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To Mom. Obviously.



“Never half-ass two things. Whole-ass one thing.”
–Ron Swanson (Nick Offerman)



Abstract

Record lows in sea ice cover have recently sparked new interest in the small
ice cap instability. The change in albedo when sea ice becomes open water
introduces a nonlinearity called the ice-albedo feedback. Forcing a joint energy-
balance and sea ice model can lead to unstable ice caps in certain parameter
regimes. When the ice caps are unstable, a small perturbation will initiate a
tipping point in the sea ice cover. For tipping points in general, a number of
studies have pointed out that increasing variance and autocorrelation in time
series can be used to predict abrupt transitions, but that the rise in one alone,
can cause false alarms. In this study, we will examine these methods, as well
as propose new methods that are specific to the problem at hand, and that are
more robust when it comes to predicting the abrupt change in sea ice cover.
We further investigate the hysteresis that occurs after an abrupt transition
and show that the thermal inertia of the deep ocean may delay the recovery
of the sea ice cover by several decades in scenarios where pre-industrial CO2

concentration is restored on century time scale.
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1
Introduction

In the last decade, there has been a dramatic decline in Arctic sea ice cover.
Even though Antarctica has not shown the same steady loss of sea ice, there are
indications that this could change. ���� showed a record low in the late-year
(October-December) global sea ice extent (Fetterer et al., ����). The cause is
still undetermined. Is this recent change an indication that the ice caps have
become unstable?

The nonlinearity associated with the ice-albedo feedback has been studied
for its potential to affect the stability of the climate system, and if it can
possibly trigger an abrupt transition from a finite ice cap, to perennially ice
free conditions. The instability is properly named the small ice cap instability
(����) (see review North (����)). This transition is referred to as a tipping
point (��), a term coined by many fields of science, from human behaviour to
climate, thanks to the book “The Tipping Point: How Little Things Can Make
a Big Difference” by Malcolm Gladwell (����).

The early studies of potentially irreversible ��s in spatially varying energy

�
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balance models (���s) were more concerned with the catastrophic transition
to a totally ice-covered Earth, usually called “snowball Earth” (Budyko, ����,
����; Held and Suarez, ����; Sellers, ����). The snowball Earth bifurcation
can be simulated in certain simple general circulation models (���s) (Voigt
and Abbot, ����). However, a fully coupled ��� is not able to produce ice at
the equator (Poulsen et al., ����), even though there is evidence that the Earth
has been in this state in the Neoproterozoic era (Hoffman et al., ����).

The ���� in ���s has been compared to dynamical behaviour in ���s, where
the increase in polar amplification changes linearly up to a annual mean polar
temperature of �5 �C (Winton, ����). Note that this is way above the loss of
the September ice cover, which occurs at about �9 �C. The remaining winter
ice cover then exhibits nonlinear behaviour related to the ���� (Bathiany et al.,
����).

In a seasonally varying single column model (���) for sea ice there was found
behaviour comparable with the ���� (Thorndike, ����). However, the model
used did not describe spatial dependence like the ���.

Most of our effort is focused on the article by Wagner and Eisenman (����b),
where the objective was to combine the ��� from North et al. (����)¹ and
��� from Thorndike (����) into a spatially dependent model with sea ice
evolution², and investigate at what ratio of diffusion and seasonal variation
���� has a hysteresis³ in the sea ice cover. Wagner and Eisenman (����b)
found that it requires a reduction by 70% of either the standard diffusion or
seasonality to have a hysteresis wider than 0.2Wm�2.

The following subsections give a brief introduction to the concept of ��s and
the desirable ability to detect them.

�. Denoting by ���, the model was developed by Budyko (����); Sellers (����) indepen-
dently and summarised by North et al. (����).

�. Denoting this joint model by ����.
�. Alternatively irreversibility.
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�.� Tipping Points

A �� is a somewhat vaguely defined concept in climate science. One can
define it as the state at which a climate system, small or large, undergoes a
transition from one stable state to another. It may be irreversible, like toppling
over a glass of wine. By raising the glass back up the wine will not return to
the glass. On the other hand, a �� can be reversible, like the tipping over of a
seesaw, we can easily tip it back to the previous state by shifting the weight
back toward the lighter side.

Climatology ��s include forest dieback, disruption in monsoons, loss of per-
mafrost leading to feedbacks, and polar ice packs (full list of large scale
“tipping elements” in Lenton et al. (����)). We will investigate both reversible
and irreversible ��s in this thesis.

�.� Early-Warning Signals

That a �� occurs may be inevitable, but if we have the possibility to pre-
dict it, we would do so. This is our motivation for searching for ���s. The
concept of critical slowdown of a dynamical system (Lenton, ����; Lenton
et al., ����; Scheffer et al., ����), encompasses the following early-warning
signatures:

Slow recovery from perturbations. The potential well becomes shallower
and wider in Figure �.� and the “ball” can move more slowly, which
means more time to return to the stable state.

Increased variance. The width of the well allows larger excursions from the
stable state.

Increased autocorrelation. The slow recovery from perturbations can be
observed as an increase in autocorrelation.



� C H A P T E R � I N T R O D U C T I O N

Figure �.�: Potential wells under anthropogenic forcing.

Figure �A in Lenton et al. (����). Potential wells representing stable attractors. Under
anthropogenic forcing, we move from dark to light blue. When the right potential well

disappears the state of the system, the ball, moves abruptly to new stable state.

Some less used ���s relating to the stability landscape of the potential wells
are

Increased skewness. The system spends more time near the “saddle” (the
unstable region between two potential wells), resulting in skewed or
even wider probability distribution of the system state.

Flickering. Increased probability of the system spontaneously jumping be-
tween two attractors under stochastic forcing. This is closely related to
the skewness mentioned above.

We will further expand on these with ���s of our own in Chapter �. These
new ���s are specific for the models used in this thesis and are not applicable
to all dynamical systems.

�.� Objective and Signi�cance of Research

The first aim is to add a deep ocean coupling to ��� and����, enabling us to
conduct the planned experiments involving the extra dynamic this coupling
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provides. This brings the models a step closer to a ���, and can then provide
valuable insight into the behaviour of ���s.

Previously, Wagner and Eisenman (����a) have shown that it is not possible to
detect a rise in variance in sea ice area in ���� under warming. Later it has
been hypothesised that the lower variance is due to the ability of a thinner ice
cap to respond faster to forcing (Bathiany et al., ����). We include ��� in this
thesis to gain insight into whether the hypothesis is valid. Since ��� does not
include ice enthalpy⁴, it should have less variance than ����.

We will identify previously unidentified ��� for the ���� in both ��� and
���� (with and without deep ocean coupling) while using conventional and
new methods.

���� only contains a mixed ocean layer, but our hypothesis is that the hys-
teresis width will be greatly affected by “heating in the pipeline” in the form
of the thermal inertia of a vast deep ocean. If this is true, then representing
the deep ocean as a constant heat flux (Wagner and Eisenman, ����b) is an
oversimplification.

Combining these new results should expand our knowledge of the ����, the
prospects of predicting it, and asses the recovery of the sea ice cover in negative
emission scenarios.

�. The ice enthalpy is the latent heat of the sea ice which is proportional to the ice thickness.
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�.� Outline

Chapter � introduces the concepts of ���, ��, and ��� in a more precise
and technical manner. We will also look at the role of ���s in climate
science in relation to the infinity complex climate system.

Chapter � includes the derivations of ��� and ����. The chapter also justi-
fies the choices for the model parameters.

Chapter � first shows how model parameters are fitted to observation data.
Second, we present some general results to elucidate issues discussed
in Chapter �. We present the prospect of detecting ���s for the ���� in
this chapter and time-dependent irreversibility (hysteresis⁵) that occurs
after the loss of sea ice.

Chapter � discusses some of the issues arising when the models are fitted
to observed data, then we considers further the impacts of the findings
from Chapter �.

Chapter � summarises the findings of the thesis and elaborates further on the
implications of these findings and avenues for future work on methods
and models.

�. Hysteresis normally refers to the dependence of fixed points (equilibria) on a control
parameter like the radiative forcing. This corresponds to the evolution of the actual
system state if the parameter variation is infinitely slow. However, the thermal inertia of
the deep ocean prevents the system from relaxing to an equilibrium on the time scale
of the varied forcing, and hence the observed system path will depend on the rate of
change of the control parameter.



2
Background

This chapter aims to give an introduction to the concepts and the methods
being applied to the models later on in the thesis. But first, we will introduce
the concept of ���s and why they are useful when studying the infinitely
more complex climate system.

�.� Energy Balance Models

As the name suggests, energy balance is the balance in the Earth’s energy
budget, i.e., when outgoing radiation is equal to the incoming radiation we are
in an equilibrium climate state¹. Hence when we talk about ��� we strip the
complex climate system down to the principle of energy balance. The simplest
���s depict the change in global temperature simply as the difference in the

�. Here, we mean an energetic equilibrium in the form of a fixed point in the energy balance
model. The system is of cource not in a thermodynamic equilibrium.

�
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Figure �.�: Energy balance diagram (Reddy et al., ����)

incoming and outgoing radiation energy flux;

c
dT
dt
= Ein � Eout, (�.�)

where c is the heat capacity, which directly relates to the response time of
the temperature, T . It is rare that the climate is in a perfect equilibrium
all the time, both internal and external forces can create departure from
equilibrium. External factors like the Sun’s ��-year sunspot cycle will have an
effect on the energy into the Earth’s climate system. More catastrophic events
like big volcanic eruptions can change the climate system drastically, even
initiate ice-ages. Modern humans have begun to affect the amount of energy
leaving the Earth by the increased greenhouse effect caused by burning of
fossil fuels.

The components of Ein and Eout can be seen in Figure �.�. However, in an
���, we combine the bulk of the terms from Figure �.� into easier terms. We
distinguish between solar incoming radiation and reflected radiation. This
means that we can create a term for the energy into an ��� as the product
of the proportion of absorbed radiation (co-albedo) and the incoming solar
radiation. The remaining outgoing radiation can be found by assuming the
Earth is a “grey” body and applying Stefan-Boltzmann law. Both incoming
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and outgoing radiation, in terms of the models, will be discussed in detail in
Chapter �.

Earth system models (���s) are at the other end of the climate model spec-
trum, these models include ocean and atmosphere circulation, chemistry,
biology, carbon cycle and so on, which enable them to resemble the Earth as
closely as possible.

There is also amiddle ground called���,which parametrizes all the processes
that are not interesting for the purpose of the model. If a ��� is used in
predicting the weather, it is not important that it includes vegetation or ocean
biology, because these things do not affect weather on the time scale we are
interested in, particularity the weather next weekend.

But if ���s and ���s are superior at representing the Earth’s climate than
an ���, so why do we not use them to study �� behaviour?

A model describing present-day weather and climate will not be able to
describe ice-age conditions and vice versa, the same goes formodels describing
the aftermath of global warming, they must differ from present-day models
(Rypdal, ����). So when representing a world different from ours, it is no
reason to use models created for present time, instead, we can create ���s
grounded in basic physical processes, which may help us to model and predict
�� behaviour.

�.�.� Linearity of Models

The absorbed incoming radiation into an ��� is dependent on the albedo
of the Earth, which is again dependent on the temperature. This fact creates
a nonlinear relationship between temperature and reflection, which means
that (�.�) is a nonlinear equation. All the models used in this thesis are
nonlinear.
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In contrast, the global temperature response of most ���s/���s is linear
in nature, this is due to the large internal variability in the models which
mask the nonlinear ice albedo feedback found in simpler models. These pro-
cesses include El Niño Southern Oscillation (����), Atlantic meridional over-
turning circulation (���), and other variabilities, on scales from months to
decades.

Even though these internal variabilities are "zero-sum games" they mask the
effect of nonlinearities such as the ice-albedo feedback. Even in a relatively
simple model such as ����, keeping a slight seasonal solar forcing cycle
masks the nonlinear jump to an ice-free Arctic Ocean (Wagner and Eisenman,
����b).

�.�.� Climate Sensitivity

Simply explained the climate sensitivity of a climate model is the response
to a unit forcing. The temperature response to an instant doubling of pre-
industrial CO2 concentration is alternatively defined as the climate sensitivity
of a model.

A collection of climate model responses to doubling of CO2 is shown in
Figure �.�. The majority of climate models have a response between 2 �C
to 4.5 �C with a mean around 3 �C. This results in a climate sensitivity of
⇠ 0.8 KW�1 m2 given that a doubling of CO2 corresponds to a radiative
forcing of 3.7Wm�2.

The models used in this thesis are nonlinear and can have different climate
sensitivity depending on the forcing scenario. This is presented in Chapter �.
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Figure �.�: Climate sensitivity frequency distribution.

Response to doubling of CO2 in Intergovernmental Panel on Climate Change (����) climate
models. Figure compiled by Lindsey (����).

�.� Bifurcation Theory

The dynamical system Ṫ = f (T ,�), where T : t 7! T (t) 2 Rn and � 2 Rn,
has equilibrium solutionsT ⇤ that we can find by setting f (T ,�) = 0. Since we
only solve for the equilibrium solutions, and we do not know the path of the
solutions we have no way of knowing at which equilibrium we are. This is very
general, in climate science we usually have an idea of which fixed point we
are at. This is trivial by observation, we observe temperature, ocean currents,
sea ice area, and so on.

A bifurcation in this dynamical system occurs if smoothly changing parameters
� results in the creation, the destruction, or change in stability of fixed points
(Kaper and Engler, ����).

In climate models, we are most interested in observing the stability of the
fixed points.

As mentioned, a bifurcation in climate science is often referred to as a ��.
��s can occur if we keep adding radiative forcing to a climate model, which
we can see in Figure �.�. When the ice edge moves northward it will at some
point become unstable, and can then transition to the new stable ice-free state
given a small perturbation.

Another aspect of this bifurcation is the hysteresis that can arise, that is to
say, we cannot simply reduce the radiative forcing and expect the ice to come
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Figure �.�: Bifurcation diagram

Bifurcation diagram for the ����. The vertical axis shows the latitude of the ice edge while
the horizontal axis indicates the applied forcing. Arrows indicate the hysteresis path. North

(����) finds that the ice cap is unstable for an ice edge north of 75�N .

back at the same point it went away. A large reduction in radiative forcing is
required to get a transition back to the stable finite ice cap. ��� and ����
have a hysteresis width of about 1Wm�2 when removing the seasonal cycle
(Wagner and Eisenman, ����b), which corresponds to 56 ppm of CO2, or the
same as the change in CO2 concentration in the atmosphere from ���� to
present.

�.� Early-Warnings Signals

As mentioned in Chapter �, when a dynamical system approaches a �� the
system will enter a critical slowdown, which means that a perturbation will
have longer recovery time to return to the stable state. This slower recovery is
demonstrated in Figure �.�. And if we keep applying perturbations to a system
with long recovery time, eventually the system will jump to a new stable state.
This critical slow down is one of the characteristics that we may use as an
���.
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Figure �.�: Recovery from perturbation at time t0.

Horizontal axis indicates the system state, e.g. temperature. Vertical axis is time. Solid line
returns fast to the stable situation and dashed line represents a system which is close to a ��

and has a slow recovery from perturbation.

Conventionally a rise in variance and autocorrelation could imply that the
system is going into a critical slowdown. However, the rise one of these
quantities alone may create false ���s for the sea ice area (Wagner and
Eisenman, ����a). We will investigate if there are other methods we can use
to detect ���s in our models.

We will present two alternative ���s, one of which can be applied to ���
and ����, the other only apply to ����.

�.�.� Regional Temperatures

For a long time, it has been known that the Arctic is warming at a higher pace
that the rest of the globe. The pace difference in the regional temperatures
may possibly be used as an ���.

The alternative ��� we define as the change in the polar temperature (above
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64�) over the change in global temperature, namely

�T =
�TP
�TG
. (�.�)

We can substitute the polar temperature with pole temperature to experience
a greater amplified effect. However, observation of pole temperatures has a
short temporal span and will be more prone to local variability.

�.�.� Ice Cap Thickness

Efforts have been made to accurately measure sea ice volume, one of them is
the PIOMAS project (Schweiger et al., ����) that employs a combination of
satellite data and models to determine the sea ice volume. Schweiger et al.
(����) show that this method has an uncertainty of 1.35 ⇥ 103 km3, which is
about one-twentieth of the total ice volume.

One aspect that creates a �� in ���� is if the ice cap becomes thin, and
perturbing a tiny amount may result in that the entire ice-albedo feedback
kicks in at once. Searching for this potential ��� we define the quantity;

�I =
Area

Volume
=

1
Thickness

. (�.�)

In Chapter � we will investigate how these ���s, �T and �I , behave for
observed and modelled data.

An ��� is only relevant if we are able to detect it and stop whatever is driving
the system to the ��. Hence, we need to explore for which values (�.�) and
(�.�) becomes critical. When will it be too late to reverse the process and
return to a stable situation? This so-called “point of no return” is established
in Chapter �.

Both of these new ���s are applicable to a single time series, which is how
instrumental data are presented. Time series analysis is relevant also when
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searching for ���s in ���s, since only a few model runs are normally avail-
able for analysis. Analysis of ���s simulations is outside the scope of this
thesis.





3
Models

In this chapter, we will derive the two models used to produce the results of
this thesis. In both models, we assume an aqua planet (Figure �.�b) with a
fixed mixed layer depth, and deep ocean coupled to this mixed layer. When
the temperature becomes low enough in the mixed layer ice will grow. The
difference between these two models, ��� and ����, is related to the ice.
���� models sea ice evolution including thickness, melting, and freezing.
While in ��� the ice only affects the albedo function, i.e., there is no ice
enthalpy.

By adding a deep ocean we will be able to increase the climate sensitivity
in the models. This is done by moving heat into the deep ocean instead of
immediately radiate it to space.

��
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(a) Model schematic (b) Aquaplanet

Figure �.�: Model schematic

(a) Modified model schematic from Wagner and Eisenman (����b), arrows indicate the
components of (�.�)/(�.��). (b) Aquaplanet with ice caps.

�.� North’s Model

��� is described by a single partial differential equation (���) (adding deep
ocean introduces one more), where the change in temperature is equal to the
energy flux into each of the spatial columns from the sun, the deep ocean and
neighbouring columns.

cw
@T

@t
= �A � BT (t ,x) + �(x ,xe)S(t ,x) + Dr2T (t ,x) + �(x)(Td(t) �T (t)) + F (t),

(�.�)

where �A � BT is the top-of-atmosphere (���) outgoing longwave radiation
(���), �S is the product of the co-albedo and the incoming solar radiation,
i.e., the total absorbed energy. Dr2T is the northward transport of energy.
The second to last term is the delay term related to the deep ocean coupling,
where Td is the temperature of the deep ocean. Finally, the last term is any
additional radiative forcing, such as anthropogenic forcing. Unlike standard
��� or ��� that do not have a spatially varying temperature, ��� includes
both the time evolution (in years) and the spatial dependence of T = T (t ,x),
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where x ⌘ sin� with latitude � . This implies x = 0 at the equator and x = 1
at the pole. All figures involving latitude are plotted using x .

�.�.� Solar Radiation

The total solar forcing is the product of the incoming solar radiation and the
co-albedo function.

Following North and Coakley (����) the incoming solar radiation function is
defined as

S(t ,x) = S0 � S1x cos(2�t) � S2x2, (�.�)

where S0 is the solar radiation at the equator, x cos(2�t) represents the
seasonal variation with amplitude S1, and S2 is the magnitude of the spatially
varying radiation.

Co-albedo is the proportion of incoming radiation that is absorbed and there
are many different ways to represent the co-albedo function. Wagner and
Eisenman (����b) use a spatially dependent step function. We will take a
different approach, smoothing the step function from Wagner and Eisenman
(����b), that can be interpreted as if we have floating ice sheets or melt
ponds.

�(x ,xe) =
aeq � asx2 � ai

exp(� (x � xe)) + 1
+ ai , (�.�)

where aeq is the co-albedo at the equator, as is the spatially dependent co-
albedo and ai is the co-albedo over the ice. The ice edge, xe is defined where
the temperature changes sign, which differs from North et al. (����). To
achieve the same ice edge in the models this is necessary. This dependence
on T introduces the nonlinearity into this model. � defines the steepness of
the function. We will use � = 150. Figure �.� shows how (�.�) compares to
the observed ��� co-albedo. However, we do not fit the parameters in (�.�)
to observations.
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Figure �.�: Co-albedo

Observed annual mean Northern Hemisphere co-albedo (red dots) from Donohoe and
Battisti (����) and modelled co-albedo from (�.�) (black line).

�.�.� Outgoing Longwave Radiation

The ��� can be approximated by a linearization of Stefan–Boltzmann law
around the pre-industrial temperature (Budyko, ����);

�A � BT , (�.�)

where A and B are results of the linearization process. These two constants
are obtained by fitting the model to observed data.

�.�.� Northward Transport

To be able to approximate the transport as a gradient of the surface tem-
perature we must acknowledge that we have a spherical planet where the
meridians are converging at the pole. Following North (����b) (from Legen-
dre’s differential equation) the diffusive term will take the form

Dr2T = D
@

@x


(1 � x2)@T

@x

�
. (�.�)
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Due to the seasonal variations, there will be a small heat transport across the
equator where, for simplicity, we restrict ourselves to one hemisphere. This
transport across the equator will only change the temperature less than 0.3 K
according to Wagner and Eisenman (����b). The boundary conditions is found
by letting the heat content between two latitudes x1 and x2 be

W1,2 = 2�
Z x2

x1

Tdx . (�.�)

If we represent all vertical flux by R(T , t ,x) (�.�) takes the form;

cw
@T

@t
= R(T , t ,x) + D @

@x


(1 � x2)@T

@x

�
. (�.�)

Integrating both sides of (�.�) over the interval x 2 (x1,x2) we get a conser-
vation equation forW1,2;

cw
2�

dW1,2

dx
=

Z x2

x1

R(T , t ,x)dx + D(1 � x2
2)
@T

@x

����x2 � D(1 � x2
1)
@T

@x

����x1 . (�.�)

If the northern boundary is the pole we have x2 = 1 and the flux trough the
boundary is zero if Tx (t , 1) is finite. If the southern boundary is the equator
we have x1 = 0 and the flux through the boundary is DTx (t , 0). A zero-flux
boundary condition is,

Tx (t , 0) = 0. (�.�)

�.�.� Deep Ocean

By adding a deep ocean to the model we add a large thermal inertia that takes
a long time to warm up or cool down. This “heating in the pipeline” is the
delay effect we are after. A simple ��� which exchanges heat with the mixed
layer is

cd
@Td
@t
= �(T �Td). (�.��)

Here cd is the heat capacity of the deep ocean which is much larger than the
heat capacity of the mixed layer. � is the coupling coefficient between the
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mixed layer and the deep ocean. We will set � as a decreasing logistic function
from the equator to the pole, such that we have an ample coupling near the
equator and no coupling near the pole. In the real world, the overturning
occurs further North, but the primary aim with the deep ocean coupling is to
add a larger thermal inertia to the model.

�.� Wagner and Eisenman’s Model

��� and���� are similar, but what���� include as well is a sea ice thickness.
This thickness makes us able to look more in depth at the mechanisms that
create a �� in the sea ice cover.

�.�.� Sea Ice Enthalpy

To account for the ice thickness we introduce a single column surface enthalpy
(Eisenman and Wettlaufer, ����)

E(t ,x) ⌘
8>><>>:
�Lf h(t ,x), E < 0 (sea ice)

cwT (t ,x), E � 0 (open water),
(�.��)

where Lf is the latent heat of the sea ice, h is the ice thickness, and cwT is the
heat in the open ocean mixed layer (same as in ���).

As for���, the change in the enthalpy is equal to the sum of the heat fluxes into
each column. Either into the ocean mixed layer or the ice from (�.��).

@E

@t
= �A � BT + �S + Dr2T + �(Td �T ) + Fb + F (�.��)

(�.��) has the same components as (�.�). Due to the formulation of themodel by
Wagner and Eisenman (����b) we need to include Fb which is the steady flow
of heat from the deep ocean. This parameter makes sure we get an accurate
representation of the sea ice thickness. Discussed further in Chapter �.
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The major difference between the two models is the ice enthalpy and we need
to take a look at the physics involved in the evolution of the ice.

�.�.� Sea Ice Physics

We need to develop a thermodynamic description of the evolution of the sea
ice thickness. The heat transport through the sea ice is described by a heat
diffusion equation

�ici
@T

@t
= k
@2T

@z2
+ q, (�.��)

where �i , ci and k are the density, the specific heat, and heat conductivity of
the ice, respectively. We assume that they are constant through the ice. q is
the heat source arising from penetration of solar radiation into the ice. We
can simplify (�.��) by using the four assumptions in Stefan’s law (Stefan,
����)

(i) no thermal inertia,

(ii) no internal heat source (q = 0),

(iii) known surface temperature T0,

(iv) no heat transfer from the water.

Assumptions (i)-(ii) simplifies (�.��) such that there is a linear temperature
profile (@T /@z = constant) through the ice as seen in Figure �.�a. Assumption
(iii) gives the upper boundary condition.

The lower boundary is not fixed but changes when the ice freezes or melts
(Leppäranta, ����)

Lf
@h

@t
= k
@T

@z

����z=h � qw , Lf = �iL, (�.��)

where h is the ice thickness, qw is the heat exchange with the mixed layer,
and L is the latent heat of freezing. Assumption (iv) and @T /@z = constant,
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reduces (�.��) to

Lf
@h

@t
= k

Tm �T0

h
, (�.��)

where Tm is the melting temperature of the sea ice and T0 is the temperature
at the ice surface. By using (�.��) we can see that (�.��) becomes

�@E
@t
= k

Tm �T0

h
. (�.��)

TakingTm = 0 thenT0 will be the temperature that solves (�.��) in the regions
covered by sea ice. Inserting (�.��) into (�.��), we get

kT0

h
= aS �A � BT0 + Dr2T0 + F . (�.��)

Due to assumption (iv), there is no heat transferred to or from the deep ocean
in the ice-covered regions, i.e., � = 0 and Fb = 0. This results in two regions
for ice, freezing and melting. Using (�.��) together with (�.��) for open water,
the surface temperature is¹

T =

8>>>>><>>>>>:

E/cw , E > 0 (open water),

0, E < 0, T0 > 0 (melting ice),

T0, E < 0, T0 < 0 (freezing ice).

(�.��)

Thus the governing equations for ���� are (�.��), (�.��), and (�.��).

�.� Ice Area and Volume

We will look at both the ice area and volumes response to climate forcing
and therefore we need to define these quantities. Define the relative ice area
as

A(t) = 1 � xe(t) (�.��)

�. T0, by definition, is the solution to (�.��). If T0 > 0 it does not represent the surface
temperature, which is zero degrees Celsius in the case of melting ice.
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where xe(t) is the ice edge at any time t .

It has been pointed out in Wagner and Eisenman (����a) that ice volume may
be a better quantity to observe when it comes to predicting a ��. Since����
contains ice thickness this can be done. Volume is defined as the integral of
the ice thickness over the hemisphere of radius r ;

V (t) = 2�
Z �

�e

r cos(� ) h(t ,� )r d�

x=sin(� )
= 2�

Z 1

xe

r2h(t ,x)dx (�.��)

whereh(t ,x) is the ice thickness from (�.��). (�.��) is computed as a sum.

�.� Default Parameters

The range of parameters in the models is broad. We will try to justify the
choices for the default parameter values.

Table �.� contains all default parameter values and a short description of each.
The diffusivity, D varies in the literature from 0.4 (Lin and North, ����) to
0.66 (Rose and Marshall, ����). We chose the same diffusivity as Wagner
and Eisenman (����b). Due to the method used to add a deep ocean to the
models, the diffusivity is slightly different in these models, to ensure the same
ice edge. This is shown in Chapter �.

The insolation at the equator, S0, and the spatially varying insolation, S2, can
be found by Legendre polynomial coefficients, using the ones found by North
and Coakley (����). The seasonal varying insolation, S1, is set larger (25% as
Wagner and Eisenman (����b)) than in North and Coakley (����) to represent
the present climate properly, especially the sea ice thickness. S1 is also one of
the parameters we will change to create an unstable climate. The co-albedo
coefficients are adopted from North (����b). aeq and asp are a result of analysis
of the albedo distribution from Sellers (����). ai is the proportion of absorbed
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Symbol Description Default value
D Default diffusivity (Wm�2 K�1) 0.6
A OLR at T = 0 (Wm�2) Model dependent
B OLR temperature dependence (Wm�2 K�1) Model dependent
cw Mixed layer heat capacity (Wyrm�2 K�1) 7.3
cd Deep ocean heat capacity (Wyrm�2 K�1) 106
S0 Insolation at equator. (Wm�2) 420
S1 Default insolation seasonal dependence 338
S2 Insolation spatial dependence 240
aeq Ice-free co-albedo equator 0.7
asp Ice-free co-albedo spatial dependence 0.1
ai Sea ice co-albedo 0.4
k Sea ice thermal conductivity (Wm�2 K�1) 2
Lf Sea ice latent heat of fusion (Wyrm�3) 9.5
�̄ Deep ocean coupling, spatial mean (Wm�2 K�1) 0.73
F Radiative forcing (Wm�2) varies

Table �.�: Parameter values

radiation over ice and snow. We use the values corresponding to pure ice
(frozen water with no impurities) with density ⇠ 900 kgm�3 for the thermal
conductivity k and the latent heat Lf (Wagner and Eisenman, ����b).

The heat capacities for both the mixed layer and the deep ocean are adapted
from Geoffroy et al. (����), where they fit a two-box model to the abrupt
4 ⇥CO2 and 1% increase CO2 per year CMIP5 experiments. Since we have
a spatially dependent deep ocean, we only adopt the mean of the coupling
coefficient, � from Geoffroy et al. (����).

The ��� parameters A and B are crucial for finding the best fit for the models
to observed temperature, we will find these parameters in Chapter �.

The numerical integration of both ��� and ���� is shown in Appendix A.



4
Results

First, we consider fitting the models to observed data, then some other general
results before we look into the different ���s discussed in Chapter �. Finally,
we investigate the hysteresis that arises after loss of sea ice.

All results in this chapter are produced under the parameter regime that pro-
duces bifurcations, unless otherwise mentioned. This is achieved by removing
the seasonal cycle in the models (Wagner and Eisenman, ����b). With a sea-
sonal cycle in the models there will not be a �� and therefore it does not
make sense to look for ���s in that scenario¹.

We will present results for four models, ��� with and without deep ocean,
and ���� with and without deep ocean.

�. It is possible to look for ���s in parameter regimes that do not produce a ��. However,
these ���s will be false warnings (see Wagner and Eisenman (����a)).

��
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Model A B D

��� 183.0 2.8 0.6
��� w/deep ocean 188.5 2.4 0.66
���� 182.0 2.9 0.6
���� w/deep ocean 192.5 2.5 0.66

Table �.�: Adaption parameters

�.� Fitting the Models

To get a proper representation in later experiments, we need to find the
parameters that best reproduce our present and past climate. We apply historic
forcing from the year 1880 to present (Hansen, ����, ����), and assume
equilibrium between the mixed layer and deep ocean in 1880. We want
to find the parameters that minimise the error to observed data, but it is
also important to represent the present global temperature. Since all ���s,
and even ���s, have a bias toward being too sensitive to volcanic activity
(Marotzke and Forster, ����) we can ignore the large temperature drop in
the last decades of the ��th century when we try to find the best fit. This is
due to a number of large volcanic eruptions that occurred within two decades
concluded by the Santa María eruption in ����.

The fitted models to global temperature are shown in Figure �.�a. All figures
with multiple models in them will have the same colours for the models as in
Figure �.�a.

We can also look at more regional results, such as the polar regions (64� �
90�) shown in Figure �.�b. Since the figure shows the mean of the Arctic
and Antarctic regions the models are quite good at representing the rise in
temperature. However, the variability of the observed temperatures are not
captured by the models.

The parameters that fit best with observed global temperature (Morice et al.,
����) for each of the four models are shown in Table �.�. As mentioned in
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Figure �.�: Responses to historic forcing.
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Chapter �, we were able to increase the climate sensitivity (lower B) by adding
a deep ocean coupling to ��� and ����.

In Table �.� we can also see that we have a different diffusivity for each model.
This is to achieve a similar ice edge between the models (within two grid
points), see in Figure �.�c. In the models with deep ocean some of the heat
is taken out of the mixed layer near the equator, and there will be less heat
transport northward. Hence with the same diffusivity, the ice edge will be
further south in the models with deep ocean compared to the ones without.
This is solved by having a slightly higher diffusivity in the models with deep
ocean.

�.� Response to Step Forcing

We will in this section look at the response of the models to a doubling
and quadrupling pre-industrial CO2 concentration, which corresponds to
3.7Wm�2 and 7.4Wm�2 given by the first order approximation of CO2

forcing (�F = 5.35 ln(C/C0)) (Huang and Bani Shahabadi, ����). Since our
models are inherently nonlinear the response is not necessarily proportional
to the strength of the forcing.

In Figure �.�a and Figure �.�c there is no difference in the normalized response
between the two scenarios. This means that we do not pass the �� in the
models without deep ocean coupling. We also observe that the normalised
temperature stabilises around 0.6 Km2 W�1. Thus the climate sensitivity is
⇠ 0.6.

In contrast, the models with deep ocean, shown in Figure �.�b and Figure
�.�d have different climate sensitivity between the two scenarios. This can be
attributed to the deep ocean heating, which heats the mixed layer past the
�� in the quadrupling scenario. The additional heat gives a jump to ice-free
conditions, seen in Figure �.�b and �.�d. In the quadrupling scenario stabilises
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Figure �.�: Normalised global temperature responses to doubling and quadrupling

of CO2.
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Figure �.�: Ice edge responses to doubling and quadrupling of CO2.

at 0.8 KW�1 m2 and 0.75 KW�1 m2 for ��� and ���� respectively (out of
frame in figures). Doubling of CO2 leads to a climate sensitivity that is 0.05
lower than for the quadrupling scenario.

�.� Early-Warning Signals

In this section, we will first consider the usual method for detecting ���s
using the Monte Carlo method. Then we will look into how our new ���s
behave when applied to observed and modelled data.
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�.�.� Monte Carlo Experiments

The conventional methods of detecting ���s are to consider the increase in
the variance and autocorrelation. Methods for computation of variance and
autocorrelation are shown in Appendix B. We will now look at these methods
for all four models.

We apply a linear forcing with added random noise in the form

n(t) =
TX

k=0

wk cos(�kt/T ), wk ⇠ N (0, 1), (�.�)

where T is the length of the simulation in years. This definition of noise will
create oscillations on all time scales involved in the run, where each oscillation
will have a random weight.

We chose to observe the pole temperature since this gives us the largest
chance to catch an ���. As mentioned it has been pointed out by Wagner
and Eisenman (����a) that ice area is not the best observable for detecting an
��� for the ����.

N��

In this section, we will present the results from applying the forcing

f (t) = �0.5 + 0.03t + 0.2n(t) (�.�)

to ��� with and without deep ocean coupling. We create 200 realizations for
the ensemble.

In Figure �.�, an increase in both variance and autocorrelation occurs way
before the bifurcation point. At first glance, the plots with and without deep
ocean look indistinguishable. We notice that ��� with deep ocean reaches the
�� before the model without deep ocean. This is an example of the "heating
in the pipeline" effect from the deep ocean thermal inertia, which will be
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Figure �.�: Variance and autocorrelation of ensemble (200 realizations) pole tem-

perature in ���.

Red dashed vertical line shows the bifurcation point of the ensemble mean. The blue lines
show the best linear fit before this point.
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Figure �.�: Variance and autocorrelation of ensemble (200 realizations) pole tem-

perature in ����.

Red dashed vertical line shows the bifurcation point of the ensemble mean. The blue lines
show the best linear fit before this point.

discussed later. One other observation we can make is that the model with
deep ocean has a slower transition from the linear rise to exponentiation rise
in variance.

WE��

We do the same as in the section above with the two versions of ����.

In contrast to Figure �.�, there is only a small trend in Figures �.�a and �.�c.
Using the methods shown in Appendix B the trend is not significant beyond
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90% confidence.

Autocorrelation, on the other hand, has a stronger trend for ���� than for
���. For autocorrelation, the trends are very prominent, in all models.

�.�.� Polar Ampli�cation

We will now look at the possibilities to predict a �� using polar amplification
described in Section �.�.�. We ramp the forcing by 0.03Wm�2 yr�1 to find
the critical value of �T .

While trying to find tolerance level for �T we discover a problem with this
���. There will be a lot of numerical noise when differentiating TP and TG .
Hence, Figure �.� shows �T with a low-pass filter applied (cut-off frequency
� = 1/20 yr).

�.�.� Thin Ice Cap

In this section, we will look at the change in the ice cap described in Section
�.�.�. This effectively tells us something about the thickness of the ice cap
(A/V = 1/h).

Historic

First, we observe how the ��� applied to historic sea ice data from the Arctic
Ocean behaves. The sea ice area data is gathered from Fetterer et al. (����),
and the PIOMAS project has supplied the volume data (Schweiger et al.,
����).

Figure �.�a shows the annual mean ice cap area and volume from ���� to
���� with linear trends. The data is normalised such that the axes represent
the remaining fraction of the ���� ice levels. We observe that the ice volume
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Figure �.�: Regional temperature ���, �T .
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Figure �.�: Normalised annual mean sea ice area and volume from observations.

(a) shows annual mean area in blue and volume in red. Dashed lines show the best linear fit
for each. (b) shows the ��� magnitude, �I , solid line uses the entire data set, and the

dashed line only uses the linear trends from (a).

has decreased to about 60% of the ���� level, while the ice area has only
decreased to about 85% of the ���� level. This indicates a thinning of the
ice cap. The thinning is demonstrated by the ��� magnitude �I shown in
Figure �.�b.

Figure �.� shows the same as Figure �.� just for the annual minimum sea
ice area and volume. Here we observe that the ice area is down to 75% of
the ���� level, while the volume is down a massive 65% to only about 35%
remaining. This faster decrease implies that �I has risen faster than for annual
mean, and with larger variance.

Simulated

We apply historic forcing (Hansen, ����, ����) to ����², and observe how
the ��� behaves when modelled.

�. Requires ice thickness. Thus, ��� is not included. In this short historic record there is
little difference between the models with and without deep ocean. Thus the model with
deep ocean is omitted.
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Figure �.�: Normalised annual minimum sea ice area and volume from observations.

(a) shows annual minimum area in blue and volume in red. Dashed lines show the best
linear fit for each. (b) shows the ��� magnitude, �I , solid line uses the entire data set, and

the dashed line only uses the linear trends from (a).

This time we will enable seasonality in the model such that we are able to
observe the annual minimum sea ice extent.

We must also retune the model to fit the Northern hemisphere since this is
where observations are from. This is done by increasing the climate sensitivity
(B ! 2.1 (Wagner and Eisenman, ����b)) since the Northern Hemisphere is
warming faster that the Earth as a whole.

The trend lines for modelled area in Figures �.�a and �.��a agree reasonably
with the observed data. Volume, on the other hand, does not match the
observations, that well. This lack of ice mass loss leads to less rise of �I in
Figures �.�b and �.��b.

We observe both in Figure �.�a and �.��a that there is greater correlation
between the area and volume. In fact, the correlation is as high as 0.96 for
the annual minimum. In contrast, the correlation between observed data is
0.81. It is natural that a model has higher correlation since there is no internal
variability.
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Figure �.�: Simulated normalised annual mean sea ice area and volume from����.

(a) shows annual mean area in blue and volume in red. Dashed lines show the best linear fit
for each. (b) shows the ��� magnitude �I , where solid line uses the entire dataset, and the

dashed line only use the linear trends from (a).
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Figure �.��: Simulated normalised annual minimum sea ice area and volume from

����.

(a) shows annual minimum area in blue and volume in red. Dashed lines show the best
linear fit for each. (b) shows the ��� magnitude �I , where solid line uses the entire dataset,

and the dashed line only use the linear trends from (a).
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Figure �.��: �I for two different tolerance scenarios.

The red lines show the scenario where the bifurcation occurs, while black lines are where we
barely save the ice cap. In (a) we stop forcing at �I = 2.1m�1 (red) and �I = 2.0m�1

(black). With deep ocean in (b), we need top stop the forcing much earlier, at �I = 0.55m�1

(red) and �I = 0.54m�1 (black).

Point of No Return

When is it too late to stop forcingwhile perennially retaining the ice caps?

Let us monitor �I while ramping the forcing by 0.03Wm�2 yr�1, and terminat-
ing the forcing at different levels of �I to identify the latest point of retention
of the ice caps.

We observe in Figure �.�� that the tolerance for the model with deep ocean
is much lower than without it. This is a consequence of the increased climate
sensitivity introduced by the deep ocean, such as observed in Figure �.�d.

We consider the ice area in Figure �.�� and notice that the instability seems
more significant in the model with deep ocean, i.e., the threshold for the
bifurcation is further south, this leads us perfectly into the last section, which
is where we look into the size of the hysteresis in ����.
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Figure �.��: Ice cap area for the tolerance test.

Colour indicate the same as in Figure �.��. The dashed lines indicate when we stop forcing in
the two scenarios. In (b) the dashed lines are so close that we have included a zoomed insert.

�.� Time-Dependent Irreversibility

The irreversibility or the hysteresis width is defined as the forcing difference
between the warming and the cooling pathway in the ice edge measured at a
certain latitude. Thus the hysteresis width is

�F = Fw � Fc . (�.�)

Fw is the forcing in the first instance when the ice edge is north of xe = 0.985.
Consequently Fc is the forcing at the last instant the ice edge is north of
xe = 0.985. Having this set spot for measuring is a lot more intuitive than
observing the sign of the pole enthalpy as Wagner and Eisenman (����b).

We will present one scenario in the parameter regime where there is little to
no irreversibility in the ����³, while adding the deep ocean coupling leads
to a significantly larger irreversibility.

The scenario that is chosen has the default diffusivity (D = 0.6Wm�2 K�1)
with a slight seasonality in the forcing of 50Wm�2. The small seasonally kills
all irreversibility in ���� (Figure � in Wagner and Eisenman (����b)).

�. If there is irreversibility in���� for certain parameters we can be positive that ��� has
as well.
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Figure �.��: Irreversibility for slow ramp rate.

Arrows indicates ramp-up (red), ramp-down (blue), and the hysteresis width (black).

Slow Ramp Rate

Let us ramp up the forcing till perennially ice-free conditions and then down
again. This is done at the slow rate of 0.01Wm�2 yr�1. This is done to ensure
that the models always stay as close as possible to an equilibrium state.

Figure �.�� shows the hysteresis path for the models. The hysteresis for the
model with deep ocean is 0.42Wm�2 which is quite a bit larger than ����
without deep ocean, which only has a hysteresis width of 0.13Wm�2. This
is below the threshold of 0.2Wm�2 for hysteresis defined in Wagner and
Eisenman (����b).

Realistic Ramp Rate

In the perspective of anthropogenic global warming the slow ramp rate from
above has no merit.
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Figure �.��: Irreversibility for fast ramp rate.

Arrows indicates ramp-up (red), ramp-down (blue), and the qualitative times we measure
the hysteresis width (black).

We use the same model parameters as above⁴, and increase the CO2 concen-
tration by 1% per year from 1880 to 2100. Subsequently the concentration is
reduced to the pre-industrial at the same rate. This corresponds to a ramp rate
of 0.052Wm�2 yr�1. The hysteresis width in Figure �.��, measured between
the two arrows, is 1.1Wm�2. This means that the ice returns about two
decades later than it would if it had followed a reversible path.

This suggests that the hysteresis in ���� with weak seasonality is a time-
dependent effect (it depends on the ramp rate), and hence not a proper
bistability.

�. Under standard seasonality (338Wm�2), the response of the annual mean ice edge is
linear.
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Discussion and Analysis

This chapter will elaborate on the result described in Chapter �.

�.� Modelling

We will discuss the models in terms of fitting, derivation, and properties.
Starting with the former.

�.�.� Fitting the Models

For describing �� behaviour there is no difference between fitting the models
to hemispheric or global temperatures. The reason we chose to adapt the mod-
els to the global temperature records is that global temperature records have
a greater temporal span, and the forcing applied is a global average. This will
hopefully lead to a better representation under other forcing scenarios.

��
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N��

��� is very predictable in the sense that if we increase the diffusivity the ice
edge moves northward or vice versa. The same goes for the climate sensitivity.
Changing B leads to a linear shift in the temperature response.

When adding a deep ocean to the model the fitting process is more difficult.
Due to the longer time scale of the deep ocean, we must prolong the spin
up time to reach equilibrium, from 200 yr to 2000 yr. This increase obviously
leads to a longer execution time of the model. The amount of time required
to fit the model becomes problematic.

WE��

All the challenges mentioned above is also true for ����, and new issues
arise with the addition of sea ice enthalpy. (�.��) illustrates this point, the
temperature that separates the freezing and melting regimes depends on the
��� parameters.

So while juggling the ice edge and thickness, temperature, and the longer
execution time of���� (for no noise spin up, see Figure A.�), it became clear
that ���� is a lot harder to adapt to the observed data.

We notice that the ice edge is quite low (xe = 0.87 ⇡ 61�), but we must
remember that we adapt the model to global temperature records and not
the Northern Hemisphere (from 1880 to 2016 the mean temperature of the
Northern Hemisphere has risen ⇠ 0.5 �C more than global average). For an
experiment we must retune ���� to the Northern Hemisphere, then the ice
edge is much higher at xe = 0.95 ⇡ 72�N .



�.� M O D E L L I N G ��

Fitted Parameter Di�erences

Table �.� shows that there are slight differences between parameters used to
fit ��� and ����. This difference comes down to the key difference between
the models, the ice thickness.

Changing the��� is the toolwe have to fit themodels to observed temperature.
Adapting the temperature dependent part, B gives us the ability to ensure
correct climate sensitivity in the models. In ��� all the energy added goes
into the mixed layer or the deep ocean. ���� has the extra component of ice
enthalpy. Thus there is more components to heat. Since B is smaller in ����
than in ��� we conclude that it takes more energy to heat ice and mixed layer
than just the mixed layer.

The non-temperature dependent part of the ���, A is adjusted to achieve
the proper non-normalized temperature, which was 13.74 �C in ����. All the
models are within 0.2 �C of this.

Adding a deep ocean to both models leads to an unexpected change in the
location of the ice edge. This can be attributed to the coupling factor, � which
is defined as a logistically decreasing function toward the pole, such that
there is no heat exchange outside a 30� band around the equator. Hence the
coupling only takes energy out of this band and diverts it into the deep ocean,
resulting in a weaker northward transport. As a result of this weakening, the
ice edge moves slightly southward. We solve this by increasing the diffusivity
somewhat.

We can see in Figure �.�a that the sensitivities of the models are slightly
different, so going to one more decimal place in the ��� parameters would
have been beneficial.

In the high latitudes (Figure �.�b), the models represent the rise in tempera-
tures properly (mean of Arctic and Antarctic). However, the variability in the
models is nowhere close to the one observed. This lack of variabilitymeans that
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there are other mechanisms than the ice-albedo feedback that affect the high
latitude temperatures. Also, under the retuning to the Northern Hemisphere
the models are not even able to capture the rise in temperature.

�.�.� Global vs. Northern Hemisphere

Due to the sensitivity difference when fitting the models to either the global
or the Northern Hemisphere temperatures, the behaviour differs slightly with
respect to which latitude the ice cap is unstable. North (����) and Wagner
and Eisenman (����b) show that the ice cap is unstable at 75�N and 78�N ,
respectively. In Figure �.��a, which shows global ice area, we observe that
the ice cap is stable up to 84� in ���� without deep ocean. However, when
considering the model with deep ocean (Figure �.��b), we can see that the
instability occurs at lower latitudes ⇠ 80�. This observation suggest that the
stability of the ice caps is related to the climate sensitivity in the mixed layer. A
higher sensitivity (lower B) will increase the effect of the ice-albedo feedback
and therefore induce increased instability in the ice cap. This means that
adding a deep ocean coupling to the models will affect the stability of the ice
cap.

�.�.� Sea Ice and Deep Ocean

In the first attempt at adding a deep ocean to����, we replaced the constant
ocean heating, Fb in (�.��), by the dynamic coupling, �(T �Td). This leads to
unexpected behaviour in the model. The sea ice thickness goes unstable and
grows unbounded. After some investigation, it became clear that Fb does not
affect the calculation of the surface temperature of the ice, T0, as derived in
Section �.�.�. However, what is affected by Fb is the enthalpy. Since (�.��) is
valid everywhere, by removing the constant deep ocean heat, the enthalpy
becomes more negative under the ice, which leads to an increase in ice
thickness by relation (�.��).
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To solve this issue we have to keep both the constant deep ocean heating and
the dynamic coupling.

�.�.� Climate Sensitivity in Models

The deep ocean coupling term in (�.�)/(�.��) is negative and therefore takes
energy out of the mixed layer. Thus we must reduce the ��� parameters to
achieve the same fit to observed data, and the energy imbalance at the top of
the atmosphere increases.

The delayed heating begins when the deep ocean cannot remove more heat
from the mixed layer. Then the increased energy imbalance will provide
additional heating of the mixed layer. This is what is called "the heating in
the pipeline."

We notice in Figures �.� and �.� that the models with deep ocean reach
the �� a good 50 yr earlier than the models without deep ocean. This extra
heating is not noticeable in the historic runs of the model, and it should not
be because the point of adding a deep ocean to ��� and���� is that we have
this additional heating.

We can see in Figure �.� that the models with deep ocean more closely
represent the climate sensitivity that we see in the ensemble of ���s, which is
⇠ 0.8 (Rahmstorf, ����). The upper bound in Figure �.� is large, which leaves
a lot of room for the possibility of larger deep ocean heat capacity.

�.� Early-Warning Signals

�.�.� Conventional

In the warming scenario that we apply to the models, the ice shrinks and
finally disappears suddenly at the ��. To look at the ice area as an ���
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as Wagner and Eisenman (����a) did during this warming is not beneficial
since less ice leads to less possibility for variance (the same is true for ice
volume).

We rather observed that the variance and autocorrelation in the pole temper-
ature, gives us the best possibilities to detect an ���. Polar temperatures still
have a strong rise in variance and autocorrelation for ���. We even observe
the �� when looking at global temperatures, but there is no trend in the
variance and autocorrelation.

Since the rise is variance in ���� is already marginally significant, going to
polar temperatures the trend cannot be detected.

Thermodynamics tells us that to increase the temperature of an icy water
column, we first need to melt all the ice in the column. This is the reason why
seasonal ice minima occur in September and maxima occur in Mars. In����
this effect will create a delay, after some force is applied, in the temperatures
in the ice region. It is possible to see this effect in Figure �.�. It takes slightly
longer to reach equilibrium in ���� than in ���. This mechanism explains
why there is less rise in variance in ���� than in ���. This process is
confirmed for summer ice in a simpler model than ���� by Bathiany et al.
(����).

�.�.� Thin Ice Cap

There are clearly other mechanisms that affect the observed ice area and vol-
ume, since applying historic forcing to ���� did not replicate the magnitude
of the volume loss. This is a general problem of using an aqua planet model.
The Arctic Ocean is not an open ocean. We can attribute the increased loss
of ice mass, in observed data, to the seasonal outflow trough the Fram Strait,
which is responsible for up to 90% of sea ice export from the Arctic Ocean
(Gyory et al., ����).
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The point of no return for ���� without deep ocean is �I ⇡ 2.0m�1. While
the observed annual mean is getting close to �I ⇡ 1.5m�1, and the annual
minimum is �I ⇡ 2.3m�1. So if we disregard the deep ocean in the model, it
may be possible to save some seasonal sea ice cover.

����with deep ocean has a point of no return at �I ⇡ 0.55m�1. Even though
it may take a while before we lose the ice cap, this analysis shows that it will
certainly happen.

�.� Time-Dependent Irreversibility

It is natural that a large thermal inertia will resist the ramp-up and ramp-down
in forcing, so a larger hysteresis with larger thermal inertia is no surprise.

One of the factors thatwill affect the hysteresis width is how fastwe ramp-up or
down. In Figure �.�� we ramp-up with the slow rate of 0.01Wm�2 yr�1 while
in Figure �.�� the rate is 0.052Wm�2 yr�1. This greatly affect the hysteresis
width. Figure �.�� is more politically relevant since it concerns human time
scales and not the thousands of years in Figure �.��. The fact that Figure �.��
has a larger hysteresis width gives us an indication of when we can expect the
ice to return in a carbon capture and storage (negative emissions) scenario.
The same scenario as shown in Figure �.�� was conducted with double heat
capacity in the deep ocean. However, this did not result in a significantly wider
hysteresis.

We tested for irreversibility in two scenarios other than the one seen in
Figure �.��. These were one with high seasonality and low diffusion (S =
338Wm�2, D = 0.075Wm�2 K�1), and one with intermediate values (S =
100Wm�2, D = 0.2Wm�2 K�1). But as concluded by Wagner and Eisenman
(����b), even a slight diffusion (D = 0.1Wm�2 K�1) will kill all hysteresis
in scenarios with seasonality over 150Wm�2. The same seems true for the
model with deep ocean. The diffusivity is more important for keeping the
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hysteresis in the model with deep ocean. This is because heat exchange only
occurs near the equator. Thus with low diffusivity, no heat from the deep ocean
will affect the ice in the high latitudes. Changing the way the mixed layer and
deep ocean are coupled can change the hysteresis at low diffusivity.

We would like to reproduce Figure � from Wagner and Eisenman (����b)
with the addition of deep ocean to ����. The 441 simulations will take an
approximately 200 days using the same computing power used under the
entire thesis. More on this in the next section.

�.� Spatial Model Resolution

We chose to use the same number of gridpoints, 400, as Wagner and Eisenman
(����b) for all the experiments. In retrospect, this decision may have been
hasty.

As plenty of cartographers have realised it is impossible to project a sphere
onto a plane, while keeping all the proportions correct. In the models, we
project a curve onto a straight line. Evenly spacing the projections (x 2 [0, 1])
and not the latitudes makes us able to use the Legendre diffusion operator
for a sphere. Using 400 gridpoints gives us only five gridpoints from 80� to
90�, and the last jump is from 85� to the pole.

When we observe temperatures the resolution is not a huge problem, since we
either observe the temperature at a point or an average over a large area. The
smooth nature of diffusion keeps the temperature gaps between gridpoints to
a minimum. Sea ice area, on the other hand, is something that moves with
the same resolutions as the model. Moreover, having the ice edge move up to
five degrees in one timestep is not beneficial.

Some of the ��s relating to the ice area seen in Chapter � are not very pro-
nounced, but by converting back to latitudes they become unmistakable.
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Increasing the resolution leads to a massive escalation of the computation
time. Theoretically solving a tridiagonal matrix system, like ours, has the
complexity of O(n) (Thomas, ����). As shown in Figure A.� this is far from
the truth for the algorithms described in Appendix A. There is clearly some
overhead in the algorithms. Without further investigation we figure that this
overhead occurs due to algorithmic checks for certain matrix properties. We
can solve this in the future by implementing a custom solver.
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Concluding Remarks

�.� Summary

We have shown that there are some areas where the models studied here come
to short, namely the description of high latitude temperatures. This indicates
that the observed polar amplification is caused by other mechanisms than just
the ice-albedo feedback which is yet to be understood in ���s (Boé et al.,
����).

���s are possible to detect for the ���� either in form of rising variance and
autocorrelation for pole temperatures, or the thinning of the ice cap in ����.
We can predict the bifurcation to ice-free conditions using the rate of change
in regional temperatures. However, observing it continuously is not possible
due to numerical properties of the models.

���� is not able to capture the outflow of ice mass through the Fram Strait,
resulting in underestimation of the thinning of the ice cap.

��
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The deep ocean heating cannot be omitted when investigating the irreversible
evolution of the sea ice cover in ramp-up/ramp-down scenarios.

Model resolution is an issue in high latitudes,we should increase the resolution
for future experiments. Using a faster framework to avoid an exponential rise
in runtime should be considered.

�.� Concluding remarks

Adding a deep ocean coupling to ��� and���� has no profound effect on the
ability to detect ���s for the ����. What it does affect is the climate sensitivity
and thereby the ability we have to stop the ice caps from disappearing. It
also slows the regeneration of the sea ice cover in negative emission scenarios
where the CO2 concentration is returned to the present level.

A transition in sea ice cover is predicted by some of the models, and now we
have a better understanding of the effort required to return to a perennial ice
cap.

We now have a better understanding of what initiates the �� in ����. Even
though the model does not exhibit the same ice volume as observations under
historic forcing. We can use the thinning of the ice cap in the model to indicate
the imminence of a ��. Hence it may be appropriate to rename the ���� to
the thin ice cap instability.

�.� Further work

There are plenty of further expansions of the models that can be done.

The most interesting would be to expand the models to �D, such that we can
perturb the ice cap in space.
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To properly represent the high latitudes we might have the ��� parameters
dependent in space, or have more complex diffusion patterns.

Some years ago it seemed that ���s could not predict the massive loss of sea
ice that was occurring. However, the inclusion of melt ponds in ���s results
in a proper representation of recent decline in ice area (Flocco et al., ����). In
���� we could incorporate this as random open water or ice in the melting
regime.





A
Implementation of Models

In this appendix, we will show the numerical methods used to solve the
two models ��� and ����. Both models consists of two coupled ���s. The
diffusion equation has a nonlinear temperature dependence, �(x ,xe(T )). This
dependence is the result of the temperature dependence of the ice-edge
position xe(T ), which is found by (numerically) solving the equationT (x) = 0.
The systems are not trivial to solve, in fact, they can only be solved numerically
in the default parameter regime. By either removing the seasonal cycle or the
diffusivity the system can be solved using Legendre polynomials.

A.� Implementation of N��

We will use the method of lines (���) to implement this simpler model. The
��� technique consists of discretizing all spatial dimensions and leaving the
time dependence unchanged. We use this to turn (�.�) and (�.��) into a large

��
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coupled system of ordinary differential equations (���s).

cw
dTi
dt
= �A � BTi + �(xi ,xe,i)S(t ,xi)

+ D

� xi

Ti+1 �Ti�1
�x

+ (1 � x2
i )
Ti+1 � 2Ti +Ti�1

�x2

�
+ �(Ti �Td,i) + F ,

cd
dTd,i
dt
= �(Ti �Td,i),

(A.�)

where the spatial grid is defined as

xi = i�x , �x = 1/N (A.�)

where N is the size of the grid. We can rewrite (A.�) in matrix form

cwṪ = DMT + f (T ) + �Td , f (T ) = �A � (B + �)T + �S,
cdṪd = �ATd + �T .

Combining the above equations into one system of coupled ���s

*
,
cwṪ

cdṪd
+
- =

*
,
DM

�A
+
-
*
,
T

Td
+
- + �

*
,
Td
T
+
- +

*
,
f (T )
0

+
- (A.�)

whereM is a N ⇥N tridiagonal difference matrix with non-zero components
(Bitz and Row, ����)

mj,j�1 = �j�1, j = [2,N ],
mj,j = �(�j�1 + �j), j = [2,N � 1],

mj,j+1 = �j , j = [1,N � 1],
m1,1 = ��1,
mN ,N = ��N�1,

(A.�)

where �j ⌘ (1 � x2
j )/�x2. From (A.�) we can see that A will simply be a

N ⇥ N matrix with �1 on the diagonal, zero elsewhere. (A.�) can now be
solved by using general-purpose ��� solver. The LSODA ode solver (Brown
and Hindmarsh, ����; Hindmarsh, ����) adapts its method depending on
whether the problem is stiff or non-stiff. This means that when (A.�) has
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stabilized the solver can take much larger steps in time and thereby cutting
down on runtime.

The initial value for the system is set as

T (0,x) = 7.5 + 20(1 � 2x2),
Td(0,x) = T (0,x).

Assuming equilibrium between mixed layer and deep ocean before additional
forcing is applied.

A.� Implementation of WE��

The implementation of ���� is somewhat different to that of ��� due to
the ice thickness (we will strictly show the differences, the remainder is the
same as for ���). (�.��), (�.��) and (�.��) are the governing equations of
����.

A.�.� Ghost Layer

We introduce a ghost layer and let the spatial diffusion work in this layer (see
Appendix A in Wagner and Eisenman (����b)). This technique is strictly a
numerical one, and not a substitute for an atmosphere. The ghost layer has a
temperature, T� which evolves as

c�
@T�

@t
=
c�

��
(T �T�) + Dr2T�, (A.�)

where c� is the heat capacity of the ghost layer. c� is much smaller than the heat
capacity of the mixed layer, see Table �.�. �� is the coupling coefficient between
the two layers, which is kept very fast in this model since this technique is
strictly numerical. We can now replace the diffusive term in (�.��) with the
coupling term �c��� (T �T�).
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A.�.� Freezing Temperature

T0 can be calculated from (�.��). Replacing the diffusion with the ghost layer,
and h = �E/Lf gives the solution

T0 =
�S �A + F + c�

��
T�

B +
c�
��
� kLf

E

. (A.�)

This is used to find whether the ice is freezing or melting from (�.��).

A.�.� Time-Stepping Scheme

To advance the enthalpy in time we use the forward Euler method

Ei+1 = Ei + �Ei , (A.�)

where

�Ei = �t(Ci � (B +
c�

��
+ �)Ti + F ), (A.�)

Ci = �Si �A +
c�

��
T�,i + �Td,i + Fb . (A.�)

Evaluating Ci at times ti = (i + 1/2)�t .

The time evolution of the ghost layer temperature T� is computed using the
implicit backwards Euler method

T�,i+1 = T�,i + �T�,i+1. (A.��)

Discretizing (A.�) and inserting into (A.��) yields

T�,i+1 = T�,i + �t
 1
��
(Ti+1 �T�,i+1) +

1
c�
Dr2T�,i+1

�
. (A.��)

Inserting (�.��) into (A.��) and solving for T�,i+1, we obtain

T�,i+1 = M�11 M2, (A.��)
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where M1 and M2 are found to be

M1 =

�all �

�tc�

� 2�
diag
✓ 1

B +
c�
��
� kLf

Ei+1

◆

E<0,T0<0

�
,

M2 =

T�,i +

�t

��

✓Ei+1
cw

◆

E>0
+
�t

��

✓�Si+1 �A + F
B +

c�
��
� kLf

Ei+1

◆

E<0,T0<0

�
.

�all = (1 + �t

��
+ �t�)I � �t

c�
DM

where I andM are the identity matrix and the difference matrix respectively.
�all is the only quantity that does not depend on time, all other terms needs
to be computed for every timestep.

We again use the Euler method to iterate (�.��), such that

Td,i+1 = Td,i + �t
�

cd
(Ti �Td,i). (A.��)

The initial value for this system is

T (0,x) = 7.5 + 20(1 � 2x2),
T�(0,x) = T (0,x),
Td(0,x) = T (0,x),
E(0,x) = cwT (0,x).

We now iterate (A.�), (A.�), (A.��), (A.�), and (A.��), in that order.T is found
using (�.��).

We run the models such that T and Td are in an equilibrium before we start
applying additional radiative forcing. If we define zero forcing before the
industrial revolution, it can be considered approximately true that the mixed
layer and deep ocean are in equilibrium at that time.

The source code for the models can be found on GitHub¹².

�. ���: https://github.com/Erik-BM/north_model

�. ����: https://github.com/Erik-BM/we_model

https://github.com/Erik-BM/north_model
https://github.com/Erik-BM/we_model
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A.� Spatial and Temporal Resolution

Since the ice edge is defined by either the temperature or the enthalpy,
depending on the model, we need to have a high spatial resolution to stop
the ice edge from moving far between from one timestep to another. We also
need to strike a balance between resolution and runtime of the models, with
N = 400 spatial points this balance is optimal.

The spatial resolution is kept the same in bothmodels, however, due to stability
conditions of the Euler method the temporal resolution needs to be higher
for ����. While in ��� we get away with �t = 0.01 yr or even less, in ����
the resolution is required to be ten times higher to ensure convergence of the
Euler method.

A.� Runtime

We will look at the runtime it takes simulate 400 years of linear forcing with
and without noise. As we can see in Figure A.� that the runtime is very model
and forcing dependent.

Due to the method used to solve ����, it does not matter what forcing we
apply to the model, and all of the times are close. ��� is another story, the
solver used can make assumptions depending on the right-hand side of (A.�),
but when the forcing is noisy, this is not possible, and the solver assumes a
worst case scenario. This results in a runtime that is up to eight times longer
than for the run without noise. The difference between ��� with and without
deep ocean is due to that the deep ocean will double the size of (A.�), and
therefore will take longer to solve for each timestep.
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Figure A.�: Runtime

The horizontal axis shows the number of gridpoints (simulations for
N 2 [100, 200, 400, 800]). The vertical axis shows runtime in seconds. Colours indicate the
permutations of the models. Solid lines indicate forcing without noise, while the dashed

lines are to indicate noisy forcing.





B
Calculation of � 2 and �

The variance, � 2 is straightforward to calculate, we simply take the square
of each ensemble member subtracted from the time series without noise.
Then we take the mean of the variances to get the mean of the ensemble
variance.

� 2 =
1
N

N�1X

i=0

(Xi � X̄ )2, (B.�)

where N is the ensemble size, Xi is each ensemble member, and X̄ is the run
without random noise.

Autocorrelation, � is not as straightforward to calculate. We calculate the
autocorrelation as the correlation between two lag 1 offset windows in the

��
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time series.

Xj,i,1 = [xj,i+1, . . . xj,i+p],
Xj,i,2 = [xj,i , . . . ,xj,i+p�1],

Rj = [corr(Xj,0,1,Xj,0,2), . . . , corr(Xj,M�p�1,1,Xj,M�p�1,2)],

� =
1
N

N�1X

j=0

Rj , (B.�)

where xj is ensemble member j, p is the window length (10 yr in this thesis),
and M is the length of xj .

To verify that we have convergence in in the variance and autocorrelation we
create 200 ensembles of size 100 drawn randomly from the full ensemble (200
realisations). Then we calculate the trend of the variance and autocorrelation
in each of the 200 ensembles. The trends for all the permutations of the models
are shown in Figure B.�.
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Figure B.�: Test of convergence for � 2 and � in pole temperature.

The horizontal axis measures the trend in variance or autocorrelation for each of the
randomly picked 200 ensembles of size 100. All figures except (g) show that all the

ensembles have positive trends with greater than 99% confidence. (g) has five ensembles
with a negative trend and five with neutral trend such that we can say we have positive

trends within 90% confidence.
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