Kullback-Leibler distance.

kpdf.m The K distribution PDF.

krnd.m K random number generator.

laguerrefast.m The Laguerre polynomials, optimized.

mkbkfit.m∗∗ Fitting the MKBK series.

mkbkfitequalshapes.m Fitting the MKBK series with equal shape parameters.

mkbkfitexact.m∗∗ Fitting the MKBK series to a known target.

mkbkfitgivenparam.m Fitting the MKBK series with given parameters.

mkefit.m Fitting the MKE series.

https://github.com/TorgeirBrenn/Mellin-Kind-Series-Expansions/
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mkefitexact.m Fitting the MKE series to a known target.

mkgkfit.m Fitting the MKGK series.

mkgkfitexact.m Fitting the MKGK series to a known target.

mkgkfitgivenparam.m Fitting the MKGK series with given parameters.

mklkfit.m Fitting the MKLK series.

mklkfitexact.m Fitting the MKLK series to a known target.

mklkfitgivenparam.m Fitting the MKLK series with given parameters.

mlgamfit.m Fitting the gamma distribution using the ML estimates.

molcgamfit.m Fitting the gamma distribution using the MoLC estimates.

molcggdfit.m Fitting the GΓD using the MoLC estimates.

molcggdfitexact.m Fitting the GΓD to a known distribution using the MoLC estimates.

Mpoly.m The Mn(·) polynomials.

Mprimepoly.m The M ′
n(·) polynomials.

normalizepdf.m Ensures that a PDF is positive and integrates to unity.

paulibasis.m Transforms SAR data to the Pauli basis.

stirling2.m The Stirling numbers.

Timage.m Displays a polarimetric SAR coherency image.

∗ Made by Stian N. Anfinsen, based on functions by Olivier Harant and Lionel Bombrun.
∗∗ Made by Torgeir Brenn, heavily based on functions by Stian N. Anfinsen, Olivier Harant,
and Lionel Bombrun.
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A Framework for Mellin Kind
Series Expansion Methods

Torgeir Brenn, Stian N. Anfinsen

Abstract—Mellin kind statistics (MKS) is the framework which
arises if the Fourier transform is replaced with the Mellin
transform when computing the characteristic function from the
probability density function. We may then proceed to retrieve
logarithmic moments and cumulants, that have important appli-
cations in the analysis of heavy-tailed distribution models for non-
negative random variables. In this paper we present a framework
for series expansion methods based on MKS. The series expan-
sions recently proposed in [1] are derived independently and in
a different way, showing that the methods truly are Mellin kind
analogies to the classical Gram-Charlier and Edgeworth series
expansion. From this new approach, a novel series expansion is
also derived. In achieving this we demonstrate the role of two
differential operators, which are called Mellin derivatives in [2],
but have not been used in the context of Mellin kind statistics
before. Also, the Bell polynomials [3] are used in new ways to
simplify the derivation and representation for both methods, but
the Mellin kind Edgeworth series in particular. The underlying
assumption of the nature of the observations which validates
that series is also investigated. Finally, a thorough review of the
performance of several probability density function estimation
methods is conducted. This includes classical [4], [5] and recent
methods [1], [6], [7] in addition to the novel series expansion
presented in this paper. The comparison is based on synthesized
data and sheds new light on the strengths and weaknesses of
methods based on classical and Mellin kind statistics.

Index Terms—Synthetic aperture radar, non-negative random
variables, probability density function estimation, Mellin kind
statistics, method of log-cumulants, Gram-Charlier series, Edge-
worth series.
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CF Characteristic function.
CGF Cumulant generating function.
FT Fourier transform.
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GΓD Generalized gamma distribution.
MoLC Method of log-cumulants.
MKCF Mellin kind characteristic function.
MKCGF Mellin kind cumulant generating function.
MKE Mellin kind Edgeworth.
MKGK Mellin kind gamma kernel.
MKLK Mellin kind log-normal kernel.
MKS Mellin kind statistics.
MT Mellin transform.
PDF Probability density function.
RV Random variable.
SAR Synthetic aperture radar.
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I. INTRODUCTION

ESTIMATING the probability density function (PDF) is
a central part of many data analysis applications. This

includes various model based image analysis tasks using para-
metric PDFs. The choice of model is a trade-off: Advanced
models can be highly accurate for a relatively wide range
of data, but are usually mathematically and computationally
demanding. Parameter estimation may also pose challenges.
Simple models are implemented easily and run fast, but are
less flexible and may not provide a good fit to the data.

In the case of near-Gaussian data, the Gram-Charlier [8] and
Edgeworth [9] series expansions provide attractive alternatives.
They combine the simplicity of a fitted Gaussian distribution
with the flexibility and accuracy of accounting for higher
order moments of the data, i.e. skewness, excess kurtosis, etc.
However, these methods have not proven as effective for non-
negative random variables (RVs), that is, RVs which maps
to zero on the entire negative part of the real line (support
⊆ R≥0 = [0,∞)). Radar intensity data naturally fall into
this category, and for synthetic aperture radar (SAR) images,
several distributions have been suggested as data models.
These distributions are also relevant for other coherent imaging
modalities, including ultrasound, sonar and laser images. They
are commonly based upon a doubly stochastic product model
[10], [11], which means that the observed RV is modelled
as the product of two unobservable RVs, and its PDF is
consequentially found through a multiplicative convolution.
There are numerous other fields in economics, science and
engineering that also make use of heavy-tailed distribution
models for non-negative RVs.

Mellin kind statistics (MKS) were introduced by Nicolas in
[12] and has proven to be a powerful framework designed
to deal with the product model and non-negative RVs. In
MKS, the Fourier transform (FT) is replaced by the Mellin
transform (MT), giving a Mellin kind characteristic function
(MKCF) in place of the classical characteristic function (CF).
The MKCF of a product X · Y of independent RVs is the
product of the constituent MKCFs, matching the property the
CF has with respect to the sum X +Y . Logarithmic moments
and cumulants are statistics with natural inherent qualities
in MKS, and can be retrieved in an analogous way to their
classical linear counterparts. The framework has since been
expanded to the matrix-variate case [13]. Furthermore, it has
been utilized extensively for estimation problems through the
method of logarithmic cumulants (MoLC) [6], used as a tool
to understand the physical process underlying the acquisition
of coherent images [11], and it has also been used to produce
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asymptotic expansions for PDFs [14].
The paper is organized as follows. In Section II, we briefly

summarize the Gram-Charlier and Edgeworth series, the Bell
polynomials, the MT and its properties, and MKS. In Section
III, we introduce a complete framework for the Mellin kind
equivalents of the classical series expansions, including a new
series based on a gamma distribution kernel. These series,
along with other classical and modern methods, are used
to approximate known PDFs in Section IV and to estimate
unknown PDFs in Section V. We give our conclusions in
Section VI.

II. THEORY

A. Classical Series Expansion Methods

For a RV X with unknown PDF fX (x), its CF ΦX (ω) is the
FT of fX (x) [15], that is

ΦX (ω) ≡ F [ fX (x)](ω) =
∞∫

−∞

e jωx fX (x) dx = E{e jωX }, (1)

where j is the imaginary unit, the expectation operation E{·}
is performed with respect to X , and ω ∈ R is the transform
variable. The linear moments of order ν are defined as mν ≡
E{Xν}. The natural logarithm of the CF is called the cumulant
generating function (CGF), since the cumulants cX,ν, ν ∈ Z>0
can (if they all exist) be retrieved from

logΦX (ω) =
∞∑
ν=1

cX,ν
( jω)ν
ν!

. (2)

Let α(x) = (2π)−1/2e−x
2/2 denote the standardized (zero mean,

unit variance) Gaussian kernel with CF Φα(ω) [16]. Unique to
the Gaussian distribution is the property that cα,ν = 0∀ ν ≥ 3
[17]. Combining (1) and (2) with the CGF of α(x) gives the
CF of X as

ΦX (ω) = exp

{ ∞∑
ν=1
[cX,ν − cα,ν]

( jω)ν
ν!

}
Φα(ω). (3)

where we see for standardized X

cX,ν − cα,ν =
{

0 ν = 1, 2
cX,ν ν ≥ 3 . (4)

The PDF of X can now be retrieved [15] from (3) via the
inverse FT

fX (x) = exp

{ ∞∑
ν=3

cX,ν
(−Dx)ν
ν!

}
α(x), (5)

where exp{·} is the exponential function and Dx = d/dx
is the derivative operator. To get a more workable expres-
sion, the exponential function is reduced via its power se-
ries exp{x} = ∑∞

k=0 xk/k! to give an infinite double sum.
Now we can collect the terms according to the power of
(−Dx) and recollect the definition of the Hermite polynomials,
Hν(x)α(x) = (−Dx)να(x) [15], to get the classical Gram-
Charlier series

fX (x) =
[
1 +

cX,3
6

H3(x) +
cX,4
24

H4(x) + · · ·
]
. (6)

Edgeworth’s idea was to assume that the nearly-Gaussian RV
X was a standardized sum

X =
1
√

r

r∑
i=1

Zi − m
ς

, (7)

where the RVs Z1, Z2, . . . , Zr are independent and identically
distributed (IID), each with mean m, variance ς2 and higher
order cumulants cZ,ν = ςνλν . The dimensionless λν will
simplify the following derivation, and the properties of the
cumulants give [8]

cX,ν =
λν

r
ν
2 −1 , ν ≥ 3. (8)

Collecting the terms in (5) based on their power of r−1/2

instead gives the Edgeworth series [9]

fX (x) =α(x) + r−
1
2

[
λ3
6

H3(x)
]
α(x) (9)

+ r−1

[
λ4
24

H4(x) +
λ2

3
72

H6(x)
]
α(x) +O

(
r−

3
2

)
.

Its convergence is found to be superior to the Gram-Charlier
series both with few terms and asymptotically [9].

B. The Bell Polynomials

Named in honor of Eric T. Bell who introduced what he
called partition polynomials in [18], the partial Bell polyno-
mials are defined as [19]

Bn,r (x1, x2, . . . , xn−r+1) =
∑
Ξr

n!
n−r+1∏
i=1

1
ji!

( xi
i!

) ji
, (10)

where the sum is the over the set Ξr of all combinations of
non-negative integers j1, . . . , jn which satisfy j1 + 2 j2 + · · · +
(n − r + 1) jn−r+1 = n − r + 1 and r = j1 + k2 + · · · + jn−r+1.
The nth complete Bell polynomial is the sum

Bn(x1, . . . , xn) =
n∑

r=1
Bn,r (x1, x2, . . . , xn−r+1). (11)

The Bell polynomials satisfy [19]

exp

{ ∞∑
ν=1

xν
tν

ν!

}
=

∞∑
n=0

Bn(x1, . . . , xn)
tn

n!
, (12)

and a well-known use of this result is to retrieve the νth order
moment from the cumulants of order ≤ ν [20] as

mν = Bν(c1, . . . , cν). (13)

C. The Mellin Transform

The MT of a function f (x) is

M[ f (x)](s) ≡
∞∫

0

xs−1 f (x)dx = F(s) ⇔ f (x) M−−→ F(s), (14)

where s ∈ C is the transform variable. The MT is limited to
functions which satisfy f (x) = 0∀ x < 0, i.e. f(x) has support
⊆ R≥0. The fundamental strip Sf is the largest open strip 〈a, b〉



DRAFT VERSION 3

TABLE I
MELLIN TRANSFORM PROPERTIES

f (x) F(s) = M[ f (x)](s) Condition

Linearity af (x) + bg(x) aF(s) + bG(s) a, b constant, s ∈S f

Scaling f (ax) a−sF(s) a > 0, s ∈S f

Multiplication xn f (x) F(s + n) s + n ∈S f

Differentiation Dn
x f (x) (−1)n(s − 1)nF(s − n) n ∈Z≥0, s − n ∈S f

A combination Dn
x x

n f (x) (−1)n(s − 1)nF(s) s ∈S f

A Mellin derivative (Dx x)n f (x) (−1)n(s − 1)nF(s) s ∈S f

of Re(s) for which the integral in (14) converges. If s ∈ Sf ,
then f (x) is retrievable via the inverse MT [21],

f (x) =M−1[F(s)](x) = 1
2π j

c+j∞∫
c−j∞

x−sF(s)ds, (15)

where the integral is taken along a vertical line in the complex
plane, with the fundamental strip defined by its real (vertical)
boundaries.

Some general properties of the MT are listed in Table I
[22], [23]. The differentiation properties introduces the falling
factorial, defined as (s− 1)n = (s− 1)(s− 2) · · · (s− n), and the
Mellin derivative1 operator, defined as Dx x. Note that the final
two properties differ because differentiation and multiplication
operations are non-commutative. E.g., for n = 2, f (x) = 1 we
have (Dx x)2 = Dx xDx x = 1, whereas D2

x x2 = Dx2x = 2.

D. Mellin Kind Statistics

While the idea of using the Mellin transform (MT) as a tool
for statistical analysis had been proposed earlier [24], it did
not receive much attention until the introduction of MKS in
[12]. The MKCF φX (s) is defined as the MT of the PDF

φX (s) ≡ M[ fX (x)](s) =
∞∫

0

xs−1 fX (x)dx = E{Xs−1}. (16)

The log-moments are defined as µν ≡ E{(log X)ν}, where
ν ∈ Z≥0. The MKCF can be expressed in terms of the log-
moments by rewriting the transform kernel xs−1 = e(log x)(s−1)

in (16), inserting the power series expansion for the exponen-
tial function, and finally changing the order of integration and
summation to recognize the log-moments from their definition,
i.e.

φX (s) =
∞∑
ν=0

µν
(s − 1)ν
ν!

. (17)

As in the classical case, this depends on the existence of all
µν , and under this condition it is also possible to retrieve the
log-moments from

µν = DνsφX (s)
��
s=1 . (18)

1Dx x and xDx are called "Mellin derivatives" in [2].

The log-cumulant generating function (MKCGF) is defined
ϕX (s) = log φX (s). Provided all log-cumulants κν exist, we
then have

ϕX (s) =
∞∑
ν=1

κν
(s − 1)ν
ν!

, (19)

κν = DνsϕX (s)
��
s=1 . (20)

The equivalent result as (13) trivially holds for the log-
moments and log-cumulants, since their relations are identical
[12], [25].

For a more detailed review of the fundamental properties
of MKS, see e.g. [12] (English translation: [26]), while [13]
emphasizes the analogy to classical statistics and expands the
framework to the matrix-variate case. A comprehensive list of
MKCFs and MKCGFs for several distributions can be found
in [27].

III. A FRAMEWORK FOR THE MELLIN KIND SERIES
EXPANSION METHODS

A. The Mellin Kind Gram-Charlier Series Expansion with
Arbitrary Kernel

For a non-negative RV X and an arbitrary continuous PDF
kernel θ(x) with support R≥0, whose log-moments and log-
cumulants all exist, it is possible to mirror the approach in
Section II leading up to (3), giving the MKCF of X as

φX (ω) = exp

{ ∞∑
ν=1
[κX,ν − κθ,ν]

(s − 1)ν
ν!

}
φθ (s). (21)

Deviating from the path that lead us to the classical Gram-
Charlier and Edgeworth series, the Bell polynomials and their
property in (12) gives us

φX (s) =
[ ∞∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn)
(s − 1)n

n!

]
φθ (s), (22)

where ∆κn = κX,n − κθ,n is used for brevity. Table I contains
the Mellin derivative property, which has not been used in the
context of MKS before now. It provides an inverse MT of
(22), leading up to

fX (x) =
[ ∞∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx x)n

n!

]
θ(x) , (23)

which is the Mellin kind Gram-Charlier series expansion with
arbitrary kernel.
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B. The Mellin Kind Gamma Kernel Series

Let

γ(x; a, b) =
{
baxa−1

Γ(a) e−bx , x ≥ 0
0 , x < 0

(24)

denote the gamma distribution PDF with shape a and scale b.
We will now substitute θ(x) → γ(x; a, b) in (23) to get the
Mellin kind gamma kernel (MKGK) series. To get an applica-
ble expression, it is necessary to evaluate (−Dx x)nγ(x; a, b).
By letting b = 1, it is possible to define the polynomials Mn(x)
implicitly as

Mn(x)γ(x; a) = (−Dx x)nγ(x; a). (25)

or2

Mn(x) = x−(a−1)ex(−Dx x)n[xa−1e−x], (26)

and since Dx x is scale invariant, the generalization to arbitrary
b is simply to replace x with bx in the polynomials, i.e.

Mn(bx)γ(x; a, b) = (−Dx x)nγ(x; a, b). (27)

In Appendix A we prove that Mn(x) is a linear combination
of the well-known generalized Laguerre polynomials [29] and
give explicit polynomials for n = 0, 1, 2, 3. The MKGK series
can now be completed by substituting γ(x; a, b) for θ(x) and
(27) into (23) to yield

fX (x) ≈[
N∑
n=0

1
n!

Bn(∆κ1,∆κ2, . . . ,∆κn)Mn(bx)
]
γ(x; a, b),

(28)

where the sum was truncated to finite N .
The parameters a and b of the kernel can be chosen such that

the log-cumulants κγ,1 and κγ,2 match the respective population
log-cumulants κX,1 and κX,2. This way we can approximate
any given PDF model for X. If the model is unknown, then
κγ,1 and κγ,2 can be matched with the corresponding sample
log-cumulants which amounts to producing MoLC estimates
of a and b [6]. This simplification is considerable, as the Bell
polynomials of degree 0 through 6 consist of 30 terms in total,
only 6 of which are non-zero if ∆κ1 = ∆κ2 = 0, and (28) is
reduced to

fX (x) ≈[
1 +

N∑
n=3

1
n!

Bn(0, 0,∆κ3, . . . ,∆κn)Mn(bx)
]
γ(x; a, b).

(29)

The first few terms in the MKGK are presented in (40).

C. The Mellin Kind Log-normal Kernel Series

Now insert for θ(x) the log-normal PDF kernel

Λ(x; µ, σ) = 1
x
√

2πσ
exp

{
−(log x − µ)2

2σ2

}
(30)

with log-mean µ = E{log X} and log-variance σ2 =

E{(log X − µ)2} [14] to obtain the Mellin kind log-normal

2This definition mirrors the Rodrigues type formulae [28], with the Mellin
derivative replacing the standard differentiation operator.

kernel (MKLK) series. To evaluate (−Dx x)nΛ(x; µ, σ), we use
the proof (59) of Lemma 3 from Appendix B to see that

fX (x) =[ ∞∑
n=0

1
n!σn

Bn(∆κ1, . . . ,∆κn)Hn

(
log x − µ

σ

)]
Λ(x; µ, σ).

(31)

Matching of the log-mean µ and log-variance σ2 to κX,1 and
κX,2 not only results in that most of the terms vanish, as with
the MKGK series, but since [27]

κΛ,ν =


µ ν = 1
σ2 ν = 2
0 ν ≥ 3

, (32)

we have that ∆κn = κX,n for n > 2. That is, for Λ(x; µ, σ)
with tailored parameters,

fX (x) ≈
[
1+

N∑
n=3

Bn(0, 0, κX,3, . . . , κX,n)
n!σn

·Hn

(
log x−µ

σ

)]
Λ(x; µ, σ),

(33)

with the first few terms presented in (41).

D. Mellin Kind Edgeworth Series

Recall that the classical Edgeworth series is based on the
assumption in (7) which leads to (8). In Appendix C we prove
that replacing X with log X in (7) gives the log-cumulant
differences

∆κν = κX,ν − κΛ,ν =
{

0 ν = 1, 2
λν

r
ν
2 −1 ν ≥ 3 , (34)

where (32) was also used. Using this result and inserting the
MKCF φΛ(s) of the log-normal kernel into (21) gives

φX (s) = exp

{ ∞∑
ν=3

λν

r
ν
2 −1
(s − 1)ν
ν!

}
φΛ(s). (35)

Shifting the index ν → ν + 2, this can instead be viewed as a
power series in r−1/2

φX (s) = exp

{ ∞∑
ν=1

ζν(s − 1)r
−ν/2

ν!

}
φΛ(s) , (36)

where
ζν(s) =

λν+2
(ν + 1)(ν + 2) s

ν+2 . (37)

Since the function ζν(s− 1) is independent of r , property (12)
gives

φX (s) =
[ ∞∑
n=0

Bn

(
ζ1(s − 1), . . . , ζn(s − 1)

)
r−n/2

n!

]
φΛ(s) . (38)

This is a polynomial in (s − 1), so the inverse MT can be
applied as for the MKGK and MKLK series to yield

fX (x) =
[
1 +

∞∑
n=1

Bn

(
ζ1(−Dx x) , . . . ,

ζn(−Dx x)
)

r−n/2

n!

]
Λ(x; µ, σ) ,

(39)
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where the ζ function from (37) is now used with index n and
the operator −Dx x as input.

As in (33), the term corresponding to n = 0 is unity,
indicating that this is a series around the tailored log-normal
kernel. Lemma 3 is again used to replace the Mellin derivative
with the Hermite polynomials, and the first few terms of the
Mellin kind Edgeworth (MKE) series are presented in (42).
Note that the first correction term of the MKLK and MKE
series are equal.

The MKE series is identical to the series presented in [1],
but it is derived independently as the result of a different
approach. The authors of [1] used a change of variable,
s − 1→ jω, the fact that if Y = log X , and then [12] showed
that φX (s) = ΦY (ω). This allowed for the inverse FT to be
used, while the present approach involves the Mellin derivative
and the inverse MT. Secondly, the role of the Bell polynomials
in the series expansion methods is illuminated to reveal an
alternative representation to the one in [1], which mirrored
the classical Edgeworth series in [9]. This use of the Bell
polynomials is not limited to the Mellin kind framework, and
in [Fyll inn her], we use Bn(·) in the classical Gram-Charlier
and Edgeworth series.

IV. APPROXIMATING KNOWN DISTRIBUTIONS

In this section we use the MKGK, MKLK and MKE series
and other methods to approximate known PDFs. That is, we
assume that the distribution parameters are known and do not
need to estimate the log-cumulants κX,n or in fact any quantity
in (40), (41) and (42) from data.

For all simulations in this paper, we compute the Bhat-
tacharyya distance dB( f (x), f̂ (x)) [30], the Kullback-Leibler
distance3 dKL( f (x), f̂ (x)), and the maximum error (i.e. the
Kolmogorov-Smirnov test or L∞ norm distance) to ensure that
our conclusions are not colored by our choice of dissimilarity
measure. In most cases the results were highly consistent,
allowing us to present only one or two of the measures for
brevity.

Since the series expansions are not in general true prob-
ability measures (they do not always integrate to unity and
permit negative values) [9], we needed to slightly modify the

3We take distance to mean a non-negative definite symmetric function,
and dKL ( f (x), f̂ (x)) is the symmetrized version of the Kullback-Leibler
divergence. This follows the nomenclature of [30].

estimates to ensure that the ratios and logarithms in dB(·) and
dKL(·) do not fail but also gives fair results.4

A. Broad Comparison of the Methods

We start with a general comparison of 7 methods based
on the log-cumulants. In addition to the MKGK, MKLK and
MKE series, the methods tested are the gamma, log-normal,
K [6], and generalized gamma (GΓD) [7] distributions with
with parameters given by the MoLC. Note that the MoLC
gamma method corresponds to the kernel of the MKGK series,
i.e. N ≤ 2 in (29), while the MoLC log-normal method
corresponds to the kernels in both the MKLK and MKE series,
i.e. N ≤ 2 in (33) and truncating the entire sum in (39). The
series are here corrected only for κX,3 and κX,4, specifically
N = 4 in the MKGK and MKLK series and truncating terms
of O

(
r−3/2) in the MKE series. Note that fewer terms render

the MKLK and MKE series identical. In Section IV-B we
examine how the series depend on the number of terms.

In Fig. 1, we approximate the K distribution with PDF [12]

K(x; µ, L, M) =

2LM
µΓ(L)Γ(M)

(
LM x
µ

) M+L
2 −1

KM−L

(
2

√
LM x
µ

)
,

(43)

where x, µ, L, M > 0, and the G0 distribution with PDF

G0(x; g, L, M) = LLΓ(L − M)xL−1

gMΓ(L)Γ(−M)(g + Lx)L−M , (44)

where x, g, L > 0 , M < 0. These two distributions are given in
[31] as the two theoretical distribution arising when modelling
observed SAR intensity of a heterogeneous scene.

Fig. 1 (a) shows the relative success of all methods in
modelling the K distribution with a high shape parameter
L = 16, known in the SAR literature as the number of looks.
The MKLK, MKE, and MKGK series visibly improve on their
kernels, but they are not able to attain the accuracy of the three-
parameter GΓD when only corrected for κX,3 and κX,4. The K
distribution is of course exact in this case, in the sense that any
deviation is solely the result of computational inaccuracies,
e.g. numerical iterative solutions terminated after achieving
some predefined accuracy. In the following, we will disregard
such technicalities, instead stating the solutions as exact.

4Specifically, to remedy the common feature that the series expansion
methods produce estimates f̂ (x) which integrate to < 1 and result in
dB (·) < 0, we divided f̂ (x) by its integral.

fX (x) =
[
1 +
∆κ3
6

M3(bx) + ∆κ4
24

M4(bx) + ∆κ5
120

M5(bx) +
∆κ6+10∆κ2

3
720

M6(bx) + ∆κ7+35∆κ3∆κ4
5040

M7(bx) + · · ·
]
γ(x; a, b) (40)

fX (x) =
[
1+

κ3

6σ3 H3

(
log x−µ

σ

)
+

κ4

24σ4 H4

(
log x−µ

σ

)
+

κ5

120σ5 H5

(
log x−µ

σ

)
+
κ6 + 10κ2

3
720σ6 H6

(
log x−µ

σ

)
+ · · ·

]
Λ(x; µ, σ) (41)

fX (x) = Λ(x; µ, σ) + 1
r1/2

[
λ3

6σ3 H3

(
log x−µ

σ

)]
Λ(x; µ, σ) + 1

r

[
λ4

24σ4 H4

(
log x−µ

σ

)
+

λ2
3

72σ6 H6

(
log x−µ

σ

)]
Λ(x; µ, σ) + O

(
1

r3/2

)
(42)
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(a) (b)

Fig. 1. PDF approximations of known distributions produced by 7 methods, with the series expansion methods corrected for κX,3 and κX,4. (a) K distribution
with parameters µ = 1, L = 16, M = 10, (b) G0 distribution with parameters g = 2, L = 4, M = −2.

TABLE II
COMPARISON OF PDF APPROXIMATION METHODS FOR DIFFERENT DISTRIBUTIONS, KULLBACK-LEIBLER DISTANCE TO THE TRUE PDF, SERIES

EXPANSIONS CORRECTED FOR κX,3 AND κX,4 , BEST METHOD IN BOLD

K(x; ρ), ρ=[µ, L, M] G0(x; ρ), ρ=[g, L, M] γ(x; ρ), ρ=[a, b] γ−1(x; ρ), ρ=[a, b] GΓD(x; ρ), ρ=[a, b, d]
ρ [1, 16, 10] [2, 4, 2] [1, 16, −10] [2, 4, −2] [4, 2] [16, 8] [4, 2] [16, 8] [4, 2, 2] [16, 8, 2]

MoLC K [6] Exact Exact 6.67·10−3 6.78·10−2 1.02·10−3 5.40·10−4 4.20·10−2 1.06·10−2 7.88·10−3 Failure

MoLC GΓD [7] 3.51·10−7 2.55·10−5 9.29·10−5 1.87·10−3 Exact Exact 4.11·10−6 1.05·10−7 Exact Exact

MKLK, kernel only 3.38·10−3 1.68·10−2 6.84·10−4 5.92·10−3 1.83·10−2 4.69·10−3 1.85·10−2 4.74·10−3 1.91·10−2 4.75·10−3

MKLK series 8.44·10−5 3.00·10−3 6.52·10−6 1.11·10−3 2.61·10−3 1.45·10−4 2.29·10−3 1.30·10−4 2.56·10−3 1.40·10−4

MKE series 6.26·10−6 6.79·10−4 3.96·10−6 9.33·10−4 3.94·10−3 1.31·10−5 7.82·10−3 1.32·10−5 6.40·10−3 1.30·10−5

MKGK, kernel only 2.74·10−3 1.00·10−2 1.88·10−2 9.48·10−2 Exact Exact 7.29·10−2 1.89·10−2 4.81·10−3 1.75·10−3

MKGK series 8.57·10−4 1.46·10−1 3.50·10−3 1.99·100 Exact Exact 5.68·10−2 2.26·10−3 7.20·10−4 4.72·10−4

Fig. 1 (b) represents a more challenging case with a heavier
tail. The MKGK series is ill-suited to this case, but the MKLK
and MKE series outperform their kernel and even the MoLC
K and GΓD methods.

In Table II we show the results of experiments where we
have again used the K and G0 distributions as targets, but also
included the gamma distribution from (24), the inverse gamma
distribution [12]

γ−1(x; a, b) = bax−a−1

Γ(a) e−
b
x , (45)

where x, b > 0, a > 0, and the generalized gamma distribution
[32], [33], [7]

GΓD(x; a, b, d) = |d |b
Γ(a) (bx)ad−1 exp{−(bx)d}, (46)

where x, b > 0, a > 0, d , 0. We only present the Kullback-
Leibler distance in this case as the three dissimilarity measures
are consistent, with dKL(·) having the best contrast when the
approximations were highly accurate.

We can see that the series expansions improve on their
kernel, and with only two correcting terms they are competing

with the flexible and accurate MoLC K and GΓD methods.
Disregarding distributions which are exact matches, the series
expansions prove the most accurate in 5 of the 10 distributions
tested, with the standout performers being the MoLC GΓD
method and the MKE series.

B. Convergence of the Novel Series Expansion Methods

We will now examine if and how the MKLK, MKE and
MKGK series converge to the true PDF as we correct for
successively higher order log-cumulants.

We found it necessary to present both dB(·) and dKL(·) in
Fig. 2, as the measures are in discord in cases (b) and (c).
Still, we clearly see that the MKE series converges while the
MKLK and MKGK series are less well-behaved. This closely
resembles the convergence properties of the classical Gram-
Charlier and Edgeworth series, which were examined in [9].

Compared to Table II, we see that the MKE series provides
a better approximation to K(x; µ = 1; L = 16, M = 10) than
the top performer MoLC GΓD when corrected for κX,5 and
beyond. The same is the case for γ(x; a = 4, b = 2) and when
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(a) (b) (c) (d)

Fig. 2. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of terms in the series expansion
approximations. True distributions (a) K(x;µ = 1; L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2), (c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b =
8, d = 2).

correcting for at least κX,7 in γ−1(x; a = 16, b = 2) (these cases
were not included in Fig. 2). For K(x; µ = 2; L = 4, M = 2)
and γ−1(x; a = 4, b = 2), none of the series bested the MoLC
GΓD when limited to corrections up to κX,8.

It is clear that the MKE series in particular is a very
attractive alternative when approximating the known PDFs of
non-negative RVs.

V. SYNTHETIC DATA EXPERIMENTS

In this section, the scenario is that the true distributions are
not known, that is, we must estimate the distribution cumulants
and log-cumulants by replacing them with the corresponding
empirical entities. The parameters are estimated using the
MoLC.

A. Broad Comparison Based on Data

We start with a broad comparison as in Section IV-A. In
addition to the seven methods used there, we also compare
the gamma distribution fitted with the maximum likelihood
estimates of the parameters [4] and the classical Gram-Charlier
series with a gamma kernel, which is a series expansion using
the classical (empirical) cumulants with the gamma kernel
tailored using the method of moments [5].

In Fig. 3 (a), all methods proved reasonably successful,
with the MKLK and MKE series outperforming their log-
normal kernel to compete with the more advanced and compu-
tationally demanding MoLC K and GΓD estimates. Fig. 3 (b)
demonstrates a more challenging scenario, due to its heavier
tail. The MKGK series diverged, while the MKLK and MKE
series were again among the best. In a direct comparison with
Fig. 1, we see significantly higher errors when the distribution
is unknown.

It should be noted that the MoLC GΓD method occasionally
failed in testing: The closed form expressions used to estimate
the parameters sometimes failed due to arguments of a square

root being negative. This is inherent to the novel approach
presented in [7], which provides a quick and relatively simple
way of estimating the parameters in the flexible GΓD, that is to
say that the issues are not nearly severe enough to dismiss the
method. Here, we simply check the arguments to the square
root and set them to zero when necessary to get an estimate.
The MoLC K method had similar problems, leading to up to
5 of the 1000 estimates being discarded.

In Table III, the results from Fig. 3 are tabulated, along with
several other experiments corresponding to other underlying
distributions. The series expansion methods were only cor-
rected for κ3, κ4 (two terms). We present the Kullback-Leibler
distance since all dissimilarity measures were for the most part
in accordance in this situation. An exception is that in some
of the cases where the MKLK series exhibited slightly lower
dKL(·) than the MKE series, the latter had the lowest dB(·) of
the two, essentially implying that the MKLK and MKE series
performed evenly in this scenario.

From Table III we can draw the conclusion that, not sur-
prisingly, the best results are achieved when making accurate
assumptions about the data model. E.g., for K distributed
data, the fitted K(·) outperforms the other methods. Likewise,
for gamma-distributed data, the simple gamma models out-
performed the more complex models, and we recall that the
MKGK kernel is the MoLC estimate of γ(·), while the "fitted
γ(·)" uses the maximum likelihood estimates. This is to say
that when we synthesize data from complicated distributions in
the following, one must keep in mind that if the data in reality
follows a simpler model, then the simple methods should be
tried first.

The MKLK and MKE series are very often among the top
performers, indicating that they are good candidates when
it is difficult to make assumptions on the data. However,
their results are not as strong as they were in Section IV,
presumably since they require the estimation of 4 quantities
(the log-cumulants of order 1 through 4). In the following
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(a) (b)

Fig. 3. PDF estimates produced by 9 methods, based on 1000 synthesized data points, with the series expansion methods corrected for κ3, κ4. (a) K distribution
with parameters µ = 1, L = 16, M = 10, (b) G0 distribution with parameters g = 2, L = 4, M = −2.

TABLE III
COMPARISON OF PDF ESTIMATION METHODS FOR DIFFERENT TYPES OF DATA, KULLBACK-LEIBLER DISTANCES TO THE TRUE PDF, SERIES

EXPANSIONS CORRECTED FOR κX,3 AND κX,4 ,A BEST METHOD FOR EACH TYPE OF DATA IN BOLD

K(x; ρ), ρ=[µ, L, M] G0(x; ρ), ρ=[g, L, M] γ(x; ρ), ρ=[a, b] γ−1(x; ρ), ρ=[a, b] GΓD(x; ρ), ρ=[a, b, d]
ρ [1, 16, 10] [2, 4, 2] [1, 16, −10] [2, 4, −2] [4, 2] [16, 8] [4, 2] [16, 8] [4, 2, 2] [16, 8, 2]

Fitted γ(·) [4] 3.72·10−3 1.02·10−2 2.04·10−2 1.35·10−1 9.55·10−4 9.85·10−4 7.90·10−2 2.03·10−2 5.60·10−3 2.17·10−3

γ(·) expansion [5] 3.78·10−3 2.06·10−2 7.69·10−2 5.72·10−1 1.71·10−3 1.95·10−3 1.30·100 5.54·10−2 3.95·10−3 2.77·10−3

MoLC K [6] 1.13·10−3 1.37·10−3 7.76·10−3 1.19·10−1 2.23·10−3 1.64·10−3 4.60·10−2 1.17·10−2 8.77·10−3 Failure

MoLC GΓD [7] 1.46·10−3 1.64·10−3 1.56·10−3 3.48·10−3 1.59·10−3 1.49·10−3 1.51·10−3 1.43·10−3 1.67·10−3 1.48·10−3

MKLK, kernel only 4.39·10−3 1.78·10−2 1.65·10−3 6.90·10−3 1.93·10−2 5.68·10−3 1.95·10−2 5.74·10−3 2.01·10−2 5.74·10−3

MKLK series 2.16·10−3 8.15·10−3 2.69·10−3 4.73·10−3 5.43·10−3 2.36·10−3 5.45·10−3 3.11·10−3 6.69·10−3 2.63·10−3

MKE series 2.34·10−3 7.17·10−3 2.62·10−3 6.81·10−3 9.75·10−3 2.89·10−3 1.34·10−2 3.72·10−3 1.23·10−2 3.18·10−3

MKGK, kernel only 3.78·10−3 1.12·10−2 1.98·10−2 9.63·10−2 1.01·10−3 1.01·10−3 7.41·10−2 1.99·10−2 5.84·10−3 2.55·10−3

MKGK series 8.03·10−3 2.23·10−1 9.34·10−3 2.02·100 2.28·10−2 3.41·10−3 1.64·10−1 5.03·10−3 1.04·10−2 2.47·10−3

A The γ(·) expansion was naturally corrected for the corresponding linear cumulants instead.

sections, we vary the number of terms used and observations
available.

B. The Impact of the Number of Terms

Here we examine series expansion methods (the classical
Gram-Charlier series with a gamma kernel [5], the MKGK,
MKLK and MKE series), with respect to their performance as
the number of correcting terms are varied. In Fig. 4 present the
same four distributions as in Fig. 2 and correct for up to the 8th
order (log-)cumulant. We performed the same computations
for all 10 distributions in Table III, but the results were too
similar to warrant presenting them all.

Clearly, both gamma kernel series are prone to divergence,
only performing well in the case of GΓD data in (d). The
MKGK and MKE fared better, with the latter outperforming
the former when correcting for between κX,5 and κX,7, but not
otherwise. The contrast with Fig. 2 is clear: The benefit of
additional corrections does not outweigh the error introduced

by having to correct for additional log-cumulants with this
number of data points.

C. The Impact of the Number of Observations

This final analysis is concerned with how the performance
of the methods depends on the number of data points (obser-
vations). Specifically: Should the quantity of data impact our
choice of PDF estimate? For the series expansion methods we
also ask whether vast amounts of data permit more terms.

Fig. 5 presents the same distributions as Fig. 4, but fixed
to two correcting terms and with the number of observations
now varying from 100 to 10000. The series expansion methods
benefit more from the increase in observations, which is not
surprising as the (log-)cumulants used in the corrections are
in fact estimated themselves. Especially the methods based
on the log-normal kernel demonstrate their value as they
approach the accuracy of the MoLC GΓD method. We also
see that the MKE series benefits even more from an increase
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(a) (b) (c) (d)

Fig. 4. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of terms in the series expansion
estimates. Mean of 1000 iterations with 1000 synthesized data points. True distributions (a) K(x;µ = 1, L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2),
(c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b = 8, d = 2).

(a) (b) (c) (d)

Fig. 5. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of data points. Mean of 1000
iterations, series expansion methods corrected with two terms as in Fig. 3. True distributions (a) K(x;µ = 1, L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2),
(c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b = 8, d = 2). The classical Gram-Charlier gamma kernel series was omitted from (b) and (c) for readability, as
it was divergent (much higher distances than the others), and the MKGK series was also left out from (b) for the same reason. The MoLC K method failed
in (d), as in Tables II and III.

in the quantity of the data then the MKLK series, presumably
because its second correcting term also accounts for κ2

X,3, i.e.
it is more complex.

Our final investigation seeks to shed light on the practical
question of whether there is an ideal number of correcting
terms for a given number of data points, and if this also
depends on the nature of the data (true distribution) at hand.

In Table IV we present the best (lowest distance) number
of correction terms in the series expansion methods for the
distributions in Figures 5 and 2, when the number of obser-
vations is varied. Clearly, more data points allows for more
terms, as expected. In fact, it is hard to justify compensating
for more than κ3 (conceptually the logarithmic skewness),

unless we have very many data points. We recall that with the
lone correction term, the MKLK and MKE series coincide.
Supporting our remarks on Fig. 5, we see that the MKE series
benefits the most from an increase in observations, becoming
the top performer at 10000 data points in all four cases.
Finally, we note that [15] commented that estimation of the
linear cumulants of order > 4 was unreliable due to sample
fluctuations. The present findings indicate that the same can
be said in the logarithmic case.

VI. CONCLUSION

We have shown how the classical Gram-Charlier and Edge-
worth series have strong theoretical and practical analogies
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TABLE IV
THE HIGHEST ORDER (LOG-)CUMULANT WHICH SHOULD BE CORRECTED FORA , WITH RESPECT TO THE NUMBER OF OBSERVATIONS FOR

DIFFERENT TYPES OF DATA, BEST METHOD FOR EACH DISTRIBUTION IN BOLD

K(x;µ=1, L=16, M=10)) G0(x; g=2, L=4, M=−2) γ−1(x; a=4, b=2) GΓD(x; a=16, b=8, d=2)
Obs. 102 103 104 102 103 104 102 103 104 102 103 104

Fitted γ(·) [4] κ2 κ3, κ4 κ4, κ6 κ6 κ8 κ3 κ3, κ5 κ2, κ3 κ2, κ3 κ2 κ2, κ3 κ4

MKLK series κ2 κ3 κ3, κ4 κ2 κ4 κ4 κ3 κ3, κ4 κ3, κ4 κ2 κ3, κ4 κ4

MKE series κ2 κ3 κ4 κ2 κ4 κ4, κ5 κ3 κ3 κ5 κ2 κ3 κ4
MKGK series κ2 κ3 κ5 κ2 κ2 κ2 κ2 κ3, κ5 κ3, κ5 κ2 κ3, κ4 κ4

A We take this to mean the correction which results in the lower Bhattacharyya and Kullback-Leibler distance to the true distribution, based on the
mean of 1000 iterations. In cases where the results are very similar or dB (·) and dKL (·) disagree, we have given both log-cumulants.

in the logarithmic domain, derived using the MT and MKS.
We have introduced the Mellin derivatives in the context of
MKS, providing a useful (and in this case necessary) way to
retrieve the PDF via the inverse MT on the MKCF. The Bell
polynomials have also been used in a new way, providing
simpler representations of the series expansion methods and
especially the MKE series. The Mellin kind Gram-Charlier
series expansion with arbitrary kernel indicates that there are
undiscovered methods within the presented framework.

When approximating known distributions, we have shown
how the Mellin kind series mirrors the performance of their
classical counterparts [9], with the MKE series converging in
a predictable manner over a range of different distributions,
unlike the MKLK and MKGK series. These methods, and the
MKE series in particular, are attractive alternatives which defy
their simplicity to compete, often with relatively few correction
terms, with state-of-the-art methods such as the GΓD and
K distributions with parameter estimates computed with the
MoLC. Unlike these more complicated methods, the series
expansions were completely reliable in the sense that they
never failed to produce an estimate throughout our testing.

In the more realistic situation where the parameters and
log-cumulants of an unknown distribution must be estimated,
the picture is not so clear. Again, the series around the log-
normal kernel were the stand-out performers, but the cost of
added complexity usually outweighed the benefit of correcting
for log-cumulants beyond the logarithmic skewness κ3. At
that point, the MKLK and MKE series coincide as the log-
normal PDF kernel corrected for the empirical logarithmic
skewness. When the amount of data points is very high, further
corrections can have merit.

APPENDIX A
OBSERVATIONS ON THE Mn(x) POLYNOMIALS

A. Mn(x) as a Linear Combination of Laguerre Polynomials

Lemma 1: The polynomials Mn(x) defined in (26) are
linear combinations of the generalized Laguerre polynomials,

Mn(x) =
n∑

k=0

{
n
k

}
(−1)k k!L(a−1)

k
(x), (47)

where
{
n
k

}
denotes the Stirling numbers of the second kind

[34] {
n
k

}
=

1
k!

k∑
i=0
(−1)k−i

(
k
i

)
in, (48)

which is the number of possible ways to partition n labelled
objects into k non-empty and unlabelled subsets.

Proof: Starting with an identity regarding Dk
x xk , see that

Dk
x xk f (x) = Dk−1

x xk−1[(k + xDx) f (x)], (49)

and by repetition we get

Dk
x xk f (x) = (xDx + k)k f (x). (50)

Using the fact that Dx x − xDx = 1, we have

Dk
x xk f (x) = (Dx x + k − 1)k f (x). (51)

By a property of the Stirling numbers [35], the Mellin deriva-
tive from Table I can be rewritten as

(−Dx x)n =
n∑

k=0

{
n
k

}
(−1)k(Dx x + k − 1)k =

n∑
k=0

{
n
k

}
(−1)kDk

x xk,

(52)
and multiplying both sides with the unit scale gamma distri-
bution γ(x; a), the definitions of Mn(x) and L(a)

k
(x) [29] are

recognized on the left and right hand sides, respectively, of

Mn(x) =
n∑

k=0

{
n
k

}
(−1)k k!L(a−1)

k
(x). (53)

Finally, we note that Mn(x) is a nth degree polynomial.

B. The Leading Coefficient of Mn(x)
Lemma 2: Writing Mn(x) = a0 + a1x + a2x2 + · · · anxn,

the leading coefficient an = 1.
Proof: The only term containing xn in (47) is L(a−1)

n (x),
as the nth Laguerre polynomial is degree n. L(a−1)

n (x) has
leading coefficient (−1)n/n!, giving

an =
{
n
n

}
(−1)nn!

(−1)n
n!
= 1, (54)

where it was used that
{
n
n

}
= 1∀ n.

C. The First Few Mn(x) Polynomials

M0(x) = 1 (55)
M1(x) = x − a (56)

M2(x) = x2 − (2a + 1)x + a2 (57)

M3(x) = x3 − 3(a + 1)x2 + (3a2 + 3a + 1)x − a3 (58)
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APPENDIX B
LOGARITHMIC HERMITE POLYNOMIALS

Lemma 3:

(−Dx x)nΛ(x; µ, σ) = 1
σn

Hn

(
log x − µ

σ

)
Λ(x; µ, σ), (59)

where Hn(·) is the nth probabilists’ Hermite polynomials
defined in terms of the standardized (zero mean, unit variance)
Gaussian kernel α(x) = (2π)−1/2e−x

2/2 as [15]

(−Dx)nα(x) = Hn(x)α(x). (60)

Proof: We can use the chain rule to see that

Dlog x =
d

d log x
=

dx
d log x

d
dx
= x

d
dx
= xDx, (61)

where x is to the left of Dx since it is should be multiplied
with the differentiated function. The standardized log-normal
and Gaussian PDFs are related by

Λ(x) = 1
√

2πx
e−
(log x)2

2 =
1
x
α(log x), (62)

giving

(−Dx x)nΛ(x) = (−1)nDx x · · ·Dx x
1
x
α(log x) (63)

= (−1)n 1
x

xDx x · · ·Dxα(log x) (64)

(−Dx x)nΛ(x) = 1
x
(−xDx)nα(log x). (65)

Now we can complete the proof of Lemma 3 by replacing x
with log x in (60) and using (61) and (65) to get(

− d
d log x

)n
α(log x) = Hn(log x)α(log x) (66)

(−Dx x)nΛ(x) = 1
x

Hn(log x)α(log x) (67)

(−Dx x)nΛ(x) = Hn(log x)Λ(x). (68)

The final part of the proof is to generalize the result to
arbitrary log-mean µ and log-variance σ2. Letting log u =
(log x − µ)/σ, the relationship between the standardized and
non-standardized log-normal PDF is

Λ(x; µ, σ) = u
xσ
Λ(u), (69)

giving

(−Dx x)nΛ(x; µ, σ) = (−Dx x)n u
xσ
Λ(u) = 1

x
(−xDx)n

u
σ
Λ(u),

(70)
but

(−xDx)n = (−uDu)n
1
σn

, (71)

so
(−Dx x)nΛ(x; µ, σ) = u

xσn+1 (−Duu)nΛ(u). (72)

We can now use (68) and (69) to finalize the proof of Lemma
3, by reinserting for u to get

(−Dx x)nΛ(x; µ, σ) = u
xσn+1 Hn(log u)Λ(u) (73)

=
1
σn

Hn

(
log x − µ

σ

)
Λ(x; µ, σ). (74)

APPENDIX C
THE MELLIN KIND EDGEWORTH ASSUMPTION

Lemma 4: Assuming that the logarithm of X is the
standardized sum

log X =
1
√

r

r∑
i=1

Zi − m
ς

, (75)

where Z1, Z2, . . . , Zr are as in Section II-A, then the log-
cumulants of X are

κX,ν =


0 ν = 1
1 ν = 2
λν

r
ν
2 −1 ν ≥ 3

. (76)

Proof: Since both quantities are defined as E{(log X)ν},
the log-moments of X are equal to the moments of log X .
The relations between the log-moments and log-cumulants are
identical to those between their classical counterparts [12],
so the log-cumulants of X must also equal the cumulants of
log X . We already stated the cumulants of order ν ≥ 3 of the
standardized sum in (8), and clearly the log-cumulants of X
equals these.

In general, κ1 = µ1 = µ and κ2 = µ2 − µ2
1 = σ

2 [12], but
the standardized sum trivially has zero mean, unit variance,
i.e. X has zero log-mean, unit log-variance and the proof is
complete.
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