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[1] The climate of the last glaciation circa 65,000–25,000 years ago was interrupted by about 15 abrupt
temperature fluctuations, the so-called Dansgaard-Oeschger events consisting of warm interstadials and cold
stadials recorded in Greenland ice cores. The largest fluctuations occur in the North Atlantic region, but they
have been registered over the most of the world. The events are linked to changes in deep water formation in
the Nordic seas and North Atlantic, disrupting the thermohaline circulation. Yet, Dansgaard-Oeschger events
have so far not been recorded north of the convection areas in the central Nordic seas, and it is not known if
they affected the water exchange between the Nordic seas and the Arctic Ocean. In this study, we analyze
core JM05-31GC from the northern Fram Strait at the very entrance to the Arctic Ocean. The core contains
sediments from marine isotope stages (MISs) 4–2. The results show millennial timescale shifts in all the
investigated proxies including the distribution of planktonic and benthic foraminifera, planktonic and benthic
oxygen and carbon isotopes, and several sedimentological parameters. In JM05-31GC, the interstadials are
characterized by relatively high surface and low bottom water temperatures, low content of ice-rafted debris,
and well-ventilated bottom water. Stadials are characterized by the presence of icebergs and decreasing
surface water and increasing bottom water temperatures due to increased inflow of Atlantic subsurface water.
Ventilation decreased during Heinrich events and most stadials. The results show that the Dansgaard-
Oeschger events strongly affected the water exchange between the Nordic seas and the Arctic Ocean.
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1. Introduction

[2] The climate of the last glacial period was
extremely unstable. Studies of oxygen isotope var-
iability in the Greenland ice cores have demon-
strated that the climate of the coldest part of the
glaciation comprising marine isotope stages
(MISs) 4–2 was interrupted by numerous abrupt,
millennial-scale temperature fluctuations, the so-
called Dansgaard-Oeschger events [Dansgaard
et al., 1993]. Within a few years the atmospheric
temperatures over Greenland could increase by
more than 10�C [Johnsen et al., 2001]. However,
the warm periods were short, and after a few hun-
dred years the cold climate returned. The warm
periods are termed interstadials ; the cold periods
are termed stadials. The largest excursions and the
most rapid changes occur in the North Atlantic
region, but they have been traced over most of the
world including the tropical Atlantic, Indian, and
Pacific Oceans. Several investigations have shown
that the events are closely linked to changes in
convection and deep water formation in the Nordic
seas and North Atlantic affecting the strength of
the thermohaline Atlantic Meridional Overturning
Circulation and the transport of heat to the north
[Broecker et al., 1990; Rasmussen et al., 1996a,
1996b; McManus et al., 2004] (Figure 1a).

[3] In the Nordic seas, changes in the ocean circu-
lation pattern related to Dansgaard-Oeschger
events have only been thoroughly documented in
cores from the southern and southeastern parts. No
studies have demonstrated millennial-scale circu-
lation changes in the northern part north of the
main convection sites in the Iceland and Green-
land Seas. It is therefore not known whether—or
to what extent—the Dansgaard-Oeschger events
are related to the exchange of water masses
between the Nordic seas and the Arctic Ocean.

[4] One of the reasons for this lack of information
is the strong dissolution of biogenic carbonates in
most cores from the northernmost part of the Nor-
dic seas and the Arctic Ocean, leaving large time
gaps in the stratigraphic record of most paleocea-
nographic and paleoclimatic proxies [Haake and
Pflaumann, 1989; Bauch et al., 2001]. Paleocea-
nographic reconstructions from this area are there-
fore normally long ranging and of moderate to low
resolution linked to orbital timescales [Hebbeln
et al., 1994; Dokken and Hald, 1996; Bauch,
1997; Antonov et al., 1997; Knies et al., 1999;
Vogt et al., 2001; Spielhagen et al., 2004]. Hein-
rich events [Heinrich, 1988] have been identified

in a few cores, but with considerable stratigraphic
uncertainty [Dokken and Hald, 1996; Hanslik
et al., 2010].

[5] The aim of the present investigation is to
reconstruct the paleoceanographic conditions in
the Fram Strait and the exchange of water
masses between the Nordic seas and the Arctic
Ocean from late MIS 4 to MIS 2 (circa 65,000–
25,000 years) on a millennial timescale. The
study is focused on gravity core JM05-31GC
retrieved at intermediate water depth in the
northern Fram Strait close to 80�N at the
entrance to the Arctic Ocean (Figure 1a). This
core is located in the flow path of the northward
flowing Atlantic Water of the West Spitsbergen
Current. The core contains a better preserved
record of biogenic carbonate than normally seen
in this area. We have analyzed the core for var-
iations in several biological, geochemical, and
sedimentological parameters, including plank-
tonic and benthic foraminiferal faunas, stable
oxygen and carbon isotopes based on planktonic
and benthic foraminifera, and the concentration
of ice-rafted debris (IRD). In addition, we have
calculated subsurface water temperature (SWT)
and bottom water temperature (BWT) using
transfer functions applied to both benthic and
planktonic foraminiferal faunas.

2. Oceanographic Setting

[6] The eastern part of the Fram Strait is domi-
nated by the warm (summer temperature approx-
imately 4–6�C) and saline Atlantic water of the
West Spitsbergen Current flowing northward into
the Arctic Ocean [Aagaard et al., 1987] (Figure
1a). The western part is dominated by the cold
Polar Water of the East Greenland Current flow-
ing southward. Centrally in the Fram Strait, the
Atlantic and Polar surface waters mix and gener-
ate Arctic water, which is slightly colder and
less saline than the Atlantic surface water [Hop
et al., 2006] (Figure 1a). The three surface water
masses are separated by two oceanic fronts, the
Polar front to the west and the Arctic front to
the east. The zone of Arctic surface water also
constitutes the marginal ice zone (MIZ) [Vinje,
1977], with its high surface productivity [e.g.,
Smith et al., 1987].

[7] In the northern Fram Strait, the Atlantic sur-
face water subducts beneath the cold, ice-covered
polar water of the Arctic Ocean and continues as a
subsurface current, now termed Atlantic
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Intermediate Water [Rudels, 1987; Rudels et al.,
2000, 2005]. In August 2012, the warmest core of
the Atlantic water reached a temperature of 6.3�C
at the study site (Figure 1b). The water masses
below the Atlantic Water consist of Greenland Sea
Intermediate Water and Greenland Sea Deep

Water [Hopkins, 1991]. The cold Greenland Sea
intermediate water (20.9�C) is generated by con-
vection in the Greenland Sea. All three water
masses flow northward through the Fram Strait
into the Arctic Ocean steered by the topography of
the sea bottom (Figure 1). In the Fram Strait,
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Figure 1. (a) Map of the Nordic seas showing major surface and bottom currents and the location of core
JM05-31GC in the northeastern part of the Fram Strait. (b) CTD profile (conductivity, temperature, depth)
taken in August 2012 at the core site.
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during summer time, the mixing zone between the
warm Atlantic water and the cold convected water
is situated between 300 and 600 m water depth
(Figure 1b).

[8] The flow of the water masses generates rela-
tively strong bottom currents, and the western
slope of Svalbard is known for the deposition of
contourite bodies [e.g., Eiken and Hinz, 1993;
Howe et al., 2008]. The investigated core was
retrieved from one of these contourites (Figure 2).

3. Material and Methods

[9] The 386 cm long gravity core, JM05-31GC,
was taken at 785 m water depth (position
79.36.5�N, 07.43.0�E) northwest of Sjubrebanken
(Figures 1 and 2). The deposits are predominantly
hemipelagic consisting of alternating layers of
clayey silt and sandy clays. Sediments of Holo-
cene age are absent. This is typical for the western
slope and shelf of Svalbard above �1200 m water
depth, due to strong Holocene bottom currents
[Elverh�i et al., 1995; Jessen et al., 2010].

[10] Magnetic susceptibility was measured using a
multi-sensor core logger before opening. The core
was described, and sediment colors were deter-
mined using the Munsell Soil Color Chart. The
core was subsequently sampled in 0.7 cm thick sli-
ces at 1, 2, 3, or 5 cm intervals. The samples were
weighed and dried at 50�C and weighed again.
They were subsequently wet sieved over mesh
sizes 63 and 100 mm, and the residues were dried
and weighed. The residues >100 mm were spread
evenly over a picking tray, and �300 planktonic

and �300 benthic foraminifera were counted and
identified for each sample. The percentage of frag-
mented planktonic foraminifera relative to whole
specimens was calculated as a measure for the
preservation of calcium carbonate [e.g., Berger
et al., 1982; Le and Shackleton, 1992; Conan
et al., 2002; Pfuhl and Shackleton, 2004]. The
concentration of planktonic and benthic foramini-
fera per gram dry weight sediment was calculated.
The samples were then dry sieved over 150 mm
mesh size for counts of IRD and recounts of plank-
tonic foraminifera for calculations of absolute sub-
surface temperatures based on transfer functions
(see below). Between 150 and 300 mineral grains
and �300 specimens of planktonic foraminifera
were counted from each sample.

[11] Stable isotope measurements were performed
on the planktonic foraminiferal species Neoglobo-
quadrina pachyderma s and the benthic foramini-
feral species Cassidulina teretis at Woods Hole
Oceanographic Institution [see Ostermann and
Curry, 2000]. Stable isotopes were measured on
the benthic foraminiferal species Cibicides lobatu-
lus and Cibicidoides pachyderma at the University
of Bergen. The measurements on the two latter
species were corrected for isotopic disequilibrium
of 10.64& [Shackleton, 1974], while N. pachy-
derma s and C. teretis were not corrected.

[12] Subsurface and bottom water temperatures
were calculated based on transfer functions per-
formed on the planktonic (size fraction >150 mm)
and benthic foraminiferal census counts, respec-
tively. We used the C2 program [Juggins, 2007]
applying the WAPLS (weighted average partial
least squares) technique. We used two components

Figure 2. Seismic profile from the northwestern Svalbard slope showing contourite deposits. (insert) Acous-
tic (3.5 kHz echosounding) showing details from location of core JM05-31GC.
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for planktonic calculations and one component for
the benthic calculations. The selected number of
components follows the recommendations of Birks
[1998] and Sejrup et al. [2004], respectively. For
the planktonic temperatures we used the Multi-
proxy Approach for the Reconstruction of the Gla-
cial Ocean surface (MARGO) database [Pflaumann
et al., 2003; Kucera et al., 2005] together with
temperatures from the 2009 World Ocean Atlas
[Locarnini et al., 2010]. The summer SWT was
calculated for 75 m water depth. This depth gener-
ally represents the average water depth at which
the planktonic foraminiferal assemblages live
[Hemleben et al., 1989]. The BWTs were calcu-
lated using a database for the depth interval 250–
2000 m in the North Atlantic realm. The database
consists of samples extracted from the database of
Sejrup et al. [2004] with the addition of samples
from the cold realm from Belanger and Streeter
[1980], Sejrup et al. [1981], Mackensen [1985],
Mackensen et al. [1985], Hald and Steinsund
[1992], and Saher et al. [2009] and samples from
the warmer realm using published records from Ire-
land, Bay of Biscay, off Portugal, the central North
Atlantic Ocean, the east coast of Canada, and the
United States [Seiler, 1975; Schafer and Cole,
1982; Hermelin and Scott, 1985; Weston, 1985;
Corliss, 1991; Austin and Evans, 2000; Fontanier
et al., 2002; Schönfeld, 2002; Sun et al., 2006;
Margreth et al., 2009; Mojtahid et al., 2010;
Duros et al., 2011; Schröder-Adams and van
Rooyen, 2011].

[13] Accelerator Mass Spectrometry (AMS)-14C
dates were measured at the AMS Dating Centre at
the University of Aarhus, Denmark, on monospe-
cific samples of N. pachyderma s, or on bivalves
and mixed benthic foraminiferal assemblages
(Table 1). The upper three AMS-14C dates and the
magnetic susceptibility have been published previ-

ously in Jessen et al. [2010]. All dates with the
exception of the lowermost date at 375.5 cm (infi-
nite age; see Table 1) were calibrated to calendar
age using the Calib 6.01 program and the
Marine09 calibration data, which operates with a
standard reservoir correction of 2405 years
[Stuiver and Reimer, 1993; Reimer et al., 2009].
The age model was constructed by assuming linear
sedimentation rates between dating points (Figure
3). For the interval below the oldest reliable 14C
date at 237.5 cm we used the position of the geo-
magnetic Laschamps event at 255–265 cm [Snow-
ball et al., 2007], which is dated to circa 41,000
years B.P. in the GISP2 ice core [e.g., Laj et al.,
2002], and the position of the MIS 4–MIS 3
boundary, which is dated to circa 60,000 years
B.P. [Martinson et al., 1987] (Figures 3 and 4).

4. Results

4.1. Lithology, Age, and Stratigraphy

[14] The top 10 cm of core JM05-31GC consists
of large stones and gravel, and this unit is inter-
preted as a lag deposit (Figure 4). From �15 cm
downcore the sediments appear undisturbed. The
uppermost part from approximately 15 to 80 cm
consists of light grey, foraminifer-rich, slightly
sandy mud. Below this unit follows a 30 cm thick
layer of dark grey unsorted gravel, sand, silt, and
clay with low magnetic susceptibility. The

Table 1. AMS-14C Dates and Calibrated Ages of JM05-
31GC

Core Depth
(cm) Species

Age
(14C 6 1r)

Calibrated
Age 6 1r

49.5 Neogloboquadrina
pachyderma s

18,550 6 120 21,680 6 225

75.5 Neogloboquadrina
pachyderma s

19,970 6 130 21,680 6 225

123.5 Neogloboquadrina
pachyderma s

21,830 6 160 25,630 6 290

197.5 Arca sp. 29,450 6 700 33,720 6 835
237.5 Bivalve and benthic

foraminifera
34,100 6 650 38,350 6 910

375.5 Neogloboquadrina
pachyderma s

49,500 6 550
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Figure 3. Age-depth plot for core JM05-31GC. Red line is
plotted versus calibrated 14C years, age of Laschamps paleo-
magnetic event, and age of the MIS 3–MIS 4 boundary. Black
line is plotted versus ice core age after tuning (see text for
explanation).
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sediments from the central part of the core between
120 and 300 cm are very colorful and consist of
light greenish-grey to dark greenish-grey (GLEY N
5/5GY 5/1 to N 6 5G 6/1) sandy silt alternating
with layers of pink (10R 6/6) clay and brownish
yellow (10YR 6/8) silty clay (Figure 4). Below 300
cm the sediments are predominantly bluish grey
(GLEY N 5 BG 5/1). From approximately 320 to
345 cm the sediments are laminated and dark bluish
grey (GLEY N 45B 4/1; Figure 4). From 352 to
362 cm, the bluish-grey deposits are intercalated by
a bright yellowish-red sandy layer (10YR 5/8)
devoid of foraminifera (Figure 4).

[15] The AMS-14C dates in combination with the
d18O record show that the core comprises MIS 2,
MIS 3, and the upper part of MIS 4 (Figures 4 and
5). High planktonic and benthic d18O and d13C
values and two AMS-14C dates of 18,150 and
19,570 years, respectively, refer the upper part
from 10 to 80 cm to the Last Glacial Maximum
[Martinson et al., 1987] (Figures 4 and 6). Coarse-
grained deposits with low magnetic susceptibility
similar to the layer from 80 to 120 cm occur along

the entire west coast of Svalbard dated to between
20,000 and 22,000 14C years [Elverh�i et al.,
1995; Andersen et al., 1996; Jessen et al., 2010].
The layer was deposited after the Svalbard-
Barents Sea Ice Sheet reached the shelf edge [see
Jessen et al., 2010, and references therein]. The
interval from 160 to 354 cm is characterized by
fluctuating isotope values with shifts in amplitudes
>1& (Figure 4). Highly variable values are typi-
cal for MIS 3 in the North Atlantic Ocean and
Nordic seas [Bond et al., 1993; Dokken and Hald,
1996; van Kreveld et al., 2000; Vogt et al., 2001].
This places the boundary between MIS 2 and MIS
3 at �140 cm. The lower part of the core below
�354 cm has high d18O values. This part probably
correlates with MIS 4 [e.g., Martinson et al.,
1987; Vogt et al., 2001] (see also section 4.2).

4.2. Overall Patterns in the Distribution of
Foraminifera, Stable Isotopes, and IRD

[16] Two relatively thick layers in MIS 2 and in
MIS 4, respectively, and several thinner layers in
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RASMUSSEN ET AL. : WATER MASS EXCHANGE FRAM STRAIT 10.1002/2013GC005020

6



MIS 3 are barren of foraminifera or contain forami-
nifera in very low concentrations (Figure 4). These
intervals are characterized by very high proportions
of fragmented specimens (Figure 4). Overall, the
proportion of fragmentation is relatively low in
MIS 4 and MIS 2 and more variable in MIS 3.

[17] The core is characterized by high variability
in all the measured parameters (Figures 3–6). The
concentration of planktonic foraminifera is gener-
ally high in MIS 4 and MIS 2 (except for the bar-
ren intervals) and low in MIS 3 (Figure 4).
Neogloboquadrina pachyderma s (>100 mm)
dominates in all samples making up between 57%
and 100% of the faunas (Figure 4). The most abun-
dant subpolar species is Turborotalita quinque-
loba. In general, the percentage of N. pachyderma
s and T. quinqueloba varies inversely. The concen-
tration of IRD is normally highest in layers with
high abundance of N. pachyderma s and low abun-
dance of T. quinqueloba (Figure 4).

[18] The distribution patterns of the benthic spe-
cies also show great variability (Figure 5). The

most important species are C. teretis, Melonis bar-
leeanus, Cassidulina reniforme, Islandiella nor-
crossi, Elphidium excavatum. Cibicides lobatulus,
and Astrononion gallowayi are present in low
abundance with small maxima in the lower part of
MIS 3.

[19] The record shows repeated shifts between
intervals with low and high d18O and d13C values.
The intervals with low isotopic values are further
characterized by high percentages of N. pachy-
derma s and C. teretis, whereas the intervals with
high isotopic values are characterized by relatively
high percentages of T. quinqueloba, C. lobatulus,
C. reniforme, M. barleeanus, and I. norcrossi (Fig-
ures 4 and 5). High proportions of C. teretis are
often accompanied by a distinctive group of
benthic species termed the ‘‘Atlantic species
group’’ (Figure 5). This is a diverse group of spe-
cies comprising Sigmoilopsis schlumbergeri,
Eggerella bradyi, Cibicidoides pachyderma (5C.
aff. C. floridanus), Discospirina italica, Sigmoilina
tenuis, Gyroidinoides spp., and Epistominella dec-
orata (the shallow water form of Alabaminella
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grey bars mark Heinrich events. GS and GI numbers are indicated.

RASMUSSEN ET AL. : WATER MASS EXCHANGE FRAM STRAIT 10.1002/2013GC005020

7



weddellensis and also referred to as E. nipponica
[Rasmussen, 2005]) [see, e.g., Rasmussen et al.,
2003, 2007; Mohan et al., 2011]. The species of
the ‘‘Atlantic species group’’ is mainly known
from intermediate depth in the warm boreal to sub-
tropical Atlantic. It has previously been shown
that C. teretis and species of the ‘‘Atlantic species
group’’ appear in the North Atlantic and in the
southern Nordic seas at intermediate depth during
stadials and Heinrich events correlating with low
benthic and planktonic oxygen isotope values
[Rasmussen et al., 1996a, 1996b; Rasmussen and
Thomsen, 2004, 2009].

5. Correlation to Millennial-Scale
Events

[20] The isotopic, foraminiferal, and sedimento-
logical variations in JM05-31GC clearly occur on
a millennial timescale (Figures 4–6). Similar pat-

terns, shown by the same parameters, have been
described from several cores from the North
Atlantic and the Nordic seas [e.g., Bond et al.,
1993; Fronval et al., 1995; Dokken and Hald,
1996; Rasmussen et al., 1996a, 1996b; Voelker,
2002; Rasmussen and Thomsen, 2004]. The pat-
tern reflects the millennial-scale Dansgaard-
Oeschger climate events first described from the
Greenland ice cores [e.g., Dansgaard et al., 1993;
NGRIP Members, 2004]. Each event consists of a
warm interstadial phase and a cold stadial phase.
Seventeen prominent Dansgaard-Oeschger events
disrupted the climate of MIS 4–MIS 2. In the
marine records stadials are characterized by low
stable isotope values and interstadials by high val-
ues [e.g., Bond et al., 1993] (Figures 4 and 6).

[21] In North Atlantic records from MIS 4 to MIS
2, six stadials stand out as particularly strong.
They are termed Heinrich events H6–H1 and char-
acterized by high amounts of IRD, low planktonic
d18O values, and dominance of the cold water

JM05-31GC

Depth cm

-0.5 0 0.5 1 1.5

Temperature ( C)°
(Planktic, WAPLS)

Temperature ( C)°
(Benthic, WAPLS)

-2 -1 0 1 2 31.5 2.0 2.5 3.0 3.5 4.0

O (‰) C (‰) O (‰) C (‰)
(N. pachyderma. s) (N. pachyderma s)

0

50

100

150

200

250

300

350

400

3.0

(a) (b) (c) (d) (e) (f)

3.54.04.55.0 3.54.04.55.0
(C. lobatulus)

(C. teretis)

(C. pachyderma)

5.56.0
(C. lobatulus)

Stadial/
Heinrich event

numbers
Interstadial
numbers

H4

H6

H5

H3

GS6
GS7

GS8

GS11

GS4

H2

GI5
GI6

GI4
GI3

GI7

GI8

GI11

GI
14-17

Figure 6. (a) Planktonic d18O values measured in N. pachyderma s. (b) Planktonic d13C values measured in
N. pachyderma s. (c) Benthic d18O values measured in Cibicides lobatulus (black line, yellow fill), Cassidu-
lina teretis (green line), and Cibicidoides pachyderma (red dots highlighted by arrows). (d) Benthic d13C val-
ues measured in Cibicides lobatulus. (e) Subsurface temperatures (75 m) calculated by transfer functions
using the planktonic foraminiferal census counts >150 mm. (f) Bottom water temperature calculated by trans-
fer functions using the benthic foraminiferal census counts (see text for details). Light grey bars mark stadials.
Dark grey bars mark Heinrich events. GS and GI numbers are indicated.
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planktonic foraminifera N. pachyderma s [Bond
et al., 1993]. Heinrich events in both the North
Atlantic and Nordic seas are further characterized
by low benthic productivity and high planktonic/
benthic (P/B) ratios [Rasmussen et al., 1996a,
1996b, 2003; Rasmussen and Thomsen, 2008]
(Figure 4). In records from the Nordic seas, Hein-
rich events and especially H6 and H1 are conspic-
uous, because of very low d18O values as
compared to other Heinrich events [Bond et al.,
1993] and because they contain particularly high
proportions of C. teretis and the ‘‘Atlantic species
group’’ [Rasmussen et al., 1996a, 1996b; Rasmus-
sen and Thomsen, 2004, 2009] (Figure 5).

[22] In marine records H6 and H5 are dated to
circa 60,000 years B.P. (end of MIS 4; see Figure
3) and circa 48,000 years B.P., respectively [Bond
et al., 1993; Fronval et al., 1995; Dokken and
Hald, 1996; Rasmussen et al., 1996a, 1996b;
Elliot et al., 1998]. Heinrich event H4 normally
dates around 35,000 14C years and occurs just after
the end of the Laschamp event, which correlates
with the Greenland interstadials 9 and 10 [Laj
et al., 2002]. H3 and H2 consistently date to circa
27,000–25,000 and 22,000–20,000 14C years,
respectively, in the North Atlantic region [e.g.,
Bond et al., 1993].

[23] In core JM05-31GC, the intervals from 354 to
350, 285 to 288, and 252 to 245 cm are character-
ized by maximum relative abundance of the
‘‘Atlantic species group,’’ low d18O values, and
high P/B ratios (Figures 4 and 5). Combined with
the 14C measurements, the calibrated ages, and the
age and position of the Laschamps event (Figure
3) we correlated these intervals with H6, H4, and
H3 (Figures 4–6; see below). Heinrich event H5 is
more difficult to pinpoint. We have tentatively
placed it at 285 to 288 cm downcore. Heinrich
event H2 coincides in time with the deposition of
the coarse, unsorted sediment layer from 80 to 110
cm [Jessen et al., 2010]. Similar deposits dated to
22,000–20,000 14C years occur widespread on the
western margin of Svalbard (see above) [Jessen
et al., 2010].

[24] Interstadial and smaller stadial events were
identified using the same criteria as discussed
above for the Heinrich events. Exact identification
and numbering of events were obtained by correla-
tion to the ice core using the location of the identi-
fied Heinrich events (Figure 4). The interval with
the highest resolution from 170 to 255 cm was
tuned to the ice core using the start and end of the
cold stadials and Heinrich events as tie points and

assuming linear sedimentation rates between tie
points (Figures 3 and 4). Selected data were plot-
ted against the ice core age (Figure 7).

[25] Discrepancies in the calibrated ages of events
between core JM05-31GC and the ice core are
probably due to either changes in reservoir age
with time or to the use of different materials for
the datings (benthic and planktonic material may
give different results [Voelker et al., 1998]; (Fig-
ures 3 and 7 and Table 1). However, the error on
the calibrated marine ages for the time interval
30,000–41,000 years is within the error interval of
the North Greenland Ice Core Project (NGRIP)
timescale, viz, 600–900 years (Figure 3) [Svensson
et al., 2008].

6. Discussion

[26] The large variability in the investigated
parameters in core JM05-31GC and the correspon-
dence between this variability and the Dansgaard-
Oeschger events recorded in the Greenland ice
cores indicate that the paleoceanography of the
Fram Strait from circa 65,000 to 25,000 years B.P.
was strongly affected by these millennial time-
scale climatic shifts (Figures 3–7). Below we
reconstruct the oceanographic development at the
core site throughout a typical Dansgaard-Oeschger
event from MIS 3. The result is compared to simi-
lar reconstructions based on marine cores from the
southern Nordic seas in order to investigate if the
two areas were influenced by the same or different
environmental factors. The reconstruction is syn-
thesized on the basis of Dansgaard-Oeschger
events 5–8, which show the highest temporal reso-
lution in the record and share many common char-
acteristics (Figure 7). In the reconstruction, we
subdivided the development into three phases fol-
lowing the scheme used in the southern Nordic
seas [Rasmussen et al., 1996a, 1996b]: (1) the
interstadial phase, (2) the interstadial cooling
phase, and (3) the stadial phase.

6.1. Interstadial Phase

[27] The high relative abundance of the planktonic
foraminifera N. pachyderma s, in conjunction with
estimated summer subsurface temperatures
between 3.5�C and 4�C, indicates a strong influ-
ence of warm Atlantic water at the surface (Fig-
ures 4, 6, and 7). The benthic foraminifera are
dominated by C. reniforme, C. lobatulus, and
Astrononion gallowayi, which points to vigorous
bottom currents [Mackensen et al., 1985;
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Wollenburg and Mackensen, 1998] (Figures 5–7).
Bottom water temperatures were mostly below
zero indicating the presence of water masses simi-
lar to the modern Greenland Sea Intermediate
Water (Figures 1, 6, and 7). The high planktonic
and benthic d18O values point to fully marine con-
ditions at both the surface and bottom. Ventilation
was good as indicated by the increase in plank-
tonic and benthic d13C values (Figures 6 and 7).

[28] The planktonic and benthic foraminiferal fau-
nas, the planktonic and benthic stable isotope val-
ues, and the relatively high subsurface and low
bottom water temperatures all indicate that the
interstadial water mass distribution and current
system in the Fram Strait was similar to the mod-
ern system (Figures 6 and 7). Today, warm Atlan-
tic surface water flows northward into the Nordic
seas along the coast of Norway. A large proportion
continues northward along the slope of Svalbard
into the Fram Strait and the Arctic Ocean (Figure
1a). However, a substantial part of the Atlantic
water is converted into deep water in the central
and western Nordic seas (Figure 1a). About half of
the convected water returns to the North Atlantic
across the Greenland-Scotland Ridge as cold deep

water overflows [Hopkins, 1991]. The remaining
part flows northward as Greenland Sea Intermedi-
ate and Deep Water and enters the Arctic Ocean
below the Atlantic surface water (Figure 1a).

6.2. Interstadial Cooling Phase

[29] Poor preservation of biogenic calcite and high
percentages of fragmented tests make the interpre-
tation the interstadial cooling phase more chal-
lenging (Figures 4 and 7). The phase is almost
barren of planktonic foraminifera. A few calcula-
tions of sea surface temperature by transfer func-
tions indicate the surface water was colder than
during the peak interstadials (Figures 6 and 7).
This is in good agreement with a higher concentra-
tion of IRD indicating a higher production of ice-
bergs and growing ice sheets or, possibly, more
active ice streams [e.g., Winsborrow et al., 2010]
(Figures 4 and 7). The benthic faunas are domi-
nated by M. barleeanus and I. norcrossi. Current
indicators such as C. lobatulus and A. gallowayi
decrease in abundance, and the benthic diversity is
low (Figure 5). M. barleeanus, and I. norcrossi are
both attracted to areas with a high supply of
organic material. I. norcrossi is abundant in high
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productivity zones near the sea ice edges [Stein-
sund and Hald, 1992]. In the Fram Strait, today,
organic productivity is especially high in the Arc-
tic water below the MIZ (Figure 1). The surface
water in this zone is a mixture of the northward
flowing warm Atlantic Water and the southward
flowing very cold Polar Water. The zone is also
characterized by strong dissolution and poor pres-
ervation of calcareous tests. The dissolution is
probably caused by the high content of organic
material in the bottom sediments [Gradinger and
Baumann, 1991; Hebbeln and Berner, 1993; Heb-
beln et al., 1998; Zamelczyk et al., 2012]. The sur-
face water conditions during the interstadial
cooling phase must have been very similar to the
modern conditions in the Arctic water in the cen-
tral Fram Strait. The reduction in bottom water
flow indicates that the convection in the Nordic
seas was decreasing as compared to the intersta-
dials and that the areas of convection moved
southward with the sea ice edge [e.g., Rasmussen
and Thomsen, 2004].

6.3. Stadial Phase

[30] The stadials are first of all characterized by a
reversed top to bottom temperature profile as com-
pared to the interstadials (and today; Figures 6
and 7). During interstadials the surface water was
warmer than the bottom water; during the stadials
the bottom water was warmer than the surface
water.

[31] The total dominance of the planktonic forami-
nifera N. pachyderma s (Figure 7) and the rela-
tively high content of IRD indicate cold surface
conditions and the presence of common icebergs.
However, the content of IRD and the number of
icebergs were lower than during the interstadial
cooling phase. This may be due to a thicker and
more compact layer of sea ice enclosing most of
the icebergs along the coast. The low planktonic
d18O values are usually interpreted to indicate the
presence of meltwater at the surface and a strati-
fied water column [Bond et al., 1993; Simstich
et al., 2003].

[32] The presence of C. teretis and the ‘‘Atlantic
species group’’ together with decreasing benthic
d18O values have been interpreted as an indication
for increase in bottom water temperatures [see
Rasmussen et al., 1996b; Rasmussen and Thom-
sen, 2004] (Figure 6). This is in agreement with
the transfer function calculations, which indicate
that the bottom water temperatures increased from
between <21�C and 20.2�C during interstadials

to 1.4�C to >2.0�C during stadials (Figures 6 and
7). Similar results have been obtained from the
Arctic Ocean, where Mg/Ca values measured in
benthic ostracods indicate a rise in bottom
water temperatures in the order of 1–2�C dur-
ing some of the major Heinrich events [Cronin
et al., 2012]. It is also in concordance with
Mg/Ca ratios measured in benthic foraminifera
from the North Atlantic Ocean and the V�ring
Plateau in the Norwegian Sea, which indicate a
rise in bottom water temperatures during Hein-
rich events in the order of 4–6�C [Marcott
et al., 2011].

[33] The new results from core JM05-31GC indi-
cate that during cold events the intermediate water
warmed all the way from the North Atlantic Ocean
to the northernmost Fram Strait. The water cooled
underway from 4�C to 6�C around Faeroe Islands
to �2�C at the entrance to the Arctic Ocean.
Today, the Atlantic Water at 450 m water depth
cools from 3�C to 9�C (summer temperatures)
between the Faeroe Islands and Scotland to about
2�C in the Northern Fram Strait [Chatwin et al.,
2001] (Figure 1).

[34] The planktonic and benthic d13C values in
core JM05-31GC are generally low in stadials
and Heinrich events (as resolution allows; Fig-
ures 4 and 5). In records from the northeastern
North Atlantic Ocean and southern Nordic seas
the planktonic values are similarly low, while
the benthic values are only low in Heinrich
events [Peck et al., 2007; Rasmussen and Thom-
sen, 2009]. The low planktonic d13C values are
generally explained by surface stratification due
to the presence of meltwater creating a melt-
water lid. Several interpretations have been pro-
posed for the low benthic d13C values [e.g.,
Waelbroeck et al., 2006, and references therein;
Peck et al., 2007; Rasmussen and Thomsen,
2009]. Rasmussen and Thomsen [2009] proposed
that the most likely explanation was ‘‘aging’’ of
the intermediate water as the warmer subducted
Atlantic Water flowed northward below the melt-
water layer. The lower values in the Heinrich
events as compared to the stadials suggest that
the subduction occurred in a more southerly
position during Heinrich events than during the
stadials. During Heinrich events the subduction
most likely occurred in the North Atlantic south
of the Heinrich Belt [Rasmussen and Thomsen,
2004, 2009]. During stadials the subduction was
mostly located north of the Heinrich Belt. Today,
the Atlantic Water is subducted at the northern
end of the Fram Strait only about 50–100 km
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north of the coring site of JM05-31GC [e.g.,
Rudels et al., 2000, 2005].

7. Conclusions

[35] Our results show that there was continuous
exchange of water masses through the Fram Strait
during MIS 4–MIS 2. However, the strength and
temperatures of the water masses flowing into the
Arctic Ocean varied considerably and probably in
pace with the millennial timescale interstadial-
stadial climate changes observed in the Greenland
ice cores.

7.1. Interstadials

[36] Several investigations from the southeastern
Nordic seas have shown that during the intersta-
dials warm Atlantic surface water flowed north
into the Nordic seas. This study shows that this
warm surface water reached the northern end of
the Fram Strait and that the inflow of warm Atlan-
tic Water to the Arctic Oceans must have been
almost as today. During interstadials, as today,
parts of the Atlantic Water entering the Nordic
seas are convected into cold deep water. Tempera-
ture calculations by transfer functions estimate
subsurface (75 m water depth) temperatures at the
study site around 3.5�C and bottom water tempera-
tures between -1�C and 0�C. These temperatures
are close to the present temperatures. The benthic
faunas and the planktonic and benthic d13C values
indicate good ventilation and strong bottom water
currents.

7.2. Interstadial Cooling Phase

[37] The warm interstadial phases lasted only a
few hundred years according to the age model and
the ice core records. After the short maximum
warmth the Arctic surface water and the marginal
ice zone began to expand causing a cooling of the
surface water over the core site. Ice rafting in the
northern Fram Strait increased rapidly. Convection
areas probably moved southward, and the forma-
tion of cold intermediate water probably
decreased. The interstadial cooling phases are
characterized by poor preservation of calcareous
material, and our knowledge of these periods in
the Fram Strait is relatively poor.

7.3. Stadials and Heinrich Events

[38] During the cold events the upper water masses
in the Fram Strait became stratified with a perma-

nent or near-permanent sea ice cover. The sea ice
edge of the Arctic Ocean was pushed further
southward. The subduction of the Atlantic Water,
which today occurs just north of the Fram Strait,
followed the front of the permanent ice cover.
Convention in the Greenland Sea came to a stop or
near-stop. In the Nordic seas and in the Fram
Strait, Atlantic Water continued to flow, but now
as a subsurface intermediate water mass compara-
ble to inflow of Atlantic Intermediate Water into
the Arctic Ocean today. In the Fram Strait the
intermediate water warmed >2�C as compared to
the interstadial and present temperatures. The
benthic foraminiferal faunas were dominated by
Cassidulina teretis and species with a southern
affinity. Differences between Heinrich events and
the smaller stadial events in the benthic d13C val-
ues of the Atlantic Intermediate Water indicate
that the subduction zone was located in a more
southerly position during Heinrich events than
during stadials.
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