UiT

THE ARCTIC UNIVERSITY OF NORWAY

Advanced Model Predictive Control Algorithm for Inverters as a Low-cost Solution in ZynQ

Bjarte Hoff PhD Candidate

FPGA-forum 2016

Outline

- Motivation and application
- System overview
- Cascaded model predictive control (MPC)
- Hardware setup
- Inner control loop implementation
- Outer control loop implementation
- Performance
- Conclusion

Motivation and application

- Renewable energy is connected to the grid using power electronics
- Performance of the energy conversion depends on the control algorithm

Introduction to MPC

Two-level three-phase converter

Cascaded MPC

Hardware setup

Cascaded MPC control loop

FCS-MPC hardware acceleration

Single-precision floating-point format

Single-precision floating-point format									
Sign	Exponent	Fraction							
1-bit	8-bits	23-bits							
31	30 23	22 0							

decimal value = $(-1)^{sign} 2^{exponent-127} (1 \cdot fraction)$

 Seven different values are compared by decomposing the floating point number into bits

FCS-MPC Firmware

PC	Ac	ddr_RAM1B	Addr_RAM2A	Addr_RAM2B	RAM1B_V	V RAM2A_W	EN_mult	EN_add	EN_comp	EN_i2f	R_Data_B(2)	R_Data_A(1) R_cor	mp R_i2f R_mult	R_add ADC_convst Load_PC	D_out	Instruction
	0	31		1			1			1						001111100000000
	1	32		2			1			1						010000000000000000000000000000000000000
	2	33		3			1			1						010000100000001
	3	34		4			1			1						010001000000010
	4	35		5			1			1						010001100000010
	5	36		6			1			1						010010000000011
	6	37		7			1			1						010010100000011
	7	38		8			1			1						010011000000100
	8	39		9			1			1						0100111000000100
	9	40	1	10		1	1			1			1			010100000010101
	10	21	2	1		1	1	1		1			1			0010101000100000
	11	22	3	2		1	1	1		1			1			0010110000110001
	12	23	4	3		1	1	1		1			1			0010111001000001
	13	24	5	4		1	1	1		1			1			0011000001010010
	14	25	6	5		1	1	1		1			1			0011001001100010
	15	26	7	6		1	1	1		1			1			0011010001110011
	16	27	8	7		1	1	1		1			1			0011011010000011
	17	28	9	8		1	1	1		1			1			0011100010010100
	18	29	10	9		1	1	1		1			1			0011101010100100
	19	30		10				1		1						001111000000101
	20							1		1						000000000000000000000000000000000000000
	21							1		1						000000000000000000000000000000000000000
	22	11	1		1	1		1		1				1		0001011000010000
	23	12	2		1	1		1		1				1		0001100000100000
	24	13	3		1	1		1		1				1		0001101000110000
	25	14	4		1	1		1		1				1		0001110001000000
	26	15	5		1	1		1		1				1		0001111001010000
	27	16	6		1	1		1		1				1		001000001100000
	28	17	7		1	1		1		1				1		0010001001110000
	29	18	8		1	1		1		1				1		001001001000000
	30	19	9		1	1		1		1				1		0010011010010000
	31	20	10		1	1		1		1				1		0010100010100000

COE-file to program the Firmware is generated from Excel using a macro

CCS-MPC hardware acceleration

Multiply-Add x16

DRAM Interface

-- Output BRAM clock DRAM_clk_out <= clka;

-- Output address DRAM_addr_in <= addra(12 downto 6); DRAM_addr_out <= addra(8 downto 2);

etc...

Xilinx Vivado – Block schematic screenshot

Computational performance

Inner control loop (FCS-MPC):

• Outer control loop (CCS-MPC):

											i	
			PLL &		Solve KKT).						
	Init	AXI-cor	nm.	Ref. gen.								
			-									— t [us]
C		10	20	30	40	50	60	70	80	90	100	ι [μ5]

Simulation results

Dead-time: 1µs SiC-based converter

Dead-time: 5µs

Experimental results

Conclusion

- Cascaded MPC has been successfully implemented in hardware
- Performance requirements are met by taking the advantages of both microprocessor and FPGA
- The algorithm is implemented as a low-cost solution in Xilinx ZynQ
- Improved experimental performance is expected when applied to a modern converter with fast low-loss transistors