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Abstract 
 

One of the current global healthcare challenges are re-emerging infectious diseases, such as 

healthcare-associated (HCAI) infections, often complicated by multidrug resistance and chronicity, and 

tolerance to conventional antibiotics. There is an obvious demand for the discovery and development 

of antibiotics with novel mechanisms of action (MOAs). Natural environments, including the largely 

unexplored marine locations are rich sources for promising novel natural products (NPs). 

In this project, the antibacterial potential of a library of synthetic marine natural product mimics 

(MNPMs) was evaluated in collaboration with a PhD project in chemistry (both were parts of MabCent 

CRI, Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery). The MNPM 

library was tested for antibacterial activity in a four-step screening workflow. The activity of selected 

compounds against the reference bacterial strains was verified in expanded screenings against random 

and multidrug-resistant clinical isolates, e.g. methicillin-resistant Staphylococcus aureus (MRSA).  

 

 

  

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 MNPMs 

characterized in the current work, could become the leads for further development of bactericidal 

agents for treatment of chronic, including biofilm-associated, infections. 
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Резюме 
Одной из актуальных глобальных проблем здравоохранения являются считавшиеся 

побежденными инфекционные заболевания, в частности инфекции, связанные с оказанием медицинской 

помощи (ИСМП). Борьба с такими инфекциями часто осложняется их хроническим характером и наличием 

мультирезистентности к традиционным антибиотикам. В связи с этим, очевидна необходимоть поиска и 

разработки антибиотиков с новыми механизмами действия (МД). Природня среда, в особенности, 

малоизученная морская среда является богатым источником потенциально новых природных соединений 

(ПС). 

В рамках данного проекта были исследованы антибактериальные свойства ряда синтетических 

миметиков морских природных соединений (ММПС). Исследования проводились совместно с одним из 

Ph.d.- проектов по химии (оба проекта инициированы Центром научных инноваций в разработке морских 

биоактивных материалов и лекарств, MabCent CRI). Библиотека ММПС была протестирована на наличие 

антибактериальной активности в ходе четырех-этапного процесса скрининга. Активность отобранных 

кандидатов в отношении контрольных штаммов бактерий была верифицирована в процессе 

расширенного скрининга, где была использована случайная выборка клинических изолятов, а также 

мультирезистентные изоляты, в том числе, метициллинрезистентный золотистый стафилококк, 

Staphylococcus aureus (МРЗС). 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

  

 

 

        

 

 

 

 

 

 Соединения-

прототипы, охарактеризованные в рамках данного проекта, могут стать первым шагом в дальнейшем 

развитии бактерицидных агентов для лечения хронических инфекций, в том числе, связанных с 

биопленками.
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Abbreviations 
 

  
Aae Autolysin/adhesin from S. epidermidis 
Aap Accumulation-associated protein 
ABR Antibiotic resistance 
ADMETox Adsorption, distribution, metabolism, excretion, toxicity 
AMP Antimicrobial peptide 
AMR Antimicrobial resistance 
aps Antimicrobial peptide sensor 
AtlE Autolysin E 
Bap Biofilm-associated protein 
CAT Chloramphenicol acetyltransferase  
CLSM Confocal laser scanning microscopy 
CoNS Coagulase-negative staphylococci 
Embp Extracellular matrix-binding protein 
ESBL-CARBA Extended spectrum β-lactamase - carbapenemase 
FACS Fluorescence-activated cell sorting 
FC Flow cytometry 
GFP Green fluorescent protein 
HCAI Healthcare-associated infection 
HTS High-throughput screening 
IS Insertion sequence 
MIC Minimal inhibitory concentration 
MNMP Marine Natural Product Mimic 
MOA Mechanism of action 
MRSA Methicillin-resistant Staphylococcus aureus 
MRSE Methicillin-resistant Staphylococcus epidermidis 
MSCRAMM Microbial surface components recognizing adhesive matrix molecules 
NP Natural product 
PGA Poly-γ-glutamic acid 
PIA Polysaccharide intercellular adhesin 
PSM Phenol-soluble modulin 
SAR Structure-activity relationship 
SCV Small colony variant 
Sdr Serine-aspartate repeat-containing protein 
SSP Surface-associated protein 
SSSI Skin and skin structure infection 
TCP Tissue culture plate 
VBNC Viable but nonculturable cell  
VRE Vancomycin-resistant enterococci 
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1. The challenge: bacterial infectious diseases  
 

Nowadays, in the age of high technologies and achievements in medicine, many life-

threatening infectious diseases of bacterial origin have been defeated.   However, it seems to be too 

early to conclude that the fight is over. Indeed, infectious diseases (including parasitic diseases) killed 

9.5 million people, corresponding to 17% of all deaths globally and remained the top cause of death in 

low-income countries in 2012 1-3 and also in children under 5 years in 2015 4 . Along with the emergence 

of new communicable diseases (AIDS, hepatitis C, dengue haemorrhagic fever), old infections are “re-

emerging” with a new face (e.g., multidrug-resistant tuberculosis and infections caused by methicillin-

resistant Staphylococcus aureus, i.e., MRSA) 5. Moreover, the importance of healthcare-associated 

infections (HCAI) is now increasing, becoming a great medical concern. Urinary tract infections, surgical 

site and medical device-associated infections play a significant role in HCAI morbidity 6. In Europe alone 

HCAI lead to approximately 37 000 deaths  and contribute to an additional 110 000 deaths annually 7.  

 

Factors contributing to the emergence of infectious diseases in the modern world are:  

 Extensive demographic changes (growing population, high mobility, urbanization); 

 Antibiotic use and misuse (wrong doses, use in food and feed); 

 Inappropriate hygiene standards and healthcare procedures, social inequality, mostly in 

developing countries; 

 Immunocompromised patients (chemotherapy, post-transplantation and diabetes), mostly in 

industrialized countries; 

 Others (climate change, wars etc.) 

 

An infection is a bi-directional process, involving the interaction of a pathogen and a host 

organism (patient). The current challenging situation with the treatment of infectious diseases is thus 

a result of changes from both sides. This alteration is obviously a dynamic phenomenon and quite 

complex, especially on a global scale. 

Undoubtedly, extensive research in this field is needed, including the search for new anti-

infective agents, which could “fill in the gaps” in the currently available solutions and offer some 

alternatives for the future.  
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2. Objective of the study 
 

The main aim of this MabCent PhD project was to investigate antibacterial and/or anti-biofilm 

activity as well as the mechanism of action (MOA) of compounds that are promising as potent anti-

infective agents. These compounds were identified by selection from a library of synthetic marine 

natural product mimics (MNPMs) in close collaboration with another PhD project at MabCent. 

 

In order to achieve the overall aim, the following specific aims were defined: 

 Identify compounds with antimicrobial activity from a library consisting of two main groups of 

synthetic MNPMs by successive screenings against panels of relevant test bacteria; 

 Determine the MOA of selected MNPMs by using optimized in vitro test systems; 

 Evaluate the propensity of these MNPMs to induce antibiotic resistance (ABR) development; 

 Identify MNPMs with anti-biofilm activity and characterize it, using two types of S. epidermidis 

in vitro model biofilms   
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3. Background 
 

To set a background for the problems addressed in the current work, an overview of the 

challenges related to “re-emerging” infections will be given, with emphasis on bacterial HCAI, namely 

the issues of multidrug-resistant bacteria, persister cells, and microbial biofilms. Some aspects of 

treatment and prevention thereof will be presented accordingly.  

 

3.1. The multifaceted problem 

3.1.1. Drug resistance in bacteria 
Being a part of antimicrobial resistance (AMR) in general, ABR  is recognized as one of the main 

global problems associated with infectious diseases 8. AMR leads to at least 50 000 deaths in the EU 

and US alone each year 9, and much more – worldwide (Fig. 1). More than 25 000 patients die in the 

EU from infections with multidrug-resistant bacteria annually. Overall, infections due to antibiotic-

resistant bacteria result in extra healthcare cost and productivity losses of at least EUR 1.5 billion each 

year in the EU 10. The current situation appears to anticipate the post-antibiotic era, when “common 

infections and minor injuries can kill” as predicted for the future 8. Indeed, during the last decade the 

therapeutic options in treating community-acquired and HCAIs have been dramatically influenced by 

the changes in the susceptibility patterns 11. The estimation is that in 2050 around 10 million deaths 

can be caused by AMR (Fig. 1).  

 

 

Figure 1. Annual deaths caused by AMR compared to other major causes of death. Reprinted with permission 
from The Review on Antimicrobial Resistance, 2014 9. 
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The antibiotics era began with Paul Ehrlich’s concept of a “magic bullet” 12. Together with co-

workers he tested hundreds of synthesized organoarsenic derivatives of a drug Atoxyl in syphilis-

infected rabbits. In 1909 this screening resulted in compound 606, Salvarsan, which was successfully 

used for treatment. Then the approach of Paul Ehrlich’s and co-workers led to a discovery of sulfa 

drugs. Bayer chemists, Josef Klarer and Fritz Mietzsch, synthesized sulfonamidochrysoidine Prontosil 

in 1932 (KI-730,) and Gerhard Domagk tested its antibacterial activity in a number of diseases 13. The 

third notable event was the discovery of penicillin by Alexander Fleming in 1929 14. Interestingly, the 

first hospital use of a drug that could be called an antibiotic, Pyocyanase, presumably quorum sensing 

molecules preparation from Pseudomonas aeruginosa, was in 1899 15.  

 

Figure 2. Co-evolution of antibiotic deployment and ABR development. Modified from Clatworthy et al. 16. 

 

Unfortunately, ABR appeared quite early. For penicillin it was detected just after its’ large scale 

usage in the 40’s, and for sulfonamides it was recorded around the same time (Fig. 2). Many antibiotics 

from novel chemical classes were discovered between the 1950s and 1970s, and the challenge of 

resistance rose rapidly alongside (Fig. 2) 15. Thus, the equilibrium in this continuing “arms race” seems 

to be easily broken. We should always consider that selective pressure can provoke diverse protective 

mechanisms in microbes 15. The discovery of transferable resistance to sulfonamide 17 and 

fluoroquinolone antibiotics demonstrates that even the introduction of synthetic antimicrobials, which 

do not occur in nature, does not eradicate the risk of plasmid- or transposon-determined resistance 18. 
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3.1.2. Persisters 
Another type of challenge in the treatment of bacterial infectious diseases is associated with 

persistence. This phenomenon has been discussed in the context of chronic infections for a long time. 

Although discovered already in 1942 19, it still appears to be still incompletely understood. 

 Physiological states associated with persistence include: 

 Cellular invasion and intracellular persistence. Some bacteria responsible for chronic (persistent) 

infections are obligate intracellular pathogens (Rickettsia, Chlamydia). Other bacteria can adapt 

to the intracellular environment, like Staphylococcus and Streptococcus 20, 21.  

 Naturally occurring electron transport deficiency, auxotrophy for thymidine (and several other 

traits) manifested as the “small colony variant” (SCV) phenotype, a slow-growing bacterial 

resistant subpopulation 22. The aforementioned intracellular persistence of staphylococci has 

been shown to be associated with SCVs 23. 

 Dormancy, when cells are non-growing and have reduced metabolism 24. Dormant 

physiological state of bacteria was shown to be associated with host immune evasion, 

decreased antibiotic susceptibility and therefore, prolonged survival duration 25. Importantly, 

persister cells and dormant cells are different phenomena, although being dormant might 

preclude becoming a persister cell.  

In the strict sense, a persister cell is defined as a member of a specific “dormant” subpopulation 

randomly formed in a microbial population which can easily survive the antibiotic treatment while the 

majority of the population is killed/eradicated 26. The mechanisms behind switching to a persister state 

and backwards can be different, and overall “the persister” phenomenon appears to be a collective of 

several traits/features. Recently it was stated that the phenomenon of persistence might not be always 

stochastic, but also induced 27, 28.  

A hypothesis about the role of persisters in a bacterial population was proposed by Spoering 

and Lewis 29. They inferred that upon antibiotic treatment, the majority of cells in a bacterial culture is 

killed by a mechanism of programmed cell death 30. The culture survival is provided by a small persister 

subpopulation, in which this mechanism is inactivated. Experimental data confirmed that assumption: 

biofilms and stationary phase cultures, both containing persister subpopulations, had strongly reduced 

susceptibility to antibiotics, compared to exponentially growing cells 29.  

Overall, the formation of persistent subpopulations and their survival at fluctuating 

environmental conditions are believed to be regulated by a complex of several mechanisms, including 

toxin-antitoxin modules, alternative energy production, SOS response, enhanced efflux activity, etc. 

Importantly, under certain conditions the persister cells revert to “normal” growing forms 31. Thus, 

persistence can be characterized as adaptive resistance connected to phenotypic variation 32. 
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3.1.3. Biofilms and associated infections 
HCAIs were associated with the use of medical devices in 60-70 % of the cases already in 2008 

33. Device-related infections like catheter-associated urinary tract infections, central line-associated 

bloodstream infections and ventilator-associated pneumonia 34, 35, together with tissue-based 

infections associated with cystic fibrosis 36 and wounds (surgical 37and diabetic 38), are probably the 

major infections believed to be linked to microbial biofilms 39. The reason why biofilms successfully 

colonize these niches lies in the nature of the biofilm life style, which is reviewed in the next section. 

Implants, catheters and prostheses are successfully colonized by bacteria and offer favorable 

conditions for biofilm development. For example, within the implant environment, penetration of host 

defense mechanisms can be impaired 40 and surface association of bacterial cells with implant material 

is facilitated by bacterial adhesins and surface preconditioning 41. As displayed in Table 1, there are few 

groups of microorganisms that commonly cause infections, and the leading position belongs to the 

group of Coagulase negative Staphylococci (CoNS) 42, 43. Concerning the current development of the 

medical devices sector, the clinical relevance of CoNS will increase. 

 

Table 1. Medical device-associated infections 

Medical device Causative microorganism Ref.b 

Ventricular assist devices and 
shunts  

Staphylococcus spp.a, Candida spp., Streptococcus spp., 
Pseudomonas spp., Corynebacterium spp. 

44 

Central venous catheter Staphylococcus spp. (CoNS and S. aureus), Gram-negative 
bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa), 
Candida spp., Enterococcus spp. 

44-46 

Fracture-fixation devices Staphylococcus spp., Propionibacterium spp., 
Corynebacterium spp. 

44 

Artificial heart valves Staphylococcus spp. (CoNS and S. aureus), Streptococcus spp., 
Gram-negative bacteria, diphteroids, Enterococcus spp., 
Candida spp. 

44-46 

Endovascular grafts Enteric Gram-negative bacteria, Pseudomonas spp., 
Staphylococcus spp. (CoNS and S. aureus), Streptococcus spp.,  

44, 46 

Orthopedic devices (artificial 
joints, hips etc.) 

Staphylococcus spp., (CoNs and S. aureus), Streptococcus spp., 
Gram-negative bacteria (P. aeruginosa), Enterococcus spp. 

44-46 

Urinary catheters E. coli, Enterococcus spp., Candida spp., K. pneumoniae, CoNS 44-46 

Others: breast implants, 
artificial voice prosthesis, 
intrauterine device 

Staphylococcus spp., E. coli, Streptococcus spp., Candida spp., 
Lactobacillus spp. 

44, 45 

Contact lenses Pseudomonas spp., Staphylococcus spp. (CoNS), Gram-positive 
cocci, Actinomyces sp., Candida albicans 

45 

a Bold font indicates the primary causative infectious agent; 
b Based on Parra-Ruiz et al. , Khan et al. and Thomas et al. 44, 45, 47 and references therein. 

 

One should keep in mind that the association of biofilms with foreign-material infections 

demonstrated by direct microscopy 48 and animal models 5, 49, 50, may not be that clear-cut 1. The key 

role of adherence by slime (biofilm) production was proposed for S. epidermidis device-related 
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infections already in 1982 51. However, later experiments with animal models suggested the complexity 

of the pathogenesis of such infections, where a biofilm might be just one of the factors involved 52, 53. 

This conclusion was also in line with data from analysis of clinical specimen 54. 

 

Biofilm formation and composition 
Presumably, the first documented evidence of microbial biofilms was given by Antonie van 

Leuwenhoek in the late 17th century when he examined dental plaque under the home-made 

microscope 55. The term “biofilm”, however, was introduced later. Probably, it was used in a 

publication for the first time by Mack et al. in 1975 56. Since that time, the “biofilm” definition has been 

changing and updating continuously. The current definitions state that a biofilm is a complex 

community of microorganisms embedded in a matrix made of self-produced and external substances, 

which is floating or attached to a surface 57, 58. 

The currently accepted general model of a biofilm life cycle, as exemplified by S. epidermidis 

biofilm, is depicted in Fig. 3. Biofilms are often (but not always) sessile communities. The attachment 

is a complex process that involves both physical and chemical interactions between the bacteria, the 

surface and molecules that are present on the surface 59. After the attachment, cell division and matrix 

production eventually results in a mature biofilm with specific architecture. Common structural 

components of the biofilm extracellular matrix are: 

 Polysaccharides (e.g., Polysaccharide intercellular adhesin, PIA); 

 Proteins (incl. enzymes); 

 Extracellular DNA (eDNA); 

 Teichoic acid. 

The ratio between the matrix components is species- and conditions- specific 60. The same is true 

for the biofilm architecture, as it depends on the environmental factors, such as nutrition, surface, 

oxygen and shear forces 61. Biofilm maturation and dispersal that together ensure the populations well-

being and spreading to colonize new habitats, are governed by both mechanical and chemical 

mechanisms (e.g., phenol-soluble modulins, PSMs, Fig. 3) 62. Adaptation to heterogeneous 

environmental factors leads to the formation of physiologically diverse subpopulations within biofilms. 

For example, oxygen gradients lead to differentiation into aerobic or fermentation metabolism and, 

together with nutrient gradients, lead to subdivision into active and dormant cell subpopulations 63, 64. 
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CoNS are opportunistic pathogens 
In the late 1990s-early 2000s, the majority of the infection-causing CoNS were antibiotic 

resistant isolates 54, 92. S. epidermidis is the predominant member of the group encountered in 

infections 47, 93.  For example, it accounted for 34.7% of the bacteremia cases in a study conducted 

among 1760 patients of a tertiary care hospital over a period of 10 months 94.  

Commensal CoNS, given a chance, can use their colonization abilities as virulence factors 1. 

These staphylococci have also an arsenal of mechanisms protecting them from host immune 

responses, such as antimicrobial peptides (AMPs). S. epidermidis is, for instance, able to modify its cell 

surface charge when the aps (antimicrobial peptide sensor) defense system is activated in response to 

positively charged AMPs 95. The putative transporter systems, VraG and VraF, probably are able to 

remove AMPs from the bacterial surface 95, 96.  

In addition to the aforementioned cellular resistance mechanisms, the ability to adapt to 

diverse conditions within the host organism is provided by bacterial community-related mechanisms. 

Biofilm production is considered as a key virulence factor for S. epidermidis 97-99. Other CoNS 

presumably also rely on their colonization mechanisms during the establishment of infection 43. The 

gene products of the icaADBC operon (found in S. epidermidis and other CoNS) are responsible for 

synthesis of PIA 100, 101, which is the main extracellular matrix component of S. epidermidis biofilm. 

Additionally, PIA-independent biofilm formation has been described in S. epidermidis, e.g. Aap 

(accumulation-associated protein)- or EmbP (extracellular matrix-binding protein)- dependent 

mechanisms 102, 103. The matrix components provide a protection from phagocytosis by host immune 

cells 104. An exopolymer poly-γ-glutamic acid (PGA) of CoNS was not shown to be associated with 

biofilm formation, however, the corresponding gene locus is upregulated in biofilms 96. PGA repels host 

antimicrobial molecules and prevents phagocytosis 105.  

The complex of these and other features of CoNS generates a diversity of phenotypes within a 

given population, which facilitates the adaptation to the changing environmental conditions 106. 

 

3.2. The search for solutions: discovery and study of novel antimicrobials 

3.2.1. Drug discovery and development process 
The challenge of treating infectious diseases triggers the search of novel antimicrobials, i.e. the 

drug discovery and development. This process is commonly organized in a “pipeline” of successive 

tasks and procedures as illustrated in Fig. 5. Although a considerable portion of all drugs, i.e. about 30 

%, have been developed “purely” chemically 107, here we focus primarily on the discovery of drugs with 

the natural origin. 

The process starts with the biomaterial collection, preparation of extracts and fractions and 

screening for bioactivity, which results in isolation/detection of “hits” (Fig. 5, red section), that exceed 
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Historically, antibiotic drug discovery has been tightly linked to molecules produced by 

organisms in nature, called “natural products” (NPs), as sources of novel chemical structures 116, 117. 

Although humans have been searching for and using naturally occurring bioactive substances since 

ancient times, this search shaped a research field, “bioprospecting”, during the 20th century. According 

to the World Health Organization, bioprospecting is the systematic search for and development of new 

economically valuable products from nature. Or, briefly, bioprospecting is “looking for ways to 

commercialize biodiversity” 2. The current bioprospecting concept includes several approaches that 

comprise the complex of activities leading to a commercially interesting candidate (e.g., a compound) 

with a potential to be developed into a final “product”. For example, at the “starting point”, living 

organisms can either be explored by genomic tools for the potential to produce interesting 

compounds, or used directly for such a production through extraction/isolation. In the latter case, the 

isolation and characterization of these compounds can be determined either by their novel chemistry, 

or their bioactivity (bioassay-guided purification) 118. To date, drug discovery seems to be one of the 

main directions of bioprospecting. Fig. 5 illustrates the drug discovery and development pipeline based 

on the bioassay-guided bioprospecting approach. An example of the implementation of this approach 

is a multidisciplinary pipeline, MabCent CRI (Centre for Research-based Innovation on marine 

bioactivities and drug discovery, Tromsø, Norway, 2007-2015). Focused on the identification of 

commercially interesting bioactive substances, it coordinated the work of the national marine biobank 

(Marbank) and the screening platform (Marbio) between 2007 and 2015 119. 

Advances in screening techniques make it possible to establish high-throughput drug discovery 

platforms. Unfortunately, these platforms do not always give high yields of positive hits. For example, 

out of 13 000 plant NPs screened for anti-biofilm activity, only one active compound was identified 120. 

Testing of a library of 4 509 compounds against P. aeruginosa biofilms resulted in one candidate after 

the second screening round 121. In another study, out of the 66 095 compounds, 61 exhibited anti-

biofilm activity 122. In another study, 42 865 compounds included in the screening against S. epidermidis 

biofilms yielded 352 hits selected for further studies 123. An alternative to the screening of huge 

numbers of “random” extracts or synthetic libraries could be the rational search, i.e. selection and/or 

design of compounds to be screened. For instance, looking for anti-biofilm compounds in natural 

environments based on antifouling observations, specific features of secondary metabolites or using 

the combinatorial chemistry approach 107. 

 

3.2.2. Bioactivity testing approaches  
The complexity of living organisms makes it difficult if not impossible to perform bioactivity 

studies in situ. Therefore, it is necessary to make simplified models of the biological systems and/or 

their components. At the same time, as “all models are wrong” 124, one should, first, make sure that a 
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Initial antimicrobial testing is generally performed with planktonic bacteria using the 

“standard” broth microdilution inhibitory assay 130, which reveals the minimum inhibitory 

concentration (MIC) of the test compound. However, additional assays employing direct microscopic 

observation 131 or biomarker signals 132 for detection of antibacterial effects were proposed (Fig. 6). 

The following critical task is to infer the MOA of the leads. Common tools for the whole-cell bioactivity 

testing presented in Fig. 6, can be used both for the initial screenings and for the MOA studies. The 

“omics” techniques, such as metabolomics, transcriptomics and proteomics 133, 134 are increasingly 

popular tools that help to extract valuable information from high-content data sets. Computational 

inference tools give additional support to the information obtained empirically 125. Examples are 

bioactivity profiling by comparison of test molecules with the existing databases 135, 136 or direct 

computer simulation 137. Combined and integrated analysis of the data will aid the formulation of a 

hypothesis of the MOA of the leads. However, identification of the exact molecular targets requires 

subsequent experimental confirmation 125. In the context of antibiotic drug discovery, it can be useful 

to indicate early, whether the compound displays bacteriostatic (inhibitory) or cidal (killing) properties. 

The latter often results from membrane-disruptive activity, which can be tested before attempting to 

elucidate intracellular targets 138. However, antibiotic activity can be complex and involve multiple 

targets in addition to the cell envelope 125, 129, 139. 

Molecular antibiotic targets can be revealed by direct biochemical methods (e.g., affinity 

purification) together with genetic and genomic methods (e.g., microarrays)125, 129. Overall, the 

integration of several aforementioned tools seems to be the most beneficial approach 125. 

 

3.2.3. Tools for MOA studies 
Some of the tools used for the screening and MOA studies within the phenotypic approach, as 

exemplified in Fig. 6, are described below. 

 

Biosensors and reporter assays 
Biosensor is a device (biological system) that can recognize input (environmental) signals and 

report it as a transduced output signal detectable by an instrument and proportional to the input signal 

intensity 140, 141. Today, biosensors are ubiquitously used in life science, especially the ones based on 

fusions of reporter genes with regulatory elements, such as promotors 142-144. Table 2 gives examples 

of commonly used reporter genes, i. e., genes with easily detectable products. The advantages of light 

emission-based reporters are the possibility for kinetic measurements within the same sample and the 

automated signal detection, which increases the inter-laboratory comparability. 

Obviously, microbial biosensors that specifically recognize certain treatments, have a potential 

of application in drug discovery, both in bioscreening and MOA studies. In whole-cell biosensors based 
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on promoter-reporter constructs, measuring the abundance of a specific marker gene or protein, gives 

an indication of a certain cellular phenotype 129 as the response to antimicrobial treatment. The stress 

response mechanisms are associated with strong induction of “pathway-specific stress promoters”, 

which can be exploited as such markers. To identify suitable antibiotic markers, “reference compendia” 

based on stress-induced gene expression profiles are employed 126. The resulting cellular biosensors can 

be used for categorization of unknown antibacterial agents according to their MOAs 126, 145. 

 

Table 2. Examples of reporter genes 

Product  Gene Principle Reference 

Chloramphenicol 
acetyltransferase (CAT) 

cat Chromatographic detection of CAT reaction 
products in transfected cells; 
selectable marker 

146 

 β-galactosidase lacZ Spectrophotometric/fluorometric/visual 
detection of substrate analogues conversion; 

147 

Green fluorescent 
protein (GFP)  

 gfp Fluorescence in expressing cells when excited 
with UV/blue light; 
no external substrate required 

148 

Luciferase   lucGR Fluorescence in expressing cells in presence of 
substrate D-luciferin, excitation not required 

 
149, 150 

luxABCDE Fluorescence in expressing cells, no external 
substrate and excitation required  

151 

 

Imaging and flow cytometry 
Light signals produced by biosensors as well as light emission by various cellular structures 

bound to specific fluorescent labels, are commonly analyzed by microscopy and flow cytometry (FC). 

These tools allow researchers to track biological processes at the single cell level, including 

visualization and quantification of the treatment effect on microbes. Importantly, the antimicrobial 

test compounds can also be labelled, and a number of fluorescent drug analogues exists 84, 152, 153. 

Fluorescent labelling, being relatively safe and convenient, has become more popular than 

radioisotope labelling. However, isotope labelling is still used, for example, in ADMETox (for 

“Adsorption, distribution, metabolism, excretion, toxicity”) studies 154. Imaging, especially fluorescent 

microscopy, is one of the promising approaches in current drug discovery, offering an arsenal of tools 

to choose according to the researcher’s goals 155 and proven to be suitable for work with NPs 156. 

Modern microscopic techniques allow for obtaining high-quality images with spatiotemporal 

resolution and are compatible with high-throughput screening (HTS), both in vitro and in vivo  152, 157. 

Single-cell imaging followed by cytological profiling allows to identify the cellular pathways affected by 

test compounds 131. Emerging label-free imaging techniques might be more important in the years to 

come. One example is the Raman spectroscopy used to classify antimicrobials according to their MOA 

158. It has been suggested for phenotype characterization at the single-cell level 159. Another example 

is X-ray spectromicroscopy 160.  
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FC is another technique that has a potential in antimicrobial studies 161, 162. It is better suited 

for quantitative analysis (statistics) than microscopy while giving data at the individual cell-level, but it 

also requires comparatively expensive equipment and trained personnel 162. A combination of light 

(forward and side) scattering and DNA content measurements in bacteria in response to antibiotics of 

different classes, allowed to distinguish between the resistant and susceptible strains within a short 

time period in a dose- and time-dependent manner 163. Furthermore, a combination of fluorescent 

probes allows to perform multiparametric analysis of cell response to treatment, although 

discrepancies between the staining techniques have been reported 161, 162. With the advantages of 

being rapid and accurate, FC is a useful tool to study the heterogeneous response of bacterial 

subpopulations to a stress (antimicrobial treatment). Moreover, if FC is combined with fluorescence-

activated cell sorting (FACS), these different subpopulations can be subsequently analyzed, for 

example, by proteomics/transcriptomics techniques, or in conventional growth based assays 162. The 

latter can be used to isolate and characterize, e.g., viable but nonculturable cells (VBNCs) 164  and 

persister cells 165. 

Although apparently FC is better suited for studies of planktonic cultures, while microscopy for 

studies of biofilms, the latter were also successfully studied using FC 166. The combination of 

microscopy and FC made it possible to quantify at the single-cell level and characterize the spatial 

distribution of bacterial subpopulations in biofilms 162.  

 

3.2.4. Further studies 
It is extremely important to evaluate the applicability of identified candidates for the future 

clinical use before actual clinical trials are initiated (Fig. 5, blue section). Apart from the preliminary 

assessment of the potential to develop AMR, the candidates are tested in terms of pharmacokinetics. 

Biocompatibility is explored by imitating physiological conditions as closely as possible (in presence of 

buffers, serum, plasma, etc.) and followed by in vivo assays. These activities compose the complex of 

ADMETox studies (Fig. 5, blue section). If reduced susceptibility or toxic effects are revealed at this 

step, the ways to overcome these challenges/adverse effects are explored as well. The “omics” 

approaches used during the pre-clinical evaluation of potential adverse effects may help to reduce the 

failure rates during clinical studies of drug candidates 167. 

 

3.2.5. Biofilm in vitro models and model bacteria 

Technological challenges  
To our knowledge, here are no universal “standard” guidelines for activity tests against biofilms 

and no reliable tests for biofilm susceptibility to treatment168. This is in contrast to liquid planktonic 

cultures, that are screened in broth micro- or macrodilution inhibitory assays 130. A wide range of different 
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biofilm-screening techniques exists. Often biofilm test systems are based on static biofilm models, also 

called tissue culture plate (TCP) assays. This is similar to standard minimal inhibitory concentration (MIC) 

assays 130 with regards to studying growth inhibition, but biofilm eradication is assayed on an established 

biofilm 52. 

TCP assay in particular, and biofilm assays in general, require adjustments to different 

species/strains and several replicates due to the high variability 169.  In addition, the plate materials 

and surface treatments, such as the Nunclon™ Delta (Thermo Scientific) treatment used for cell 

attachment, should be considered as they can cause the attachment of the test substances as well. A 

modification of the TCP assay where a biofilm is formed on the pegs fitted into a standard microplate-

format tray under shear conditions, is the Calgary Biofilm Device (Innovotech, Canada) 170. This device 

was approved in 2008 by Health Canada as a clinical diagnostic tool for P. aeruginosa infections 171. 

Both biofilm models can be used for a wide range of subsequent analyses 172, 173, although 

certain limitations should be considered. For example, while the TCP-grown biofilms can be directly 

observed under the confocal microscope 174, the peg-attached bioflms of the Calgary Device have to 

be removed for the microscopy, making further incubation impossible 175. At the same time, the latter 

allows to avoid harsh washing steps and minimize the manual handling of the samples. 

 “Closed” biofilm systems 176 such as the TCP-based static model, are useful for high throughput 

screening. They benefit from simplicity and inexpensiveness, are less susceptible to contamination and 

can easily be scaled up/down 177.  

There are also variable continuous flow biofilm models, such as different flow cells 178, the CDC 

(Center for Disease Control) reactor 179, the rotating disk reactor 180, 181 and the drip flow reactor 182. They 

share some common components, i. e., a pumping system, nutrient medium supply and waste collector. 

These systems allow for dynamic adjustments of culture conditions and better mimicking the natural 

environment, obtaining large amounts of biomass and direct and continuous monitoring instead of 

endpoint measurements. In the anti-biofilm research context, such models are preferable for follow-up 

and more detailed studies of few selected candidates. The benefits of a flow system can now be 

experienced in a microplate format, for example in a microfluidic system 183.  

Assuming the overall complexity of biofilm matrix composition in addition to its organism- and 

conditions-specific variation, it is obviously challenging to directly compare the results obtained by 

different techniques. One of the possible ways to improve the comparability of the anti-biofilm studies 

is to perform quantitative evaluation of biofilm structures using a range of selected biofilm parameters, 

for example, on the basis of confocal laser scanning microscopy (CLSM) image stacks analysis 184. 

Depending on the test system used, the anti-biofilm activity can be assessed in different ways: 

 Based on the total biomass assessment  - for evaluation of eradication activity 52; 

 Based on the viability- for evaluation of killing activity: 
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- Metabolism (MTT 185, Resazurin 186, fluorescent tagging 184); 

- Cell integrity (SYTOX 187, propidium iodide combined with Syto9 188); 

- Ability to grow on artificial media (CFU counts for the minimum biofilm eradication 

concentration 189). 

When performing anti-biofilm activity screening, the combined assessment of both killing and 

eradication seems to be beneficial 173, like in a system with the parallel assessment of the biomass (by 

crystal violet), the viability (by Resazurin) and the matrix (by wheat germ agglutinin-Alexa Fluor 488) 

in biofilms 173. For more in-depth studies, like the investigation of the mechanisms of biofilm assembly-

dissassembly and intercellular signaling, artificial colloidal biofilm mimics could be used 190, 191. 

 

Biological challenges  
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Being a part of the biofilm community 213, the persister subpopulations mentioned in section 

3.1.2 by definition contribute to the “biological challenges” associated with anti-biofilm studies. 

 

3.3. The solutions: traditional and novel treatment strategies 

3.3.1. NPs as antibacterial agents 
The global challenge of infectious diseases has been addressed at different levels and possible 

strategies have been formulated 111. For example, an interdisciplinary European initiative, the Action on 

Antibiotic Resistance (ReAct), was established to develop “an independent global network for concerted 

action on antibiotic resistance” 214. Another global initiative is the Antibiotic Action (founded by the British 

Society for Antimicrobial Chemotherapy), a forum that aims to promote the discovery and development 

of “antibiotic agents of the future” by rising awareness of the ABR problem 215. The NewDrugs4BadBugs 

project launched by the Innovative Medicines Initiative (IMI,216), is focused on private-public 

collaboration for research on fighting the infections caused by Gram-negative bacteria 217. 

The aforementioned initiatives consider the use of commercial antibiotics, which are the 

“classical” and currently the major agents to fight infectious diseases. In general, an antibiotic is an 

antimicrobial agent that can kill or inhibit the growth of bacteria. Most of the antibiotics are or 

originate from NPs. As the resistance development against all antibiotics introduced to the market 

seems to be inevitable (Fig. 2), novel synthetic or semi-synthetic antibiotic analogues are designed and 

developed. Antibiotics belong to diverse chemical classes and cover the major biosynthetic pathways 

of bacteria as their targets (MOAs), as shown in Fig. 7.  
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marine environment has been shown to be a rich source of NPs 15, 225. Marine NPs benefit from the 

novelty of scaffolds compared to terrestrial ones 226. According to an optimistic prognosis 227, marine 

NPs can become “a new wave of drugs”. Indeed, by the year 2014, eight marine NPs were approved 

as drugs 228, 229. However, there are still no antibacterials among the approved marine NP-derived 

drugs, to the best of our knowledge, underscoring the uncovered potential of the ocean. 

Another trend in NP-related research is the combining of knowledge about NPs and 

opportunities of synthetic chemistry for “mimicking” the NPs. Indeed, understanding the fundamental 

principles underlying the biosynthesis of NPs, knowledge about the building blocks and scaffolds can 

be a basis for the design and development of novel synthetic compounds 222. Application of methods 

for structure optimization provided by combinatorial chemistry, has resulted in the optimization of 

several recently approved drugs 15, 107. NPs are still successfully used as sources of novel structures 107. 

Moreover, not only structures per se, but also the properties resulting from such structures can be 

mimicked. 

One example is peptidomimetics, unnatural oligomeric sequences designed to mimic 

biophysical and functional characteristics of AMPs 230. Such compounds have the “necessary minimum” 

of chemical features which are responsible for the bioactivity in AMPs 231. AMPs 232 are NPs with a 

broad-spectrum activity due to their unique MOA, i.e. they can have multiple targets usually in addition 

to the cell membrane, being so called “dirty drugs” 233. At the same time, AMPs may suffer from certain 

drawbacks, such as toxicity, possible resistance development, limited bioavailability and structure 

complexity, the latter leading to high production expenses 230, 233, 234. To overcome all these AMP-

associated challenges, peptidomimetics with improved pharmaceutic characteristics are designed. 

 

3.3.2. Biofilm treatment strategies 
Another crucial aspect related to infectious diseases is the problem of chronic and recurrent 

infections. Being often hospital-acquired infections, they can be complicated by ABR, as the clinical 

environment with high selective pressure promotes resistance development and spread 235. Chronic 

infections are believed to be mostly associated with biofilms and require specific treatment 

approaches 236 76, as conventional treatment may fail to eradicate a biofilm, leading to a recurrent 

infection. 

Therefore, the therapeutic regimens are optimized specifically for biofilm-associated 

infections 86. Systemic antibiotic prophylaxis 237 and antibiotic lock therapy 238 applied to lower the risk 

of contamination and to sterilize the infection site are some examples. However, quite often the 

excision of infected tissue and removal of the colonized device is still the best solution 86.  

According to Miquel et al., the term anti-biofilm stands for “a natural or induced process, 

leading to reduction of bacterial biomass through the alteration of biofilm formation, integrity and/or 



Background 

22 
 

quality” 239. The wide range of anti-biofilm strategies that have been or are being developed reflects 

the extensive research in this area. Anti-biofilm strategies can be categorized based on the mechanism 

(targeting bacteria/targeting biofilm), the nature of treatment (physical/chemical), the target stage of 

the biofilm life cycle (attachment/maturation/dispersal), etc. These strategies can give synergistic 

effects when used as combinations 240 241, 242. A brief and non-comprehensive summary is presented in 

Table 3. 

The occurrence of persisters is an important recalcitrance determinant in biofilm-related 

chronic infections. An antimicrobial agent that can disable the formation of persisters and thus make 

conventional antibiotics effective, would be a promising solution for anti-biofilm combination 

treatment 26, 243, 244. Several compounds targeting persisters have been reported 245-247. Targeting the 

cell membrane, which is essential in cells independently of their metabolic state is also a promising 

approach 24, 85.  
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Table 3. Anti-biofilm strategies a. 

Treatment/strategy Mechanism Examples  

Chemical (biochemical) 

Prevention 
  

Anti-adhesion Coating of surfaces: 
Chlorhexidine-silver sulphadiazine, 
minocycline-rifampicin, organoselenium, 
triclosan, AMPs 

Targeting attachment appendages: 
Mannosides, pilicides, curlicides 

Antibodies neutralizing attachment molecules: 
Vaccine based on S. aureus antigens,  
anti-Pseudomonas immunoglobulin Y 

Anti-matrix Enzymes: DNAse, Dispepsin B, lysostaphin 

Chelating agents: Sodium citrate, 
minocycline-EDTA 

Matrix biosynthesis inhibitors: Allicin 

Signalling inhibitors Halogenated furanones 

Complex effect (signal 
interference, anti-adhesion, etc.) 

Polysaccharides:  
Pel, Psl from P. aeruginosa 

Weakening/Eradication Antibacterial   Silver nanoparticles 

AMPs: cathelicidines, colistin, daptomycin  

Phenolic and quaternary ammonium cation 
compounds: ageloxime D, ellagic acid, 
berberine 

Terpene-based NPs 

Conventional antibiotics:  
linezolid, rifampicin, fluoroquinolones 

Anti-matrix Enzymes: DNAse, dispepsin B, alginate lyase 

Chelating agents (in combinations): 
Metals, tetrasodium-EDTA 

Anti-virulence Neutralizing  antibodies: 
β- lactamase-specific antibodies 

Signalling inhibitors Affecting dispersing signals, quorum sensing 
and c-di-GMP (cyclic diguanylate):  
Azythromycin, ajoene, D-amino acids, 
norspermidine, furanones, RNA III inhibiting 
peptide  and hamamelitannin 

Physical (biophysical) 

Prevention Non-invasive sterilization Ultraviolet C treatment of surfaces 

Modified surface topography Attachment-repelling anodic nanoporous 
surfaces, “sharklet” micropattern 

Repulsion of initial attachment Low-energy surface acoustic waves 

Eradication Physical excision Surgical 

Destruction by microbubbles Ultrasound 

media electrolysis/ improved 
antibiotic binding/ increased 
matrix permeability 

Electric field:  
Alternating, direct currents and superimposed 
potentials 

Biological 

Prevention Probiotics:  
Lactobacillus, Bifidobacteria 

Eradication Bacteriophages in combination therapy 
a Based on Bjarnsholt et al., Miquel, Harvey and Kostakioti 239 61, 221, 248 and references therein.
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4. Summary of the main results 

Paper I 

Synthesis and antimicrobial activity of small cationic amphipathic aminobenzamide marine natural 

product mimics and evaluation of relevance against clinical isolates including ESBL–CARBA 

producing multi-resistant bacteria 

 

A library of small synthetic MNPM aminobenzamide derivatives was constructed and tested against 

relevant bacterial panels in MIC assays, to select the lead molecules based on antimicrobial activity 

profiles. 

 

 Several compounds were potent against Gram-positive bacterial reference strains; the most 

potent compound E23 displayed the MICs of 0.5-2 µg/ml (1.1-4.2 µM) and a good selectivity 

towards bacteria (selectivity index, SI, of 37). 

 The potency of nine selected structurally diverse MNPMs was confirmed in tests with 25 

clinical isolates of common human pathogenic bacteria; the activity of two of these MNPMs, 

i.e. D19 and E23, was further verified by screening against 250 more isolates. 

 Clinical isolates of MRSA and vancomycin-resistant enterococci (VRE) were susceptible to 

D19 and E23 as well, while the extended spectrum β-lactamase - carbapenemase (ESBL-

CARBA) producing Gram-negative isolates were slightly less susceptible (MICs ≥16 µg/ml, 

≥33.7 µM).  

 An in vitro luciferase assay with several derivatives from the library revealed that the MOA 

resembled that of membrane-targeting antimicrobials. 

 

 Overall conclusion: Structural motifs found in marine natural antimicrobials can be a valuable 

source for making novel antimicrobial lead-compounds, such as E23, as verified by the 

expanded in vitro screenings against clinical isolates. 
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