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We present the first gauge-origin independent calculations of the circular intensity difference
(CID) in electric-field-induced second-harmonic generation (EFISHG), including all contribu-
tions up to the electric-quadrupole–magnetic-dipole level. A recursive, open-ended response
theory framework in combination with the use of London atomic orbitals allows us to en-
sure gauge-origin independent results. We apply this approach to study EFISHG-CID in a
collection of chiral amino acids. We demonstrate that diffuse polarizing basis functions are
critical in order to obtain accurate CIDs, and that a basis set of at least aug-cc-pVTZ quality
is needed in order to obtain results close to the basis-set limit. The use of London orbitals
does not lead to significantly faster basis set convergence, although the improved basis set
convergence allows the aug-cc-pVDZ basis set to be used with some confidence for larger
molecules.

1. Introduction

Second-harmonic generation (SHG) is a non-linear process that generates fre-
quency doubling at non-resonant conditions. In this process, two photons are ab-
sorbed from the incident light, and one photon is emitted with twice the frequency
of the incident photons [1]-[2]. In the electric dipole approximation, in its most
naive form, SHG is only observed for non-centrosymmetric systems, and it would
therefore in general not be observed in isotropic samples. However, utilizing scatter-
ing processes such as hyper-Rayleigh scattering [3] or multiphoton processes [4–6],
SHG can be observed in isotropic media. An alternative approach is to remove the
isotropy and break the symmetry, for instance by applying an external static electric
field can be applied, as done in the case of electric-field-induced second harmonic
generation (EFISHG) experiments [7]-[8].
A benefit of multiphoton spectroscopy is that it allows for the use of longer wave-

lengths, allowing for deeper penetration into living tissue while also improving fo-
cality, and second-harmonic generation and its absorptive counterpart, two-photon
absorption, are today gaining increasing importance for biological imaging. [9–13]
The circular intensity difference (CID) describes the difference in absorption of
left and right circularly polarized light. For isotropic media, this phenomenon can
only occur in chiral molecules, which by definition have non-superimposable enan-
tiomeric structures [14]. Since many biological molecules are chiral, the combined
effect of CID and SHG might provide additional information beyond that which
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can be obtained from SHG alone, and thus potentially be an important tool for
studying the structure of biological systems (see e.g. Refs. [15, 16]).
There are in the literature only two computational studies of EFISHG-CID, [17,

18] but circular dichroism has been observed in SHG experiments when the exper-
imental setup as a whole is chiral. [19–23] In order to describe the EFISHG-CID
phenomenon, it is necessary to leave the electric dipole approximation and consider
contributions up to the electric-quadrupole–magnetic-dipole order [14, 24]. When
going beyond the electric dipole approximation, the problem of origin dependence
has to be taken into account, since the magnetic dipole and the electric quadrupole
moments are origin-dependent quantities. However, as the circular intensity differ-
ence is an observable, it will by necessity have to be an origin-independent quan-
tity [14, 24].
The problem of origin dependence appears at two levels: Firstly, the observable

quantity have to be defined in an origin-independent manner. Although rather
obvious, we note that the problem of origin independence remains challenging for
the frequency-dependent magnetizabilities as well as the material constants. [25–
28] Secondly, at the computational level, origin-independent properties involving
magnetic-field perturbations can only be achieved for variational wave functions
in the complete basis set limit, as can for instance be achieved through the use
of multiwavelets, [29] or using local gauge-origin approaches (vide infra). List et
al. have proposed to avoid the multipole expansion altogether to achieve origin
independence, [30] but this approach has not yet been applied to the study of non-
dominant contributions to the induced dipole moment, as for instance is the case
in optical rotation where it is not the total induced dipole moment that is needed,
but rather that arising from the magnetic component of the electromagnetic wave.
For approximate calculations in finite basis sets, the results will in general depend
on the placement of the origin of the system. In the recent study by Rizzo and
Ågren, fairly large basis sets were used in order to obtain results close to the basis-
set limit, and thus reduce the dependence of their calculated results on the choice
of gauge origin. [18] Nevertheless, for many magnetic properties, even fairly large
basis sets may not suffice in order to reach the basis-set limit, [29, 31] making it
highly desirable to develop methods that improve basis set convergence and ensure
gauge-origin independent results.
London atomic orbitals [32] have been shown to be a versatile tool for providing

origin-independent results of magnetic properties also for finite basis sets [33–37]
by introducing a fixed, local gauge origin for each individual atomic orbital. In
this work, we present the first implementation of London atomic orbitals for the
calculation of EFISHG-CID at the Hartree–Fock level of theory and investigate the
importance of using London atomic orbitals for improving basis set convergence
and to obtain gauge-origin independent results. We also discuss the magnitude of
the contributions beyond the electric dipole approximation (magnetic dipole and
electric quadrupole) to the EFISHG-CID signal.
The molecular properties that must be calculated, and subsequently combined

to form the observable EFISHG-CID signal, are various fourth-order derivatives of
the molecular energy. The collections of perturbations that define these properties
consist of combinations of the electric dipole, electric quadrupole and magnetic
dipole operators in different cubic response functions. [17, 18] The use of London
atomic orbitals increases the complexity of the response theory compared to the
case when such orbitals are not used (i.e. when using conventional Gaussian basis
sets). Our group has recently developed an atomic density-matrix-based formulation
of response theory that also includes the effects of perturbation-dependent basis
sets. [38] The method has been shown to be amendable to the use of recursive
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programming routines, thereby making it fully open-ended with respect to the order
of the applied perturbations, [39] as long as the perturbation ansatz remains valid
for the interaction of the electronic density with the applied perturbations. We
have recently used this program to calculate various high-order properties, such as
anharmonic force fields [40], anharmonic infrared and Raman spectra [41], hyper-
Raman spectra [42] as well as a variety of multiphoton absorption processes. [43, 44].
We have also used a pilot implementation of the open-ended response-theory code
to calculate fourth-order birefringences using London atomic orbitals, such as the
Cotton–Mouton effect [45] and Jones birefringence. [46] However, this is the first
study of EFISHG-CID using London atomic orbitals, and also one of the first
applications of the recursive implementation [39] to higher-order magnetic responses
using London atomic orbitals, noting that this general framework has been used to
calculate both two- and three-photon circular dichroism using LAOs. [47, 48]
Here we perform a basis-set convergence study on (L)-Alanine, (L)-Arginine,

(L)-Aspartic acid, (L)-Cysteine and (L)-Tryptophan at the Hartree-Fock level of
theory, comparing the basis-set convergence of the London and conventional basis
set results. A comparison with previous studies [18] on these molecules is also
made. We restrict ourselves to a discussion of the theory of EFISHG-CID in the
non-resonant case.
The rest of the paper is organized as follows: In Section 2, we present the the-

ory, starting in Section 2.1 with a recapitulation of the EFISHG-CID phenomenon,
moving on to present various aspects related to basis sets and gauge-origin indepen-
dence in Section 2.2. In Section 2.3, we briefly recapitulate the open-ended response
theory framework and the recursive implementation used to calculate the properties
that enter into the expressions for the EFISHG-CID observable. We summarize our
computational details in Section 3 and present and discuss our results in Section 4.
Finally, we give some concluding remarks and an outlook in Section 5.

2. Theory

2.1. EFISHG-CID

EFISHG-CID is a process where two photons of equal circular frequency ω are
absorbed, and one photon of frequency 2ω is emitted [49]. If µ is the polarization
of the incident photons and µ′ is the polarization of the emitted photon, the gen-
eral expression for the radiant intensity, defined as the energy radiated in a given
direction with polarization µ′, given per unit time and unit solid angle, is [17, 18]

I(µ, µ′) =
8E2ω4I20N

2

(4πε0)3c50
[Id(µ, µ′) +

1

c0
Im(µ, µ′) +

ω

c0
Iq(µ, µ′)], (1)

where E is the static electric field intensity, I0 is the incident light intensity, and N
is the number of absorbers in the sample. The quantities Id(µ, µ′), 1

c0
Im(µ, µ′) and

ω
c0
Iq(µ, µ′) combine different cubic response functions involving interactions of the

different multipole moments appearing in the multipolar expansion of the propa-
gating light wave. Truncating the multipolar expansion at the electric quadrupole–
magnetic dipole level, the relevant cubic response functions are
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γα,β,γ,δ (−ωσ;ω1, ω2, ω3) = −〈〈µα;µβ, µγ , µδ〉〉ω1,ω2,ω3
, (2)

Gα,β,γ,δ (−ωσ;ω1, ω2, ω3) = −ı〈〈µα;µβ,mγ , µδ〉〉ω1,ω2,ω3
, (3)

Aα,β,γε,δ (−ωσ;ω1, ω2, ω3) = −〈〈µα;µβ, qγε, µδ〉〉ω1,ω2,ω3
, (4)

where we have introduced the electric dipole operator µ, the electric quadrupole
operator in its traced form q and the magnetic dipole operatorm, defined in atomic
units respectively as

µ =
∑
j

qjrj , (5)

q =
1

2

∑
j

qjrjr
T
j , (6)

m =
1

2

∑
j

qj
mj

lj =
1

2

∑
j

qj
mj

rj × pj , (7)

where qj and mj are the charge and mass of the electrons, and where rj and pj are
the position and linear momentum of electron j, respectively.
The exact expressions for the intensities Id(µ, µ′), Im(µ, µ′) and Iq(µ, µ′) in eq. 1

will depend on the polarization of the incident photons as well as the polarization of
the scattered photons and this will be defined by the experimental set-up. For a more
detailed discussion of the different polarization set-ups for EFISHG-CID, we refer
to Ref. [49] and Ref. [18]. We here limit ourselves to noting that there are only three
independent experimental set-ups that will lead to circular intensity differences in
the scattered light for chiral molecules. Indicating the different experimental set-
ups by the subscript i, the final expression for the circular intensity difference of
all three experiments has been shown to be given by the equation [18, 49]

CIDi =
1

c0

[Mi(ω) + ωQi(ω)]

Di(ω)
i = 1, 2, 3, (8)

where Mi(ω), ωQi(ω), and Di(ω) are linear combinations of the cubic response
functions in eqs 2–4. Di is defined in terms of cubic response functions involving
the electric dipole-only second hyperpolarizability tensor and is given by (using
here and in the following the Einstein summation convention for repeated indices)

Di (ω) =
Ai,1
225
|Ri (ω)|2 , (9)

Ri (ω) = Ai,2γ
ω,ω,0
λ,λ,µ,µ +Ai,3γ

ω,ω,0
λ,µ,µ,λ, (10)

where Ai,j are elements of a matrix containing information about polarization and
rotational averaging for the different unique experiments. The matrix A is given by
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A =

+1/2 +2 +1
+1/2 +1 −2
+1/4 +3 −1

 . (11)

In a similar manner, we can write Mi, which involves products of the second
hyperpolarizability tensor and cubic response functions with one magnetic dipole
operator replacing one of the electric dipole operators, as

Mi (ω) =
B1,i

225
Ri (ω)

(
Bi,2G

ω,ω,0
ν,ν,τ,τ +Bi,3G

ω,ω,0
ν,τ,ν,τ +Bi,4G

ω,ω,0
ν,τ,τ,ν

+ Bi,5G
ω,ω,0
τ,ν,ν,τ +Bi,6G

ω,ω,0
ν,ν,τ,τ

)
, (12)

B =

 −1 +1 −4 +1 −2 −1
+1 +4 −1 −1 +1 −2

+1/2 +3 +3 −2 +3 −1

 . (13)

Finally, the Qi contribution involves products of the second hyperpolarizability
tensor with cubic response functions in which the electric quadrupole operator
replaces one of the electric dipole operators, and is defined by

Qi (ω) =
Ci,1
225

Ri (ω)
[
W ντπρσ
i,1 Aω,ω,0ν,τ,πρ,σ +W ντπρσ

i,2 Aω,−2ω,0π,τ,νσ,ρ

]
(14)

Wαβγδε
i,1 = Ci,2εαβγδδε + Ci,3εαβδδγε + Ci,4εαγδδβε (15)

Wαβγδε
i,2 = Ci,5εαβδδγε (16)

C =

 −1 +1 0 −1 0
−1 +1 −1 +2 +2
−1/2 +2 −1 +1 +2

 . (17)

The electric quadrupole and magnetic dipole moments entering in the response
functions defining the CIDi in Eq. 8 are origin dependent: Indeed, even the indi-
vidual terms appearing in Eq. 8 are origin dependent, as a shift in gauge origin will
lead to changes in both Mi(ω) and Qi(ω)—that is, ∆Mi(ω) 6= 0 and ∆Qi(ω) 6= 0.
However, as shown by Rizzo and Ågren, [18] ∆Mi(ω)+ω∆Qi(ω) = 0, and thus the
observable, is origin independent, as is also the case for the electric-dipole-only func-
tion Di(ω). We will in the next section discuss this in somewhat more detail, with
emphasis on how the use of London orbitals may ensure gauge-origin independence
also for finite basis sets.

2.2. Basis sets and gauge origin-independence

As shown in Ref. [49], to correctly describe chiroptical properties it is necessary
to include contributions involving the electric-quadrupole and magnetic-dipole op-
erators. In order to demonstrate gauge-origin independence, we now discuss the
origin dependence of the different cubic response functions in eqs. 2–4.
Let us consider a displacement R of the origin of the coordinate of the multipolar

expansion defined as r′ = r −R. The cubic response functions introduced in Eqs.
(2)–(4) then change as [18]
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∆γω1,ω2,ω3

i,j,k,l = 0, (18)

∆Gω1,ω2,ω3

i,j,k,l = −1

2
εkλρRλΛω1,ω2,ω3

i,j,ρ,l , (19)

∆Aω1,ω2,ω3

i,j,km,l = −1

2
Rkγ

ω1,ω2,ω3

i,j,m,l −
1

2
Rmγ

ω1,ω2,ω3

i,j,k,l , (20)

where

Λω1,ω2,ω3

α,β,γ,δ = Λα,β,γ,δ(−ωσ;ω1, ω2, ω3)

= −ı〈〈µα;µβ, µ
p
γ , µδ 〉〉ω1,ω2,ω3

, (21)

and µp =
∑

j
qj
mj
pj is the dipole velocity operator.

In these expressions, the electric dipole operator appears both in its length- and its
velocity-gauge representations, the latter arising from the magnetic dipole operator
upon shifting the gauge origin. It is possible to rewrite the response function Eq. (21)
in the length gauge, using the equation of motions and the commutator relations [50,
51]

~ω〈〈A;B〉〉ω = 〈〈[A,H0];B〉〉ω + 〈|[A,B]|0〉, (22)

pj =
ime

~e
[µj , H0], (23)

where H is the electronic Hamiltonian.
These relations need to be satisfied in order to prove that the EFISHG-CIDi

are origin invariant. In practical calculations, these relations will only be fulfilled
for variational wave functions in the limit of a complete basis set. [52] Using the
response functions of an exact state [50], inserting the shift of the cubic response
function in the defintion of the tensors Di, Mi, and Qi in Eqs. 10, 13 and 17 and
after some algebraic manipulation, it can be shown that

∆Mi(ω) + ω∆Qi(ω) = 0, (24)

proving the origin independence of CIDi(ω). The use of a finite basis set implies
that operators are represented in a matrix representation, therefore the commu-
tator relations are no longer fullfilled. As the basis set quality is increased, the
commutators converge to their respective basis-set limits.
Gauge-origin independent magnetic properties can be ensured through the use of

London Atomic Orbitals (LAOs), also known as Gauge Including Atomic Orbitals
(GIAOs) [32]. The LAOs are defined as:

ζj(rM ,A
e
M ) = χj(rM )e−ıA

e
Mr, (25)

where χj is a spatial component of an atomic orbital centered on nucleus M located
at RM and rM = r − RM is the position of the electron relative to the nucleus
M . Ae

M is the potential that defines the dependence of the atomic orbital on the
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external magnetic field strength. Thus, LAOs are obtained by multiplying each ba-
sis function with a complex phase factor that depends explicitly on the uniform
external static magnetic field. Upon a shift in the gauge origin, the magnetic dipole
operator changes as m→m− ı

2~ [µ,H0]×R, ensuring origin independence. It has
been shown that a magnetic dipole operator satisfying this origin dependence also
for finite basis sets can be defined when LAOs are used, see eqn. 36 in Ref. [53],
and this form of the magnetic dipole operator is recovered in our Lagrangian ap-
proach. [38]

2.3. Analytic calculation of response functions

In order to determine the different CIDi from eqn. (8), it is necessary to calculate
the properties γαβγδ, Gαβγδ and Aαβεγδ defined in eqns. (2)-(4). In a recent work, we
presented a recursive implementation [39] for the analytic calculation of response
properties based on theoretical work in our group [38]. The recursive nature of the
approach ensures that any quantities needed (e.g. one- or two-electron integrals) can
be obtained from connected modules and programs, and the calculation of γαβγδ,
Gαβγδ and Aαβεγδ therefore becomes a straightforward application of our program.
We will here present a brief summary of the approach, limited to the aspects that
are relevant for the properties considered in this work. In this section, we will use
a tilde to denote quantities evaluated at general perturbation strengths, while the
absence of a tilde denotes evaluation at zero perturbation strengths.
Response properties defined by operators A,B, . . . can be written as perturbation-

strength εi derivatives of a time-averaged quasienergy Lagrangian {L̃a(D̃, t)}T eval-
uated at zero perturbation strength, where {·}T denotes time averaging. For a linear
response function, this can be exemplified by

〈〈A;B〉〉ωb =
d{L̃a(D̃, t)}T

dεb

∣∣∣∣
{ε}=0

= Lab ; ωa = −ωb, (26)

where

{L̃a(D̃, t)}T
{Tr}T
= Ẽ0,a − S̃aW̃, (27)

where
{Tr}T
= symbolizes that tracing and time-averaging is carried out for the terms

on the right-hand side. In eqn. (27), the overlap matrix S and the frequency-
weighted Fock matrix W were introduced, where the latter is given by

W̃ = D̃F̃D̃ + i
2

( ˙̃DS̃D̃− D̃S̃ ˙̃D
)
, (28)

where the generalized Fock matrix F is (restricting ourself to Hartree–Fock wave
functions)

F̃ = F̃− i
2T̃ = h̃ + G̃(D̃) + Ṽt − i

2T̃, (29)

and the generalized Hartree–Fock energy is
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Ẽ
{Tr}T
= Ẽ(D̃, t)− i

2T̃D̃ (30)
{Tr}T
=

(
h̃ + Ṽt + 1

2G̃(D̃)− i
2T̃
)
D̃ + h̃nuc. (31)

Eqs. (29) and (31) contain several contributions: the half-differentiated overlap ma-
trix T, the one-electron integral matrix h, the interaction operator for the external
fieldVt and the two-electron matrixG. We refer to previous work[38] for definitions
of these quantities, but note that the â in

Ṽ t
µν =

∑
a

exp(−iωat)εâ〈χ̃µ|â|χ̃ν〉 (32)

will involve the electric dipole, electric quadrupole and magnetic dipole operators
defined in Eqs. 5–7. By differentiating eqn. (27) using the desired perturbations and
evaluating the expression at zero perturbation strength, expressions for the linear
and quadratic response functions Lab and Labc can be obtained as

Lab
{Tr}T
= E0,ab + E1,aDb − SabW − SaWb, (33)

Labc
{Tr}T
= E0,abc + E1,acDb + E1,abDc + E2,aDbDc

+ E1,aDbc − SabcW − SabWc − SacWb − SaWbc, (34)

where we have used the fact that there will at most be a linear dependence in the
basis set on the applied perturbations (from the magnetic-field component of the
light). We have in the above expressions introduced the notation

Em,abc =
∂m+3E

(∂DT)m∂εa∂εb∂εc
, (35)

where tracing is carried out as in the example

TrE2,aDbDc =
∑
αβµν

∂3E

∂DT
αβ∂D

T
µν∂εa

Db
αβD

c
µν . (36)

Eqns. (33) and (34) are expressions that adhere to the so-called (n+1) rule [54]. It is
in general possible to express response properties according to other rules between
this rule and the so-called (2n+ 1) rules through the method of Lagrange multipli-
ers [54]. We begin by defining as matrices Ỹ and Z̃ the idempotency condition

Ỹ = D̃S̃D̃− D̃, (37)

and the time-dependent self-consistent field (SCF) condition

Z̃ =
[(
F̃− i

2 S̃
d
dt

)
D̃S̃
]�, (38)
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respectively, where the notation

[
M̃
]�

= M̃− M̃†, (39)

was introduced, and where, correspondingly,

[
M̃
]⊕

= M̃ + M̃†, (40)

can be defined. In eqs. (39) and (40), we consider any time differentiation to take
place before adjungation. Using the ansatz

λ̃a = [D̃aS̃D̃]	, (41)

for the Lagrange multiplier λa to Ỹ leads to the determination of the multiplier ζ̃
to Z̃ as

ζ̃a =
[
F̃
a
(D̃S̃− 1

2)− (F̃D̃− i
2

˙̃SD̃−iS̃ ˙̃D)S̃a
]⊕, (42)

and it is now possible to write the expression for an arbitrary response property
compactly as

〈〈A;B,C, . . .〉〉ωbc··· = Labc···k,n

{Tr}T
= Eabc···k,n − (SW)abc···nW − (SaW)bc···kS ,n′W

− (λaY)bc···kλ,n′Y
− (ζaZ)bc···kζ ,n′Z

, (43)

where the subscripts on k and n define the choice of rule for including or excluding
terms involving various perturbed arguments such as perturbed density matrices,
constituting a generalization that allows truncation rule choices between and in-
cluding the so-called (n+ 1) and (2n+ 1) rules. We refer to previous work[38],[39]
for a more detailed presentation of this and other aspects of the theory and imple-
mentation, including a description of how the perturbed density and Fock matrices
that enter into eqn. (43) can be calculated.
The relevant response functions for the present work are all cubic response func-

tions and the contributions that must be calculated can be identified from eqn.
(43). Making the rule choice (k, n) = (1, 2) for the calculation of γω1,ω2,ω3

α,β,γ,δ and
(k, n) = (0, 3) for Aω1,−ωσ,ω3

γε,β,α,δ and Gω1,−ωσ,ω3

α,β,γ,δ —rearranging the expression so that
any non-electric dipole perturbations are defined to be perturbation a, and omitting
contributions that must be zero upon differentiation because of lack of dependence
on the perturbing operators—the expressions for the various properties take the
relatively simple forms

γω1,ω2,ω3

α,β,γ,δ

{Tr}T
= −λµαYµβµγµδ

2′ − ζµαZµβµγµδ2′ , (44)
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Aω1,−ωσ,ω3

γε,β,α,δ

{Tr}T
= E1,µγεDµαµβµδ , (45)

and

Gω1,−ωσ,ω3

α,β,γ,δ

{Tr}T
= E1,mγDµαµβµδ + E2,mγDµβDµαµδ + E2,mγDµαDµβµδ+

E2,mγDµδDµαµβ − SmγWµβµαµδ ,
(46)

where the subscript in Y
µβµγµδ
2′ indicates that only terms involving density and

overlap matrices perturbed at most to second order are kept, so that

Y
µβµγµδ
2′ = [DµγµδSµβD + DµγµδSDµβ + DµβµδSµγD + DµδSµβµγD+

DµδSµγDµβ + DµβµδSDµγ + DµδSµβDµγ + DµδSDµβµγ+

DµβµγSµδD + DµγSµβµδD + DµγSµδDµβ + DµβSµγµδD]⊕ ,

(47)

and where Z
µβµγµδ
2′ and Wµβµαµδ are constructed in a similar manner, the latter

term without the order restriction that is imposed on Y
µβµγµδ
2′ and Z

µβµγµδ
2′ .

3. Computational details

The EFISHG-CID observables have been calculated for the five different chi-
ral systems studied by Rizzo and Ågren, namely (L)-Alanine, (L)-Arginine, (L)-
Aspartic acid, (L)-Cysteine and (L)-Tryptophan, using the same geometries as in
Ref.[18]. All calculations have been carried out at the HF level of theory, and
have been performed using the augmented and non-augmented Dunning-style basis
sets [55, 56] aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ. For (L)-Alanine, we have
performed a more extensive basis sets analysis using a series of cc-pVXZ, aug-cc-
pVXZ and daug-cc-pVXZ(X=D,T,Q) basis sets.
The response properties needed to determine these properties have been calcu-

lated using the recursive response code presented earlier. In this work, the code has
been run as a locally modified version of the Dalton [57, 58] quantum chemistry
program. The library Gen1Int[59][60] was used to calculate the differentiated one-
electron integral contributions. The response equations that arise as part of the
process of determining the perturbed density and Fock matrices were solved using
the linear response solver of Jørgensen, Jensen and Olsen.[61]
The calculations of the EFISHG-CIDs have been performed for different gauge

origins in order to test the dependence of the calculated CIDs on a shift in the gauge
origin and to verify the correctness of the London atomic orbital implementation.
We have used four different gauge origins: at the center of mass, shifting the gauge
origin of the molecules along the x-axis by 1 Å and 5 Å, respectively, and finally
placing the gauge origin on one of the hydrogen atoms.
All CIDs have been calculated using the formula reported in eq. (8) at a frequency

ω = 0.072 a.u. corresponding to a wavelength of λ = 632.5 nm.
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4. Results and discussion

We start our discussion by commenting on the individual contributions Di(ω),
Mi(ω) and Qi(ω) contributing to the final EFISHG-CID values as expressed in
Eq.(8). In Table 1, we report Di(ω), Mi(ω) and Qi(ω) for (L)-alanine using both
a conventional basis set and using LAOs for the cc-pVDZ and aug-cc-pVDZ basis
sets. For the conventional basis set, the center of mass has been used as gauge origin.
The general observations made for this molecule also hold for the other molecules
considered in this work.

cc-pVDZ aug-cc-pVDZ
Contribution i=1 i=2 i=3 i=1 i=2 i=3

M(ω) -6.92 -0.13 -2.19 -24.96 -0.98 -7.36
-4.35 -0.10 -1.36 -26.19 -0.91 -7.84

Q(ω) 0.13 0.06 0.02 5.47 0.96 0.86
D(ω) 209.90 22.56 47.41 2691.60 294.44 602.78

Table 1. Di(ω), Mi(ω) and Qi(ω) contributions for (L)-alanine. LAO results for Mi(ω) in italics, and the center
of mass has been used as gauge origin for the conventional basis set. Results are reported in 104 atomic units.

As noted by Rizzo and Ågren [18],Di(ω), which involves the second electric-dipole
hyperpolarizability tensor, is 2-3 orders of magnitude larger in absolute value than
the other parameters. We note that in eq.(8), the function Qi(ω) which depends
on the cubic response function involving the electric-quadrupole term is multiplied
by the frequency of the incoming light ω = 0.072a.u., and as a consequence we
expect that the CIDs will be dominated by Di(ω) and Mi(ω). In general, we find
that the use of LAOs does not significantly change Mi(ω). Similar observations
have also been reported for other nonlinear birefringences. [62–66] In contrast, the
inclusion of diffuse polarizing functions can be seen to be very important for all
the molecular parameters, increasing the different contributions by about an order
of magnitude. Interestingly, the smallest effect of augmentation is for the contribu-
tion involving the magnetic dipole operator, Mi(ω), which is surprising as diffuse
polarizing functions have been shown to be important for magnetic and chiroptical
properties. [67, 68]

Atom x y z
H 0.6845690 -1.9830120 -0.0479770
H 2.1338560 -1.4180460 0.4993280
H 0.6849940 0.1253820 1.4683160
H 0.9446230 2.1875190 0.1462130
H 2.4000320 1.2247000 -0.0400780
H 1.2086440 1.2356500 -1.3440700
H -0.9909530 1.7706270 0.2420230
O -1.3628200 -1.1845700 -0.2086840
O -1.5631430 1.0095400 0.0701730
C 0.6641370 0.0022810 0.3669710
C -0.8299270 -0.1284830 0.0300720
C 1.3286690 1.2413750 -0.2578120
N 1.3378080 -1.2048030 -0.0930080

Table 2. Optimized structure for L-alanine reported in ‌A.

We have collected our results without using London atomic orbitals for the
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EFISHG-CID of (L)-Alanine for different gauge choices of gauge origins in Ta-
ble 3. These results are also plotted in Figure 1 together with the London atomic
orbital results. In all calculations, we have used the cc-pVDZ basis set and placed
the gauge origin at the center of mass, on the hydrogen atom furthest away from the
center of mass, and at a position in which the x-component of the gauge origin have
been shifted by 1 Å and 5 Å with respect to the initial gauge origin, respectively.
The geometry of (L)-alanine is reported in the Table 2.

Gauge Origin CID(1) CID(2) CID(3)
CM -240.5 -41.4 -337.6

Hydrogen -240.5 -41.4 -337.6
1 Å -333.7 -41.4 -476.2
5 Å -745.3 -40.1 -1089.3

Table 3. Results for the EFISHG-CID of (L)-alanine for the different unique experimental setups calculated
using different gauge origins and without using London atomic orbitals. Results reported in 106 atomic units.

CM Hydr 1 Ang 5 Ang
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Figure 1. Comparison of the EFISHG-CID values of (L)-alanine obtained with and without LAOs for
different gauge origins. Results reported in 106 atomic units.

The results show the importance of addressing the lack of origin independence
in calculations of properties that dependend on an external magnetic field using
conventional basis sets, as all CIDs in this case depend strongly on the choice of
gauge origin. As expected, our calculations using LAOs give the same results for all
CIDs (polarization set-ups), independent of the choice of gauge origin. The effect
of changing the gauge origin increases significantly when increasing the distance
between the gauge origin and the center of mass of the molecule, and in particular
when the gauge origin is located outside the molecule (5 Å).
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We have calculated the EFISHG-CIDs for (L)-alanine using different basis sets,
with and without London atomic orbitals. The results obtained with the cc-pVXZ,
aug-cc-pVXZ, daug-cc-pVXZ (X=D,T,Q) families of basis sets are shown in Fig-
ure 2. We see how LAOs gives a smooth and fast convergence of the CIDs with
increasing basis set size, although convergence is slow when there are no diffuse
functions in the basis set (cc-pVXZ). Diffuse functions are therefore always needed
to get reliable results both with and without LAOs. Once diffuse basis sets of
triple zeta quality is used, LAOs are not very important. However, LAOs allow us
to also use the aug-cc-pVDZ basis and still get reasonably converged results. For
larger systems, where large basis sets cannot be used and where the gauge origin
can be expected to be rather far away from certain parts of the molecule, the use
of LAOs will be important in order to obtain results close to the basis-set limit.
Nevertheless, whenever possible, the aug-cc-pVTZ basis set is recommended for
EFISHG-CID calculations even when LAOs are used.
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-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Cc-pVXZ NoLond

Aug-cc-pVXZ NoLond

Daug-cc-pVXZ NoLond

Cc-pVXZ

Aug-cc-pVXZ

Daug-cc-pVXZ

Figure 2. Comparison of the EFISHG-CID3 values obtained with LAO and without LAO for (L)-Alanine,
for different basis sets. Results reported in 106 atomic units.

In Tables 4–6, we have collected the results obtained for the EFISHG-CID for
five different amino acids, following previous work [18], namely (L)-Alanine, (L)-
Arginine, (L)-Aspartic acid, (L)-Cysteine and (L)-Tryptophan. We have used both
conventional basis sets as well as London atomic orbitals, and results are re-
ported for the three basis sets that can be expected to provide qualitatively correct
results—that is, cc-pVTZ, aug-cc-pVDZ and aug-ccp-VTZ. To better illustrate the
basis set dependence, we have in Figure 3 plotted the results for the three basis
sets in the case of (L)-aspartic acid, as a representative case for our results.
As already observed in the case of alanine, CID(2) shows very little difference

between the LAO and non-LAO results, and in general displays a very modest basis
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set dependence, cysteine being the only exception to this. In contrast, CID(1) and
CID(3) still display fairly large basis set dependence, and it is only with the aug-
cc-pVTZ basis set that the LAO and non-LAO results agree well. Cysteine remains
a problematic case, where the difference observed between the LAO and non-LAO
results with the aug-cc-pVTZ basis set still remains fairly large. Considering the
change in the basis set going from aug-cc-pVTZ to aug-cc-pVQZ as observed for
alanine, we expect the LAO results obtained with the aug-cc-pVTZ basis set to be
close to the basis set limit. The cc-pVDZ basis set, as well as the cc-pVTZ basis

Molecule/Basis cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ
(L)-Alanine -150.8 -123.7 -69.9 -66.1

-240.5 -177.9 -66.6 -66.9
(L)-Arginine -54.2 -51.0 -85.2 -83.4

11.7 -20.6 -84.7 -81.2
(L)-Aspacticacid -68.6 -64.3 -48.1 -53.6

-21.3 -31.7 -43.4 -31.7
(L)-Cysteine -39.5 229.5 -60.3 -62.4

-131.2 -457.7 -387.2 -53.9
(L)-Tryptophan -46.1 -53.8 -143.5 -131.4

-55.2 -53.5 -151.0 -131.9
Table 4. CID(1) calculated for different basis sets and amino acids using London atomic orbitals (results without
London atomic orbitals reported in italics). Results reported in 106 atomic units.

Molecule/Basis cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ
(L)-Alanine -30.1 -24.2 -20.9 -19.4

-41.4 -30.9 -22.6 -20.1
(L)-Arginine 28.4 24.9 15.6 14.4

30.18 22.9 13.2 13.2
(L)-Aspacticacid 12.7 10.3 -0.7 0.4

13.0 8.9 0.8 0.6
(L)-Cysteine -2786.2 2846.8 2.9 7.2

-4657.9 3620.5 -10.4 1.9
(L)-Tryptophan -16.5 0.7 51.2 43.8

-35.3 -12.4 49.2 41.6
Table 5. CID(2) calculated for different basis sets and amino acids using London atomic orbitals (results without
London atomic orbitals reported in italics). Results reported in 106 atomic units.

CID(3) cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ
(L)-Alanine -209.6 -172.7 -94.2 -89.3

-337.6 -250.1 -88.3 -90.1
(L)-Arginine -94.4 -88.0 -134.3 -131.2

2.7 -41.8 -132.3 -127.4
(L)-Aspacticacid -108.1 -100.8 -71.6 -71.6

-37.9 -51.5 -65.3 -76.6
(L)-Cysteine -599.3 -77.3 -93.6 -99.5

-844.8 -86.9 -53.6 -83.7
(L)-Tryptophan -58.0 -76.3 -229.0 -210.2

-63.3 -70.3 -238.9 -209.9
Table 6. CID(3) calculated for different basis sets and amino acids using London atomic orbitals (results without
London atomic orbitals reported in italics).Results reported in 106 atomic units.
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set in some cases, is in general not able to give results that can be considered even
qualitatively correct.
We do not speculate, on the basis of the results presented here, on the accuracy

of our results compared to possible future experimental observations. Comparisons
with experiment and the check of the method should include the inclusion of sol-
vent effects in the calculations. Furthermore, Rizzo and Ågren showed that electron
correlation, as described by density-functional theory, can be substantial. [18] How-
ever, although their results were obtained without the use of LAOs, our results give
support to the quality of their results considering that they used the aug-cc-pVTZ
basis set, which we have demonstrated in general is in good agreement with the
corresponding LAO results and close to the expected basis-set limit.

ccpVTZ augccpVDZ augccpVTZ
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Figure 3. Results of the EFISHG-CID for (L)-Aspacticacid with LAO and without LAO. Results reported
in 106 atomic units.

5. Concluding remarks

We have calculated the EFISHG-CID of five natural chiral amino acids, including
effects of the electric dipole, electric quadrupole and magnetic dipole operators, at
the Hartree–Fock level of theory. Gauge-origin independence has been achieved
using London atomic orbitals, and these are the first gauge-origin independent
results presented to date. We have demonstrated that although the LAOs lead to
gauge-origin independent results, the improvement in basis set convergence is only
moderate, and large basis sets of aug-cc-pVTZ quality must be used to ensure
results close to the basis-set limit. This observation has also been made for other
linear and nonlinear birefringences. [62, 65, 66]
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We have shown that the CIDs calculated without LAOs display a rather strong
dependence on the choice of gauge origin, in particular when the gauge origin is
placed outside of the molecular framework. Consequently, although our study has
shown that LAOs only lead to moderate improvements in basis set convergence
for the five simple amino acids studied here, we can expect LAOs to be much
more important for larger systems where a single global gauge origin is expected to
be less adequate for larger parts of the molecule. Our results suggest that the non-
LAO results obtained previously at the density-functional theory level by Rizzo and
Ågren, [18] are reliable as far as basis set convergence is concerned, and that they
give an accurate prediction of the magnitude of future experimental observations
EFISHG-CIDs, assuming that electron correlation functionals are reliably described
by the B3LYP functional for this property. However, to confirm this assumption,
the use of LAOs in calculations of EFISG-CID should be extended to the level of
density functional theory.
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