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Abstract
Due to the large increase of image data in animal surveillance, an effective
and efficient way of labeling said data is required. Over the past few years the
Climate-ecological Observatory for Arctic Tundra (COAT) project have deployed
dozens of cameras in eastern Finnmark, Norway during winter, which have
resulted in a large volume of wildlife images which is used to document the
effects of climate change on animal ecosystems in the area. The images are
manually labeled by biologists, and is a time-consuming task.

This thesis presents the architecture, design and implementation of an image
classification system to be used with the camera traps for in-situ analytics on
accumulated image data for periodical updates. The system will automatically
classify and label the images taken by the cameras.

Using state-of-the-art Convolutional Neural Networks (CNNs) we train the
system on previously labeled coat image data. We train four different models
based on the MobileNet architecture. The models vary in number of weights,
and input image resolution.

Results show that we can automatically classify images on a small computer
like the Raspberry Pi, with an accuracy of 81.1% at 1.17 fps, and a model size of
17Mb. In comparison a GPU computer achieves the same accuracy and model
size, but it has a classification speed of 12.5 fps.
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1
Introduction
Among all ecosystems on Earth, the arctic tundra is one of the ecosystems
most challenged by climate change. Due to rapid change in climate, new
ecosystems arise with unknown properties. Such drastic changes calls for
monitoring [1].

The Climate-Ecological Observatory for Arctic Tundra (COAT) [1] is a response
to urgent international calls for scientifically robust observation systems. It
consists of five institutions within the Fram Centre¹. It is a long term project
with a goal of creating this observation system, as well as documenting and
understanding the climate impacts in arctic tundra ecosystems.

COAT uses camera traps to monitor the biodiversity in the ecosystem of the
arctic tundra. Camera traps is a widely used method of monitoring, and have
been a large factor in wildlife ecology the past two decades. Across the world,
there are deployed tens of thousands camera traps [2] [3].

Images taken by COATs camera traps today, are manually examined and labeled.
This process takes a lot of human labour, and can require several months of
work. Today this task is often performed by COATs own biologists.

This thesis presents the architecture, design and implementation of an image
classification system to be used with camera traps for in-situ analytics on

1. www.framsenteret.no/english
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2 CHAPTER 1 INTRODUCT ION

accumulated data. The system will automatically classify and label the images
taken by the cameras. This is done periodically, so if important information
emerges, it can be reported to the back-end as soon as possible.

1.1 Problem definition
This project has built an analytics system for small embedded computers to
automatically classify animal species from images collected by COAT wildlife
camera traps. The purpose of the project is to determine the architecture,
design, implementation and performance characteristics of the system.

Typical platform characteristics of the small embedded computers in 2017
are:

• RAM restricted: 1GB or less RAM, which constrains the model to be small
enough to fit in a unit with such limited memory.

• CPU restricted: CPU, like the ARM Cortex-A53, having
low clock speeds(1.2GHz).

• Storage restricted: Where storage units are restricted to SD cards or
similar technologies, currently up to 256GB.

We describe the concept of a mobile neural network for image classification,
which is based on deep Convolutional Neural Network (cnn)s. We give a thor-
ough introduction to cnns and image classification, as well as describing the
preparation of the dataset for training. We present the architecture, design and
implementation of a system for embedded analytics of animal images on small
embedded computers. The system, can train and evaluate cnn models which
in turn can be used to classify new images of animals on the small computer.
We evaluate the systems classification-accuracy and speed, by comparing the
cnn-models against each other. We also evaluate the energy expenditure of
the small computer when running idle, and under load. Finally we discuss the
approach of this thesis, and propose future work for our embedded analytics
system.
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1.2 Contributions
This thesis makes the following contributions:

• A thorough description of the dataset, and the preparation of the dataset.

• An image classification system, with its architecture, design and imple-
mentation.

• An evaluation of the image classification system, with regards to recog-
nition metrics and energy expenditure.

• A comparison of different MobileNet models.

• Insights in porting a model from a resource rich environment like a
GPU-computer, to a resource scarce environment like the rpi.
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1.3 Outline
The thesis is structured into eleven chapters including the introduction.

Chapter 2 describes object classification, as well as giving a thorough introduc-
tion to cnns.

Chapter 3 presents related work in the field of animal classification, as well as
related work done in embedded/mobile neural networks, comparing it to the
work done in this thesis.

Chapter 4 describes the dataset in this project, as well as how it is prepared
for training on a Neural Network (nn).

Chapter 5 describes the system architecture, and how a front-end and back-end
work together as a complete system for animal classification.

Chapter 6 describes the design of the system, and shows how a Deep Neural
Network (dnn) was trained in the back-end, yielding a model to be used for
inference in the front-end.

Chapter 7 describes the implementation and dependencies of the system, as
well as describing where to find said dependencies.

Chapter 8 describes the classification quality of four different variations of the
MobileNet model.

Chapter 9 describes the classification speed and energy expenditure of the
MobileNet model running on the Raspberry Pi.

Chapter 10 then discusses the results, and describes the process of solving the
problem of doing image classification on a small embedded computer. It also
describes the difficulty of keeping a high classification accuracy, while reducing
the model size drastically.

Chapter 11 concludes the thesis, and suggests future work to improve the
systems classification quality.



2
Image Classification
Image classification is the task of identifying different objects in digital images
or video and then assign semantic labels to the image. It is not to be confused
with object detection, which is the task of locating the object within an image.
It has become important in computer science, and is applied in many computer
systems doing; localization, detection and scene parsing [4].

In recent years, image classification as a field of research has made great
progress. This is due to the use of cnns [5] [6] [7] [8] [9] [10]. Large public
datasets like ImageNet [11] and Standford Dogs [12], as well as benchmarks like
the ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014) [13]
has also been important for the research fields development. This chapter will
introduce the concept of cnns and data augmentation.

2.1 Convolutional Neural Networks (CNNs)
cnns became very prominent in 2012 when Alex Krizhevsky presented his cnn
AlexNet [5] which was the winner of that years "ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)" [13]. This resulted in a drop from 26% to
15% classification error, which at that time was an incredible feat. Since then,
several companies have been using dnns as the main part of their services.

5



6 CHAPTER 2 IMAGE CLASS IFICAT ION

Facebook¹ uses cnns for their automatic tagging algorithm [14], and Google
for their photo search, as well as YouTube² video analysis [15]. There are many
uses of these cnns, but the arguably most popular use-case for them, is for
image processing [16].

2.1.1 Image representation
We have previously stated that image classification is the task of identifying
objects in an image, and then assigning labels that best describes the specific
image. A human is able to identify the setting it is in, as well as identifying
objects within this setting. Being showed an image, a human is most of the
time able to identify the setting, and label each object within [17]. These are
abilities that humans are good at. A human interprets an image it sees, like
the one in figure 2.1a

(a) What humans see (b) What computers see

Figure 2.1: Human vs computer

When a computer "looks" at an image, it will see an array like the one in figure
2.1b. This is an array of pixel values. The dimension of the picture matters
as well. If the picture had a width of 224, a height of 224, and had colors
in RGB format, the matrix would have a dimension of (224 x 224 x 3). Each
number in the matrix would have a number between 0 and 255 which is the
color intensity of each pixel. To a human this is meaningless while performing
image classification, but for a computer, it is the only thing it can interpret. The
computer is shown an image represented by a matrix like the one in figure
2.1b, and through processing it will return numbers that describes the certainty
of the picture belonging in a certain class. An example of this classification is
shown in table 2.1.

1. www.facebook.com
2. www.YouTube.com
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Class Precision Precision in percent
WhiteTailedEagle 0.8 80.0%
Crow 0.15 15.0%
Reindeer 0.05 5.0%
ArcticFox 0 0%

Table 2.1: Image Classification Output

2.1.2 Looking for features
How can a computer separate between an eagle and a fox? A human does this
by looking at the animals features. It notices that a fox has paws, and an eagle
has wings. The computer looks for features in a similar way. It starts by finding
edges and curves in the image. These are found with the help of filters. A filter
is usually a (1 x 1), (3 x 3), (5 x 5) or (7 x 7) matrix. These matrices could have
a pattern like the one below. 

0 1 0
0 1 0
0 1 0


This filter would represent a vertical edge detector. And when applied to a
receptive field of the image matrix, it may or may not detect a vertical edge
in the specific area of the image. A curve detector might look like the filter
below. 

0 0 1
0 1 0
0 1 0


Using such filters by traversing the image, could eventually detect some edges
and curves. Then in the next layer of the cnn, a different filter that combines
the previous ones, might detect a paw or a wing. Stacking layer upon layer
would eventually build more abstract features, and going on with this, the cnn
would learn what an eagle and a fox looks like. It could also then separate
between them. The reason it learns, is becase the weights in the cnn will
tune themselves to feedback from a "run-through", which tells them if the
classification on that run was better or worse than the previous.

2.1.3 Structure
cnns take an image, runs it through a series of convolutional, nonlinear, pooling
and fully connected layers [18]. It then returns an output which can be either
single class, or it can be a probability of several classes that best describes
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Figure 2.2: Illustration of CNN Architecture

the whole image. The structure of the cnn could look like the one in figure
2.2.

Convolutional layers
The first layer in a cnn is always a "convolutional layer" [19]. Its primary
function is to extract features from an image. Imagine a flashlight shining over
the picture, starting from the top left corner. Say that the light in this flashlight
shines over an area that covers 5 x 5 pixels. The flashlight is a filter like the ones
explained in section 2.1.2, and the area it shines on is called a receptive field [19].
The filter is also a matrix of numbers, where the numbers are called weights.
As the filter is convolving across the picture, it is multiplying the weights from
the filter with the pixel values from the image. The multiplications are summed
up into one number. Then the filter convolves another step, which is called
a stride(often one or two pixels), and repeats the multiplication on the new
receptive field. One important thing to notice is that the filter needs to have
the same depth as the input. If the picture had 3 dimentions in color(RGB)
then the filter needs to be 5 x 5 x 3 to cover all of the pictures dimentions. This
is to make the multiplications work correctly. Increasing the number of filters
produce more features, leading to a larger network that is better at recognizing
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patterns. It does however have a higher computational complexity in terms of
memory usage, which is caused by even more multiplications.

So far, we know that filters in convolutional layers detect low level features like
edges and curves. These filters are used to train new filters. The new filters
might learn how a paw or a wing look like. The network keeps convolving, and
learns more abstract features. Eventually some filters might trigger when they
see a bird or a fox in an image.

Nonlinear layers
A nonlinear layer is a gatekeeper between each convolutional block, see figure
2.3. It is an activation function like the sigmoid function or the ReLU [20]
function. It activates the output of the preceding layers, by transforming it
into a value of 0 or 1 depending on the value it received. This is to let through
features with a high score of confidence, and prevent features with a low score
of confidence. This is done to keep features that have contributed to better
validation accuracy, and discard the ones that have not.

Input->Conv->ReLU->Conv->ReLU->Pool->ReLU->Conv->ReLU->Pool->FC

Figure 2.3: A classic CNN architecture example.

Pooling layers
A pooling layer reduces the spatial dimension of the input, and retains the
most distinct features. It does this by using a pooling filter which usually takes
the largest(Max pooling) or average(Average pooling) value within the filters
and uses that as a representation for the area covered by the filter [19] [21].
An example can be seen in the matrices below. Where the first matrix is a 4 x
4 image, and the second is the result of the filter passing over it. It started in
the top left corner finding that 5 was the largest value. In the top right corner,
4 was the largest value. Bottom left, 2 was the largest, and in bottom right, 4
was the largest.


5 5 4 2
3 4 3 3
0 1 0 4
2 0 1 1

 ⇒
[
5 4
2 4

]

The input is now downsampled, and the overall number of parameters is re-
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duced. By doing this, we also reduce the "memory footprint" of the network,
making it possible to add even more filters. The most common pooling tech-
niques are max pooling and average pooling. Max pooling traverses the image
with a small receptive field(2 x 2), and returns the maximum value within
the field. The stride of the Max-pooling is usually 2, so that it does not cover
previous pixels. Average pooling does the same, but calculates the average
instead of taking the maximum value.

Fully Connected layers
The fully connected layers are the last few layers that takes the output from
whatever layer was before it, be it convolutional, nonlinear or pooling, and
outputs a vector [19]. If this is the last fully connected layer, it is often the
classifier of the network. In a case where we are predicting 6 different species
of animals, it would take the input of the layer before it, and outputting a 6
dimensional vector. If our labels and output vector look like the ones in figure
2.4, we can see that the classification layer has predicted a probability of the
input image to be 10% Fox, 10% Crow 75% Eagle and 5% Raven.

[
Fox Crow Eaдle Raven Reindeer Owl

]
[
0.1 0.1 0.75 0.05 0.0 0.0

]
Figure 2.4: Label Vector.

2.1.4 Training the network
How does the filters know what values to keep? The computer adjusts the
values(also called weights) in the filters through a process called backpropaga-
tion.

Before explaining the concepts of backpropagation we should look into what
a cnn needs in order to function. As with humans, the moment it is born, the
mind is fresh. A newborn human does not know what a fox or an eagle is.
In a similar way the cnn does not know this either. The weights are usually
randomized before training, and the filters does not know how to look for
curves and edges, nor paws or wings. As a human grows older, its teachers and
parents shows them pictures with assigned labels. The cnn is trained in the
same way.
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Backpropagation can be separated into 4 particular parts.

• Forward pass

• Loss function

• Backward pass

• Weight update

The forward pass takes a training image, which a computer sees as an array
of numbers (224 x 224 x 3). It passes this image through the whole nn. If this
is the first training image, and all the weights and filter values were randomly
initialized, the result could look like the vector below, which is an output that
does not give preference to any class.[

0.166 0.166 0.166 0.166 0.166 0.166
]

As we are dealing with a fresh cnn, it is not able to recognize the low level
features like curves and edges. Hence no reasonable classification. This is
where the loss function comes in. If we use the classes of animals as we used
in figure 2.4, and give our cnn a picture of an eagle, the label for that picture
would be like the vector below.[

0.0 0.0 1.0 0.0 0.0 0.0
]

So what the loss function does, is calculating the measure of error between the
true labels, and the predicted labels. In the beginning the loss will be very high.
We want our cnn to get to a point where the predicted labels are the same as
the true labels. We get there by minimizing the amount of loss returned by the
loss function. This is where the backward pass comes in. The backward pass is
using an optimizer that goes backward through the cnn and figures out what
weights contributed most to the high loss, and tweaks the weights so that the
loss decreases. When the optimizer has found the best settings for the weights,
we go through the last step, which is the weight update. This is where all the
weights in the filters are updated to help the minimze the loss.

Optimizers which is used in the backward pass, comes in different shapes and
sizes. Some of the more popular optimizers are;

• Stochastic Gradient Descent (SGD) [22]

• RMSprop [23]

• Adam [24]
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The optimizers have parameters that tune the overall network, and some of
these parameters are learning rate anddecay. These are called hyperparameters,
as they are chosen by the programmer. For example a high learning rate causes
the optimizer to take bigger steps in the weight updates, it does however come
with the risk of taking too large steps that are not precise enough, and it will
"overshoot" and not converge. A low learning rate can result in a network that
does not learn anything.

A problem in deep learning is that the dnns tries to memorize the training data.
So a network can become really good at predicting images it has allready seen,
but does not generalize well from the patterns it observes. This phenomenon
is called overfitting [25], and usually happens when the network is too big
and complex for the task. It contains too many parameters, that causes it to
overreact to unimportant details in the training data [26]. When this happens
the nn will have a big problem in that it has a poor predictive performance
on new data. Luckily there are techniques that can counter this behaviour of
overfitting. Some of these techniques are soft weight sharing [27], dropout [28]
and regularization [29].

2.1.5 Transfer Learning
Transfer learning is the concept of using existing dnn architectures, and pre-
trained weights in combination with your own classification layer and dataset.
The computation cost of training this nn, is only a fraction of what it would
haven been when training a nn from scratch without imported weights. Train-
ing a cnn from scratch would train all of the layers in the network, but with
transfer learning, you only train the last few layers. When the network allready
has pretrained filters that knows what features to look for, you only need to
"tune" it for your own dataset in the top layers.

ImageNet [11] is one of the more famous image databases for deep learning.
Several dnn architectures has pre-trained weights for this dataset. Loading the
weights from ImageNet and fine-tuning your network for your own dataset is
standard practice. This exploits the advantage of ImageNets features as well as
saving hours to weeks of training time. It is possible to keep a few of the earlier
convolution layers fixed during fine-tuning, which reduces the possibility of
overfitting.



3
Related Work
Looking through relevant literature shows that there are many systems and
projects that are working on detection and classification with embedded or
mobile dnns. However there are not many of these embedded systems that
focus on animal classification specifically. We can see that Animal classification
with dnns in general is done in several systems. Few however does it with
embedded sytems using small mobile dnns.

3.1 Embedded Neural Networks
According to SqueezeDet [30], object detection is a crucial task for autonomous
driving, and in addition to high accuracy, object detection also need real-time
inference speed to ensure prompt vehicle control. To achieve this one needs
a small model size. Bichen et. al. had a model size of 4.8MB. One also needs
energy efficiency so that deployment can happen on embedded systems.

The most energy-expencive operations involved in neural network inference is
DRAM access, which has a 100 times higher energy use than SRAM access [31].
Hence the smaller dnn models, so that the whole model can fit in SRAM at
the same time, thus reducing energy usage.

Small neural networks like SqueezeNet [6], which achieves AlexNet [5]-level
accuracy with 50x fewer parameters and < 0.5MB model size [6], Inadola .et

13



14 CHAPTER 3 RELATED WORK

al. claims that smaller dnn’s are more feasible to deploy on hardware with
limited memory, than larger models.

MobileNets [7], a new class of efficient cnns for mobile vision applications
were presented in April, 2017. The MobileNets comes in different variants,
where they differ in the resolution of the images they take, and the number
of weights they have. This results in different model sizes. When testing the
MobileNets on the Stanford Dogs dataset [12], they found that the MobileNets
could compete with one of the most renowned dnns, Inception V3 [9].

Model
Top-1

Accuracy
Million

Mult-Adds
Million

Parameters
Inception V3 84% 5000 23.2

1.0 MobileNet-224 83.3% 569 3.3
0.75 MobileNet-224 81.9% 325 1.9
1.0 MobileNet-192 81.9% 418 3.3
0.75 MobileNet-192 80.5% 239 1.9

Table 3.1: MobileNet vs Inception V3 for Stanford Dogs, comparing classification ac-
curacy, extracted from [7].

As we can see in table 3.1, the largest MobileNet architectures can compete
with Inception V3. In return the MobileNets only has a fraction of the pa-
rameters(size) that Inception has, and they also has less computation cost
measured in mult-adds. The dataset has 120 different breeds of dogs with
about 150 images per class, making it a total of 20 580 images. Compared to
our dataset it has a lot more classes, and is designed for the task of fine-grained
image classification, whereas our dataset has more diverse classes like birds
and foxes.

In July, 2015. Dürr et. al. published a paper describing real-time face recognition
on a Raspberry Pi using cnns on limited computational resources. [32]. They
reached a performance of approximately 2 frames per second with more than
97% recognition accuracy. Related to our work which also does inference on
a Raspberry Pi, they show that cnns can be effective on devices with limited
resources.

3.2 Animal Classification
Norouzzadeh et. al. presented in April, 2017, a system for classifying different
animal species on the Snapshot Serengeti dataset containing 48 species in
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3.2 million images, using Deep cnns [33] [34]. Using the cnn architectire
ResNet-152 [35], they achieved a classification accuracy of 92%. They were
also able to have the system classify new images which the system had a high
confidence about, because of the hight accuracy in classifying specific species.
This allowed for human time to be focused elsewhere. Our system does not
achieve this high overall accuracy, because we sacrifice some accuracy in the
advantage of a smaller model size. Where the ResNet-152 architecture has 152
layers in its neural network, we are working with a MobileNet that has only 28
layers [7]. This causes the big difference in model size. Where the ResNet-152
has a model with 60.2 million parameters, the largest MobileNet model has
only 4.2 million.

Resolution
ImageNet
Accuracy

Million
Mult-Adds

Million
Parameters

1.0 MobileNet-224 70.6% 569 4.2
1.0 MobileNet-192 69.1% 418 4.2
1.0 MobileNet-160 67.2% 290 4.2
1.0 MobileNet-128 64.4% 186 4.2

ResNet-152 - - 60.2

Table 3.2: MobileNet vs ResNet-152 (data combined from [7] and [36])

Chen et. al. presented in January, 2015, a Deep cnn based species recognition
algorithm for wild animal classification on camera-trap image data [8]. They
compared the Deep cnn algorithm to a visual bag-of-words [37] for classifica-
tion. Where the bag-of-words model achieved an overall animal classification
accuracy of 33.507%, the Deep cnn achieved a 38.315% accuracy. The camera-
trap dataset contained 20 different species. They bring up the difficulty of a
challenging data-set with many species of animals.

H. Thom. presented in December, 2016, an animal species identification system
that can automatically identify small mammals in camera trap images [38].
The system used three different deep cnns. The system achieved a 97.84%
accuracy 97.81% precision and 93.45% recall on a dataset with 10 000 images
spanning 11 classes. They show that establishing real time identification at
remote camera traps could be difficult due to high computational costs of
cnns.

H. Thom. presented in June, 2017, a unified detection system that can automat-
ically localize and identify animal species in digital images from camera traps
in the Arctic tundra [39]. The system unified three object detection methos
using cnns. The system used a dataset with 8000 images containing over
12 000 animals spanning 9 different species. The system can automatically
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detect animals in the Arctic tundra with a 94.1% accuracy at 21 frames per
second.

WTB [40] is an end-to-end, distributed, IoT system for wildlife monitoring.
It integrates recent advantages in machine learning in regards to image pro-
cessing, to automatically classify animals in images from remote camera traps.
WTB uses Google TensorFlow [41] and OpenCV [42] applications to perform
the classification and tagging for a subset of their 1.12 million images. Using
stock Google images of animals, and a small number of their own images as
background, they construct a synthetic dataset for training. Due to this, the
system is able to accurately identify bears, deer, coyotes, and empty images.
This in turn significantly reduces the time and bandwith requirements for
image transfer, as well as end-user analysis time, as WTB filters the images
on-site.

This is the closest work to ours, as it is doing animal classification based on data
from camera-traps. Their focus however is not minimizing the model size, as
their model is 490MB. This is significantly higher than our 17MB. By doing the
classification in-situ they decrease their network transfer by 70%, and achieves
a classification error of 0.2% for coyotes, 1% for bears, and 12% for deer.



4
Dataset
This chapter describes the dataset we have worked with. As there have been
done work similar to ours within the COAT project [38] [39] before. We base
our dataset on the contributions that has allready been made.

The overall dataset provided by COAT contained 1 849 076 images taken from
2011 to 2016. The images are taken by camera traps in the northern county of
Finnmark, Norway. 37 camera traps [39] are deployed every year, scattered
across the five regions: Stjernevann, Komag, Ifjor, Nyborg and Gaissene.

The pictures are taken during daytime and nighttime. This is possible due to
the infrared flash the cameras are equipped with. However the pictures taken
during the night are in greyscale, where pictures taken during the day are in
color. See figure 4.1.

In this project we use a subset of the overall dataset from COAT. Our subset of
data is a modification of the dataset H. Thom [39] produced from the COAT
data. The dataset consists of 9 classes of animal species, where images are
labeled thereafter.

17
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(a) Daytime image with a wolverine. (b) Nighttime image with a wolverine.

Figure 4.1: Example images from the COAT dataset.

The labelled dataset suffers from heavy class imbalance. There are classes like
the raven that has close to 50 000 labelled images, the snowy owl class only
has 52 labelled images. A class imbalance like this can lead to an imbalanced
classification [33]. Where the classifier might be really good at classifying
ravens, it is really bad at classifying snowy owls. The class imbalance is reduced
through pruning of classes. We decrease the number of images in a high
populated class, to a more normalized amount. A new subset of the dataset
emerges from this pruning. The class distribution of our dataset is based
somewhat on the distribution H. Thom worked with on object detection [39].
The dataset distribution of the classes is represented in table 4.1.

Class Images
ArcticFox 684
Crow 585
WhiteTailedEagle 1084
GoldenEagle 1577
Raven 2964
RedFox 2841
Reindeer 858
SnowyOwl 52
Wolverine 566
Total 11211

Table 4.1: Dataset distribution.
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4.1 Preprocessing
The images in the dataset has a large size. The width, height and depth
of the images in pixels are 2048 x 1536 x 3. Earlier work within the COAT
group shows that removing the black borders encapsulating the picture, which
contains information like date, time and temperature had a positive effect on
classification [38]. Following this strategy leaves us with pictures like the ones
in figure 4.2. The size of these pictures are 1844 x 1382 x 3 pixels.

(a) Cropped daytime image. (b) Cropped nighttime image.

Figure 4.2: Cropped images.

4.1.1 Cropping edges
Cropping the black edges off of an image is something that needs to be done
only once for the dataset. Because after the data-preprocessing is done,we store
a copy of the preprocessed data. Preprocessing gave us the tools to scale, crop,
process and draw on images among other things. In the case of our dataset,
we only needed to crop the edges off of the images, because we followed the
strategy of H. Thom [38]. This was done by finding a percentage of width and
height large enough to make sure the black borders would be cut away. We
decided on 10 percent, which translated into 5 percent per side. By having a
human visually compare the before and after image, a conclusion were made
that 5 percent per side was enough to remove the edges, see figure 4.3.
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(a) Original image. (b) Cropped image.

Figure 4.3: Comparison of original and cropped image.



5
Architecture
This chapter describes the architecture of our system for doing in-situ analytics
in the Arctic tundra on a low-power embedded computing device.

The overall architecture consists of two sections. The preparation section, and
the observation section. In the preparation section we prepare our dataset for
training which results in a model ready for inference. The observation section
is an in-situ embedded device where new data is gathered, and analyzed with
our pre-trained model. The two sections work together as a complete system,
where the preparation section is mostly there for the setup phase, and the
observation section is the operational unit. Figure 5.1 shows the abstraction of
the overall system.

5.1 Dataset
The preparation section contains the dataset for training. This dataset contains
several sets of images and labels from different locations and projects. Earlier
projects involving camera traps have generated a set of image data from said
camera traps. These images are stored on a server. Looking at chapter 4, we
see the results of this data collection. Some of the data is structured, from
previous projects, whereas others are not. We use a dataset which is allready
labeled and sorted into folders accordingly. This is represented as the selection
and fetching of dataset for training in figure 5.1. The data is a central part of
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Figure 5.1: Architecture of system for in-situ analytics (arrows shows dataflow).

the project, but the extraction of it is not. This is because the extraction of
data is done just once. This is when we extract the original dataset for further
processing done in the back-end.

5.2 Preparation section
The preparation section consists of two main parts. The data preparation
module, and the training module.
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5.2.1 Data preparation
The data preparation is done in the preparation section. This means that the
data is processed and then saved as a subset of the dataset. The purpose is to
prepare the data for the training module. The data we use has some unwanted
characteristics which are known to skew the analysis accuracy of the model.
Because of this, we mask the unwanted characteristics from the data.

5.2.2 Training
The training is also done in the preparation section. It takes the prepared
dataset and feeds it through its training algorithm. It will then learn the
features of the different classes in the dataset, and by being showed enough of
this data, be able to recognize the same or similar features in data it has never
seen before. It can then be used for recognition and classification of new data.
The training step will produce a model that can be used in the observation
section on our edge device for analysis of new data. This will result in new
data sorted by labels.

5.3 Observation section
The observation section is the final step of the system pipeline. It is the "product"
of the previous steps. In it, is a low-powered embedded computer with limited
resources and energy. It receives data from an attatched camera, and classifies
the data with the model fetched from the preparation section. Both the raw and
classified data is stored locally on the embedded computer until it is fetched.
This data is then stored on a server for long-time storage.





6
Design
This chapter describes the design of our system for doing in-situ analytics in
the Arctic tundra on a low-power embedded computing device. We will show
how we trained a dnn in our back-end which yielded a model we could use
for inference on our embedded device. Going on, we will follow the flow of
figure 6.1, and describe each component respectively.

6.1 Back-end
Our back-end is built up of two main components. The datastore and the
GPU-enabled computer.

6.1.1 Datastore
The datastore resides in the back-end of our system. It contains several sets
of images and labels from different locations and projects. The main datasets
are pictures from camera traps focusing on two different types of traps. One
dataset is from camera traps using bait to lure wild animals like eagles, foxes,
reindeer, etc, close for photography, where as the other focuses on small rodents
within a tunnel that has a camera trap mounted.

The dataset we decided to use is described in detail in chapter 4.
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6.1.2 GPU-enabled computer
The dataset is fetched from the datastore manually, and a copy of it is stored in
the local persistent memory on the Graphical Processing Unit (gpu)-enabled
computer. This copy is then fed through a pipeline of data-preprocessing to
refine the dataset before doing any deep learning on it. This begins with
cropping of edges to remove the unwanted features from the images, as they
are known to skew the accuracy of the dnn. The data is then sorted into three
subfolders Train, Test and Validation. This is normal practice in data science¹,
as it will give us "unseen" data when it is ready to test the model.

The images are then fed into a cnn, where they are used to train a model. This
model is what we are after, it is the "product" of the gpu-enabled computer,
which is then manually transfered to the edge device in our front-end for
further use.

The edge device loads this model, and uses it to label new images it has stored
in its local storage. After the images are labeled they can be stored alongside
other images of the same class.

Data pre-processing
The pre-processing of the data consists of edge cropping, and sorting. We
explained how we cropped the edges of the picture data in detail in chapter 4.
When an image is cropped, it is saved in a separate location within the computer
storage for cropped images. The following procedure in the pre-processing is
the sorting of images.

We sort the images into three different subsets of images, called Train, Test and
Validation. This is because we use a subset of the dataset as training data, which
the model will see and learn from. Under training it will validate its progress
on a validation set, which is also a subset of the dataset, albeit smaller than
the training set. When the training is finished, it will compare its final result
up against a test set, which is images that it has never seen before. If it had
tested its accuracy on known images, it would have a much higher prediction
accuracy, as it can learn exactly what these images looks like, but by being
shown something new, it will be less biased in its prediction.

The now sorted images, allready has a label, since they were allready classified
in an earlier project, see chapter 4. In that regard, each class has its own

1. https://info.salford-systems.com/blog/bid/337783/Why-Data-Scientists-Split-Data-into-
Train-and-Test
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folder. The folder structure is shown in figure 6.2. This means that each
subfolder of Train, Test and Validation contains the folders ArcticFox, Crow,
Eagle, GoldenEagle, Raven, RedFox, Reindeer, SnowyOwl and Wolverine.

Because our original dataset comes in one folder containing all the subfolders
described above, and not in the Train, Test, Validation folder structure, we had
to split/sort it like that. We made a script to do this, which splits one folder
structure containing the different classes in subfolders, into three folders of the
same structure. Even though the structure of the folders are the same, there is
a difference in the amount of data in the split. The train folder contains most
of the data, in our case about 60 percent, where as the test and validation sets
has about 20 percent each.

Before the data is split however, the images are randomly shuffled within their
respected class folder. This is to ensure that we do not have pictures from
only one location in a split. If we do not shuffle the images, we would for
example have taken the first 200 pictures from the class ArcticFox and moved
them into the "Validation -> ArcticFox" folder. Most likely the first 200 pictures
would come from the same area, and would be very similar, as the background
is most likely the same. So if the model was to train on pictures from one
location, and validate against pictures from a different location, it would be
bad at generalizing, and this most likely would result in a bad classification
accuracy. The reason for this is overfitting. It means that the algorithm will
become very good at recognizing the specific images it have been shown, and
not so good recognizing anything else. This is why we randomly shuffle the
images within the folders, to ensure that we do not get pictures from just one
location in one split.

When the pictures are shuffled, we create lists for each of the train, test and
validation folders. These lists contains the path to the pictures that should now
be copied from the old folder into the new. The script traverses the lists and
copies each file into the new folder structure.

This, like the cropping of the pictures,would only need to be done once. Because
when it is done, you would have a dataset that is ready for training.

Training model
When training the dnn model we are using, which is a cnn. We base it on
a dnn architecture called MobileNet [7]. The MobileNet body architecture is
defined in table 6.1. All layers in thednn are followed by a batch-normalization
[43] and a ReLU [20] nonlinearity, except the last fully connected layer. This
last layer does not have a nonlinearity, and instead feeds into the final layer
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which is a softmax classifier.

Using this dnn we add our own top layer to it. So instead of using MobileNets
softmax layer, which is tuned for 1000 classes, we remove that, and add our
own softmax layer to the network. As we have 9 classes, our softmax layer has
an output size of 9.

As there exists a lot of pre-trained neural networks [5] [6] [7] [35], we take
advantage of this, and use the pre-trained weights for MobileNet from the
ImageNet [11] image database. These weights are allready trained and tuned
on a big set of image data, and we will use them as a foundation for training
on our own dataset. We do this by freezing all of the layers in our cnn, except
the final fully connected layer and our softmax classifier. This means that we
set all of the layers, except the last two to untrainable. The parameters are
not allowed to change in those layers, as we allready have pre-trained weights
in there from the ImageNet database. This in turn will force our final layers
to tune themselves to our dataset, using the previous layers knowledge from
ImageNet. This is what is called Transfer learning, which is explained in section
2.1.5.

The result of the training is a model which is tuned for images like the ones
we showed it, and this model is used on the test set to check its final accuracy.
We also get a file with the labels of the classes.

The model is then frozen as it is and saved to be used later on the edge device
in the front-end alongside the labels.
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Type / Stride Filter Shape Input Size
Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3
Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32
Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64
Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64
Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv / s1 1 x 1 x 128 x 256 28 x 28 x 128
Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 512 14 x 14 x 256
Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512
Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512
Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512
Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512
Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512
Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512
Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024
Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024
Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024
FC / s1 1024 x 1000 1 x 1 x 1024
Softmax / s1 Classifier 1 x 1 x 1000

Table 6.1: MobileNet Architecture
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6.2 Front-end
Our front-end is the low-powered edge device reciding in the Arctic tundra. It
is where the object classification on images is done, and we call this operation;
inference.

6.2.1 Inference on low-powered edge device
As the low-powered edge device is supposed to have its own storage of a small
set of images, it will need to classify these. By being given the trained model
beforehand, it is capable of doing this. It does so by loading the model, then
transforming each image into something called a tensor, which is a multidi-
mentional matrix [41]. Running the tensor through the model will result in
a softmax output. This output will then determine which animal is in the
picture(if any). Combined with the labels from the label file, this output will
be human-readable. After the inference is done, the images should be stored
accordingly.
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Figure 6.2: Folder Structure.



7
Implementation
Our classification system is mostly based on the open source deep learning
platform TensorFlow [41]. TensorFlow is made by a team at Google, and is
currently the most popular repository on GitHub¹. Combining TensorFlow with
the programming language; Python², a TensorFlow-wrapper called Keras³ and
a computer vision library called OpenCV⁴, we get a deep learning framework
for image classification.

We implemented a prototype of our classifier in Python, using Keras as a
wrapper for TensorFlow. Keras allows for easy and fast prototyping compared
to TensorFlow which is more tedious. Alongside the classifier we also imple-
mented the script for trimming the edges off of the pictures, and a script for
shuffling and then splitting the images into train, test, validation folders. These
supplementary scripts used in pre-processing were also written in Python with
the help of OpenCV.

To produce a final model, ready for inference, we used one of TensorFlows
example scripts for transfer-learning on images (Per version 1.4.0 of TensorFlow,
the script is included in the core library under
"examples/image_retraining/retrain.py"). This was done so that we could

1. www.github.com
2. www.python.org
3. https://keras.io/
4. https://opencv.org/
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produce a frozen graph, which is what we call a model in TensorFlow. The
reason we used TensorFlows script for this, is because we were not able to
freeze our own custom cnn model that we built within the Keras library. We
will discuss this more in chapter 10.

The final part of the system is the script that labels, or classifies an image.
TensorFlow has an example of this as well, but it was not sufficient enough for
our use, which we will explain in depth in chapter 10. We used the example as
a foundation, and customized it to our needs. This was also written in Python
and uses a Python math library called NumPy⁵ which is often used for matrix
operations, to process the TensorFlow tensors.

Our system is built and deployed on the Ubuntu 16.04 operating system, and
is executed on the Raspbian Stretch 4.9 operating system.

7.1 TensorFlow
TensorFlow [41] is the deep learning platform we used to create the deep
learning model we required. It is developed by the Google Brain team at
Google, and is a system that operates at large scale and in heterogeneous
environments. It is also a deep learning library. Benefits with TensorFlow is
that it is very popular, and has a lot of maintainers. It also achieves shorter
step times than Caffe [10], and performance within 6% of the latest version of
Torch [44].

7.1.1 Dependencies
TensorFlow has support for both Central Processing Unit (cpu) and gpu.
Using the gpu support one needs to have an NVIDIA gpu. We installed
TensorFlow with gpu support. TensorFlow using GPU, has the following de-
pendencies:

• CUDA Toolkit 8.0

• NVIDIA drivers associated with CUDA Toolkit 8.0

• cuDNN v6.0 [45]

• gpu card with CUDA Compute Capability 3.0 or higher

5. http://www.numpy.org/
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• The libcupti-dev library

Any other dependencies should be Python libraries, that will be installed along-
side TensorFlow, if installing TensorFlow through Pythons package manager
"pip".

7.2 OpenCV
OpenCV is an open source library for image and video analysis. It was originally
released by Intel, and since then, programmers have worked and contributed
to it as an open source project [42]. It has a plethora of "extra modules" that
can be compiled into it. These modules can be found in the "opnecv_contrib"
repository on OpenCVs github repository.

7.2.1 Dependencies
Depending on what version of OpenCV is wanted, and what extra modules is
needed, it can have a lot of dependencies. However we did not use any special
features so the "basic" version was sufficient enough for us. It is installed
through Pythons package manager.

7.3 NumPy
NumPy is a library for scientific Python programming and computing. It can
be installed through Python package manager.

7.4 Keras
Keras is a high-level neural networks Application Programming Interface (api),
which is written in Python and can run on top of TensorFlow [41], CNTK [46],
or Theano [47]. The idea with Keras was to enable fast experminentation, and
be able to go from idea to result with as little delay as possible.





8
Evaluation of imageclassification system
This chapter describes the experimental setup and classification metrics used to
evaluate the image classification system using different variations of MobileNet
models. All models are trained and validated on the same set of camera trap
data described in chapter 4. We compare the quality(accuracy, precision and
recall) of classifications of the models.

8.1 Experimental Platform
The experiments (described in section 8.2) regarding image classification met-
rics were run on a desktop computer with the following specifications:

• Intel(R) Pentium(R) CPU G4400 @ 3.30GHz x 2

• GeForce GTX 960 4GB GPU @ 1241 MHz (1024 CUDA cores)

• 8GB DDR4 RAM @ 2400MHz

• Operating System: Ubuntu 16.04 LTS 64-bit with Python 3.5
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The TensorFlow testing environment in our system is built with the following
dependencies:

• CUDA Toolkit 8.0

• cuDNN v6.0

• TensorFlow 1.3.0

• OpenCV 3.3.0

• NumPy 1.13.3

• Matplotlib 2.1.0

• Sklearn 0.19.1

We also used a rpi for experiments regarding classification-speed and energy-
consumption, this is explained in chapter 9. We did not measure classification
accuracy on the rpi as it takes about 10 times longer, compared to the desktop
computer. The classification accuracy is the same on the desktop computer and
the rpi. This is because the model and code is the same. The difference in
results of the desktop computer and the rpi, is the classification speed.

8.2 Experimental Design
We use identical training parameters for each object classification model. As
they are all similar in architecture, and only differs in number of weights and
image resolution input. All of the models are trained with a learning rate of
0.001 using the Stochastic Gradient Descent (sgd) optimizer, and having 4000
training steps.

We measure each model only once. The models will give the same results every
time they are run, as long as the parameters and input are the same every
time. The metrics we are measuring is accuracy, cross-entropy, precision, and
recall.

We train eachmodel with default input image size, which is the cropped images
with size 1844 x 1382 x 3. Depending on the models input image resolution,
the images will be scaled to the specific resolution. See table 8.1.
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Model Input resolution
1.0 MobileNet-224 224 x 224 x 3
1.0 MobileNet-192 192 x 192 x 3
1.0 MobileNet-128 128 x 128 x 3
0.75 MobileNet-224 224 x 224 x 3

Table 8.1: Mobilenet models with input resolution.

For each model we have two cases of classification. The first case is where the
model has the classified animal as first prediction. An example would be an
image containing an eagle and a crow. The model recognizes them both, but
can only classify the image as one class. It is most confident on the eagle, and
classifies the image as such. Even though there was a crow in the image, it is
not recognized, because we only register the most confident class.

The second case is more forgiving and has the classified animal as either first or
second prediction. In the example described above, this method would classify
both the eagle and the crow.

This method was applied to give more leeway to the classifier, as there might
be more than one animal species in an image, resulting in a higher confidence
and classification score. We will discuss this further in section 10.1.1 when
evaluating the classification scores.

8.3 Classification metrics
We use accuracy, crossentropy, precision and recall to evaluate the MobileNet
object classification models.

Accuracy is the score we get from correctly classifying images from a test set
concisting of all classes.

Cross-entropy is the score of the loss function. Both accuracy and cross-entropy
is extracted from TensorFlows built-in TensorBoard application. The figures
show the batch-by-batch accuracy and cross-entropy of the models. Looking at
the figures we will see the moving average smoothing the measurements.

Precision is defined as the ratio of True Positive (tp) classifications to all positive
classifications (tp + False Positive (fp)). Precision captures how accurate the
classification model is.
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Recall is defined as the ratio of tp classifications to ground truth instances
(tp + False Negative (fn)) and captures how many relevant classifications
are found by the classification model.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Precision and recall usually act like they are inversely related. When recall
increases, precision falls, and vice-versa. Usually a balance between the two is
preferred.

We use precision and recall for each class, but to get an average precision and
recall for the model, we take the average of the metrics over all classes.

Tomeasure the classification-speed of ourmodelwe use frames-per-second(fps),
and CPU-utilization in percent to see how effective each model is.

The precision and recall of the results are calculated by using the confusion
matrices displayed under each models results, e.g(figure 8.3, 8.4). When read-
ing a confusion matrix, the diagonal of the matrix is the tp, where as the
column-wise sums without the diagonal value is the fp, and the row-wise
sums without the diagonal is the fn. Using these numbers and the formulas for
calculating precision and recall, we get the values in the tables in the following
pages.



8.4 RESULTS 41

8.4 Results
8.4.1 MobileNet_1.0_224
In figure 8.1 we can see that the accuracy of the MobileNet_1.0_224 model is
81.1%, and figure 8.2 shows the test cross-entropy is 0.59. Table 8.2 shows the
precision and recall for all the classes, as well as the average for the whole model.
It takes in to consideration the case where the class is the top 1 classification,
or if the class is within the top 2 classifications. Figure 8.3 and 8.4 shows the
confusion matrices for the top 1 and top 2 cases.

Figure 8.1: MobileNet_1.0_224 accuracy

Figure 8.2: MobileNet_1.0_224 crossentropy

Class Top 1 Precision(%) Top 1 Recall(%) Top 2 Precision(%) Top 2 Recall(%)
ArcticFox 58.8 69.7 76.9 93.0
Crow 71.8 80.0 94.1 91.4
WhiteTailedEagle 68.7 82.5 82.9 97.5
GoldenEagle 92.3 30.0 100.0 67.5
Raven 88.8 20.0 95.0 47.5
RedFox 29.4 75.0 44.8 87.5
Reindeer 39.4 75.0 54.8 85.0
SnowyOwl 0.0 0.0 100.0 22.2
Wolverine 100.0 15.0 100.0 40.0
Model 61.0 49.7 83.1 70.1

Table 8.2: MobileNet_1.0_224 Precision and Recall for the top-1 and top-2 case, ex-
tracted from 307 test images.



42 CHAPTER 8 EVALUAT ION OF IMAGE CLASS IFICAT ION SYSTEM

Figure 8.3: MobileNet_1.0_224 Top 1 Confusion Matrix

Figure 8.4: MobileNet_1.0_224 Top 2 Confusion Matrix
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8.4.2 MobileNet_1.0_192
In figure 8.5 we can see that the accuracy of the MobileNet_1.0_192 model is
76.3%, and figure 8.6 shows the test cross-entropy is 0.72. Table 8.3 shows the
precision and recall for all the classes, as well as the average for the whole model.
It takes in to consideration the case where the class is the top 1 classification,
or if the class is within the top 2 classifications. Figure 8.7 and 8.8 shows the
confusion matrices for the top 1 and top 2 cases.

Figure 8.5: MobileNet_1.0_192 accuracy

Figure 8.6: MobileNet_1.0_192 crossentropy

Class Top 1 Precision(%) Top 1 Recall(%) Top 2 Precision(%) Top 2 Recall(%)
ArcticFox 60.8 32.5 89.4 79.0
Crow 76.0 54.3 85.3 82.8
WhiteTailedEagle 46.8 92.5 61.5 100.0
GoldenEagle 100.0 5.0 100.0 37.5
Raven 66.6 5.0 87.5 17.5
RedFox 23.7 82.5 40.6 97.5
Reindeer 71.4 75.0 84.2 80.0
SnowyOwl 0.0 0.0 0.0 0.0
Wolverine 60.0 22.5 81.2 65.0
Model 56.1 41.0 69.9 62.1

Table 8.3: MobileNet_1.0_192 Precision and Recall for the top-1 and top-2 case, ex-
tracted from 307 test images.
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Figure 8.7: MobileNet_1.0_192 Top 1 Confusion Matrix

Figure 8.8: MobileNet_1.0_192 Top 2 Confusion Matrix
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8.4.3 MobileNet_1.0_128
In figure 8.9 we can see that the test accuracy of the MobileNet_1.0_128 model is
75.1%, and figure 8.10 shows the test cross-entropy is 0.64. Table 8.4 shows the
precision and recall for all the classes, as well as the average for the whole model.
It takes in to consideration the case where the class is the top 1 classification,
or if the class is within the top 2 classifications. Figure 8.11 and 8.12 shows the
confusion matrices for the top 1 and top 2 cases.

Figure 8.9: MobileNet_1.0_128 accuracy

Figure 8.10: MobileNet_1.0_128 crossentropy

Class Top 1 Precision(%) Top 1 Recall(%) Top 2 Precision(%) Top 2 Recall(%)
ArcticFox 59.0 30.2 81.5 72.1
Crow 100.0 2.8 100.0 20.0
WhiteTailedEagle 41.8 82.5 51.3 97.5
GoldenEagle 100.0 7.5 100.0 12.5
Raven 83.3 12.5 92.8 32.5
RedFox 33.0 82.5 49.3 92.5
Reindeer 43.3 65.0 56.6 85.0
SnowyOwl 33.3 44.4 58.3 77.7
Wolverine 62.9 85.0 72.0 90.0
Model 61.8 45.8 73.5 64.4

Table 8.4: MobileNet_1.0_128 Precision and Recall for the top-1 and top-2 case, ex-
tracted from 307 test images.



46 CHAPTER 8 EVALUAT ION OF IMAGE CLASS IFICAT ION SYSTEM

Figure 8.11: MobileNet_1.0_128 Top 1 Confusion Matrix

Figure 8.12: MobileNet_1.0_128 Top 2 Confusion Matrix
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8.4.4 MobileNet_0.75_224
In figure 8.13 we can see that the accuracy of the MobileNet_0.75_224 model is
75.0%, and figure 8.14 shows the test cross-entropy is 0.72. Table 8.5 shows the
precision and recall for all the classes, as well as the average for the whole model.
It takes in to consideration the case where the class is the top 1 classification,
or if the class is within the top 2 classifications. Figure 8.15 and 8.16 shows the
confusion matrices for the top 1 and top 2 cases.

Figure 8.13: MobileNet_0.75_224 accuracy

Figure 8.14: MobileNet_0.75_224 crossentropy

Class Top 1 Precision(%) Top 1 Recall(%) Top 2 Precision(%) Top 2 Recall(%)
ArcticFox 0.0 0.0 20.0 4.6
Crow 16.0 22.8 31.5 48.6
WhiteTailedEagle 67.5 67.5 75.5 85.0
GoldenEagle 100.0 2.5 100.0 10.0
Raven 87.5 17.5 92.8 32.5
RedFox 26.0 45.0 36.1 65.0
Reindeer 13.7 80.0 20.0 90.0
SnowyOwl 0.0 0.0 0.0 0.0
Wolverine 33.3 5.0 78.5 27.5
Model 38.2 26.7 50.5 40.3

Table 8.5: MobileNet_0.75_224 Precision and Recall for the top-1 and top-2 case, ex-
tracted from 307 test images.



48 CHAPTER 8 EVALUAT ION OF IMAGE CLASS IFICAT ION SYSTEM

Figure 8.15: MobileNet_0.75_224 Top 1 Confusion Matrix

Figure 8.16: MobileNet_0.75_224 Top 2 Confusion Matrix
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8.4.5 Model size
The size of the models does not vary by a lot, except for one model. The models
with 100% of weights are all the same size, which we can see in table 8.6. The
0.75_224 model differs from the others, as it has 25% less weights. Looking
at the table we see that it has 11 mb compared to the others 17 mb. This is
explained by the reduced weights. Even though the number of weights is 25%
less, the size of the model is 35% less.

Model Size in megabytes(mb)
MobileNet_1.0_224 17
MobileNet_1.0_192 17
MobileNet_1.0_128 17
MobileNet_0.75_224 11

Table 8.6: Modelsize in megabytes(mb) for the four different variants of MobileNet.

8.4.6 Classification speed
When testing the models on the gpu computer environment, we achieved a
classification speed of 12.5 images per second.





9
RPI Performanceevaluation
This chapter describes the experimental setup, powermetrics, and classification-
speed used to evaluate the performance of the rpi for four different MobileNet
models. We also see the effect the difference in model-size and image resolution
has on classification speed.

9.1 Experimental Plarform
The measurements of classification-speed were run on a rpi with the following
specifications:

• Quad Core 1.2GHz Broadcom BCM2837 64 bit CPU

• 1GB RAM

• Operating System: Debian Jessie With Raspberry Pi Desktop

The TensorFlow testing environment for our rpi is almost the same as on the
desktop, but it does not have support for CUDA or OpenCV. There was no need
for OpenCV on the rpi, as we do not do preprocessing on data, or training of
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models on the rpi. The dependencies are listed below:

• TensorFlow 1.3.1

• NumPy 1.13.3

• Matplotlib 2.1.0

• Sklearn 0.19.1

9.2 Experimental Design
For measuring classification speed on the rpi, we measure the time it takes
for the model to classify 50 images. We measure this 10 times, and take the
average of this. The same is done for CPU-utilization. As in section 8.2 we use
the models described in table 8.1.

The current of the rpi was measured with an amperemeter integrated in the
circuit between the power-outlet and the rpi. We measured the range of the
current over a period of 7 minutes. The rpi was idle for the first 2 minutes,
and under load for the next 5 minutes. Everything external(Graphical interface,
HDMI, ethernet, WiFi, Bluetooth, ...) was disabled on the rpi. It started a script
on bootup, and this launched the whole process of idle state and working state.
Table 9.1 shows the details of the measurement. We used the largest MobileNet
model(1.0_224) for this task, as it was the most accurate model, and the one
likely to be used in a production environment. This experiment was done only
once.

9.3 Power metrics
Energy-consumption is measured in watt-hours(Wh), which is an energy unit
equivalent to one watt of power expended over one hour of time. Energy is
equivalent to power multiplied by time. Determining energy in watt-hours,
means that power must be expressed in watts and time must be expressed in
hours.

Watts are composed of volts multiplied with ampere.

Watt = Volt ∗Ampere Watthours =Watt ∗ Hours
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We measured the range of Milliampere (ma) the rpi used for the period of
measuring.

When knowing the average of ma, and the voltage, we can calculate the
watt, and in turn calculate the watt-hour, which is our measurment for energy-
consumption.

9.4 Energy expenditure of RPI executing
MobileNet_1.0_224

Device Raspberry Pi 3 Model B
Idle(ma) 103
Inference(ma) 156-430 (mostly between 180-260)
CPU ARM Cortex-A53
#cores 4
CPU clock 1.2GHz
RAM 1GB
Storage(SD) 16GB
VDD(V) 5

Table 9.1: Measurements of Raspberry Pi 3 Model B being idle and doing image
classification with the MobileNet_1.0_224 model.

We only measured the power consumption of the MobileNet_1.0_224 model,
as it was the best performing model for image classification. Due to restricted
access to equipment for measuring power consumption, we were only able to
measure the aforementioned model.

By taking the average of the ma for the rpi under load, we get an average
current of 293 ma, which is 0.293 amperes. Knowing that the rpi uses 5 volts
as input, we get the watt by multiplying volts with amperes. Following the
formula described in 9.3 we get:

1.465W = 5V ∗ 0.293A

The energy expenditure for 5 minutes under load, the rpi uses

0.122Wh =
5minutes

60minutes
∗ 1.465W

We can expect the other MobileNet models of the same size(1.0) to have about
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the same consumption, as they have the same amount of weights. The 0.75
model however could differ, as it has less weights to compute.

9.5 Classification speed
When testing the models on the rpi we achieved a speed of 1.17 to 1.54 images
per second on average depending on the model. The rpi does not have any
form of cooling mounted.

Model fps Time in sec per 50 frames Minimum CPU load(%) Maximum CPU load(%)
MobileNet_1.0_224 1.17 42.66 48.8 57.9
MobileNet_1.0_192 1.27 39.26 45.5 52.0
MobileNet_1.0_128 1.54 32.35 35.7 43.9
MobileNet_0.75_224 1.31 38.09 45.9 51.4

Table 9.2: Classification speed for the four different models, measured on the rpi 10
times, and taking the average of the results.

Looking at table 9.2, we can see that the fastest model is the one with 128 x
128 pixel resolution. and the slowest is the one with 224 x 224 and 100% of
the weights. The model with reduced weights (0.75) and 224 x 224 pixels, is
the second fastest. As we saw in table 8.5, the reduced weights model had
significantly worse classification score compared to the other models, so even
though it is slightly faster than the 1.0_224 model, it still has close to half the
precision and recall.



10
Discussion
This chapter will discuss our results and how we solved the problem of doing
image classification on a small embedded computer. We describe the difficulty
of keeping a high classification accuracy, while reducing the model size dras-
tically. We also discuss how we worked to solve this challenge by training
different variants of our classificaiton model, investigating their results, and
suggesting ways to improve the system.

10.1 Evaluating Results
We compare 4 different models of MobileNet, see table 8.1. The results show
that different resolution in input images can affect both precision and recall
for the different classes. Some classes benefit from a higher resolution where
others benefit from a lower resolution. Reducing the number of weights seems
to only affect the classifications in a negative way, this is discussed below.
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10.1.1 Classification
Model Top 1 ap(%) Top 1 ar(%) Top 2 ap(%) Top 2 ar(%)
MobileNet_1.0_224 61.0 49.7 83.1 70.1
MobileNet_1.0_192 56.1 41.0 69.9 62.1
MobileNet_1.0_128 61.8 45.8 73.5 64.4
MobileNet_0.75_224 38.2 26.7 50.5 40.3

Table 10.1: MobileNet comparison for ap and ar for the top-1 and top-2 case, extracted
from tables 8.2,8.3,8.4,8.5

Looking at classification results of our four different models in table 10.1, it is
clear that resolution and number of weights have an effect on precision and
recall. Comparing models, we see that the MobileNet_1.0_224 model is the
highest performing one, having an ap for the whole model of 61.0% and ar of
49.7%. This is for the case where we only register a correct classification if the
classified animal is the highest ranked classification. If we register a correct
classification where the animal is either first or second, we get better results.
The ap and ar are then 83.1% and 70.1% respectively.

The second best performing model is the MobileNet_1.0_128. It has less resolu-
tion than MobileNet_1.0_192, but has better scores. Comparing the 128 model
up against the 224 model for the top-1 case, we can see that the 128 model are
better at recalling the wolverine, snowyowl and redfox classes than the 224
model, see table 10.2. The balance between precision and recall in these classes
for model 128, is preferred to the precision/recall balance in model 224. In the
remaining classes (arcticfox, crow, whitetailedeagle, goldeneagle, raven and
reindeer) the 224 model has better recall and precision/recall balance.

Class 224 Top 1 Precision(%) 224 Top 1 Recall(%) 128 Top 1 Precision(%) 128 Top 1 Recall(%)
ArcticFox 58.8 69.7 59.0 30.2
Crow 71.8 80.0 100.0 2.8
WhiteTailedEagle 68.7 82.5 41.8 82.5
GoldenEagle 92.3 30.0 100.0 7.5
Raven 88.8 20.0 83.3 12.5
RedFox 29.4 75.0 33.0 82.5
Reindeer 39.4 75.0 43.3 65.0
SnowyOwl 0.0 0.0 33.3 44.4
Wolverine 100.0 15.0 62.9 85.0
Model 61.0 49.7 61.8 45.8

Table 10.2: MobileNet_1.0_224 and MobileNet_1.0_128 Precision and Recall for the
top-1 case.
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The 192 model scores worse than the 128 model. A reason for this might be that
128 x 128 pixel inputs correspond better with the 1844 x 1382 pixel resolution,
which is the resolution we use at runtime.

The 224 model with reduced weights (0.75) was the worst performing model.
The reason for the worse result is less weights. Having 25% less weights than
the other models, it will have less capacity to know features, which in turn
makes it less capable of classifying accurately.

MobileNet_1.0_224 and MobileNet_1.0_128 have a similar score in both ap and
ar when looking at the top-1 case. The difference in score increases if we
take top-2 into consideration. It is clear that the difference in input resolution
for the models affects the score for individual classes. Where the 128 model
is better at wolverine, snowyowl and redfox, the 224 model performs better
on the rest. This applies for both top-1 and top-2. A reason for the difference
in classification score on individual species might be the size of the animal
itself.

An example could be; an image with a redfox contains a lot of crows surround-
ing it. When reducing the size of the image down to 128 x 128 pixels from
1844 x 1382, the crows might have shrinked in size so much that they become
unrecognizable. A crow with features like wings and a beak, could become 3
unrecognizable pixels in a blob with such downsampling of image resolution.
What remains in the image would be the more distinct features of the redfox.
With no "obvious" crows in the image, the more distinct redfox would be easier
to classify as there is a lower amount of disturbing features in the image.

This is speculation, but could be an explanation of why the smaller resolution
model is better at predicting some species compared to the larger resolution
model.

10.1.2 Classification speed
As briefly discussed in section 9.5, we see that the 1.0_128 model is the fastest
one. The second fastest is the 0.75_224, and this is due to the reduced number
of weights compared to the other three models. As previously mentioned,
the 0.75_224 model is the second fastest model, but it is the worst model
in classification quality by far. Compared to our best performing model, the
1.0_224, the 0.75_224 has almost half the classification score.

Comparing the 1.0_128 and the 1.0_224, the first one has a classification speed
of 1.54 fps where the second has a speed of 1.17 fps. That is 0.37 fps in
difference. As we discussed in section 10.1.1, these are the two best performing
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models when it comes to classification score.

To decide which model to use in a production environment, a tradeoff have
to be made between classification score and classification time. As we can
see from table 9.2, the 1.0_128 model uses about 10% less CPU load to do its
classification. This could be connected to less power consumption overall. As
it also uses less overall time to classify a set of images, it is "working" less than
the other models.

If battery capacity is restricted, then the best choice might be the 1.0_128 model,
even though it was worse than the 1.0_224 at classifying overall, it was better in
some classes. If however classification score is more important, and the power
consumption of the 1.0_224 model is not too much higher, that might be the
best one. Choosing any of the other two models would be a worse tradeoff no
matter what, as the 1.0_128 model performs better than both of them, and is
faster to classify, and uses less CPU load.

When measuring the classification speed on the rpi we used 50 images. When
testing with 300 images, the rpi crashed due to overheating. In our experi-
ence the rpi is able to handle a small batch like 50 images or less, without
cooling.

10.1.3 RPI Energy expenditure
In section 9.4 we saw that the rpi used 0.122Wh for 5 minutes of work. A
common car-battery has about 1000 watt-hours. As previously calculated,
the rpi uses 1.465W, and with 1000 watt-hours this becomes 682.6 hours
of continuous work under load. With 1.17 fps, our system would be able to
analyze 2.1 million images on a car-battery with 1000 watt-hours.

10.2 Idea
Within the COAT project, previous work related to ours, have involved image
classification [38] and object detection [39]. The resultingnns in these projects
have had significant model sizes ( 1000MB), and high accuracy scores ( 93%).
These projects have used high-end computers for their training and analysis.
With "unlimited" electrical power, and heavy-duty graphic cards for processing,
model size would be no problem. As a result of large models containing 10’s of
millions of weights, the accuracy of the models increase. Exporting said models
to a small embedded computer with limited electrical power capacity, and little
computing power compared to high-end gpus, would not work. In order to
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classify images in-situ on such low-end devices, we need a small model which
fits in the embedded computers memory, and is fast enough in computation to
not consume too much of the battery power, which in turn would decrease its
lifespan.

Looking into new research [7] [6] on small neural networks, we found Googles
MobileNet [7] a good candidate for image classification on low-end embedded
devices.

As previous work within the COAT project had resulted in a labeled dataset,
we took advantage of this and used it as our training data.

10.3 Dataset
Our dataset is described in chapter 4. Here we will discuss the shortcommings
with the dataset, and ways to improve it.

As our dataset is imbalanced, in the sense where some classes are over-
represented compared to others, our model will become good at recognizing
certain classes, and bad at recognizing others. The ideal would be to have an
even distribution of classes.

As an attempt to tackle this imbalance, we synthesized more images in some
under-represented classes. This was done through data-augmentation. In the
SnowyOwl class, which was severly under-represented, we created 25 images
out of 1 image. By horizontally flipping it, as well as slight rotations we could
do this. To keep the aspect ratio of the image after rotating, we needed to
synthesize some pixels. This resulted in un-natural looking images, and by
testing this on a dataset containing original images, and augmented ones, we
achieved a worse test accuracy than the result we got with only the original
images. Due to this we discarded the idea of augmenting the images in this
way.

Another attempt at augmenting images for better performance, was to get rid
of as much of the background as possible. Using an algorithm to find key-
points(interesting clusters of pixels) in an image, we were able to find the most
distinct animals in an image, and cut them out to create a new image. This
resulted in a large variation of image sizes, and were not very accurate for
all species, where it in some cases would ignore the animals completely, and
focus on a tree or a rock. We abandoned this idea as well, and settled with the
idea of cutting away the black borders of the images, as explained in chapter
4.
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Even though we were unsuccessful with some ways of augmenting the data, we
believe that there are ways to do it successfully. We will describe this further
in chapter 11.1.

10.4 Crowded images
As we are doing image classification, not detection, we have inherent difficulties
when it comes to classifying several animal species at once. Our classifier uses
a softmax layer, which have a 100% confidence in total. It distributes this
confidence over several classes. An example could look like table 10.3.

Class Prediction (%)
WhiteTailedEagle 99.8
GoldenEagle 0.1
Raven 0.05
RedFox 0.04
Reindeer 0.01

Table 10.3: Softmax example.

Say there are both an eagle and a raven in the image of the example above. It
is not wrongly classifying the eagle which is the highest prediction, but it is
missing out on the raven. Because there are images with several species, it is
hard to predict all of them, as the model will favor some class, in this case the
eagle.

We experimented with a way of classifying several species in one go. It was to
consider it a correct classification for a class if it was within the top 2 predicted
classes. It increases the accuracy of the model by a significant amount, but we
think a better way to handle it would be with object detection. Object detection
is done in the COAT project, but not for small models like ours. It would be an
obvious next step in the improvement of this project.

10.5 Issues with exporting models
The development of the cnn was done in a simulated environment. This is
where we created our model architecture, tuned parameters, and trained the
model. When achieving a satisfactory result of the model, we decided to export
it for testing on a rpi. Due to problems still unknown to us, we were not able to
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"freeze" themodel and export it in a usable format for loading into therpi. Luck-
ily TensorFlow [41] had support scripts for training the MobileNet architecture.
We used their open-source script located in the TensorFlow core library un-
der filepath: tensorflow/tensorflow/examples/image_retraining/retrain.py
to export a MobileNet model. The script let us train a model on the train-
ing data we gave it, using the desired MobileNet architecture.

10.6 Batching classifications
The classification system on the rpi takes a few seconds in setting up. If
this is done for every image, it will quickly add up, and over time have used
more energy. Due to this, we batch our images. The rpi can then initate the
system once per day, and then run inference on the batched images. When
the classification is done, it could wait until the next day for a new batch of
accumulated images.





11
Conclusion
In this thesis, we have implemented a system that classifies images of animals
from the Arctic tundra on a small embedded computer using a small neural
network. We have given detailed description of the dataset and the way it was
prepared, as well as describing the concept and training of cnns which is the
type of nn we used for our model. We described and analyzed four different
variations of the MobileNet nn, comparing their classification metrics, as well
as power usage and classification speed.

Our experiments showed that a small mobile nn like MobileNet, can classify
a range of animal classes, doing the inference on a small embedded computer
like the rpi with a classification speed of 1.17 fps and an ap and ar of 61.0%
and 49.7% respectively for the case of only classifying the top prediction as a
hit. Where as accepting the classification of the top 2 predictions, we have an
ap and ar of 83.1% and 70.1% respectively.
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11.1 Future Work
Several improvements can be made for our image classification system. We
expect the classification accuracy to increase for several classes of animal
species if more work is put into dataset preparation. [40] shows that image
synthesizing, in a way where they take their own background image, and
synthesizes new ones with different stock photos of animals taken from Google
image search is possible, and gives good results in classification.

Applying object detection to the system like [30] and [39] did, could possibly
improve the recognition of the animals, as well as be able to recognize more
than one animal in an image.

With power consumption being a central part in in-situ systems without conti-
nous power supply, a method for hibernating the small computer could save
power. In our case where we use a rpi as the small computer, a Sleepy Pi¹
could be a candidate for integrating a hibernation mode.

1. https://spellfoundry.com/product/sleepy-pi-2/
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