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Abstract

In integrated remote sensing, one of the objectives is to create reliable ser-
vices by combining information from various data sources. The combination
of multiple data sources is often denoted ” data fusion”, and is a topic that has
high interest in remote sensing applications. In this thesis, we devise a classi-
fication strategy for multi-sensor remote sensing data, based on the strategy
presented in the paper "On the Combination of Multisensor Data Using
Meta- Gaussian Distributions” [1]. The classification method uses data fu-
sion through a transformation of variables into a multivariate Meta-Gaussian
distribution, and correct assumptions or estimates of the marginal probability
density functions is an important key in this transform. We found that using
general parametric probability density functions, or kernel estimates were
valid in a supervised classification setting, with no need to specify individ-
ual marginals based on the true underlying distribution. Further, we found
that classification based on the Meta-Gaussian function, using transformed
variables, surpassed that of a standard multivariate Gaussian function. Un-
supervised classification based on the same strategy was implemented in a
generalized mixture decomposition algorithmic scheme framework. Current
results are positive, and indicate that this method has potential when it
comes to combining multi-sensor remote sensing data.
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Chapter 1

Introduction

In the world of today, information is key, and there is an abundance of it.
Which is why a simple equation for indexing webpages, the PageRank [2]
turned out to be the humble start of one of the now largest companies in
the world [3], Google. But accessing information is one thing. To be able to
take fully advantage of the information that is available, and utilizing it is
something entirely different.

One of the problems faced by the remote sensing community today is not
the lack of information— nor its accessibility, thanks to the public access
policy held by a lot of data providers, such as the European Space Agency
(ESA) [4] and the United States Geological Survey (USGS) [5] of which most
have an easy way to find specific data over specific regions.

The problem is processing, converting what the satellite measures into

something that is more interpretable than plain radiance or backscatter val-
ues. For human interpretation, this could be something as easy as creating a
RGB image using optical bands, or adjusting the contrast to make objects of
interest more visible. Visual interpretation was for a long time the only way
to analyze images, and it wasn’t untill the first Landsat mission that digital
image representation became relatively accessible [6].
For an automated classification procedure however, the visual appearance
of the data is not necessarily a factor. This is an advantage, because we,
humans, have sensory limitations. We are not able to see beyond the vis-
ible spectrum, and we can’t simultaneously process millions of values from
numerous sources looking for connections. Unsupervised classification, also
known as clustering, can be used to find such connections.

At the same time, the data that is input into any classification algorithm
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will of course have an impact on the end result. Carefully selected features
derived from the original data can help improve classification accuracy, and
at the same time give them more validity by connecting them to a physical
property. In terms of unsupervised classification, such features can also help
us to interpret the classification results.

In this thesis, we aim to test a classification method that combines data
from different sensors, through a transformation into Meta-Gaussian vari-
ables. Using both raw data and generated features, we will test the method
to see if we can improve classification results.

1.1 Earlier Work

The methodology that is used in this thesis largely stems from the paper ”"On
the Combination of Multisensor Data Using Meta-Gaussian Distributions.”
by Storvik et al [1]. Here they propose a method to combines images ob-
tained from different sensors, creating a joint distribution, and at the same
time preserving any correlation between the images. This method is further
described in section 2.2, ”Data fusion using Meta-Gaussian distributions”.
Similar methods for data fusion using copulas, have been around since 1940
7], although the term ”copula” did not arise until 1949 [8]. Copulas are mul-
tivariate probability distributions, whose marginals are all uniform distribu-
tions. They are popular in fields such as finance [9] climate modelling [10,11],
and is also used in remote sensing [12], where the dependency between dif-
ferent marginal structures is required, and difficult to model using other
conventional distributions.

In [1], they only considered the case of supervised classification, and in
their testing procedure, the marginal probability distribution functions were
considered to be Gamma, K or Gaussian. We hope to expand on this.

1.2 Objective

The aim of this thesis is to build upon the previous work, [1], by Storvik
et al, which was also recreated in the pilot project ”Classification strategy
for multi-sensor data using Meta-Gaussian distribution” [13] and extend the
method to include:

e A clustering step to support unsupervised classification.
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e Generalization of the marginal probability distribution functions(PDF).
In many cases real data may not be well described by parametric mod-
els. In these cases, non-parametric, kernel based approximations of the
PDF may prove to be better alternatives.

e Extensive testing on a multitude of data, both real and simulated.

Results from single-sensor classification and multi-sensor classification will
be compared. The end goal would be to develop a multi-class classification
algorithm based on the Meta-Gaussian data fusion method.

1.3 Structure of the thesis

e Chapter 1: Introduction
Was a general introduction into some of the challenges faced by the
remote sensing community, generally and in an Arctic perspective. We
also presented the objective of this thesis.

e Chapter 2: Data Fusion
We describe the main motivation behind data fusion and how it is used
in the Meta-Gaussian. A brief description of some typical probability
distributions in remote sensing, as well as some more general, is also
included, due to the importance of the marginal probability distribution
functions in the Meta-Gaussian.

e Chapter 3: Remote Sensing Data
Reviews the principles of optical and SAR imaging, in terms of acqui-
sition and use.

e Chapter 4: Pattern Recognition
Introduces some general principles of pattern recognition, as well as the
specific classification methods used in this thesis.

e Chapter 5: Data and Features
A description of features, and the different simulated and real multi-
sensor data sets used.

e Chapter 6: Implementation and Results
Describes how the two different classification schemes were implemented,
and presents the different experiments that were conducted, as well as
their results.
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e Chapter 7: Conclusion
Concludes the thesis. We summarize the findings of this thesis, and
present some ideas for future work.

1.4 Remote Sensing of the Arctic

The Arctic is an important part of the world, politically, sociologically, eco-
nomically and climatologically. It is defined as the part of the Earth that is
inside the Arctic circle, which is currently, as of 1 May 2017 at 66.33 degrees
latitude, and moving further north at a rate of approximately 15 meters per
year. Eight countries have areas inside the Arctic circle, and over the years
there have been many disputes over territorial claims. In figure 1.1 a map of
the Arctic is shown. According to the report Snow, Water, Ice, Permafrost
in the Arctic [14], the Arctic has seen a 50% decline in the extent of sea
ice , as well as a 75% loss of volume in the last 30 years. According to the
predictions made in this report, we could have summers without any Arctic
sea ice by 2040.

Remote sensing is an important tool when it comes to observing the
cryosphere. The area that lies above the Arctic circle has many attributes
such as harsh weather, low temperatures, and a general remoteness, which
makes fieldwork and in situ measurements unfavourable. The different in-
terests in the Arctic often require a larger field of view and usually a high
temporal resolution. Remote sensing is actively used in applications such
as glacier monitoring, ship and iceberg detection, ice maps, measuring the
melt period and extent, and total mass loss or gain over an area. Currently,
there are many different forms of remote sensing techniques that are used for
assessing the state of the Arctic, such as:

e Optical imagery

Laser altimeters

EM-birds (Electro-magnetic)

Radar altimeters

Gravimetric imaging (GRACE)
e SAR

Each and every technique with its own limitations. Passive optical imagery
in the visible domain cannot function in the polar night, due to lack of solar

4
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illumination, and are unable to penetrate cloud cover. EM-birds flown by
helicopters are expensive to use, and have limited coverage. Gravimetric
imaging currently has a very coarse spatial resolution, and is mainly used
for estimating total mass over large regions. Radar and laser altimeters are
mainly limited to measuring the distance between an object and the sensor.

1.4.1 Classification of Sea Ice

Mapping of sea ice has both commercial interests, and environmental inter-
ests. Sea ice extent, and the amount of multi-year ice are important indica-
tors of climate change, and plays major roles in the modelling of temperature
prognosis. Sea ice and snow both have an higher albedo than water, and the
decrease of it may speed up global warming. In addition to this, having an
accurate and recent ice map is important for ships travelling in the Arctic
region, not only for scientific, but also recreational and other commercial
uses. The recent decline in sea ice has opened up many new shipping routes,
that can decrease the travel times.

Up till now, such ice maps have been created manually, but in recent
years there has been a efforts in creating automated procedures for the clas-
sification of sea ice, and consequently generating sea ice maps [16-18]. This is
believed to enable an increase in both the temporal and spatial resolution of
the product when compared to manual maps. The Norwegian Meterological
Institute currently have such a automated system operative [16], but they
emphasise that this is currently only to be considered as a supplement to the
manually created ice maps.

For such a product to be operational, and have any benefit over the
manual maps, it requires a high confidence in the automated results, and as
of now, most of these attempts are still being compared to the manual maps
where those are available.
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Chapter 2

Data Fusion

2.1 Background on Data Fusion

Data fusion is a concept that has been around for a long time, and it is still
a highly relevant subject, in part due to the abundance of data that now is
available, and its benefit in terms of utilizing this data.

In the field of remote sensing, this data can come in the form of satellite
imagery from a multitude of sensors. Other sources of data are digital eleva-
tion models, weather records, graviometric data, and aerial photography to
name a few. This data can be represented in many different ways, such as
binary, continous, and labeled. These data sources are useful on their own,
but when they are combined with each other potentially they can potentially
give a better end result, whether it is in terms of classification or determi-
nation. Typically data fusion is either a means to achive a more reliable
determination or, to generate an interpretation of the scene not obtainable
with data from a single sensor [19]

The main motivation behind data fusion is either that of increasing the
reliability of a decision, or through the combination of different sensor data,
make decisions that were not possible through single sensor data.

In terms of sensor fusion, which is the focus in this thesis, the process of
data fusion is often divided into three different sub-genres, depending on in
which part of the processing level the data that is being fused.
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1. Pixel level fusion

Images, or image bands are fused on a pixel to pixel basis. This can be done
through a variety of methods, the simplest being a straightforward merging
of the data. Ie, consider a pixel being represented by two different pixel val-
ues, I1 and I,. A simple fusion method would be to collect these two into a
feature vector, I = [I1, I5]. This could be built upon to include a weighting
factor on the different bands, ie. I = [p;1;, p2l5] which could account for the
reliability of the sensor, or the importance it is given. Other, more sophis-
ticated methods such as Markov Random Fields and Simulated Annealing
to derive cost functions for the fusion process, Artificial Neural Networks,
and Wavelets, [20] have also been used. Evaluation is then performed on the
fused data.

2. Feature level fusion

Features are extracted either independently from each image band, or they
may be formed by a combination of several bands. An example of this is
through a commonly used method of data transformation, the Karhunen-
Loeve transform [21]. Perhaps more commonly known as the principle com-
ponent analysis (PCA) [22,23]. It transforms multidimensional data into a
data set that is linearly uncorrelated. For SAR data, features derived from a
combination of polarimetric channels will often be more valuable for classifi-
cation than using the raw backscatter values. The selected features are then
fused, similar to the fusion performed on pixel level. Evaluation is performed
on the fused data. [24]

3. Decision level fusion

Pixels are identified/classified separately for each of the images, forming de-
cisions for each pixel, and each image. The decisions of the separate images
are then combined to either give a better classification, or more robust de-
cisions [24], such as, if a pixel has a normalized difference vegetation index
(NDVI) at, or above 0.6, and cloud mask of 0, classify as vegetation.

Hybrid methods

In multi-sensor remote sensing data, some correlation between channels de-
picting the same area of interest is natural, and expected, but exploiting this
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natural correlation has not been of high focus in the world of data fusion.
There are many reasons for this, and the most prominent one is that mod-
elling multivariate distributions (of which a point is assumed to belong to),
that has varying marginal distributions is not easily done. The method of
data fusion proposed in [1] aims to preserve this correlation and use it in
the classification. In doing so, the method cannot be said to strictly be-
long to the pixel level fusion, nor to the feature level. The data is fused
at pixel level, and based on this, multivariate Meta-Gaussian distributions
are formed. The classification itself is done in a Bayesian framework, on
transformed data, which is essentially feature vectors, created based on the
transformation found after the fusion at pixel level. In such, the method
considered here can be deemed as both a pixel level fusion, and a decision
level fusion method.

2.2 Data Fusion Using Meta-Gaussian Distri-
butions

The Meta-Gaussian distribution in the form that is used in this thesis, was
first proposed in [25], as a way of representing a joint distribution for de-
tected! radar images, whilst at the same time preserving the correlation be-
tween different image bands. This method was also reviewed in [13], but we
repeat it here in a modified form for the sake of understanding some of the
mathematics and derivations behind the concept. The combination of mul-
tisensor data using the Meta-Gaussian distribution is suggested by Storvik
et al [1] as a method to improve classification on data that is a combination
of images from different sensors. It allows for data from different marginal
distributions to be joined in a multivariate distribution, the so called Meta-
Gaussian distribution. In order to do this, they suggest these three simple
steps.

1. Transform the marginal data to the standard Gaussian distributed vari-
ables.

2. Model the dependences between the marginal data through correlations
of the transformed data.

3. Derive the distribution of the original data by using the inverse trans-
form of 1) assuming the dependence given in 2).

!Detected SAR images are amplitude images created by applying a non-linear trans-
formation to the sum of the squares of the in-phase and quadrature components of the
radar signal [26]
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The main motivation for this method is that it gives us a simple way
of modelling dependencies between the different components through the
correlation matrix C of the distribution function that is found.

First we need to know the probability distribution of the data, and its cu-
mulative distribution function. To transform the marginal data, that we now
assume has a marginal probability density function g;, and a corresponding
cumulative distribution function G, into a new marginal probability density
h; with corresponding cumulative distribution function H;, we can use the
standard transformation rule for random variables.

yi(HH(G(;)) (2.1)
As we want to transform the data into a standard Gaussian density (y ~

N(0,1)) we simply choose H to be the cumulative distribution of the standard
Gaussian distribution function. This gives us:

y; = yi(x537;) = 7 H(G;(x575)) (2.2)

where 7; is a vector containing the parameters of the distribution g;. Since
the transform function ® is continuous and non-decreasing, there will be a
one-to-one correspondecy between y; and z;, which allows us to go back to
our original distribution in a later step. In theory, any continuous, injective
function that retains a one-to-one relationship could be used. For instance,
in [27], the uniform distribution was used as a transformation function in a
similar method using multidimensional copulas. The transform between y;
and z; is given by:

x5 = x;(y575) = G5 H(®(y;); ;) (2.3)

where @ is the cumulative distribution function of the standard normal dis-

tribution,
1 r 2
P(r) = — e U124t 2.4
W=/ (2.4
If we now define

V(x:7) = Wi (T1571)s s Yp(pi 7)) " (2.5)

where 7 = (71,72, ...7p). Through our transformation, we now have a set
of variables, y; ~ N(0,1), and the dependency between these transformed
variables are found through the correlation matrix, C of the transformed
data y. The distribution for y is then given by:

—zy'Cly

1
~ e 2

f(y;:C) = I (2.6)

10
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which we recognize as the multivariate normal distribution, with zero mean.

So, moving on to what we really want to find, namely the distribution, f (x; v, C)
for our "raw” data, x [28]. This can be found through the distribution of y,
and the transformation between y and x.

f(x;7,C) = f(y; C)|J| (2.7)

We already know the distribution of y, and all we need to find is the deter-
minant of the Jacobian matrix for the transformation between y and x.

We start by finding the Jacobian matrix, J, of the transformation from
y to x. The transform from y to « is in the RP? < R? space, The Jacobian
of the transform is given by:

Afilyim)  dfelyim) .. Ofplyim)
oy 0y2 Oyp
Of1(y2iv2)  Ofe(yaiye) .. Ofp(y2ive)
J=| (2.8)
Of1(ypiyp)  Of2(ypivp) .. Ofp(Ypirp)
o1 Jy2 Oyp

Which equates to zero for any off-diagonal elements, For diagonal matrices,
such as this one, the determinant of the Jacobian is then given as

P
9= 113 (2.9)
j=1

that is, through taking the product of the diagonal elements.

3] = ﬁ 0(®1(G(575))) (2.10)

ey 9y;

We then calculate the partial derivatives of the Jacobian, starting with using
the core rule on

(@1 (Gj(x5375))) _ 0(@~(U) 9G;(x5375)
dy; 9y, dy;

(2.11)

where we have used U to the denote the core G;(z;;7;). Recall that for an
inverse function, such as ®!(-), we will have

01 (U) |

ou (8‘1(’9(5))) (®-1(U))

(2.12)

11
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And for CDF's such as G; and ®, we have that the derivatives are equal to
the PDFs. This gives us for the determinant of the Jacobian

- P o(@ 1)) 0G(x557;) 1 P
=11 Iy, Ay, ¢(‘I”1(Gj($j;’7j))g]( 5) - (@19)

=1

and we recognize (G (x;;7;)) = y;(x4;7), so it all condenses into

95 %) 2.14
H (15 Yy xav%)) ( )

We get the distribution for x, given the parameters ¢ = (¢, ..., ¢,) and
C
e~ 3Y(xmTCy(xp7)

9i (55 75)
EEeE H [ (2.15)

fx7,0) = yi(wi57))

This can then be simplified by using the fact that

p e~ 3Y(x) Ty (x;7)
H¢ yj xjaf)/] ‘27TI|1/2 (216)
7j=1
Through
P
1 z—p)?
o5 (2.17)

:

o2

7j=1

And we have that o =1 and p = 0 for all y; , such that

p
1 <x>2
2.18
115 219

:]

Jj=1

For the denominator we have that

f[\/% = V2m\V2m\V2r. 2w == /271 (2.19)

Where I is the identity matrix, of dimension p x p and | - | indicates the
determinant. For the nominator, we have

Hef%yj(wj;Vj)Tij(wjm) _ e*%(yl(rlm))Q___efé(ypfl(wpfl;’Ypfl))Qe*%(yp(ffp;’Yp))Q
(2.20)

12
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multiplication of an exponential with the same base term is equivalent to
adding the exponents.

e~ 3 (W (z1m))  +y2(22:92))* - typ (pi7))? (2.21)

So that our final expression for the distribution of x is given by

e~ 3Y(xmT(CT =Dy (xy

) p
f(x;7,C) = IC1/2 ng(ﬂfj;%‘) (2.22)
j=1

Classification is then performed using the classical Bayes rule

Z; = arg max T fr(X) (2.23)

2.2.1 Estimation of Parameters

What is the importance of the marginal model? One of the main obstacles in
the method of data fusion using Meta-Gaussian distribution introduced by [1]
was that the parametric model for the marginal distribution needed to be
specified. This will either require some knowledge about the data beforehand,
or simply testing the procedure with different parametric models and then
choosing the one with the best goodness of fit.
Alternative ways of choosing these models can be through either:
1. Using a more flexible model that is assumed to fit for all marginals.
2. Using a non-parametric model that will adept to fit each marginal.

The objective of this section is to investigate and determining the effects of
these three choices. Ideally, a flexible parametric model, or a non-parametric
model, which will be flexible, is what we would like to be possible.

2.2.2 Estimation of marginals

A vital part of this method , as is with all methods that are based on distri-
butions, is the estimation of parameters for the marginals. There are many
ways to do this, and in the paper [1] two such methods are discussed, and
will also be presented below. When estimating the parameters, we assume
that we have a set of training data,

T=xpii=1,.nk=1.,K (2.24)

in which xy; is the observation vector, where k denotes the class member-
ship, and 7 denotes the observation, n; is the number of observations from

13
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each class k. Independence is assumed between classes, whilst dependence is
assumed within the observation vectors, and is modelled through the Meta-
Gaussian distribution. The last assumption is that none of the class-specific
distributions share the same parameters.

With these assumptions in place, the parameters can be estimated sep-
arately for each of the classes. To simplify the notation, we consider the
case of one class, and can suppress the class index k. We can then write our
observation vector, x;;,t = 1,...,ni, bk =1,..., K as x;,1 = 1,...,ny.

Below are the two methods suggested for the estimation of parameters, the
common maximum likelihood methods, and the simpler Estimating Equa-
tions (EE) method.

Estimation using the method of Maximum Likelihood

Maximum Likelihood estimation of the unknown parameters v and C, still
assuming independence between observation vectors x; conditional on class
information. The log-likelihood function for data within a class is then

1(7,€) = > log(f(xi:7,C)) (2.25)

Where f is our Meta Gaussian distribution function, given in equation 2.22,
and n is the number of samples in the class. Writing this out gives us

I(7,C) = =3 log [C| = r[(C™ = DS()] + Y D log(g(wsyi7,)) (2:26)

i=1 j=1
Where
1 n
St == yxsy(xi)’ (2:27)
=1

We wish to maximize this log-likelihood function, [(+, C), to obtain our ML
estimates for v and C. Taking into account the constraints that exist for C,
which is a corrolation matrix, we have that the diagonal elements must be
equal to 1, the off-diagonal elements must be between 1 and -1, inclusive, it
must be symmetric, and it must be positive semi-definite. [29] Due to the
constraints on our correlation matrix C, and the constraints that may exist
for v depending on the marginals that are used, a direct optimization can be
difficult. Storvik et al therefore proposed to rewrite C in a way that allows
for a simplification of the constraints that are posed for C [1]. Given that C
is a correlation matrix, we can write

C =D '>2MD"'/? (2.28)

14
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where M is a positive definite symmetric matrix, and D is the diagonal matrix
of M. Using the properties of M, we can express it as M = LL? where L is
a lower triangular matrix. This in turn means that D;; = M,; = 1:1 LJQ-T.
And, in turn, for all £ < j we then have that

min j,k
C‘k _ Zr:lj Lerk"'
ik =
j k
\/Zi:l L?r \/Zr:l Lir

By inserting this into our equation for the log-likelihood function, we get

(2.29)

n p
n n _ n
(7, C) = 5 log [D|— S tr(|LLT|'DY2S (7D Jtr(S(1)[+ ) Y log(g(wis:7%))

2 — £
i=1 j=1
(2.30)
Which we can then use to optimize using a general optimizer.
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Estimating Equations

The EE method can be said to be a variant of Maximum Likelihood (ML)
classification, or, ML can be said to be a variant of the EE method depending
on which way you look at it. It is essentially a more generalized method of
estimation than the ML method. The estimating equations is a statistical
metod that is used to fit model parameters to existing data. This is done
by solving a set of simultaneous equations consisting of the sample data and
the unknown parameters [29)].

In our case, this is done through the following steps: Assuming that each
marginal density has unknown parameters v; and denoting v = (y1, ..., %) ,
where p is the number of different image layers, or channels that are to be
merged. For now we assume that the marginal is a parametric probability
density function that needs to be specified beforehand, e.g. the Gamma PDF.
The goal is then to estimate v and the correlation matrix C, using the three
steps suggested in [1].

1. Estimate 7 as the ML estimates, assuming independence between x; 1, .., z;

2. Transform each component of the vector x; to y; for ¢ = 1,..., p using
the mapping function

y; = yi(x5;75) = 7 HG;(x5575)) (2.31)

3. Estimate C as the sample correlation matrix for yy,...,y,.

2.3 Probability Distributions in Remote Sens-
ing

Probability distributions in general are used to describe the world around
us, and most of them arise from either a need to describe phenomena, or
as a means to do so. If we assume fully developed speckle in a SAR band,
and represent the complex variables by Z = X + Y | Z will follow a com-
plex Gaussian distribution. Its amplitudes, A = v/ X2 + Y2 will be Rayleigh
distributed [30], and the intensity I = A%, will have the exponential distri-
bution. If the intensities I are multi-looked, such as in an MLC image, they
will no longer have the exponential distribution, but rather the Rayleigh.
Optical images can often be assumed to follow a Gaussian distribution [31],
or a non-central Gamma. The multilooked complex covariance matrix of a
sar band, C, has been shown to have a complex Wishart distribution [32,33].

16
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These are a few theoretical distributions of different variables used in re-
mote sensing, and many more exist. Accurately modelling of the marginal
probability distribution functions is an important part when using the Meta-
Gaussian classification scheme, and having some knowledge about which dis-
tribution to expect from data can make the initialization of the scheme easier,
and may give better results.

2.3.1 Possible choices of the marginals

In general there are three possible choices when it comes to the marginals.

e Individually specified marginal probability densities. This means that
we specify the PDF for each marginal. Either through some pre-existing
knowledge about theoretical probability distribution of the data, or
through a pre-classification test step. The test step could in that case
be through estimation of different PDFs and choosing the one with the
best data fit.

e A generalized probability density assumed to be adjustable for all possi-
ble marginals. Instead of having individually specified marginals, forc-
ing the same on all makes for a more versatile classifier.

e Kernel probability density approximation for each of the marginals.

For the second case, having one pre-fixed distribution saves time in the
pre-training part, but it may turn out to not fit all the underlying distribu-
tions as well as an individually specified probability density function would
have. For the third case, a kernel estimation of the underlying probability
density function will always fit the data as good as the choice of kernel and
window size allows, but, at the same time, it may be more sensitive to outliers
than the other two suggestions, which would in turn affect the transforma-
tion, and thus the end classification results. The second drawback is that it
requires more time in the classification stage than the other two. Instead of
simply saving the parameters from a known parametric distribution in the
modelling stage, the entire marginal model has to be saved for each of the
(p x K) number of classes.

So, to summarize, the hypothesis is that the case with individual marginals
should give the most accurate results, given the right choice of marginals.
This may also be a very suited approach when dealing with data where we
have pre-knowledge, i.e. we already know which parametric distributions

17
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the classes adhere to. If we do not have this, and need to do a test to find
the distribution with the best fit, it may quickly turn out to be more time
consuming than the two others. The second case, using a general parametric
distribution, allows for a possible unsupervised extension of the method. It
would then be a matter of finding and selecting a parametric distribution
that can handle any and all possible underlying distributions. The third
case, with the kernel density approximation of a non-parametric distribu-
tion, seems initially to perhaps be the best choice, but only in the supervised
case.

Through a series of tests, using both simulated and real datasets, we
will determine which of these methods give the best results, and whether
there are any major differences in the classification results. A small decline
in the performance of a classifier may be acceptable if we arrive at a more
general procedure. This will be done initially for the supervised case, and
then expanded to include the unsupervised case. It is not expected to arrive
at the same conclusion for the unsupervised as for the supervised. Below
follows a listing of some distributions that have been tested.

Beta Distribution

The Beta distribution is a continuous probability distribution that are gen-
erally characterized to be non-zero outside the [0,1] interval. This should
exclude it from being considered as a choice for a general parametric density
function. However, there exists a general Beta distribution, in which the valid
range for x is not limited to [0, 1] The Generalized Beta (GB) distribution
was proposed in [34] , and is defined by the PDF

| _ aly (@ = (1= o) (y/b)) !
GB(y;a,b,¢,p,q) = b? B(p, q)(1 4 c(y/b)a)rta

for 0 < y* <b*/(1 —c),

(2.32)
and zero otherwise. The parameters b, p,q are positive, 0 < ¢ < 1, a is
limited by the constraints posed by 0 < y* < b*/(1 —¢). B(p,q) is the beta
function, given by

B(p,q) = /01 P~ (1 — )1 tdt (2.33)

Extreme Value Distribution

The extreme value distribution has a probability density function given by:

1

y=J(elno) = o exp(—E)exp(—exp(—L)  (234)
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Normal Distribution

The normal distribution is perhaps the most famous probability distributions

Its probability density function is given by

1 _(@-w?

y =@l o) = —Z—=e a

And its cumulative density function by:

1
[1 + erf(

il

where erf(+) is the error function given by

1 2
erf(z) = —= [ e Vdt
VT )

Gamma Distribution

The Gamma PDF is given by:

o . 1 a—1_—x/b
y—f(a:|a,b) - baF(a)x €

where I'(+) is the Gamma function, given by

['(a) = (a—1)!

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

when a is a positive integer. For complex numbers with a positive real part,

it is defined as

t Location-Scale Distribution

The t location-scale distribution is given by
=)

fz) =

[

(2.40)

(2.41)

where T'(+) is the Gamma function, p the location parameter, o the scale
parameter and v the shape paramter. [35]. It has heavier tails, determined

by v than the normal distribution, but will approach it when v — oc.

19



2.3. PROBABILITY DISTRIBUTIONS IN REMOTE SENSING

Mixture models in Data

To fully understand many of the concepts that are being introduced, a certain
insight into mixture models is required. Commonly written as:

J

p(x) =Y _p(x[j)P, (2.42)

j=1
where

ZP]- =1, /p(x|j)dx =1 (2.43)

Meaning that a combination of the J number of distributions, p(x|j), are
required to form, or model p(x). This allows us to model complex mixture
distributions accurately, given the right parameters. [36]

2.3.2 Kernel Density Estimation

Usually there are two reasons for using a kernel density estimate of the under-
lying probability density function of a random variable. When a parametric
distribution is not suited to describe the data, or when it is preferable to not
make any assumptions about the underlying distribution, kernel estimates
are well suited. Kernel density estimation, or Parzen-Rosenblatt window,
after the two people who are acknowledge to have independently created
the method [37, 38],is a non-parametric way of estimating the probability
density of a random variable. If the data adheres to a known parametric
model, using a kernel density approach to estimate a non-parametric model
will not necessarily give better results, but will take significantly longer to
compute. A simple approach to understanding kernel density estimation, is
to think of it as a function describing the shape of an histogram. A common
representation for the kernel density estimator fu is given by

fy(x):n—lyz;K(x;xi);—oo<x<oo (2.44)

where K(-) is the kernel function, n is the number of samples in the data,
and v is the bandwidth of the kernel function. The bandwidth v dictates the
level of smoothing over the kernels. A high value for v will give a high level
of smoothing, whereas a small value for v will adapt more to the fluctuations
in the samples. The choice of the kernel will have an effect on the result.
Popular kernels includes:
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e Gaussian, using a standard normal distribution
K(r) = ——e 50" (2.45)
xTr) = e 2 .
V2T
e Epanechnikov- using
3
K(z) = 1(1 —z?) (2.46)
e Box-or uniform, using
1
e Triangle- given by
K(z)=(1-|z|) (2.48)

The effects of these different kernels are shown in figure 2.1.

0.45 T T T T T
narmal
o4 e~ | epanechnikay | 7
— — —bax
0.35[ triangle 4
031 b
0.25 b
nz2r b
0.15 1 | b
0.1 \
| "il.
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| LN
0 = ~ L I I I I & xh""‘-—-
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Figure 2.1: Effects of different kernels [39]
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Chapter 3

Remote Sensing Data

As briefly mentioned in section 1.4, there exists a variety of remote sens-
ing data. In this thesis, we will restrict us to using two of these, namely
synthetic aperture radar(SAR) data, and multispectral data obtained from
optical sensors. The main reasons for choosing these two are their availabil-
ity, applicability, and complementarity. A SAR and an optical multispectral
system operate very differently. Whilst a SAR will actively transmit an
EM-wave, or pulse, and measure the backscattered signal, an optical system
works passively, by measuring the intensity within certain bands of the elec-
tromagnetic spectrum, typically within the visible and infrared range, see
figure 3.1.

WAVELENGTH =
e £ 2
4 E E £ o
< . g § E E £ E E £ £ £ 5 E E é =1 §
8 D e @ m o 8 ® 6 8 @ & 8 o o 8 s &
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1
1 i i L L L L] Ll L i L L L L i L i L i i
g & ¥ 2 ¥ £ ¥ F ¥ EEELDEEEE
2 2 = 2 & B F F O O O 2 2 5 ¥ ¥ 2 g o
t 2288 ge-ge”32-8g¢e- 8F
FREQUENCY
yrays uv Infrared Microwaves Audio AC
——i f i It ! A
H — '
X rays Visible Submilimeter Radiowaves
(0.41-0.7p)

Figure 3.1: The electromagnetic spectrum, [40]
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Table 3.1: Common Bands for Microwave Remote Sensing

Name Width from(cm) Width to(cm)

Ka 0.75 1.10
K 1.10 1.67
Ku 1.67 2.40
X 2.40 3.75
C 3.75 7.50
S 7.50 15.00
L 15.00 30.00
P 30.00 100.00

3.1 SAR Image Acqusition

The principle of SAR, is to simulate an antenna that has a much larger
aperture size than what is physically possible. For a real aperture radar
system, the size of the smallest object that can be detected is determined by
the distance between the object and the radar, R, the wavelength A and the
diameter of the antenna, L, through the following relation [41].

RX

Tazimuth = I
s

(3.1)

If we want to find L, for a representative example, such as what it would be
in order to achieve the same resolution as the SENTINEL-1 C-band SAR,
with a wavelength of 5.5cm, orbiting at 693km, and we take 7r4.imutn to be
dmetre,

L = AR L. = 0.0555m - 693000m

T'azimuth om

(3.2)

We would end up with an antenna diameter of 7692.3m, or, almost 8 kilo-
metres. This would be a difficult structure to build down at Earth, let alone
send it into space. This leads us on to the principles of SAR. It begins with
the Doppler effect.

First suggested by Christian A. Doppler in 1842 who found that a con-
stant sound had a higher pitch when moving towards the observer, and a
lower pitch when moving away. Formulated mathematically, this translates

to: o
(o

= 3.3

/ c+vsf0 (3.3)

Where f is the observed frequency, fy is the emitted frequency, c is the ve-
locity of the wave in the medium, v, is the relative velocity of the receiver to
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the medium, and v, is the relative velocity of the source to the medium. v,
is negative when the source is moving away from the receiver, and positive
if it’s moving towards the receiver. v, is negative if the receiver is moving
away from the source, and positive if it’s moving towards the source. This
effect is found to be true for all waves. In SAR, this means that since we
know the transmitted frequency, and we are able to observe the reflected fre-
quency, and the time between transmission and detection, we can also know
the relative movement that has taken place. This allows us to determine the
position of the scattering object.

The resolution in ground range is not affected by the size of the aperture,
nor does it utilize the Doppler effect, but rather the duration of the signal.
In that case, the ground range resolution is given by

(3.4)

Where c is the velocity of the propagated wave, 6 the angle of incidence, and
7, the pulse length. If we treat the medium the wave propagates in as vacuum,
the velocity of a radar signal is given by the speed of light, ¢ = 3.0-10®ms™!.
Further, considering that the expression sin @ is limited in the practical range
between [0°,90°], the only thing we have major control over is the pulse
length. For the resolution in ground range to be sufficiently high, this means
that 7, would have to be somewhere in the range of 1078 to 10~". The power
held in such a short signal is not enough for the backscatter to be above the
signal to noise ratio (SNR) for an orbital system. An alternate method was
therefore proposed, using pulse-compressed signals, or chirps. The resolution

in range direction, given a pulse-compressed signal, 7,44 is given by

C
Trange = 5B ing’

(3.5)

where c is the velocity of the propagated wave, and 6 the incidence angle of
the aperture. B is the spectral bandwidth, and also the main influence of the
range resolution. In essence, the higher bandwidth, the higher resolution.
The resolution in azimuth direction for a conventional radar system is
given by:
RA
.
where R is the slant range, 0y is the angular spread of the beam, which can
also be expressed in terms of L,, the aperture length; and A, the wavelength.
Since this expression is dependent on the distance from aperture to target,

Tazimuth = RQH -

(3.6)
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which for satellites usually is in excess of 600 kilometres, the azimuth reso-
lution obtained is not sufficient for any conventional application. And this is
where the equation for frequency shift through the Doppler effect is useful.
Recall

v

recived — — ransmitte 3.7
f 4= 17 = ft tted (3.7)

c
when the satellite moves away from the target, and

1+
frecived = 1_—zftransmitted (38)

c

when the satellite moves towards the target. For satellites, we can assume
that ¢ >> v, and we can simplify these expressions, thus:

v
frecived =1- Eftransmitted7 (39>

when the satellite moves away from the target, and

v
frecived =1+ Eftransmitted (310)

when the satellite moves towards the target. The frequency difference that
we observe , Af = frccived — firansmitteq 18 0 terms of the backscattered signal.
Assuming constant relative velocity throughout, this would then be

v
Af = QEftransmitted (311)
AR
azimuth — ) 3.12
" h 2vrel fd ( )
0 fqis the
The resolution in azimuth direction is given by:
hA
Tazimuth = L_ (313)

a

Since we know the transmitted frequency, and the relative speed of the satel-
lite to the ground, we can use the frequency shift, and the return time of the
received signal to determine its location.
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3.1.1 Distortions

Due to the nature of which a SAR image is acquired, preprocessing is a nec-
essary step of practically any SAR image analysis. The raw data downloaded
from the satellite is incomprehensible as it is, and needs to go through a long
chain of processing steps before it can be used. For a normal user, most of
these steps have already been performed by the data provider, and I will
therefore not go into much detail regarding this, but some noteworthy arte-
facts that are typical in SAR images are important to know of when analysing
these images. Because SAR views at an angle, some geometric distortions
can occur in steep or very rough terrain. Shown in figure 3.2 are examples
of these effects. Foreshortening takes place in sloped areas, when the dis-
tance between the radar is the same across the slope. This causes distances
between points on the slope to appear shorter in the SAR image than the
true ground distance. Layover is an extreme case of foreshortening, in which
the top of a tall feature will be reflected before the base of the feature, and
will therefore appear to be leaning over. Shadowing occurs when an area is
blocked, or shadowed by another object.

Scattering Mechanisms in SAR

Scattering mechanisms are very important in polarimetric SAR, because they
can tell us a lot about the observed areas. The scattering mechanisms present
in an object will be dependent on the wavelength, and the look angle of the
aperture. Objects of the same size as the wavelenght will give a strong return
signal, which is part of the reason for C-band SAR being used for ocean
monitoring, as the small capillary waves typical of open seas are of the 5 cm
size. In figure 3.3 we see representative examples of scattering mechanisms
in SAR. In a), we have reflection off a smooth surface. The angle of reflection
is equal to the incident angle, and no backscatter is received at the aperture.
This is often seen in calm, flat water, which will then appear black on the
SAR image. in b), we have scattering off a rough surface, is here an arbitrary
word, as the measure of roughness will be related to the wavelength of the
signal. Such surfaces will usually give a good return signal. In ¢) and d),
we have double bounce scattering, this is typical of urban areas, or any man
made structures with sharp angles, but may also be found in forests and such,
where the signal bounces off tree stems. This usually gives a strong return
signal. Large ships on the ocean will typically show up as a bright dot, in
an otherwise dark image. Volume scattering is usually due to the dielectric
properties of the material, which causes absorbtion and re-emission, of the
signal, or in inhomogeneous objects, such as tree canopies [40].
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Figure 3.3: Various scattering mechanisms: a) Reflection on a smooth sur-
face, b) Scattering off a rough surface, ¢) & d) Double bounce scattering, ¢)
& f) Volume scattering. Image credit: ESA [42]
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Speckle

Speckle is an important factor in SAR imagery. Visually, speckle in SAR data
is a seemingly random effect, that presents itself as black and white pixels
in the image. Sometimes wrongly dubbed speckle noise, or salt and pepper
noise, speckle is caused in the formation of the image itself. Speckle is caused
by different scattering mechanisms that may exist within a resolution cell.
The multiple scattering waves that return to the sensor to form the pixel,
will then interfere with each other. When waves have a displacement in the
same direction, we will get a constructive interference, where the amplitudes
of each respective wave, would add up, forming a new wave, with a higher
amplitude. The opposite case, where waves have a displacement in opposite
directions, creates a destructive interference, where the signal perceived is in
fact lower than what should be. The extreme case of this occurs when two
waves that share the exact same frequency and amplitude, but where the
phases are shifted, a signal would effectively be cancelled out. A principle
that is perhaps familiar in practice in the form of active noise cancelling
headsets, where surrounding noise is analysed and then attempted cancelled
using this simple principle. To reduce the appearance of speckle, a common
approach is multi-looking- either as a part of the image generation itself-
by splitting the radar beam into several beam-segments when acquiring the
image, allowing for several independent ”looks” of the area that is being
targeted, and then averaging these independent looks. Multi-looking can
also be done after the image has been generated, through a local averaging
filter. There are many other filtering techniques that can be used to reduce
the appearance of speckle, such as the Lee and the Frost filter [43].

3.1.2 Polarimetry

In recent years, SAR systems have been equipped to receive and transmit
in different polarizations. Conventionally, a full-polarimetric SAR system is
able to both transmit and receive linear horizontal(H) and vertical(V) po-
larised waves. This enables it to measure a total of four combinations in
terms of a transmitted and received electromagnetic field,respectively HH,
HV, VH, VV. To fully understand this concept, we need to understand basic
principles of electromagnetism.

Electromagnetic waves propagate through space, and can be sufficiently
described through a two dimensional complex vector. If this wave is incident
on an object that can be considered to be a scatterer, we can also observe the
scattered wave and describe this using a two-dimensional complex vector. We

30



CHAPTER 3. REMOTE SENSING DATA

can describe this relationship between the incident wave and the scattered
wave through the following relation

E} _e*ij Sun She E;z _e’ij Eﬁ
{ﬁy_R S Sl B = R OB (3.14)

Here, E denotes the electric field, with subscript h or v relating to the polar-
ization (horizontal or vertical), and superscript ¢ or s referring to an incident
wave or a scattered wave, respectively. k is the wavenumber, and R denotes
the radial distance between the antenna and the scatterer. The 671];1% term
ensures that the propagation effects for amplitude and phase are included.
The scattering coefficients \S;; are subscripted with the incident and the scat-
tered wave, respectively. [S] denotes the scattering matrix that contains the
scattering coefficients S;;. Fully polarimetric SAR data typically has a more
narrow field than dual-polarization and single-polarization systems, and it
also enables us to differentiate between the scattering mechanisms present in
the scatterer.

Each pixel in a full-polarimetric SAR image is represented by a scattering
matrix S. In the mono static case, where a single antenna is used for both
transimitting and reciving the electromagnetic field, and if we can assume
reciprocity we have that Sy, = S,,, and we find the lexicographic scattering
vector €2 given by

Q = [Shha \/§Shv7 S’U’U]T (315)

S and 2 can be called single-look complex (SLC) representations of the
scatterer. To reduce speckle in the images, a common approach is that of
multilooking. The multilook complex (MLC) covariance image is given by

L
1
c==-)Y Q08 1
L 2 (3.16)

Where L is the number of looks that is used in the averaging, and ()%
denotes the Hermetian transpose. This is equivalent of applying a local
moving average filter. In doing this, we have a loss of spatial resolution that
is proportional to the number of looks, L, but we gain a clearer image with
less speckle.

Radar equation

The radar equation is a compact representation of the power received at the
antenna, or the backscatter, in terms of the transmitted power. It is given

31



3.2. OPTICAL IMAGE ACQUISITION

by
P.=P.A (3.17)

Where P, is the power received at the antenna, and A is the area of the
antenna. P, is the scattered power density, given by:
Py

P =— 3.18
47 R} (3.18)

Where R, is the distance from the scattering object to the receiving antenna,
and P is the scattered power at the object,

P, = P;soy (3.19)

Where s is the size of the scattering object, oy is the normalized backscat-
tering cross section, defined as:
i 4t R? |E,|?
op = lim ——
T Ro Ay |Ei?

(3.20)

Where Ag is the illuminated surface area, E, and F; are respectively the
reflected and the incident electric field. R is the distance from the antenna
to the target. P; is the incident power density,

_ RG,

P =
4T R?

(3.21)

Where in turn R is the distance from the transmitting antenna to the target,
P, is the power transmitted, and G is the antenna gain.
All this gives us the full radar equation for real aperture radar:

p — PthGT)\Qﬁ CTp o
" (4m)3R* L 2siné;

(3.22)

Where c is the speed of light, A is the wavelength of the radiated signal, L is
the length of the antenna, 6 is the viewing angle, and 7, is the pulse length.

3.2 Optical Image Acquisition

Optical satellite imagery goes back to August 14, 1959, when NASA’s Ex-
plorer 6 took the first satellite picture of the Earth, shown in figure 3.4. Since
then, a multitude of satellites have been launched, with improving spatial,
temporal and radiometric resolution. Optical multispectral satellite sensors
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Figure 3.4: First satellite image of the Earth, taken by the Explorer 6, image
credit:NASA
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such as that employed on the Quickbird-2, can currently image with a spatial
resolution of 61 centimeters from an altitude of 450 kilometers [44].

The multispectral sensors such as employed by Landsat, etc, are generally

passive sensors. This means that unlike the active SAR instruments, which
emits electromagnetic waves, and measure the backscattered signal, they
only measure the intensity of the electromagnetic waves that are naturally
transmitted from the viewed object. And every object on Earth, or more
specifically, every object with a temperature above absolute zero, will have
some measurable transmission. For perfect blackbodies, this is expressed
through Planck’s radiation law. In most cases however, the temperature of
an object is too low for the energy to be detected in space, and an external
energy source is required- the sun.
Solar radiation is an incredible source of energy, and its interaction with ele-
ments or areas on Earth, allows us to image them by detecting the reflected
or transmitted energy. Multispectral imaging sensors typically work by de-
tecting the reflected or emitted energy within certain specified bands of the
electromagnetic spectrum. Optical data has a wide range of applications,
and is actively used to monitor sea surface temperatures, forest fires and
land cover.
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Chapter 4

Pattern Recognition

Pattern Recognition can be described as a field of science, where the aim is
to classify or recognize, patterns or regularities in data. Allowing for items
or objects to be categorized as belonging to a certain class. This process
can either be done through a supervised classification, where we have, and
utilize, some a priori knowledge of the data, or unsupervised classification,
where we only consider the data itself.

In the following sections, the two distinct ways of performing classification
are described, as well as the specific methods used in this thesis.

4.1 Supervised classification

In supervised classification, we have a priori knowledge about the data. This
means that classification of unknown objects is done based on information
we already have. Depending on the specific classifier, this information can
be a number of things. One of the most common approaches in supervised
classification is to use a training set, consisting of a set of data points in
which the true class membership is known. These can then be used to train
the classifier, or used directly in the classification, which is done in the case
of the Nearest Neighbours classification rule.

Here, given N training points with known memberships, and an unknown
point x, x is assigned to the class that has the majority of the k closest points
stemming from the training set [45]. More sophisticated methods, such as
Neural Networks can use the training set to effectively learn to distinguish
between different classes, through an iterative series of cost-function opti-
mization. When using a supervised classifier based on Bayes desicion theory,
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given by
P(wile)p(x) = p(a|w;) P(w:) (4.1)

where
e P(w;) is the probability of class w;
e P(w;|x) is the probability of having class w; given the feature vector x
e p(x) is the probability distribution function of @
e p(x|w;) is the probability function of & given the class w;

If some knowledge is held about the PDF's and the class probabilities, these
can be used directly, with no need for a training set. Or a training set can be
used to estimate probability distribution functions for the different classes,
and the class probability P(w;). This is the approach taken when imple-
menting the supervised classification using Meta-Gaussian distributions, and
is explained more thoroughly in Chapter 6 - ”"Implementation”. Common for
all supervised classification methods is that they will only segment the data
into the classes that they are provided with. Any other underlying classes
will not be considered. In addition to this, ”poor supervision” will give cor-
responding results, and in many cases an unsupervised classification will be
more suited. The choice of training data is an art in itself, and should be
given as much thought as when selecting a classification algorithm. When
performing any kind of supervised classification using a training set, a com-
mon approach is to omit parts of it from the training step, and use it to
check the accuracy of the classifier in a later step.

4.2 Unsupervised classification

When the area of study is unknown, and when multiple classes is assumed to
be contained within the study area, clustering is a method of separating the
data into different classes, based on the available data. Due to the nature
of the Meta-Gaussian approach to classification, there is a limited number
of classification methods that can be used. For the transformation of the
points into the Meta-Gaussian domain to be of any use, classification must
take place in the Meta-Gaussian space. And in turn for the Meta-Gaussian
transform to be accurate, it is vital that the marginal transformation is accu-
rate. An unsupervised extension of the Meta-Gaussian classification method
will consist of initial estimates of the marginals, The results of a clustering
will not necessarily tell us what a particular class corresponds to. Consider
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a simple example, using pictures of the numbers zero and one. When per-
forming supervised classification we already know that class wy corresponds
to zeros, and w; corresponds to ones. When classifying in an unsupervised
setting, we get the same results, but, we do not know which class corresponds
to the images of zeros, and which class corresponds to images of ones. In such
a simple case, this is easy to verify manually, and you may find that class wy
corresponds to zeros, and class w; to ones. The next time you run the same
classification, this assignment could change, and you would need to recheck.
Again, in this case it is merely bothersome, but for more complex problems,
it could become challenging not only to compare different clustering results,
but also to attach a meaningful description of what the classes represent. In
many situations, we already have some expectations

Partly due to this, it is often more suitable to perform any type of classifi-
cation on derived features which can be related to physical properties. These
may not only be more descriptive in the clustering process itself, but can be
a major asset when interpreting the clustering results.

4.2.1 Hard Clustering

Hard clustering is a sub-category of clustering in which a point is said to be
belonging to only one class. No point is allowed to be assigned to more than
one class at a time, and all points need to be included into a class. For pixels
with large pixel sizes, this can be a problem in several ways. The first issue is
that if the pixel is heterogeneous , it may be categorized as a hybrid between
the true underlying classes. The second issue is that, for an heterogeneous
pixel, it may be more beneficial to keep this information.

4.2.2 Soft Clustering

Soft clustering is the other sub-category of clustering. Here, a point may exist
in several classes simultaneously, but the sum of the class membership must
always be 1. A soft clustering can always be reduced to a hard clustering,

4.3 Expectation Maximization Approach
The Expectation Maximization (EM)- algorithm as known today, was intro-
duced in 1977 by Arthur Dempster, Nan Laird and Donald Rubin in [46], al-

though the concept had been around earlier, it was in their paper ”Mazimum
Likelihood from Incomplete Data via the EM Algorithm” that an elaborate
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and general procedure was introduced, along with the name. Although they
claimed that it was only valid for exponential family distributions, this was
later proved wrong [47], and it now stands as a versatile method with many
applications.

When dealing with a problem in which the PDF of different classes are
not linearly separable, a popular approach is that of the EM algorithm.
Through successive iterations, it attempts to find the best division between
classes. The EM-algorithm is designed to maximize the expectation of the
log-likelihood function, conditioned on the observed samples and the current
iteration estimate of €. In the first step, the E-step, the estimation of the
expectation of the log-likelihood function takes place.

Q(6:6(1)) = | Y-, (3 1 X:600)) (12)

In the second step, the M-step, estimates of # is found through the max-
imization of the expectation of the log-likelihood function, QQ(8;6t))

0Q(0;0(t))
00

For the first iteration, the unknown @ needs to be initialized. This can either
be done randomly, or, for a likely faster convergence, through a more sophis-
ticated estimate. Different stopping criteria can be used. Typically, this is
when the change between two subsequent iterations is below a predefined
threshold. Change can for instance be measured over the parameters, or the
clusterings. In many cases a maximum number of iterations allowed is also
included in the stopping criteria. The EM-algorithm is not necessarily find-
ing the global maximum. Depending on the stopping criteria, it may settle
on a local maximum. A momentum term can be included in the stopping
criteria, to try to avoid such local minima.

Ot+1): =0 (4.3)

4.3.1 Generalized Mixture Decomposition Algorithmic
Scheme

The Generalized Mixture Decomposition Algorithmic Scheme (GMDAS) is
as the name indicates, an algorithmic scheme of the EM-algorithm that is
used for unsupervised clustering. Assuming that the number of clusters, K
is known, initial estimates for the unknown parameters @ and the unknown
class probabilities P are generated. Iteration indicator, t is set to zero. The
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following is then repeated until a convergence criteria is reached. In this
thesis, we used a change indicator

0 = |pota — p| + |oo1a — | + |Coia — C| (4.4)

Where C' are the correlation matrices, such that C = C4,Cs...Ck, and
p = [p1, .., pp]" and o = [oq,...,0,]" are the parameters of the marginal
estimates. The conditional probability of a class given the current estimates
for the parameters ©,

p(@i|Cy; Ok (t)) Pr(t)
Y iy D(@i|Ch, Ok (1)) Pr(t)

0y (t + 1) is then found by solving the equation

P(Cilzs;©(t)) =

i=1,.,Nk=1,.,K (4.5)

N K a
> ) P(Crlai; O(t)) 70~ Inp(]Crs; 6x) = 0 (4.6)
=1 k=1 80k

with respect to @y The class probabilities P, are then updated through the
following

(4 1) ZP Crlzs: ©t), k=1,.... K (4.7)
Class indicator t is set to t + 1. Repeat previous steps. When convergence or

maximum number of iteration is reached, the points x; can then be classified
using the Bayesian approach,

Z; = arg m]?Xp(:c,-\Ck)Pk (4.8)

Where 2; is a cluster indicator.
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Chapter 5

Data and Features

5.1 Feature Selection

In classification using data obtained by satellite remote sensing, it is often
helpful to use derived features rather than working on raw values. This is
especially true when it comes to SAR data, where direct human interpreta-
tion is difficult due to the nature of the signal. The features of interest will
often depend on the application, as well as the type of data that is available,
although some are rather universal. Many features will have some physical
interpretation, which allows for direct interpretation, such as the scattering
mechanisms. For the scope of this thesis, discussion of features are limited
to those that are of particular interest for the different real data that is used,
which is forest classification and distinguishing ice.

As discussed previously, optical imagery has its limits when it comes to
operational use in the Arctic, largely due to weather conditions and sunlight,
or lack of thereof. But when it is available, it can yield valuable information
about the surface properties. Colour for instance, which in many cases can
be enough for a coarse segmentation. The normalised snow difference index
(NDSI) [48] is an example of such a feature. Although it may not be as
famous as it’s vegetation equivalent, the NDVI, it builds upon the same
principles:

NDSI — PVIS — PSWIR (5.1)

pvis + PSWIR
Where it takes advantage of the high reflective properties of snow in the
visible part of the EM-spectrum, and its low reflectance in the shortwave
infrared. This makes the NDSI well suited for distinguishing between snow
and clouds, as clouds typically will have a high values in both regions. The
NDSI on its own is not necessarily a robust measure of snow or no snow, and
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other thresholds are usually included to make a more trustworthy assessment.
Due to its inability to penetrate the surface, optical imagery has limitations,
especially when it comes to the classification of sea ice. Although capable of
distinguishing between sea ice and open water, it is not a valid measure of
any internal structure or thickness. The Melt area detection index (MADI)
is a simple method to determine surface melt. It uses the difference in the
reflectance properties in dry and melting (wet) snow, to distinguish between
them. It was originally developed for MODIS reflectance data, and is given
by

Ry 67
Ra1
Where Ryg7 is the reflectance values of MODIS band 1, with a wavelength
of 620 — 670 nm and Rs; is the reflectance values of MODIS band 7, with
wavelengths between 2105 — 2155 nm. The MADI is then used as a threshold
value to segregate melting areas from areas without melting. This thesis uses
different datasets, and each of them have their own set of applicable features.

MADI =

(5.2)

5.2 Features derived from PolSAR

Recall the following representations of polarimetric SAR data, SLC and MLC
data:

SLC vector data given by s = [Sypn, V2SS4, Syv|T, or, if we can assume
reciprocity, S = [SHHa SHV, SVH, SV\/]T.

And MLC matrix data given C = %Zle s;si.

Below are some possible features derived from PolSAR [49] [50]. The some-
what constrained availability of full polarimetric data will typically exclude
some of these from being used in many cases, such as in this thesis, where
only dual-pol is available for ESAs SENTINEL 1 satellites . Nevertheless,
they are mentioned here.

Mean radar backscatter

=
~—~
ot
w
N~—

p = det(C)

Relative kurtosis

[s7C1s,]? (5.4)

Mh

RK =
d+1

=1

Co-polarization ratio

R _ {SvvSiv)
VV/HH <SHHS}<{H>
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Cross-polarization ratio

Suv ST
Rpv/p = <LBHV> (5.6)
Co-polarization correlation magnitude
SuuSy
ol = | —onaSvw) (5.7
<SHHSHH><SVVSVV>
Co-polarization correlation angle
Lp=L((SuuSyy)) (5.8)
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5.3 Simulated bivariate Gaussian data

To test the various algorithms and variables, it is favourable to have a dataset
in which the underlying distributions are known, to actually be able to esti-
mate the performance of the classification. So, the various methods that are
described in this thesis will be tested on both a simulated dataset, as well as
on real data. To assess whether or not an unsupervised classification scheme
based on the Meta-Gaussian distribution would work, we wanted to perform
an initial test using simulated data. The data was simulated separately from
four different bivariate Gaussian distributions, and concatenated to form the
dataset. 100 bivariate samples were generated for each class, resulting in a
test set of 400 two-dimensional vectors.

The classes were generated using the parameters
w1 = 1[0,0], ua = [8,6], us = [20, 3], ny = [4,20] and

(1o |1 02 |1 04 103 0.2

= 0o 110727 o2 03] 7 (04 02777 0.2 0.2
where p;,7 = 1, ...4 are the mean values of each class wy, ..., ws, and o;,1 =
1,...4 are the covariances. In figure 5.1, a scatterplot of the points is shown.

Bivariate normal samples
251

20
157

107

Figure 5.1: Scatterplot of simulated bivariate Gaussian samples. Different
color indicates different class, blue is class wq, green wy, brown ws and yellow
Wy
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Band Central Wavelength Bandwidth Spatial Resolution Purpose

1 443 nm 20 nm 60 m Aerosol detection

2 490 nm 65 nm 10 m Blue

3 560 nm 35 nm 10 m Green

4 665 nm 30 nm 10 m Red

5 705 nm 15 nm 20 m Vegetation classification

6 740 nm 15 nm 20 m Vegetation classification

7 783 nm 20 nm 20 m Vegetation classification

8 842 nm 115 nm 10 m Near-infrared

8a 865 nm 20 nm 20 m Vegetation classification

9 945 nm 20 nm 60 m Water vapour

10 1380 nm 30 nm 60 m Cirrus

11 1610 nm 90 nm 20 m Snow /ice/cloud discrimination
12 2190 nm 180 nm 20 m Snow /ice/cloud discrimination

Table 5.1: SENTINEL-2 Optical Bands, an overview of some important char-
acteristics and description of the different bands.

5.4 SENTINEL SAR and Optical data

The European Space Agency(ESA) began its SENTINEL project in April
2014 with the launch of SENTINEL-1A, and a year later, an identical twin
satellite, SENTINEL-1B followed. The two satellites forming this constella-
tion operate 180° apart, providing global coverage. [51] These SAR satellites
operate in C-band, and is available in dual-pol, HH/HV,VV/VH HH,VV. In
June 2015, the SENTINEL-2A optical satellite was launched, and two years
later, in March 2017 its twin satellite SENTINEL-2B completed this con-
stellation. The Sentinel 2 satellites also orbit 180° apart. The SENTINEL-2
satellites have a total of 13 bands in the visible and near-infrared(VNIR)
and shortwave infrared (SWIR) domain of the electromagnetic spectrum. In
table 5.1 an overview of the bands and their intended purpose is shown.
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Two scenes were selected to be used in the analysis. SENTINEL-1 and
SENTINEL-2 data from an area in Svalbard which contained land, open
ocean and sea-ice. The SAR image from SENTINEL 1 was preprocessed
in SNAP(SeNtinel Application Platform). The processing steps consisted of
geocoding using the range-Doppler equations, and terrain correction. The
optical image from SENTINEL-2 was resampled and geocoded. Finally, the
two images were overlayed. There was no available ground truth data for the
Svalbard scene, and analysis of segmentation results is done visually.

5.5 Nezer Forest SAR and Optical

The Nezer forest is an area in France, in which the planting of one single
species of maritime pine has been performed in sections over many years.
The data that is used from this area stem from the Landsat TM sensor of
Landsat-4, as well as polarimetric SAR data from the NASA/JPL AIRSAR
in C,L, and P-band. The ATRSAR data was aquired on August 16,1989 [52],
and the Landsat-4 data on July 22, 1991.

The Landsat-TM sensor of Landsat-4, is a multispectral sensor, and operates
in the visible and near infrared, a list of the seven bands is shown in 5.3. The
data had already been preprocessed prior to my use, by Temesgen Gebrie
Yitayew in his thesis "Multi-sensor Data Fusion and Feature Fxtraction for
Forest Applications” [53], and further used in [54]. The scenes have been
downsampled, and consists of 111 x 246 pixels, making up a total of 27306
in each image band. A ground truth map, shown in figure 5.3, is available
for this dataset, and eight classes are identified in the scene, six of which
correspond to maritime pine in different age groups, one is classified as bare
soil, and the last is unknown data. The different classes, and their sample
size are shown in table 5.2. The "unknown” class, with class-label 0, will
mainly not be used in the classification. This is due to the undetermined
nature of the points belonging to the class, which can consist of a multitude
of different objects, and thus a very mixed distribution. Instead, when appli-
cable it will be removed from the computations, and for graphical purposes,
replaced when displaying the classified images. This reduces the number of
available samples to 15683 per band.

(Classification on this dataset will be performed using both the SAR data
from the NASA /JPL AIRSAR, and the multispectral data from the Landsat
4 TM sensor. For the multispectral data, we will use the intensity values of
the seven Landsat 4 TM bands, and the following six features derived from

the TM bands:
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Figure 5.2: Amplitude of HH channel, truecolor RGB overlay.
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- Pine >41 years

- Pine 33-41 years

| Pine 15-19 years

Pine 11-14 years

Pine 8-11 years

Pine 5-8 years

Bare soil

Unknown

Figure 5.3: Ground truth map for Nezer forest data

Label Class Number of samples Proportion
0 Unknown 11623 -

1 Bare soil 5765 36.76%

2 Maritime pine aged 5-8 years 1200 7.65%

3 Maritime pine aged 8-11 years 1307 8.33%

4 Maritime pine aged 11-14 years 2224 14.18%

5 Maritime pine aged 15-19 years 636 4.06%

6 Maritime pine aged 33-41 years 2958 18.86%

7 Maritime pine aged >41 years 1593 10.16%

Table 5.2: Classes and labels for Nezer forest data. Proportion in percent of
the total classified area is taken not considering the "unknown” class
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Band Wavelength interval Name

1 0.45-0.52 p m Blue

2 0.52-0.6 ¢ m Green

3 0.63-0.69 1 m Red

4 0.76-0.9  m Near infrared (NIR)

5 1.55-1.75 p m Short wave infrared 1 (SWIR1)
6 10.4-11.5 pm Thermal infrared (TIR)

7 2.08-2.35 4 m Short wave infrared 2 (SWIR2)

Table 5.3: Landsat 4 TM instrument bands, their bandwidth and common
name.

e NDVI- given by

B,— B
NDVI = ﬁ (5.9)
e Brightness given by
B = a1 By + asBy + a3Bs + ay By + a5 Bs + ag By (5.10)
e Greenness given by
G = 1By + 2By + B3B3 + 4By + 5 Bs + 6By (5.11)
e Wetness given by
W =By + v2B2 +v3B3 + 4By + 585 + 6 Br (5.12)

Perpendicular Vegetation index, PVI given by:

PVI = +/(0.355B, — 0.149B,)% + (0.3558, — 0.852B,)2  (5.13)

here By, Bs, ..., B; represents intensity values from band 1, band 2,..., band 7
of the TM sensor, as in table 5.3, and ay, ...ag, B1, ..., Bg, V1, ---, V6 are constant
coefficients, and can be found in [55]. For the NASA/JPL AIRSAR, the
intensity values |Spp|?, [Shol?, |Sww|? corresponding to the elements C,j,j =
1,2, 3 of the multilooked covariance matrices of the P-band, the L-band and
the C-band were used. We also use the polarimetric features, described in
section 5.2.
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5.6. DATA TRANSFORMATION AND DIMENSIONALITY
REDUCTION

5.6 Data Transformation and Dimensionality
Reduction

When working with any kind of high dimensionality data, there is always a
chance of redundancy. In our case, with multispectral and multisensor data,
correlation between different image bands is not uncommon, and reducing
the number of bands can often be done without any real loss of information.
The principle component analysis can be used both as a tool to investigate
the redundancy in data, and also to reduce the number of dimensions whilst
retaining the information. PCA works by applying a linear transform to our
samples, X of dimensionality [N x p|. N is here the number of samples, or
observations, and p is the number of different observations, ie. the number

of image bands.
Y = XA” (5.14)

Here, Y is our transformed data, X is our original data, which must have
zero mean. If it does not, which is usually the case for real data, the sample
mean is found and subtracted. A is given by

A= [ao,al,ag,...,am_l] (515)

where ag, a1, as, ...,a,,_1 are the column eigenvectors corresponding to the
eigenvalues Ao, \1, Ao, ..., A\,,_1 that are found by taking the eigendecomposi-
tion of the sample covariance matrix, R, of X, where R is given by:

N
1 T
R~ 2 x;x! (5.16)

The eigenvalues resulting from the eigendecomposition of R are then ar-
ranged in a descending order, and we denote them such that A\g > A\ >
A2y ..y > Am_1. The eigenvectors follow the order of their corresponding
eigenvalue. If we choose m = p, the transformed data in Y will have the
same dimensionality of X, but Y will be mutually uncorrelated, with zero
mean. If we choose m < p, we also reduce the dimensionality in Y through
the transform. Applying this to the SENTINEL 1 & 2 data, with a total of
18 dimensions, we find that after the transform, the three most significant
eigenvalues represent 99.99% of the variance.
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Chapter 6

Implementation and Results

In this chapter, we start by presenting the general implementation of the
supervised classification scheme, and continue with the experiments that are
based on the supervised classification. First, we look at the generalization
of the marginal probability densities, and compare supervised classification
results obtained from specified parametric marginals, as well as kernel es-
timates. We compare the overall accuracy of these different implementa-
tions using the supervised Meta-Gaussian classification scheme, with that
obtained in [53], where a maximum likelihood classification assuming multi-
variate Gaussian distributions was used.

A supervised implementation of the Nezer forest data using only Gamma
marginals, only Gaussian, and a combination of marginals is also presented.
This was done to assess how well the measured values behaves relative to the
ground truth, as well as how the choice of marginals effect the classification
results. This should allow us to better evaluate the classification results of
the unsupervised implementations.

When the supervised part is concluded, we continue with the unsuper-
vised part of the experiments, and present the general scheme for the un-
supervised classification. We then move on to the individual unsupervised
experiments, and run various test using simulated data, and real remote sens-
ing data from SAR and optical sensors. We describe the parameters and the
data that was used for each case, and present the results. A discussion of
each case concludes the experiments.
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6.1. SUPERVISED CLASSIFICATION

6.1 Supervised Classification

For the case of supervised classification, a procedure in two steps, estimation
and classification is used. All marginal probability densities are assumed to
be the same unless otherwise specified in the following examples, i.e.. only
Gaussian, or only Gamma. The supervised classification scheme requires as
input the data X consisting of vectors x;,7 = 1,.., N, where N is the num-
ber of samples, arranged in rows. x; = (21, ...,2,) is the vector containing
pixel observation from p different image bands, or features, a corresponding
label vector Y where the K classes to be used in the classification are repre-
sented by unique integers. And lastly, for this implementation, the number
of samples, n to be used in the estimation of parameters needs to be specified.

The data is divided into a training set, to be used for estimation of pa-
rameters, and a testing set on which the classification is performed. X7rqining
consists of n randomly sampled data vectors &, with n; number of points for
class k. If ny = 0 for some class, the random sampling is repeated until all
ng # 0,k = 1,...K. The label vector Yp,qining follows the X7y qining index,
and the remaining (/N — n) vectors and labels form X7, and Yreg.

The estimation of parameters is done separately for each class, and con-
sists of a function that takes as input the training samples available, X7rqining
their corresponding labels, or ground truth, Y7,qining and a class identifier.
The class identifier must be equal to one of the label values.

For each of the j = 1,..,p bands, estimation is done using the training
points in the current class, denoting the marginal probability density for
class k = 1,..., K, band j by g;;. We then find the corresponding cumula-
tive distribution function values using G,;}(a:”) for i in class k. Using the
CDF values, we then transform them into standard Gaussian values through
the ®(-)~! transform. After the normal quantile transform (NQT) has been
computed for each band, we find the correlation coefficients, C}, for the class.
This is then repeated for each of the classes in the training set. When the
training, or estimation is completed, we move on to the classification.

The classification function takes as input the unknown vectors x;, the
parameter estimates 7, and the correlation matrices Cy
The classification scheme is then as follows. Starting with class £ in K,
we find gy j(x;) and Gy ;(x;) for all bands j = 1,..,p. We take the NQT,
O (G, ;(x;)) Using For each unknown vector a; we first compute g(z;) and
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G(z;) given the current class and the current band. Inserting our values into

e~ 3y (Cy Dy (xv) P
Je(x; 1) = C[7 9i(@j;75) (6.1)

Jj=1

Classification is then performed using the classical Bayes rule.
Z; = arg max Tk fr(X) (6.2)

where 7, is the probability of class k, based on the training set. In figure 6.1
a flowchart describing the supervised classification process, the ”Classify”
block is shown in detail in figure 6.2. The final output of the supervised
classification scheme is an (N — n) x 1 vector, that we denote Z, that has
as elements the classified class labels for each point in the test set, Z =

BN

6.1.1 Kernel effects on supervised classifier

One of the goals for this thesis was to determine whether kernel approxima-
tions of the probability distribution functions was:

e a valid approach, and

e whether the choice of kernel had any major influence on the classifica-
tion results.

Implementation

In this experiment, we ran the supervised classification scheme on some se-
lected parametric probability distributions and kernel distribution functions.
The parametric PDFs that were used was the Beta, Extreme Value, Gamma,
Normal, t-Location Scale, Logistic, Rician, and the Nakagami. They were
chosen due to their support. The kernels used were the Normal, Box, Tri-
angular and Epanechnikov. In all of the below kernel estimates, the default
bandwidth value, as determined to be optimal by MATLAB was used.
Three different datasets were used. The intensity values |Sp|?, |Shol?, |Sve
of the MLC NASA/JPL AIRSAR P-band, the polarimetric features derived
from the NASA/JPL AIRSAR P-band, and the reflectance values from the
seven bands of the Landsat 4 TM sensor.

The classification was run 10 separate times with different random initial-
izations of the training points. 1500 training points were selected at random
from the entire dataset. The classification accuracy of each of the 10 inde-
pendent runs was averaged, and the overall accuracy of each PDF along with
the standard deviation of the accuracy was computed.

| 2
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X-Input data, Nxp

Y -Label vector, Nx1

Split into
training
and testing

Xrraining, 0 X P Xrest (N —1n) xp
Yraining M X 1 YTes((N - Tl) x1

Compute
estimates, v,
C

» Classify

Figure 6.1: Flowchart for supervised classification. Process block " Classify”
is shown in figure 6.2
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START
CLASSIFYING

x = Xeese(i,1)

i, j () = Gr,j (6 Vi, )

] Gr,j(xX) = Gy j (6 Vi, j)
j=j+1
Yiej (Grj) = @7 (G (1)
A
-
>
r
(2]
m
k=k+1 TRUE
m
,)2 A 4
[%2]
m
fre( Ve, Cie)

i=i+1

Z; = argmaxmy fi (x)
k

STOP
CLASSIFYING

Figure 6.2: Flowchart for process block ”Classify”, that is used in figure 6.1
and 6.12.
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6.1. SUPERVISED CLASSIFICATION

Distribution Overall accuracy in percent Standard deviation in percent
Beta 70,76 0,38
Extreme Value 66,29 1,35
Gamma 70,53 0,37
Normal 70,59 0,28
t-Location Scale 69,24 0,32
Logistic 70,15 0,25
Rician 69,78 0,43
Nakagami 69,66 0,55
Kernel-Normal 70,27 0,37
Kernel-Box 69,83 0,49
Kernel-Triangular 70,41 0,32
Kernel-Epanechnikov 70,4 0,28

Table 6.1: Kernel classification results for P-band SAR- MLC Values

Results of kernel effects

In table 6.1,we have the classification results for the P-band MLC values, in
table 6.2 we have the classification results of the polarimetric features derived
from the P-band, and in table 6.3 we have the classification results of the
Landsat 4 TM reflectance values.

Discussion of kernel effects

We see that overall, the kernel functions that were used generally do not per-
form significantly worse, and that they certainly perform better than those
specified probability distribution functions that are not corresponding to the
true underlying distribution. One of the main attributes of kernel functions
is their ability to adapt, so therefore it is only natural that they would adapt
to the data they are given. In this experiment, the accuracy was measured
over 10 independent runs of the classification algorithm, and we see that the
standard deviation of these accuracies were usually below 1%, with a few
deviates.

This indicates that the results are consistent throughout, and that the dif-
ferent initializations doesn’t affect the classification results in a large degree.
In the case of features derived from P-band SAR data, we see a slight im-
provement in using the Epanechinikov Kernel with fitted bandwidth with
a 71.44% accuracy, compared to the most accurate parametric probability
distribution function, the Beta distribution which had a 70.75% accuracy.
But, the standard deviation of the Epanechinikov was almost double that

56



CHAPTER 6. IMPLEMENTATION AND RESULTS

Distribution Overall accuracy Standard deviation
Beta 70,75 0,25
Extreme Value 69,3 1,38
Gamma 70,27 0,66
Normal 69,76 0,67
t-Location Scale 70,38 0,43
Logistic 70,6 0,54
Rician 70,43 0,24
Nakagami 70,6 0,65
Kernel-Normal 71,32 0,46
Kernel-Box 71,25 0,37
Kernel-Triangular 70,66 0,38
Kernel-Epanechnikov 71,44 0,41

Table 6.2: Classification results for P-band SAR- Feature Values

Distribution Classification results Standard Deviation
Extreme Value 48,75 1,42
Generalized Extreme Value 56,89 0,59
Gamma 55,23 0,24
Normal 55,5 1,02
t-Location Scale 55,12 1,45
Logistic 57,28 0,27
Kernel-Normal 56,39 0,46
Kernel-Box 55,48 1,03
Kernel-Triangular 56,24 1,01
Kernel-Epanechnikov 56,51 0,61

Table 6.3: Kernel classification results for Landsat-reflectance values
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6.1. SUPERVISED CLASSIFICATION

of the Beta distribution, with 0.41% compared to 0.25%. So that if we take
the extremes of each case, they would be likely to meet in the middle at 71%.

What we can also see from this, is that classification based on features
derived from the NASA /JPL AIRSAR P-band MLC data, is only performing
slightly better than just the three intensity values |Suu|?, |Shol?; |Seo|? of the
P-band MLC, and only when the marginals are kernel estimates, which is
interesting. This could indicate several things, namely that

e The specified parametric densities do not fit the data.

e The calculation of features were unnecessary. Which is not entirely
impossible,

Another interesting result, is that if we look at classification results ob-
tained in [53] and [54], shown in figure 6.3, where the author used a supervised
maximum likelihood classifier, assuming multivariate normal distributions,
on feature vectors that were formed by concatenating image bands(or fea-
tures), we see that our results are proving better. It should be noted that in
our case we used 1500 training samples selected at random from the entire
set, whereas in [53] the author selected 150 training points at random, from
each class. This means that although we use 450 more training points, ours
are due to the laws of probability, representative of the dataset as a whole,
but may be less representative on a single class, due to the low number of
points that are likely to stem from some of the smaller classes.

This is a real indicator of the advantage in classification using the Meta-
Gaussian distributions. It could suggest that the extra information held in
the correlation matrix C that we obtain in the transform, outweighs, or re-
duces, the need of feature generation, and that it is, generally performing
better than a standard maximum classification on multivariate normal den-
sities.

And, it was shown that there is not a large difference in the overall accu-
racy, regardless of the choice of marginals.

Based on the test results from this experiment, we cannot conclude that a
specified probability distribution function of each marginal, that would have
to either be based on some pre-knowledge about the specific feature, complete
guesswork, or through a iterative run over known and probable distributions
such as done here would perform any better than a kernel approximation of
the data. At the same time, we can conclude that a kernel approximation
does not perform any worse. So, it is my recommendation that in further use
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IMPLEMENTATION AND RESULTS

The different feature vectors Average ' classification accuracies
and their different with their corresponding
combinations standard deviation values

1 | SAR, P-band (six features ) T.89 + 0.30

2 | SAR, L-band (six feat ures) 54,76+ 0.44

3 | SAR, C-band (six features ) 4397 £ 0.9

4 | Vegetation indices (all eight features) 533,34 £ 047

3 | Six TM bands (taken as six features ) 2207 £ 0.72

G | SAR, P-and L-band (12 features) G335 £ 0.48

T | SAR, P-and C-band (12 features) GE6T £ 0.43

& | SAR, L-and C-band (12 features) 36.63 £ 0,48

9 | SAR, P-, L-and C-band (18 features) 68.90 £ 0.46

10 | SAR, P-band and eight VI (14 features) T34 + 038

11 | SAR, L-band and eight VI {14 features) 6482 + 047

12 | SAR, C-band and eight VI (14 features a8 19 £ 0.41

13 | SAR, P- L-hands and eight VI { 20 features) T5.60 £ 0.39

14 | SAR, P- Cobands and eight VI (20 features) 7091 £ 0.41

15 | SAR, L-,C-bands and eight VI (20 features) 66,13 £ 0.53

16 | SAR, P- L-, C-bands and eight VI (26 features) 7592 £ 027

Figure 6.3: Average classification results for different feature vectors and
combinations, using supervised maximum likelihood classification, assuming
multivariate normal distributions, obtained in [54].

of supervised classification using a Meta-Gaussian distribution, that kernel
functions are used for the training and subsequent classification.

It is therefore shown that for a supervised setting of the classification
based on the Meta-Gaussian distribution, using real data, a general initial-
ization of the marginals can be done without loss of success. This can have
some basis in the noise that is introduced during the acquisition and process-
ing, and the randomness of the area itself, and the overlapping of classes, and
mixing within classes. For the simulated data, in theory using the correct
marginal should result in improved classification result.

6.1.2 Classification results for supervised classification

When evaluating the performance of the unsupervised classifier, it is good
to have a reference to measure against. In the Nezer forest data, we have
an available ground truth map for the area, but that doesn’t necessarily
mean that it is possible, or viable for a classifier to find exactly what the
ground truth implies. We therefore ran some supervised tests, to see what
the "best case” that we can achieve in an unsupervised setting is really like.
Additionally, this should tell us if there are some discrepancies either in the
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data, or in the ground truth map.

Implementation

The supervised classification scheme was performed once using Gamma PDF's
as marginals, and once using Gaussian PDFs as marginals. Taking as input
data the intensity values |Spa|?, [Sho|?, [Seo|? of the MLC NASA/JPL AIR-
SAR P-band,C-band and L-band, and the reflectance values from 6 bands
of the Landsat 4 TM sensor, bands 1-5 and 7. A total of 15 features. 1500
training samples and their corresponding class label were selected at random
from the entire set, and used in the estimation of parameters.

Results

Classification result using a supervised scheme, separately using only Gaus-
sian and only Gamma PDFs as marginals is shown in figure 6.4, and cor-
responding confusion matrices in figure 6.5 for the Gamma PDF case, and
figure 6.6 for the Gaussian PDF case.

Discussion

Here we see that the only distinct clear class is that of the bare soil, where
99.3% of the points where correctly classified when using Gamma marginals,
and 99.7% when using Gaussian marginals. For the other classes, the com-
mission error varies between 29.2% to 70.8%, and the omission error is in
the ranges of 28.66% to 71.4% in the Gamma case, resulting in an overall
classification of 73.9%.

In the Gaussian case, the commission error is slightly lower, in the range
27.7% to 61.0%, and an omission error between 30.3% to 56.5%. Here the
overall classification accuracy is 75.5%.

The two most distinct, and dominating classes in the classified output,
apart from the bare soil, are that of pine aged 33 —41 years, and pine 11 — 14
years. What we can also tell, both by looking at the classified images in figure
6.4 and the confusion matrix in figure 6.6 and 6.5, is that the error is mainly
caused by pine points wrongly being classified to one of its neighbouring age
groups. This suggests that we should not expect to be able to distinguish that
well between neighbouring tree age groups in the unsupervised classification,
but that the bare soil should be well defined. This could imply that using
fewer classes may be a better approach than to assume six different age
groups in addition to the bare soil class.
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Classified result for Nazer forest data using gaussian marginals
! .

Classified result for Nazer forest data using gamma marginals
1 - ]

20

40
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80

100

50 100 150 200

Ground truth map for Nazer forest data
1

Figure 6.4: Comparison between classified maps and ground truth map for
Nezer forest data.

Top: Gaussian marginals

Middle: Gamma marginals

Bottom: Ground truth

Ground truth labels for training points have been reinserted into the classified
result for viewing purposes. Data with "unknown” label was not used in the
classification.
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Confusion Matrix

Output Class

1 2 3 4 5 6 7
Target Class

Figure 6.5: Confusion matrix for supervised classification of Nezer forest data
using Gamma marginals. Diagonal elements are points which are correctly
classified. Bottom row represents omission error, far right column is the

cominission error.
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Confusion Matrix

-8

Output Class
tn

1 2 3 4 5 6 7
Target Class

Figure 6.6: Confusion matrix for supervised classification of Nezer forest data
using Gaussian marginals. Diagonal elements are points which are correctly
classified. Bottom row represents omission error, far right column is the
commission error.
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6.1.3 Supervised classification using a combination of
marginals

One of the strengths of the Meta-Gaussian classification scheme, is its ability
to combine features with different marginal probability distribution func-
tions, and represent it in a unified Meta-Gaussian multivariate function. To
investigate the effect of using individually specified marginals, we repeat the
above experiment, but now using Gamma marginals for the SAR features,
and Gaussian Marginals for the optical features. In theory, this could improve
the classification results.

Implementation

Classification was performed on nine MLC values, namely the |Spz|?, |Sho|?
and |S,,|? from the C-band, L-band and P-band NASA/JPL AIRSAR, as
well as six of the Landsat 4 TM bands, bands 1-5 and 7. A total of 15
features. Supervised classification using the Meta-Gaussian GMDAS scheme
with Gamma marginals for the 9 SAR bands, and Gaussian marginals for
the 6 optical bands was was tested. 1500 training samples and their corre-
sponding class label were selected at random from the entire set, and used

in the estimation of parameters.

Results

Classification result using a supervised scheme, with a combination Gamma
and Gaussian marginals is shown in figure 6.7(a), and the confusion matrix
of the classification result in 6.7(b).

Discussion

In figure 6.7 we see again that the only distinct clear class is that of the bare
soil, and overall we have the same issue with adjacent classes being mixed
as we had in the previous example, using only Gaussian and only Gamma
marginals. What we do find is that the overall classification accuracy is
slightly better than in the two previous cases. In this case, using the two
theoretically correct marginals, we have 76.6% of the pixels correctly classi-
fied, whereas when only using Gamma we had 73.9%, and in the Gaussian
case 75.5% correctly classified pixels. The same training points were used
for all three cases. If we look at the histograms of the different features and
classes, we may understand why this is happening. In figure 6.8 we show
the histograms of the SAR features, and in figure 6.9 the histograms of the
optical bands used in this experiment. And we can see that for the SAR
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Pine >41 years

Pine 33-41 years
Pine 15-19 years
Pine 11-14 years

Pine 8-11 years

Pine 5-8 years

Bare soil

Unknown

(a) Classified map, ground truth labels for training points have been rein-
serted into the classified result for viewing purposes

Confusion Matrix

Output Class

Target Class

(b) Confusion matrix. Diagonal elements are points which
are correctly classified. Bottom row represents omission
error, far right column is the commission error.

Figure 6.7: Results for the supervised classification using a combination é)g
Gamma and Gaussian marginals
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features, the Gamma has a seemingly better fit, for all of the channels apart
from the HH and VV of the C-band MLC, where we have a uniform distri-
bution, and the Gaussian with its heavier tails captures it better. Although
it should be noted that the x-axis of the histogram plots in figure6.8 were
cropped for displaying reasons, which means that we do no see the heavy
tails in the negative range. For the optical bands, we generally have a worse
fit for both Gamma and Gaussian densities than we did in the SAR features,
but the Gamma density seems to be the lesser of two evils in this case as well.
One might wonder why the classification using Gamma marginals in figure
6.5 was the worst of the three cases we tested then. To hopefully answer
this, we take a look at the histograms of some of the classes, for a few of
the features, since these are the constituents of the marginal estimates that
we are using in the transforms. In figure 6.10 we show histograms for the
optical, class wise values, and similarly in figure 6.11 for the SAR features.
And we note that for the SAR, the fitted Gamma densities seem to better
fit, this is perhaps especially apparent in the class 1, HV channel P-band
combination, shown in the top right of figure 6.11.
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Figure 6.8: Histogram plots of SAR features |Spp|?, [Sho|* and |S,,[?, of the
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MLC for bands C,P and L with fitted Gamma and Gaussian density curves.

Yellow curves are the fitted Gaussian curves, and blue curves are the fitted

Gamma. Dark blue bars are the histogram bins.
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Figure 6.9: Histogram plots of the Landsat TM 4 bands 1 — 5 and 7 with

fitted Gamma and Gaussian density curves.

Yellow curves are the fitted

Gaussian curves, and blue curves are the fitted Gamma. Dark blue bars are
the histogram bins.
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Class 3, band 1 values

I Histogram bins
Filted Gaussian density function
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Histogram plots of selected classes of the Nezer forest, values
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are the fitted Gamma. Dark blue bars are the histogram bins.
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Figure 6.11: Histogram plots of selected classes of the Nezer forest, values
from the SAR features |Sps|?, [Sho|? and |S,,|?, of the MLC for bands C,P
and L with fitted Gamma and Gaussian density curves. Yellow curves are
the fitted Gaussian curves, and blue curves are the fitted Gamma. Dark blue
bars are the histogram bins.
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6.2 Unsupervised Classification using Meta-
Gaussian Distributions

Using a Generalized Mixture Decomposition Algorithmic Scheme as a base-
line, a classification scheme was implemented in Matlab. In this current
implementation all marginal probability density functions are assumed to be
Gaussian unless otherwise specified.

The unsupervised classification scheme requires as input the data X con-
sisting of vectors x;,7 = 1, .., N, where N is the number of samples, arranged
in rows. x; = (x1,...,,) is the vector containing pixel observation from p
different image bands, or features, and the number of classes to be used in
the clustering, K.

Given this, it would start by randomly assigning points to classes, for
now assuming equal probabilities for all classes k = 1, ..., K. After this ini-
tialization, the iterative clustering scheme begins.

Based on the current cluster assignments, the estimation of parameters is
done separately for each class. For each of the j = 1, .., p bands, estimation is
done using the points in the current class, denoting the marginal probability
density for class k = 1, ..., K, band j by gi ;. We then find the corresponding
cumulative distribution function values using G,;} (x;;) for i in class k. We
transform the CDF values, into standard Gaussian values through the ®(-)~!
transform. After the normal quantile transform (NQT) has been computed
for each band, we find the correlation coefficients, C), for the class. This is
then repeated for each of the classes in the current clustering. During the
estimation process, we have also included a rule to ensure that no class is left
empty. If an empty cluster occurs, points from the other classes that have
the lowest probability of membership is relocated. After the estimation we
compute the change indicator,

0i = [Yim1 — il + |mic1 — (6.3)

Where ; is the vector containing the a priori probabilities of iteration ¢,
and 7; denotes the parameters of the ¢th iteration. When the estimation is
completed, we move on to the classification.

The classification part uses the unknown vectors x;, the parameter esti-

mates 7, and the correlation matrices Cy obtained in the estimation part.
The classification scheme is then as follows. Starting with class £ in K, we
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find gi;(z; ;) and Gy ;(z;;) for all bands j = 1,..,p. We take the NQT,
® (G j(z;)) Using For each unknown vector ; we first compute g(z;) and
G(z;) given the current class and the current band. Inserting our values into

e 3Y(x) T (C -Dy(xiy) P

fe(x k) = ToRE ng(%';%') (6.4)

(Classification is then performed using the classical Bayes rule.

z; = arg max T fr(X) (6.5)

Clusters are updated according to the results of the classification. The pro-
cedure is repeated until we achieve a change in parameters, between two
subsequent iterations, J; that is smaller than the specified error, e, or we
reach the maximum number of iterations, denoted mazxiter in figure 6.12.
The classified output of the unsupervised classification scheme is an N x 1
vector, denoted Z, that has as elements the classified class labels correspond-
ing to each point in the unknown data, Z = [2;, ..., 2x]7.

In figure 6.12 we show a flowchart describing the process. Note that
the ”Classify” block, shown in detail in figure 6.2, is the same as in the
supervised case, but that the loop indicator i = n; is changed to i = N,
and the assignment @ = Xpeg(7,:) will be changed to x = X (1, :), since we
are now classifying using all points in the data set, not on what we have
denoted the test set, Xp.s. As we see in figure 6.12, after the initialization
of the clusters, we repeat the estimation of parameters based on the current
class membership, the computation of the change indicator, §;, and classify
based on the current parameter estimates until one of the stopping criteria
is reached.

6.2.1 Unsupervised classification of bivariate test data

The initial step of the unsupervised classification was after implementation
to test it using very simple test data. In this case, it was using two dimen-
sional Gaussian data, with four separate, distinct clusters, as described in
section 5.3. Starting out with a data set in which we expect a 100% cor-
rect classification, is primarily done to assess whether the method, and the
implementation works, not so much to evaluate any other aspects.
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Figure 6.12: Flowchart for unsupervised classification
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Implementation

The unsupervised Meta-Gaussian classification scheme was used on the sim-
ulated Gaussian dataset. The number of classes, K, was set as 4, which was
also equal to the true number of classes. Maximum number of iterations was

set as 100, and the error criteria e was set to 0.00001. Random assignment
of the clusters was used to initialize the algorithm.

Results

Classification results are shown in figure 6.13. The algorithm converged to
the error criteria in 14 iterations.

Bivariate normal samples- Classified result
257

20 ¢
151

or

Figure 6.13: Classification result for simulated data

Discussion

After some inconclusive results, which failed to converge, an error was discov-
ered in the computation of the matrix inverse in the Meta-Gaussian function.
After this was corrected, we achieved the expected correct classification ac-
curacy of 100%.
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6.2.2 Unsupervised classification using Nezer Forest
dataset

Using the Nezer forest dataset, an initial implementation using the P-band
MLC data, and considering a two class case, where the intention was sep-
aration of the forest and the unknown terrain. Additionally, we wanted to
compare the convergence and results when using prior probabilities obtained
from the current clustering, to an implementation without using prior prob-
abilities, which effectively means that we force P, = P, = 0.5.

Implementation

The data that was used was the intensity values |Sup|?, |Shol?, [Swo|? of the
MLC NASA/JPL AIRSAR P-band. The number of classes, K was set to 2,
the error e was set to 0.00001 and maximum number of iterations, maxiter
was set to 50. The algorithm was initialized using random seeding of the
data, and the classification was run separately for case 1- including current
class probabilities, and case 2- no class probabilities were included.

Results

The classification results for the two cases, at iteration number 5, 10 and 50
are shown in figure 6.14

Discussion

We see that the algorithm is now able to go from a completely random start-
ing point in the first iteration, to recognizable shapes in the fifth iteration.
In subsequent iterations, we see that by comparing the results of the clas-
sification to the ground truth map, the the two classes that are found are
apparently:

e w;= Bare soil

e wy= Forest and unknown pixels

If we compare the two cases iteration for iteration, it becomes clear that
that of case 1, where priori probabilities are used in the calculation of the
Meta-Gaussian, converges faster than that of case 2. We see that one of the
problematic areas for the P-band SAR, is to pick up the vertical lines between
the fields. Considering the contextual information, it is not unlikely that the
lines are in fact dirt roads, which would likely have the same backscatter
properties as bare ground, or it could be caused by the viewing angle.
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Figure 6.14: Results for a two class classification: comparison between clas-
sification using current class probabilities, denoted case 1, and without con-
s?iélering current class probabilities, denoted case 2.
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6.2.3 Two class case- removing unknown values

We now tried with the same two class scenario, but where the unknown class
have been removed. The expected class separation is now vegetation and
bare soil. We also expect a good class separation.

Implementation

The data that was used was the intensity values |Spal?, [Shol?, |Sue|? of the
MLC NASA/JPL AIRSAR P-band. The number of classes, K was set to 2,
the error e was set to 1-107% and maximum number of iterations, maziter was
set to 45. The algorithm was initialized using random seeding of the data.
Data having a ground truth label of 0 was removed before classification.

Results

In figure 6.15, we can see the results from this clustering. The values corre-
sponding to the unknown values have been masked out, and is shown in dark
blue in the ground truth and the classified maps.

Discussion

After 20 iterations, the absolute difference in parameters between subsequent
iterations begins a steady drop towards zero. In figure 6.15, we can see the
results from this clustering. The values corresponding to the unknown values
have been masked out, and is shown in dark blue. We see that in only two
iterations, it has already converged well towards a good separation, and in 20
iterations, it has almost correctly separated the two classes. If we segment
our reduced ground truth into two classes, those containing trees, and those
containing bare soil, and compare against the classified output, we find that
the final clustering correctly classified 97.88% of the pixels.
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6.2.4 Seven-class case

Seven is the number of classes that we have in our ground truth map for the
Nezer forest if we ignore the "unknown” class, and we therefore assume that
this should be the correct, and true number of classes. In this experiment,
we attempt a clustering based on these seven classes, and we also wish to
compare the Meta-Gaussian method with the more conventional Maximum
Likelihood method using multivariate Gaussians.

Implementation

Classification was performed on three MLC values from the P-band NASA /JPL
AIRSAR, namely |Syi|?, |Sho|? and |S,, 2. Unsupervised classification using a
standard GMDAS implementation, where a multivariate normal distribution
was used, and the Meta-Gaussian GMDAS scheme with Gaussian marginals
was was tested. The number of classes, K was set to 7, the error e was set
to 1-107% and maximum number of iterations, maziter was set to 45. The
algorithm was initialized using random seeding of the data. Data having a
ground truth label of 0 was removed before classification.

Results

Classification results are shown in figure 6.16. Note that the class assignment
will be different between initializations, and will rarely, if at all follow the
same "numbering” as in the ground truth labels.
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Unsupervised classification using multivariate normal

Class 7
Class 6
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Class 7
Class 6
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Pine 15-19 years
Pine 11-14 years

Pine 8-11 years
Pine 5-8 years

Bare soil
Unknown

50 100 150 200

Figure 6.16: Comparison between classified map for GMDAS using Meta-
Gaussian distribution, GMDAS using multivariate normal distribution, and
ground truth map for Nezer forest data. Data with ”unknown” label was not
used in the classification.

Discussion

What we see is that in the classification using the multivariate normal dis-
tribution, the bare soil class is not limited to one class indicator, but is split
amongst class 6 and 4 in the classified map. When using the Meta-Gaussian,
this has correctly been grouped into one class. We also see the same ten-
dency of an inability to correctly separate between adjacent age groups, in
both cases the pine> 41 and 33 — 41 years age groups are seemingly mixed.
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We saw the same tendency in the supervised classifications, shown in figure
6.5,6.6 and 6.7.

6.2.5 Seven-class case using a combination of marginals

In the prior unsupervised experiments, we have used the same marginal prob-
ability density function on all features. We now wish to test the performance
when using Gamma marginals for the SAR bands, and Gaussian marginals
for the optical bands.

Implementation

Classification was performed on nine MLC values, namely the [Spz|?, |Sho|?
and |S,,|* from the C-band, L-band and P-band NASA/JPL AIRSAR, as
well as six of the Landsat 4 TM bands, that is, bands 1-5 and 7. A total of
15 features. Unsupervised classification using the Meta-Gaussian GMDAS
scheme with Gamma marginals for the 9 SAR bands, and Gaussian marginals
for the 6 optical bands was was tested. The number of classes, K was set to 7,
the error e was set to 1-10~% and maximum number of iterations, maziter was
set to 60. The algorithm was initialized using random seeding of the data.
Data having a ground truth label of 0 was removed before classification.

Results

Classification results are shown in figure 6.17. Note that the class assignment
will be different between initializations, and will rarely, if at all follow the
same "numbering” as in the ground truth labels.

Discussion

What we see in the classified map in figure 6.17 is that we have fairly clear
groupings. What we also see is that the bare soil class is not one classified as
one distinct class, but rather the four classes wy, ws, wy, wg using the labelling
in figure 6.17. It then follows that three classes that are left in the classified
map, represent the six forest classes. We find that class w3 and w7 seem to
represent the three oldest pine age groups, 15 — 19, 33 — 41 and > 41 years.
Class ws is fairly clearly the three youngest pine age groups, 5 — 8, 8 — 11
and 11 — 14 years.

If we now do a merging of classes according to these findings, we have

three classes: bare soil, young pine trees and old pine trees. In figure 6.18 we
show the merged classified map, along with a ground truth map using the
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Figure 6.17: Results for a 7 class unsupervised classification using Gamma
marginals for the SAR features, and Gaussian for the optical bands. NaN
class was not used in the classification.

same grouping, and a merged classified map from the supervised classification
using the same features and the same marginals. We now denote w; as bare
soil, wy as young trees (age 5 — 14 years), and w3 as old trees, (age 15— > 41
years). In this particular case, we also included a confusion matrix, since
we were able to obtain a clearly defined segmentation with the three classes,
and find that the overall classification accuracy was 91.4% when using the
ground truth map as reference.
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Figure 6.18: Comparison of merging classes for supervised and unsupervised
classification using a combination of marginals. 83
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6.2.6 Unsupervised classification using SENTINEL data

We now move on to an Arctic setting. Since the original scene was very
large, and the unsupervised classification not that fast, a small subset was
selected, and can be seen in figure 6.19. The subset contains land, landfast
sea ice and a lead that separates the landfast ice and a segment of more
fragmented ice. Segmentation was performed on different sets of features.
The first was using the amplitude and intensity from the HH and the HV
band, green and blue and infrared, a total of seven features. Then, using
the three transformed bands obtained from a PCA data transformation and
dimensionality reduction (DTDR) using all 18 bands as input, that accounted
for 99.99% of the variance. And finally, classification results using the SAR
bands and the optical bands were tested separately. Individual results and
summary are shown below. And note that we do not have any validated data
from this area, so this is more a visual comparison.

(a) RGB image, subset (b) HH  Amplitiude
enclosed in red rectangle band, subset enclosed in
red rectangle

Figure 6.19: Images of the areas used in the SENTINEL segmentation
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6.2.7 Comparison between 7 band raw features and 3
band PCA transformed features

Here, we wanted to check the difference between classifications using seven
bands, and three feature bands resulting from a PCA. Ideally, we would wish
to test using all 18 bands, but, due to the time consume anticipated with
each iteration it was not deemed feasible at this time.

Implementation

The data that was used for the first case was the three transformed bands
obtained from a PCA data transformation using the combination of the 13
bands of the SENTINEL 2, and the 4 channels of the SENTINEL 1. For the
second case we used the 4 channels of the SENTINEL 1, and the green, blue
and infrared bands of SENTINEL 2. The number of classes, K was 3,4,5,6
and 7. The error e was set to 1 -107% and maximum number of iterations,
maxiter was set to 45. The algorithm was initialized using random seeding
of the data.

Results

Classification results for the two cases, and for the different number of classes
are shown in figure 6.20. Note that the class assignment will be different
between initializations, and will rarely, if at all follow the same "numbering”
as in the ground truth labels.

Discussion

What we see is that the PCA results are significantly more homogeneous in
appearance. It also fails to find some of the ice structures that we saw in the
amplitude image of the HH channel, shown in figure 6.21.

6.2.8 Classification using optical bands versus classifi-
cation using SAR bands

Using the same subset as before, unsupervised classification was performed
using Gaussian marginals. Four SAR bands was used in one trial, and the
three optical bands in another.
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Figure 6.20: Comparison between classification using PCA and raw features.
Top row shows classifications for the seven raw bands used, and bottom row
classification using three PCA features
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Figure 6.21: Amplitude image of the HH channel of SENTINEL 1, red rect-
angle indicates the area that is used for classification.

Implementation

The data that was for the first case the 4 channels of the SENTINEL 1, and
for the second case the green, blue and infrared bands of SENTINEL 2. The
number of classes, K was 3 The error e was set to 1 -107% and maximum
number of iterations, mazxiter was set to 45. The algorithm was initialized
using random seeding of the data.

Results

Results of these implementations is shown in figure 6.22.

Discussion

What we first note is that using only three classes was in this case proba-
bly not enough, or it could have been if we had used a land mask before
classifying. We see that especially in the segmentation based on the SAR
backscatter values, the pixels corresponding to land dominate the segmenta-
tion. But, perhaps the only noteworthy feature in this comparison, is that
of the open lead. It shows up clearly in the optical segmentation, but not in
the SAR.
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3-class segmentation using optical bands

3-class segmentation using SAR features
T

Figure 6.22: Comparison between 3 class segmentation using optical bands,
and SAR bands. Segmentation based on optical bands is on the left, and
SAR features on the right.
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Chapter 7

Conclusion

This thesis started out by introducing some of the challenges and possibilities
of remote sensing in terms of combining multi-sensor data. We presented the
concept of data fusion, and introduced the Meta-Gaussian distribution.

The aim of this thesis was to build upon the previous work, [1], by Storvik
et al, which was also recreated in the pilot project ”Classification strategy
for multi-sensor data using Meta-Gaussian distribution” [13] and extend the
method to include:

e A clustering step to support unsupervised classification.

e Generalization of the marginal probability distribution functions(PDF).
In many cases real data may not be well described by parametric mod-
els. In these cases, non-parametric, kernel based approximations of the
PDF may prove to be better alternatives.

e Extensive testing on a multitude of data, both real and simulated.

Results from single-sensor classification and multi-sensor classification will
be compared. The end goal would be to develop a multi-class classification
algorithm based on the Meta-Gaussian data fusion method.

7.1 Conclusion

This thesis has been a test in both implementation and theory. Many hours
have been spent troubleshooting code, and waiting for iterations to end.
While’s and if’s and for’s have accumulated, but in the end it all came
through.
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It is at the current stage not possible to say that this method of classifica-
tion through a Meta-Gaussian transform is a contender to other established
methods of data fusion and segmentation, but, it is definitely a working
method, and one that is adaptable to any kind of data. It has so far proved
to be versatile in terms of the marginals, and functional in an unsupervised
setting as well. This has not to our knowledge been tested before in terms
of using the Meta-Gaussian transform.

Segmentation using unlabelled data was also found to be possible, and
functional, and a general unsupervised classifier was implemented success-
fully. Thus, it would not be unreasonable to say that we achieved our goal,
which was to develop a multi-class classification algorithm based on the Meta-
Gaussian data fusion method. Whether it can improve on current classifica-
tion methods on general basis, will still need to be further validated. The
small set of data used in this thesis can not be said to be versatile enough,
and for true validation we would require more data, preferably with a cor-
responding ground truth, or other independent measurements. That being
said, the results so far have been promising, and the method could prove
to be a very suitable approach when combining and classifying multi-sensor
data in the future.

We have also compared supervised maximum likelihood Bayesian clas-
sification, assuming multivariate normal distributions, with that of using
the Meta-Gaussian, and found that the Meta-Gaussian approach is overall
performing better. Kernel approximation of the marginals were found to
produce slightly better results than parametric models when classifying on
derived features. Overall the general parametric models that were tested
performed within the same range as the kernel approximation.

7.2 Future Work

In this study it has been shown that supervised classification on multi-sensor
data that has been fused using a Meta-Gaussian distribution can improve the
accuracy when compared to single-sensor data, or data that has been fused
on a rudimentary method. The current implementation did not parallelize
the calculation- as a result the time spent for each iteration was directly
related to the number of pixels, the number of bands used, and the number
of classes. It was not within the scope of the thesis to look at optimization,
and time has not allowed for it either, but the clustering method is highly
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parallizable.

Other initialization methods of the unsupervised clustering should be looked
into. The current method uses a random assignment of all points, assum-
ing equal probability for the classes. An alternate method, using a smaller
subset in the initial assignment and estimation, could give us more specific,
or focused, marginal estimates to be used in the first segmentation. This
could in turn help speed up the convergence. Where applicable, initializa-
tion based on parameter estimates could also be used, although that would
be borderline supervised classification, at least if the estimates are based on
some known values. And, more testing, on different types of data should be
done.
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