
Nikolova et al. Journal of Inequalities and Applications  (2017) 2017:302 
DOI 10.1186/s13660-017-1576-8

R E S E A R C H Open Access

A new look at classical inequalities
involving Banach lattice norms
Ludmila Nikolova1, Lars-Erik Persson2,3,4* and Sanja Varošanec5

*Correspondence: larserik@ltu.se
2Department of Engineering
Sciences and Mathematics, Luleȧ
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Abstract
Some classical inequalities are known also in a more general form of Banach lattice
norms and/or in continuous forms (i.e., for ‘continuous’ many functions are involved
instead of finite many as in the classical situation). The main aim of this paper is to
initiate a more consequent study of classical inequalities in this more general frame.
We already here contribute by discussing some results of this type and also by
deriving some new results related to classical Popoviciu’s, Bellman’s and
Beckenbach-Dresher’s inequalities.
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1 Introduction
Let (Y ,�,ν) be a σ -finite measure space, and let L(Y ) denote the space of ν-measurable
functions defined and being finite a.e. on Y . A Banach subspace (E,‖ · ‖) of L(Y ) is a
Banach lattice (Banach function space) on (Y ,�,ν) if, for every x ∈ E, y ∈ L(Y ), |y| ≤ |x|,
ν-a.e., it follows that y ∈ E and ‖y‖ ≤ ‖x‖.

Moreover, the ‘convexification’ of E, denoted by Ep, –∞ < p < ∞, p �=  consists of all
x ∈ L(Y ) satisfying

‖x‖Ep :=
(∥∥|x|p∥∥E

) 
p < ∞.

For the case p < , we assume that x = x(t) �=  for all t ∈ Y .
Some classical inequalities are known to hold also in the frame of such Banach lattice

norms. See, for example, [] and [].
It is also known that some classical inequalities for finite many functions (like those

of Hölder and Minkowski) can be generalized to hold for continuous (infinitely) many
functions. For such results in Lp and lp -spaces, we refer the reader to the recent article []
and the references therein. We proved there the continuous versions of Popoviciu’s and
Bellman’s inequalities.

However, there exists a generalization of Hölder’s inequality in both of these directions
simultaneously, see [] and also Lemma ..
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The main aim of this paper is to initiate a more consequent study of classical inequalities
in this more general frame. Some known results of this type which we need in this paper
can be found in our Section . We now shortly discuss some elementary forms of the
inequalities we consider to generalize as new contributions in this paper.

We assume that ai, bi, i = , , . . . , n, are positive numbers, c, c are positive numbers
and f and g are positive functions on (Y ,�,ν).

A. Popoviciu’s inequality: Let p, q ≥ , 
p + 

q = . In the most elementary form it reads

(see []): If c – (
∑n

i= ap
i )


p >  and c – (

∑n
i= bq

i )

q > , then

(

cp
 –

n∑

i=

ap
i

) 
p
(

cq
 –

n∑

i=

bq
i

) 
q

≤ cc –
n∑

i=

aibi. (.)

A generalization of this inequality reads: If c – (
∫

Y f p(y) dν(y))

p >  and c –

(
∫

Y gq(y) dν(y))

q > , then

(
cp

 –
∫

Y
f p(y) dν(y)

) 
p
(

cq
 –

∫

Y
gq(y) dν(y)

) 
q

≤ cc –
∫

Y
f (y)g(y) dν(y). (.)

For more general forms, see, e.g., Theorem . which in particular shows that ‘>’ in the
assumptions of (.) and (.) can be replaced by ‘≥’. Some continuous forms of (.) and
(.) were recently proved in [].

In Section  of this paper we present, prove and apply our main results concerning
Popoviciu’s inequality (see Theorems . and .).

B. Bellman’s inequality: The original form of Bellman’s inequality reads (see [] and also
[]): If p ≥  and c – (

∑n
i= ap

i )

p >  and c – (

∑n
i= bp

i )

p > , then

(

cp
 –

n∑

i=

ap
i

) 
p

+

(

cp
 –

n∑

i=

bp
i

) 
p

≤
(

(c + c)p –
n∑

i=

(ai + bi)p

) 
p

. (.)

There is also a more general integral form of this inequality, namely: If c –
(
∫

Y f p(y) dν(y))

p >  and c – (

∫
Y gp(y) dν(y))


p > , then

(
cp

 –
∫

Y
f p(y) dν(y)

) 
p

+
(

cp
 –

∫

Y
gp(y) dν(y)

) 
p

≤
(

(c + c)p –
∫

Y

(
f (y) + g(y)

)p dν(y)
) 

p
, (.)

which holds under proper conditions. For more general forms, see, e.g., Theorem ..
Also here our result shows in particular that ‘>’ in the assumptions of (.) and (.) can
be replaced by ‘≥’. Some continuous forms of (.) and (.) were recently proved in [].

Our main results related to this inequality are proved and discussed in Section . We
remark that obviously Popoviciu’s and Bellman’s inequalities may be regarded as a type of
reversed inequalities of Hölder’s and Minkowski’s inequalities, respectively.
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C. Beckenbach-Dresher’s inequality: In its most elementary form it reads: If p ≥ , β ≤
 ≤ α; β �= , then

(
∑n

i=(ai + bi)α)p/α

(
∑n

i=(ai + bi)β )(p–)/β ≤ (
∑n

i= aα
i )p/α

(
∑n

i= aβ

i )(p–)/β
+

(
∑n

i= bα
i )p/α

(
∑n

i= bβ

i )(p–)/β
. (.)

Especially for the case p = α/(α – β), α �= β , we obtain the triangle inequality for the
so-called Gini-means G defined by

G = G(α,β) =
(∑n

i= aα
i∑n

i= aβ

i

)/(α–β)

, α �= β .

There are many generalizations of inequality (.). Of special importance as the back-
ground for this paper, we mention [], where also a version for the spaces Ep is included.

In Section  of the present paper, we derive a new version of (.) which is both ‘contin-
uous’ (containing infinitely many functions, e.g., sequences) and involving Banach lattice
norms (see Theorem .). Moreover, we also derive a type of reversed inequality of the
same general form (see Theorem .). Finally, Section  is reserved for some concluding
remarks and results. Especially, we present new Popoviciu’s inequality in the case of infi-
nite interpolation families (see Theorem .), and the connection to Milne’s inequality is
pointed out (see Section .).

2 Preliminaries
It is known that if ‖ · ‖E is a Banach function norm, then ‖f (x, ·)‖E need not be a measur-
able function. But it is also known that if E has the Fatou property, then indeed ‖f (x, ·)‖E

is measurable (see []). Therefore, for simplicity, we assume that the considered Banach
function spaces have the Fatou property. It is also known that in this situation E is a perfect
space, i.e., E = E′′, where E′′ denotes the second associate space of E.

We need the following simple generalization of Hölder’s inequality.

Lemma . Let p, q �= , 
p + 

q = . If p > , then

‖fg‖E ≤ ‖f ‖Ep‖g‖Eq . (.)

If p < , then (.) holds in the reverse direction. We have equality in (.) when g = cf p–.

A simple proof of this lemma in an even general symmetric form can be found in [],
p. .

We also need the following more general form of Hölder’s inequality (both continuous
and involving Banach function norms).

Lemma . Let E = E′′,  < b ≤ ∞, p(x) > , u(x) ≥  be measurable and define p by


p

=
∫ b



u(x)
p(x)

dx, (.)
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where
∫ b

 u(x) dx = , then

∥
∥∥
∥exp

(∫ b


log

(
f (x, y)

)
u(x) dx

)∥
∥∥
∥

Ep
≤ exp(

∫ b


log‖f

(
x, y‖Ep(x) u(x) dx

)
. (.)

A proof of this result can be found in [].
We note that (.) is an inequality between generalized geometric means. We also need

the following inequality.

Lemma . Let f (x), g(x), u(x) be positive and
∫

X u(x) dμ(x) = . Then

exp

[∫

X
log

(
f (x)

)
u(x) dμ(x)

]
+ exp

[∫

X
log

(
g(x)

)
u(x) dμ(x)

]

≤ exp

[∫

X
log

(
f (x) + g(x)

)
u(x) dμ(x)

]
.

See, e.g., []. Another proof can be done by just using reversed form of suitable gener-
alizations of Beckenbach-Dresher’s inequality with p = α/(α – β) and letting α,β →  in
the corresponding generalized Gini-means G(α,β).

We also need the following analogous version of Minkowski’s inequality.

Lemma . Let E = E′′, let p ≥ . If f (x, y) ≥  on X × Y , then

∥∥
∥∥

∫

X
f (x, y) dx

∥∥
∥∥

Ep
≤

∫

X

∥
∥f (x, y)

∥
∥

Ep dx (.)

or, equivalently,

∥∥
∥∥

(∫

X
f (x, y) dx

)p∥∥
∥∥


p

E
≤

∫

X

∥
∥f p(x, y)

∥
∥


p
E dx. (.)

Since E has the Fatou property and p ≥ , we have that Ep has the Fatou property, i.e.,
it is a perfect space, and the proof can be found in [], Chapter . Note that in the case
E = L(Y ) this is just the classical integral Minkowski inequality.

Remember that the Banach lattice E is p-convex or q-concave if there exists a positive
constant M such that, for every finite set x, x, . . . , xn of elements in E, we have

∥
∥∥
∥∥

( n∑

i=

|xi|p
)/p∥∥∥

∥∥
E

≤ M

( n∑

i=

‖xi‖p
E

)/p

,

or

( n∑

i=

‖xi‖q
E

)/q

≤ M

∥∥
∥∥
∥

( n∑

i=

|xi|q
)/q∥∥

∥∥
∥

E

,

respectively.
The smallest M satisfying the corresponding inequality is called constant of p-convexity,

respectively, of q-concavity.
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In [] the following fact appears: Let ρ and λ be function norms with the Fatou property
and assume that there exists  ≤ p ≤ ∞ such that ρ is p-convex and λ is p-concave. Then
there exists a constant C such that, for all measurable f (x, y), we have

ρ(λ
(
f (x, ·)) ≤ Cλ(ρ

(
f (·, y)

)
. (.)

If we take ρ(h) to be
∫

X h(x) dx which is -convex with constant of convexity equal to 
and λ = ‖‖E , where E is -concave with constant of concavity equal to M, and follow the
part of the proof of (.) in which the constant of convexity of the norm ρ(·) is equal to ,
we find that

M
∥∥
∥∥

∫

X
f (x, ·) dx

∥∥
∥∥

E
≥

∫

X

∥
∥f (x, ·)∥∥E dx. (.)

Lemma . If E has the Fatou property and is -concave with constant of concavity equal
to M, p < , p �= , then

M
∥∥
∥∥

∫

X
f (x, y) dx

∥∥
∥∥

Ep
≥

∫

X

∥
∥f (x, y)

∥
∥

Ep dx. (.)

Proof We follow the idea in the proof of Theorem ..b) in [] by using Lemma .. In
details, using Theorem . b) from [] and (.), we have

M
∥
∥∥∥

∫

X
f (x, y) dx

∥
∥∥∥

Ep

= inf‖z‖Eq =
M

∥
∥∥∥

∫

X
f (x, y)z dx

∥
∥∥∥

E

≥ inf‖z‖Eq =

∫

X

∥
∥f (x, y)z

∥
∥

E dx ≥
∫

X
inf‖z‖Eq =

∥
∥f (x, y)z

∥
∥

E dx =
∫

X

∥
∥f (x, y)

∥
∥

Ep dx.

Here, q = p/(p – ), z = z(y) ∈ Eq, z(y) > . �

3 Popoviciu type inequalities involving Banach function norms
Our first main result reads as follows.

Theorem . Let E be a Banach function space such that E′′ = E and  < b ≤ ∞. Let p be
defined by (.) and

∫ b
 u(x) dx = . If f (x, y) and p(x) are positive and f(x) > ‖f (x, y)‖Ep(x) >

, then

exp

(∫ b


log

(
f(x)

)
u(x) dx

)
–

∥∥
∥∥exp

(∫ b


log

(
f (x, y)

)
u(x) dx

)∥∥
∥∥

Ep

– exp

[∫ b


log

(
f(x) –

∥
∥f (x, y)

∥
∥

Ep(x)
)
u(x) dx

]
≥ , (.)

provided that all integrals which occur in (.) exist.
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Proof We use Lemma . with X = [, b), f (x) = f(x) – ‖f (x, ·)‖Ep(x) , g(x) = ‖f (x, ·)‖Ep(x) and
find that

exp

(∫ b


log

(
f(x)

)
u(x) dx

)
≥ exp

(∫ b


log

(∥∥f (x, ·)∥∥Ep(x)
)
u(x) dx

)

+ exp

[∫ b


log

(
f(x) –

∥
∥f (x, ·)∥∥Ep(x)

)
u(x) dx

]
.

Next we use Lemma . to conclude that

exp

(∫ b


log

(∥∥f (x, ·)∥∥Ep(x)
)
u(x) dx

)
≥

∥∥
∥∥exp

(∫ b

a
log

(
f (x, y)

)
u(x) dx

)∥∥
∥∥

Ep
.

We combine the above two inequalities and obtain (.). The proof is complete. �

Example . (a) Applying Theorem . with E = L(Y , v), we find that

exp

(∫ b


log

(
f(x)

)
u(x) dx

)

–
{∫

Y

[
exp

(∫ b


log

(
f (x, y)

)
u(x) dx

)]p

v(y) dy
} 

p

≥ exp

[∫ b


log

(
f(x) –

(∫

Y
f p(x)(x, y)v(y) dy

) 
p(x)

)
u(x) dx

]
,

which in the case p(x) ≡  was proved in [].
(b) If p(x) ≡ , then (.) reads

exp

(∫ b


log

(
f(x)

)
u(x) dx

)
–

∥
∥∥
∥exp

(∫ b


log

(
f (x, y)

)
u(x) dx

)∥
∥∥
∥

E

– exp

[∫ b


log

(
f(x) –

∥
∥f (x, y)

∥
∥

E

)
u(x) dx

]
≥ , (.)

which in the case E = L(Y ) was proved in [].

Next we state the following complementary result.

Theorem . Let E be a Banach function space, let f , g ≥  and p, q �= , where 
p + 

q = .
(a) Let p ≥ . If cp

 – ‖f p‖E ≥ , cq
 – ‖gq‖E ≥ , then

cc – ‖fg‖E –
(
cp

 –
∥
∥f p∥∥

E

)/p(cq
 –

∥
∥gq∥∥

E

)/q ≥ . (.)

(b) Let  < p < . If ‖gq‖E > , cq
 – ‖gq‖E > , then reverse inequality (.) holds.

(c) Let p < . If ‖f p‖ > , cp
 – ‖f p‖E > , then reverse inequality (.) holds.

Proof (a) Let p, q > . Let cp
 – ‖f p‖E , gq

 – ‖gq‖E be strictly positive. Let X ∪ X = [, b),
let X ∩ X be empty,

∫
X

u(x) dx = 
p ,

∫
X

u(x) dx = 
q . We can get the result like a corollary

from inequality (.), by taking f(x) = cp
 for x ∈ X and f(x) = cq

 and f (x, y) = f p(y) for
x ∈ X, f (x, y) = gq(y) for x ∈ X.
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If, for instance, cp
 – ‖f p‖E = , gq

 – ‖gq‖E ≥ , we have to show that cc ≥ ‖fg‖. For this
purpose we just use Lemma ., namely

‖fg‖E ≤ ∥∥f p∥∥

p
E
∥∥gq∥∥


q
E ≤ cc.

(b) The case  < p <  can be treated by using the same Lemma ., which says that

‖fg‖E ≥ ∥∥f p∥∥

p
E
∥∥gq∥∥


q
E

in this case. If we put

x =
(
cp

 –
∥∥f p∥∥

E

)/p, y =
(∥∥f p∥∥

E

)/p, z =
(
gq

 –
∥∥gq)∥∥/q

E , t =
(∥∥gq∥∥

E

)/q,

we have

yt ≤ ‖fg‖E ,

which together with Hölder’s inequality

xz + yt ≥ (
xp + yp) 

p
(
zq + tq) 

q

gives us the wanted inequality.
(c) The case p <  can be proved similarly (just interchange the roles of f and g and p

and q, respectively). �

Remark . Note that Theorem . in particular means that inequalities (.) and (.)
hold also if ‘>’ in these inequalities are replaced by ‘≥’.

We also state a generalization of Theorem .(a).

Corollary . Let E be a Banach function space, let f , g , cp
 – ‖f p‖Er ≥ , cq

 – ‖gq‖Es ≥ ,
where p, q, r, s > , 

pr + 
qs = . Then

cc – ‖fg‖E –
(
cp

 –
∥
∥f p∥∥

Er
)/p(cq

 –
∥
∥gq∥∥

Es
)/q ≥ . (.)

Proof In the case when cp
 – ‖f p‖E , gq

 – ‖gq‖E are strictly positive, we can get like corollary
from Theorem .. First we take u(x) = , dμ(x) = dx and, if

∫ b



p(x) dx = , we get

exp

(∫ b


log

(
f(x)

)
dx

)
–

∥∥
∥∥exp

(∫ b


log

(
f (x, y)

)
dx

)∥∥
∥∥

E

– exp

[∫ b


log

(
f(x) –

∥∥f (x, y)
∥∥

Ep(x)
)

dx
]

≥ . (.)

Then we take f(x) = cp
 for x ∈ X, f(x) = cq

 for x ∈ X, f (x, y) = f p(y) for x ∈ X, f (x, y) =
gq(y) for x ∈ X, where X ∪ X = [, b), X ∩ X is empty,

∫
X

u(x) dx = 
p ,

∫
X

u(x) dx = 
q ,

p(x) = r for x ∈ X and p(x) = s for x ∈ X.
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Look, for instance, to the third expression in inequality (.)

exp

[∫ b

a
log

(
f(x) –

∥∥f (x, y)
∥∥

Ep(x)
)
u(x) dx

]

= exp

[∫

X

log
(
cp

 –
∥∥f p(y)

∥∥
Er

)
u(x) dx +

∫

X

log
(
cq

 –
∥∥f q(y)

∥∥
Es

)
u(x) dx

]

= exp

[
log

(
cp

 –
∥∥f p(·)∥∥Er

) 
p

+ log
(
cq

 –
∥∥gq(·)∥∥Es

) 
q

]

=
(
cp

 –
∥∥f p∥∥

Er
)/p(cq

 –
∥∥gq∥∥

Es
)/q,

which is the third expression in (.). Even simpler we see that the two first terms in (.)
coincide with the corresponding terms in (.).

If, for instance, cp
 – ‖f p‖Er = , cq

 – ‖gq‖Es ≥ , we have to show that cc ≥ ‖fg‖. For the
purpose, we just use Lemma ., namely

‖fg‖E ≤ ∥∥f p∥∥

p
Er

∥∥gq∥∥

q
Es ≤ cc.

The proof is complete. �

Remark . . Since

(a – b)r ≥ ar – br when a > b > ,  < r < , (.)

by putting a = cp
 , b = ‖f pr‖/r

E , we get

(
cp

 –
∥
∥f pr∥∥/r

E

)r ≥ cpr
 –

∥
∥f pr∥∥

E .

Hence, for  < r, s < , the following chain of inequalities holds:

cc – ‖fg‖E ≥ (
cp

 –
∥∥f p∥∥

Er
)/p(cq

 –
∥∥gq∥∥

Es
)/q

≥ (
cpr

 –
∥
∥f pr∥∥

E

)/pr(cqs
 –

∥
∥gqs∥∥

E

)/qs.

If we compare inequalities (.) and (.), we can see that in the case  < r, s <  inequality
(.) is better than inequality (.). Moreover, since in the case r, s >  inequality (.) holds
in the reversed direction when r > , in the case r, s >  inequality (.) is stronger than
inequality (.).

. Note that here we do not need the condition E′′ = E because of Remark after Theorem
. from [].

4 Bellman type inequalities involving Banach function norms
Our first main result in this case reads as follows.

Theorem . Let X and Y be measure spaces, let f (x, y) be a positive measurable function
on X × Y and assume that p ≥  and f(x) is a function on X such that f p

 (x) > ‖f p(x, ·)‖E ,



Nikolova et al. Journal of Inequalities and Applications  (2017) 2017:302 Page 9 of 16

where E is a Banach function space on Y for all x ∈ X. Assume that E has the Fatou property.
Then

(∫

X

[
f p
 (x) –

∥∥f p(x, ·)∥∥E

] 
p dx

)p

≤
[∫

X
f(x) dx

]p

–
∥∥
∥∥

[∫

X
f (x, ·) dx

]p∥∥
∥∥

E
, (.)

provided that all integrals exist.
If E is -concave with constant of concavity ,  < p <  or p <  and ‖f p(x, ·)‖E > , then

inequality (.) holds in the reverse direction.

Proof Let p ≥ . We consider the following form of Minkowski’s integral inequality:

(∫

Y

(∫

X
f (x, y)u(x) dμ(x)

)p

v(y) dν(y)
) 

p

≤
∫

X

(∫

Y
f p(x, y)v(y) dν(y)

) 
p

u(x) dμ(x) (.)

for the special case when Y = Y ∪ Y, Y ∩ Y is empty, f (x, y) = a(x) on Y, f (x, y) = b(x)
on Y and

∫
Y

v(y) dν(y) =
∫

Y
v(y) dν(y) = , u(x) dμ(x) = dx and get

(∫

X
a(x) dx

)p

+
(∫

X
b(x) dx

)p

≤
[∫

X

(
ap(x) + bp(x)

) 
p dx

]p

.

We choose

a(x) =
[
f p
 (x) –

∥
∥f p(x, ·)∥∥E

] 
p , b(x) =

[∥∥f p(x, ·)∥∥E

] 
p

and obtain that

(∫

X

[
f p
 (x) –

∥∥f p(x, ·)∥∥E

] 
p dx

)p

+
(∫

X

∥
∥f p(x, ·)∥∥


p
E dx

)p

≤
[∫

X
f(x) dx

]p

:= I.

Next, by using (.) to the second term in the above inequality, we find that

I ≥
∥∥
∥∥

(∫

X
f (x, ·) dx

)p∥∥
∥∥

E

+
(∫

X

[
f p
 (x) –

∥
∥f p(x, ·)∥∥E

] 
p dx

)p

. (.)

If  < p < , then first we use reverse to inequality (.) and then instead of (.) we use
(.) for M = .

The proof in the case p <  is similar. �
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Remark . Inequality (.) can be written as follows:

(∫

X

[
f p
 (x) –

∥∥f (x, ·)∥∥p
Ep

] 
p dx

)p

≤
[∫

X
f(x) dx

]p

–
∥
∥∥
∥

∫

X
f (x, ·) dx

∥
∥∥
∥

p

Ep
.

If E = L, then we get the result of the first part of the continuous Bellman inequality for
p ≥  proved in [], Theorem ..

Next, we state the following Bellman type inequalities.

Theorem .
(a) Let E be a Banach function space, let f , g > , p ≥ , cp

 – ‖f p‖E ≥ , cp
 – ‖gp‖E ≥ .

Then

((
cp

 –
∥
∥f p∥∥

E

)/p +
(
cp

 –
∥
∥gp∥∥

E

)/p)p ≤ (c + c)p –
∥
∥(f + g)p∥∥

E . (.)

(b) If E is an arbitrary -concave lattice with constant of concavity ,  < p <  or p < 
and c, f > , cp

 – ‖f p‖E > , c > , g > , cp
 – ‖gp‖E > , then reverse inequality (.)

holds.

Proof (a) In view of Theorem ., from [] we have the following variant of Minkowski’s
inequality: If p ≥ , then

∥∥
∥∥
∥

n∑



xi

∥∥
∥∥
∥

Ep

≤
n∑



‖xi‖Ep . (.)

We follow the idea of the proof of Theorem . from [] using the discrete Minkowski
inequality

(
(a + b)p + (a + b)p) 

p ≤ (
ap

 + ap

) 

p +
(
bp

 + bp

) 

p (.)

with

a =
(
cp

 –
∥
∥f p∥∥

E

)/p, b =
(
cp

 –
∥
∥gp∥∥

E

)/p, a =
(∥∥f p∥∥

E

)/p, b =
(∥∥gp∥∥

E

)/p.

We note that the right-hand side in (.) is equal to c + c, (a + b)p coincides with the
term on the left-hand side in (.) and, by (.),

a + b = ‖f ‖Ep + ‖g‖Ep ≥ ‖f + g‖Ep =
∥
∥(f + g)p∥∥


p
E .

By using these facts and taking pth power of both sides in (.), we get (.).
(b) All inequalities above hold in the reverse direction in this case, and the proof follows

by just doing obvious modifications of the proof of (a). �

Remark . Note that similarly as in our previous section, Theorem . in particular
means that inequalities (.) and (.) hold also if ‘>’ in the statements of these inequalities
are replaced by ‘≥’.
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5 Direct and reverse Beckenbach-Dresher type inequalities involving Banach
function norms

The following result concerning Beckenbach-Dresher’s inequality was announced in [].
For completeness, we give here also the proof.

Theorem . Let E, F be Banach function spaces with the Fatou property. If  < u < ,
 < p, q ≤  and E is -concave with constant of concavity equal to M, F is -concave with
constant of concavity equal to N , then the inequality

‖ ∫
X f (x, ·) dx‖u

Ep

‖ ∫
X g(x, ·) dx‖u–

Fq
≥ C

∫

X

‖f (x, ·)‖u
Ep

‖g(x, ·)‖u–
Fq

dx (.)

holds with C = M–uNu–, providing all above integrals exist.
If u > , q ≤  ≤ p, q �=  and F is -concave with constant of concavity equal to N , then

inequality (.) holds in the reverse direction with C = Nu–.
If u < , p ≤  ≤ q, p �=  and E is -concave with constant of concavity equal to M, then

inequality (.) holds in the reverse direction with C = M–u.

Proof In the proof we will use (.), (.) and Hölder’s or reverse Hölder’s inequalities.
Let  < u < , E be -concave with constant of concavity equal to M, and let F be -

concave with constant of concavity equal to N . Then

‖ ∫
X f (x, ·) dx‖u

Ep

‖ ∫
X g(x, ·) dx‖u–

Fq
≥ M–u(

∫
X ‖f (x, ·)‖Ep dx)u

N –u(
∫

X ‖g(x, ·)‖Fq dx)u–

≥ M–uNu–
∫

X

‖f (x, ·)‖u
Ep

‖g(x, ·)‖u–
Fq

dx.

Let u > , E be just a Banach function space, and let F be -concave with constant of
concavity equal to N . Then we have

‖ ∫
X f (x, ·) dx‖u

Ep

‖ ∫
X g(x, ·) dx‖u–

Fq
≤ (

∫
X ‖f (x, ·)‖Ep dx)u

N –u(
∫

X ‖g(x, ·)‖Fq dx)u– ,

and the statement follows by using reverse Hölder’s inequality.
Let u < , E be -concave with constant of concavity equal to M, and let F be just a

Banach function space. Then

‖ ∫
X f (x, ·) dx‖u

Ep

‖ ∫
X g(x, ·) dx‖u–

Fq
≤ M–u(

∫
X ‖f (x, ·)‖Ep dx)u

(
∫

X ‖g(x, ·)‖Fq dx)u– ,

and as before we use reverse Hölder’s inequality to complete the proof. �

Remark . Inequality (.) can be rewritten as follows:

‖(
∫

X f (x, ·) dx)p‖
u
p
E

‖(
∫

X g(x, ·) dx)q‖
u–

q
F

≥ C
∫

X

‖f p(x, ·)‖
u
p
E

‖gq(x, ·)‖
u–

q
F

dx.

Consider the case E = F = L. Then M = N = , and we get the result which appears in
Theorem . from [].
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Remark . If we take f and g to be a step function of the type f (x, y) = f(y) when x ∈
[, ), . . . , f (x, y) = fi(y) when x ∈ [i – , i) for i = , , . . . , n and if  < u < , if E is -concave
with constant of concavity equal to M, if F is -concave with constant of concavity equal
to N , then the inequality

‖∑n
i= fi‖u

E

‖∑n
i= gi‖u–

F
≥ C

n∑

i=

‖fi‖u
E

‖gi‖u–
F

(.)

holds with C = M–uN –u.

Next we state a kind of reverse version of Theorem ., reversed in the same way as
Popoviciu’s and Bellman’s inequalities may be regarded as reversed versions of Hölder’s
and Minkowski’s inequalities, respectively.

Theorem . Let f(x) > ‖f (x, ·)‖Ep for all x ∈ X, let g(x, z) be a positive measurable func-
tion on X × Z and assume that g(x) is a function on X such that g(x) > ‖g(x, ·)‖Fq for all
x ∈ X, where E is a Banach function space on Y for all x ∈ X with the Fatou property and
F is a Banach function space on Z for all x ∈ X with the Fatou property.

If  < u < , p ≥  or p <  and q ≥  or q < , then the following continuous reverse type
version of Beckenbach-Dresher’s inequality holds:

{[∫X f(x) dx]p – ‖[
∫

X f (x, ·) dx]p‖E} u
p

{[∫X g(x) dx]q – ‖[
∫

X g(x, ·) dx]q‖F} u–
q

≥
∫

X

[f p
 (x) – ‖f p(x, ·)‖E]

u
p

[gq
(x) – ‖gq(x, ·)‖F ]

u–
q

dx. (.)

If u ≥ ,  < p ≤  and q ≥  or q < , then reverse inequality (.) holds.
If u < ,  < q ≤  and p ≥  or p < , then reverse inequality (.) holds.
In the cases when p < , an additional condition on the function space E is that it should

be concave with constant of concavity ; in the cases when q < , an additional condition on
the function space F is that it should be concave with constant of concavity .

Proof In the proof we use Theorem . and then Hölder’s inequality. Denote

A =
[∫

X
f(x) dx

]p

–
∥
∥∥
∥

[∫

X
f (x, ·) dx

]p∥∥∥
∥

E
,

A(x) =
[
f p
 (x) –

∥∥f p(x, ·)∥∥E

] 
p ,

B =
[∫

X
g(x) dx

]q

–
∥∥
∥∥

[∫

X
g(x, ·) dx

]q∥∥
∥∥

F

and

B(x) =
[
gq

(x) –
∥∥q(x, ·)∥∥E

] 
q .
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Consider the inequalities

() A ≥
[∫

X
A(x) dx

]p

,

() A
u
p ≥

[∫

X
A(x) dx

]u

,

() B ≥
[∫

X
B(x) dx

]q

,

() B
–u

p ≥
[∫

X
B(x) dx

]–u

.

Let  < u ≤ . If p ≥ , q ≥ , then our version (.) of Bellman’s inequality implies in-
equalities () and (), and thus, since u

p >  and –u
q ≥ , inequalities () and () hold.

Hence, by Hölder’s inequality

A
u
p B

–u
q ≥

[∫

X
A(x) dx

]u[∫

X
B(x) dx

]–u

≥
∫

X
A(x)uB(x)–u dx

and according to the definition of A, B, A(x) and B(x), inequality (.) is proved. If p < ,
q ≥ , Bellman’s inequality gives () in the reverse direction, and since u

p < , inequality ()
holds in this case, too. Since inequality () holds, we use Hölder’s inequality as above. The
cases p < , q <  and p ≥ , q <  can be done analogously.

Let now u ≥ . If  < p ≤ , then inequality () holds in the reverse direction and, there-
fore, since u

p > , also () holds in the reverse direction. If q ≥ , then inequality () holds,
and since –u

q ≤  in this case, we conclude that () holds in the reverse direction. In the
case q < , inequality () holds in the reverse direction, but since –u

q ≥ , inequality ()
holds in the reverse direction also in this case. The second statement thus follows by using
reverse Hölder’s inequality and arguing as in the proof of the first case.

Finally, let u < . If p ≥ , then again by Theorem . we have that inequality () holds,
and since u

p <  in this case, we find that inequality () holds in the reverse direction.
Symmetrically, if p < , inequality () holds in the reverse direction, but since u

p >  in this
case, still inequality () holds in the reverse direction.

If  < q ≤ , then inequality () yields in the reverse direction, and because –u
q ≥  in

this case, also () holds in the reverse direction. The third case is thus proved by just using
reverse Hölder’s inequality and arguing as in the first two cases. The proof is complete. �

6 Concluding results
6.1 Popoviciu type result in the case of infinite interpolation families
The result of this subsection was announced in [] but here we give all the details.

Let D be a suitable simply connected domain in the complex plane with boundary 	

and B(γ ) ∈ 	 be an interpolation family on 	 in the sense of []. Let for simplicity 	 =
{|z| = } and D = {|z| < }. When we speak about interpolation in the families of Banach
spaces (complex or real), we are in the situation when the actual family of Banach spaces
is indexed by the points of the unit circle for simplicity 	 = {|z| = } in the complex plane,
while the interpolation spaces are labeled by the points of the unit disk D = {|z| < }. The
authors of [] construct, for each z ∈ D, a new space B[z], which consists of the values
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f (z) at z of certain analytic vector-valued functions f (z) on D whose boundary values
f (γ ) ∈ B(γ ) for a.e. γ ∈ 	, and ‖f ‖F(γ ) = ess supγ ‖f (γ )‖B(γ ) < ∞. The space B[z] has an
interpolation property, i.e., if a linear operator T is bounded on each B(γ ) with norm M(γ )
and also bounded on a certain space U containing each B(γ ), then T is also bounded on
B[z] with norm M(z), which can be estimated in terms of the function M(γ ). A variant
of the construction was suggested independently in [].

Proposition . from [] says that, for each f ∈ F(γ ) and each z ∈ D, the inequality

∥∥f (z)
∥∥

B[z] ≤ exp

(∫

	

log
∥∥f (γ )

∥∥
B(γ ) dPz (γ )

)
(.)

holds, where Pz (γ ) is the Poisson kernel. This can be regarded as an infinite variant of
the inequality (log convexity inequality) in the notion of the exact interpolation method
of type θ (here z) in the case when the families consist of just two spaces (the case of
Banach couples).

In such terms we are now ready to formulate the following general Popoviciu type in-
equality.

Theorem . Let B(γ ), γ ∈ 	 be an interpolation family on 	, let f ∈ F(γ ) and z ∈ D and
B[z] be the complex interpolation space. If f > ‖f ‖F(γ ) = ess supγ ‖f (γ )‖B(γ ) > , then

f –
∥∥f (z)

∥∥
B[z] ≥ exp

(∫

	

log
[
f –

∥∥f (γ )
∥∥

B(γ )

]
dPz (γ )

)
.

Proof Having in mind inequality (.), we find that

∥∥f (z)
∥∥

B[z] + exp

(∫

	

log
[
f –

∥∥f (γ )
∥∥

B(γ )

]
dPz (γ )

)

≤ exp

(∫

	

log
∥∥f (γ )

∥∥
B(γ ) dPz (γ )

)
+ exp

(∫

	

log
[
f –

∥∥f (γ )
∥∥

B(γ )

]
dPz (γ )

)

≤ exp

(∫

	

log f dPz (γ )
)

= f,

which gives the stated inequality. Here we used inequality from Lemma . in a crucial
way. �

6.2 Connection to Milne’s inequality
Denote X =

√
(c

 – ‖f ‖)(c
 – ‖g‖). Then if in the particular finite case (.) put p = q = ,

we find that

X ≤ cc –
√∥∥f 

∥∥)
√∥∥g

∥∥. (.)

From this inequality and from Hölder’s inequality, we obtain the inequality

X ≤ cc – ‖fg‖. (.)
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Consider Milne’s inequality []

∑

i=

(
a

i + b
i
) ∑

i=

a
i b

i
a

i + b
i

≤
∑

i=

a
i

∑

i=

b
i

and put

a =
(
c

 –
∥∥f ∥∥)/, b =

(
c

 –
∥∥g∥∥)/, a =

(∥∥f ∥∥)/, b =
(∥∥g∥∥)/.

Since X =
√

ab, we can estimate it and get

(
c

 –
∥
∥f ∥∥)(

c
 –

∥
∥g∥∥) ≤

[
c

 c


c
 + c


–

‖f ‖‖g‖
‖f ‖ + ‖g‖

][
c

 + c
 –

∥
∥f ∥∥ –

∥
∥g∥∥]

. (.)

It is easy to see that this inequality is stronger than (.).
In fact, we can use Hölder’s inequality here too and get

(
c

 –
∥∥f ∥∥)(

c
 –

∥∥g∥∥) ≤
[

c
 c


c

 + c


–
‖fg‖

‖f ‖ + ‖g‖
][

c
 + c

 –
∥∥f ∥∥ –

∥∥g∥∥]
. (.)
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