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Abstract—This paper addresses the problem of trajectory
tracking for underactuated quadrotors. A quaternion based
guidance law is proposed which feeds into an attitude control
system based on a PD+ control law. The desired attitude from
the guidance law is defined such that the attitude control system
tries to align the position error along the axis of the transla-
tional actuator. Simulation results are provided and discussed to
demonstrate the proposed method.

I. INTRODUCTION

Over the recent years there has been a surge of interest in
small UAVs and in particular quadrotor UAVs. They have a
wide range of applications for instance in surveillance, survey-
ing, transportation, search and rescue and structural inspection.
The increasing availability of small, light and cheap sensor
platforms and powerful embedded processors allows for highly
sophisticated guidance, navigation and control algorithms to
be used to highten the level of autonomy of quadrotors. In
recent years nonlinear control has been employed to deal
with the nonlinearities of the quadrotor dynamics although
classical linear techniques are still prevalent. One of the earlier
works on Quadrotor control is that of [1] where PID and
LQ methods are compared. In [2] a tracking controller is
developed directly on SE(3) and almost global exponential
attractivness is shown. In [3] integral backstepping is used
for attitude, altitude and position control which enables the
quadrotor to fly autonomously and avoid obstacles. In [4]
differential flatness of the quadrotor dynamics are exploited to
generate optimal safe trajectories for the quadrotor to follow
and a nonlinear controller is used to ensure convergence to
the desired trajectories. In [5] a highly sophisticated nonlinear
model for a quadrotor UAV is developed, the model was
also simulated with an NMPC-controller applied to it and
the simulation shows stable and near optimal performance.
A common theme in most quadrotor literature is the usage of
Euler angles for the attitude parameterization. Euler angles are
known to have singularities which limit the quadrotors ability
to follow arbitrary trajectories. In this work quaternions are
used for the attitude representations since they are singularity
free and more compact than rotation matrices. A quaternion
based guidance algorithm is developed which enables a high
degree of flexibility in specifying the desired performance of
the quadrotor through tuning gains.

This paper is organized in the following way. Section II
introduces quaternions, which is the main tool in this paper,
and some useful properties. Section III details the dynamic
model for the quadrotor in using quaternions. Section IV
derives the quaternion guidance algorithm. In Section V non-
linear attitude and translational controllers are presented. In
Section VI simulations are performed to show the potential
of the approach and a brief conclusion is given in Section VI
highlighting some possible extensions of this work.

II. PRELIMINARIES

A. Notation

Vectors are denoted as lower-case bold letters while scalars
are non-bold for instance x ∈ Rn is an n-dimensional vector
while a ∈ R is a scalar. Matrices are upper-case bold letters.
The set of positive real numbers is denoted R+. The time
derivative of a vector is denoted as ẋ = dx

dt and the second
time derivative is denoted as ẍ = d2x

dt2 . Coordinate reference
frames are denoted F(·), and superscripts are used to denote
a variables frame of reference, such that the vector xA is
referenced in FA. The inner-product between two vectors
x ∈ Rn and y ∈ Rn is written as 〈x,y〉 = (x)

T
y. The

euclidian norm is denoted as ‖x‖ = 〈x,x〉 12 .

B. Reference frames

a) NED frame: This coordinate reference frame denoted
Fn has its x-axis pointing north, its y-axis pointing east and
its z-axis pointing down completing a right-handed coordinate
system see Figure 1. The origin of the NED frame is usually
chosen to be at the intial position of the rigid-body in question.
This can for instance be the take-off point in case of a
quadrotor UAV or pre-defined point in inertial space. In this
paper Fn is also assumed to be inertial.

b) Body frame: This coordinate reference frame denoted
Fb is fixed at the quadrotor’s centre of mass. The x-axis
points from the center of mass through the first propeller,
y-axis points from the center of mass throught the fourth
propeller and the z-axis points downwards completing the right
handed coordinate reference frame. The frame represents the
orientation of the quadrotor with respect to Fn as seen in
Figure 1.



c) Desired frame: This coordinate reference frame de-
noted Fd is defined by the guidance system, and represents
the quadrotor’s desired orientation.

C. Quaternions

In this section a brief overview of quaternions are given,
more complete formulations can be found in literature cf. [6],
[7]. Quaternions are well known to offer a singularity free
parameterization of a rigid-body’s orientation using only four
parameters in contrast to nine parameters for the direction
cosine matrices. Similary to direction cosine matrices they can
also be used to transform vectors between reference frames.
Quaternions can be compactly represented as an element in
R4 as

q =

[
q0
qv

]
, q0 ∈ R, qv ∈ R3 (1)

and can be used to represent a rotation through the formula

q =
[
cos θ2 uθ sin

θ
2

]
(2)

where θ ∈ R is the angle of rotation and uθ ∈ R3 is a unit
vector pointing in the direction of axis of rotation. A vector
ub ∈ R3 can be rotated from Fb to Fn by the use of the
sandwich product

un = qn,b ⊗ ub ⊗ q∗n,b (3)

where the quaternion product is defined as

q1 ⊗ q2 =

[
q1,0q2,0 − qT1,vq2,v

q1,0q2,v + q2,0q1,v + q1,v × q2,v

]
(4)

and (·)∗ is the quaternion conjugate defined as

q∗ =

[
q0
−qv

]T
.

The norm of a quaternion can be defined through the quater-
nion product as

‖q‖ =
√
q∗ ⊗ q

and should always be equal to unity to ensure that lengths are
preserved when using (3). Therefore in this paper all quater-
nions are assumed to be unit quaternions. Several quaternions
can also be combined using the quaternion product to represent
composite rotations as

qa,c = qa,b ⊗ qb,c

and difference in rotations can be defined as

qb,d = q
∗
a,b ⊗ qa,d.

The quaternion kinematics is defined as [6]

q̇a,b =
1

2
ωaa,b ⊗ qa,b =

1

2
qa,b ⊗ ωba,b (5)

where ω(·)
a,b ∈ R3 is the angular velocity of Fb relative to Fa,

expressed either in Fa or Fb.

Fig. 1. Illustration of reference frames often used in quadrotor literature c.f.
[8].

III. MODELING

A. Quadrotor dynamics

In the quadrotor dynamics literature c.f. [9], [5], [2], [4], [8],
the Newton-Euler equations of motion, with reference frames
as shown in Figure 1, for a quadrotor is commonly defined as

v̇n =
1

m

(
fnG −Rn

b f
b
T

)
(6)

ω̇bn,b =
(
Jb
)−1 (

τ b − ωbn,b ×
(
Jbωbn,b

))
(7)

where vn ∈ R3 in the inertial velocity of the quadrotor,
fnG ∈ R3 is the gravity vector, f bT ∈ R3 is the quadrotor’s
thrust vector, Rn

b ∈ R3x3 is the orientation of the quadrotor
parameterized using quaternions, ωbn,b ∈ R3 is the angular
velocity of the quadrotor, Jb = diag {Jx, Jy, Jz} ∈ R3x3 is
the quadrotor’s inertia matrix and τ b ∈ R3 is the applied
torques on the quadrotor. The input thrust and torques can be
calculating according to [5] as

f bT = −

 0
0

cT
(
σ2
1 + σ2

2 + σ2
3 + σ2

4

)


τ b =

 drcT
(
σ2
4 − σ2

2

)
drcT

(
σ2
1 − σ1

3

)
drcT

(
σ2
1 + σ2

3 − σ1
2 − σ2

4

)
 (8)

where σi, i = 1, 2, 3, 4 is the angular velocity of the ith
propeller, cT and cQ are the thrust coefficient and the torque
coeffiecient respectively and dr is the distance from the centre
of the quadrotor to the centre of the propellers which is
assumed to be equal for all propellers.

IV. GUIDANCE

The guidance algorithm is inspired from [10], but is mod-
ified to allow for flexibility in tuning the performance of
guidance algorithm. Let the desired position pnd be represented
as point on a given trajectory and let the position error be
defined as

en = pnd − pn (9)

where pn ∈ R3 denotes the current position of the quadrotor.
The only translation actuator the quadrotor has is the thrust



along the negative x-axis in Fb. Therefore the desired orien-
tation can be represented

ed =
[
0 0 −‖en‖

]T
= q∗n,d ⊗ en ⊗ qn,d. (10)

The quaternion representing the desired orientation can be
calculated as

qn,d =
[
cos θ2 k sin θ

2

]T
(11)

where

θ = arccos

(
(ed)Ten

‖(ed)Ten‖

)
(12)

and

k =
ed × en

‖ed × en‖
. (13)

An issue with this guidance law is that θ will be large for most
values of ed and en. For instance in the case when the altitud
of the quadrotor’s position is equal to the altitude of the desired
position. In these cases θ will be π

2 and the quadrotor will
consequently try to tilt itself 90◦ resulting in loss of altitude
since there will be no thrust to cancel the effects of gravity.
As the quadrotor falls θ will become smaller such that the
quadrotor will eventually recover if enough thrust is available,
but if pnd is at low altitude it can mean that the quadrotor
crashes with the ground before it recovers. More influence
over the behaviour of the quadrotor is gained by redefining
(12) using the arctan function as

θ = k1 arctan (k2‖en‖) (14)

where k1, k2 ∈ R. In (14) the constant k1 influences the
maximum tilt allowed by the quadrotor while k2 influences
how aggressive the quadrotor’s approach should be. Since θ
and k are defined seperately it is not guaranteed that qn,d is
a unit-quaternion and therefore has to be normalized after it
has been calculated. The desired angular velocity is obtained
by taking the derivative of (10)

ėd = q̇∗n,d ⊗ en ⊗ qn,d + q∗n,d ⊗ ėn ⊗ qn,d + q∗n,d ⊗ en ⊗ q̇n,d
= q∗n,d ⊗ ėn ⊗ qn,d + ωdn,d × ed

which can be rewritten as

ed × ωdn,d = q∗n,d ⊗ ėn ⊗ qn,d − ėd. (15)

Using the skew-symmetric operator and the Moore-Penrose
pseudoinverse, (15) can be solved with respect to ωdn,d as

ωdn,d = −S
(
ed
)† (
q∗n,d ⊗ ėn ⊗ qn,d − ėd

)
(16)

where

S
(
ed
)†

=

 0 1
‖en‖ 0

− 1
‖en‖ 0 0

0 0 0

 , ėd =

 0
0

−(ėn)T en

‖en‖

 .
This implies that S

(
ed
)†
ėd = 0 and (15) reduces to

ωdn,d = −S
(
ed
)†
q∗n,d ⊗ ėn ⊗ qn,d. (17)

The desired angular acceleration can be found either by using
a linear filter or by differentiating (15).

Remark: The degenerate case when ‖ed×en‖ = 0 needs to
be handled explicitly and this is done by setting k = 0, which
gives qn,d = qI after normalization. Furthermore in the case
when ‖en‖ = 0, then ėd = 0 and S

(
ed
)†

= 03x3.
This guidance law only specifies the amount of desired roll

and pitch for the quadrotor, but can easily be extended to
include a desired yaw. If we let qyaw represent the desired
yaw then the desired orientation can be redefined to be

qn,d = qroll,pitch ⊗ qyaw (18)

where qroll,pitch is defined as in (11). This extended desired
orientation is then used in (17) to defined the desired angular
velocity.

V. CONTROL

The approach to the nonlinear control of the quadrotor
follows that of [4] and [2].

A. Attitude control

Let the guidance system provide the attitude controller
with the signals qn,d ∈ R4 and ωdn,d, ω̇

d
n,d ∈ R3. Then the

quaternion error is defined as

qd,b = q
∗
n,d ⊗ qn,b (19)

and the angular velocity error is defined as

ωbd,b = ω
b
n,b − qd,b ⊗ ωdn,d ⊗ qd,b. (20)

The torque can then be defined as

τ = ωbn,b × Jbωbn,b + Jbω̇bn,d − kqqvd,b − kωωbd,b (21)

which is a PD+ controller with a feedforward term.

B. Translational control

Given a trajectory defined by pnd , ṗ
n
d , p̈

n
d ∈ R3 the distance

and velocity errors are defined as

en = pnd − pn (22)
ėn = ṗnd − vn. (23)

The total thrust can then be defined as

fnT = mp̈nd + fg − kpen − kdėn (24)

which is a PD+ controller with feedforward compensation. To
get the thrust vector in the body frame we take the projection
of (24) with uz =

[
0 0 1

]T
f bT =

(
(fnT )

T
uz

)
uz. (25)



TABLE I
PARAMATERS FOR AN ASCTEC PELICAN IN [11]

Parameter Value Unit
Quadrotor mass, m 1.27022 kg
X-axis inertia, Jxx 0.04338 kg·m2

Y-axis inertia, Jyy 0.04338 kg·m2

Z-axis inertia, Jzz 0.07050 kg·m2

Distance to rotor, dr 0.149352 m
Thrust coefficient, cT 1.5 · 10−5

Torque coefficient, cQ 1.9 · 10−7

VI. SIMULATION

This section the quadrotor dynamics in (6) and (7) are
simulated with the guidance scheme from Section IV and the
controllers from Section V. The gain parameters were chosen
as k1 = 1/3, k2 = 1, kq = 10, kω = 3, kp = 1 and
kd = 2. The quadrotor parameters can be found in Table VI.
The desired trajectory is defined as

pnd =
[
c1 sin c2t c1 cos c2t c3 − c4 sin c5t

]T
[m]

ṗnd =
[
c1c2 cos c2t −c1c2 sin c2t −c4c5 cos c5t

]T
[m/s]

p̈nd =
[
−c1c22 sin c2t −c1c22 cos c2t c4c

2
5 sin c5t

]T
[m/s2]

where c1 = 5 m, c2 = 0.6 rad/s, c3 = −10 m, c4 = 0.5 m
and c5 = 0.3 rad/s. The initial conditions were set as

qn,b =
[
1 0 0 0

]T
ωbn,b =

[
0 0 0

]T
[rad/s]

pn =
[
1 1.4 0.2

]T
[m]

vn =
[
0 0 0

]T
[m/s]

σi = 0 [rad/s], i = 1, 2, 3, 4.

The thrust was limited to 0N ≤ T ≤ 30N. It can be seen
from Figure 2 and Figure 3 the quadrotor converges towards
the desired trajectory and follows it. From Figure 5 it can be
seen that the error never converges to qI and the reason for
this is the choice of k1 which limits the tilt of the quadrotor
to about 30◦. This error could be made smaller by letting
k1 → 1, but there comes a point where the quadrotor will
tilt too much and will be unable to compensate for gravity
when the quadrotor’s height matches that of the desired height
resulting in the quadrotor falling.

VII. CONCLUSIONS
In this paper a simplified model for a quadrotor using

quaternions was presented. A quaternion based guidance
scheme was presented which provides reference signals to
the underlying attitude control system. Simulations were per-
formed which shows that the quadrotor converges to and
follows the desired trajectory. Future work would include
formulating a stability proof using lyapunov analysis.
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Fig. 2. Quadrotor’s inertial position.
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Fig. 3. Position error.
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Fig. 4. Quadrotor attitude.
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Fig. 5. The error attitude.
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Fig. 6. Quadrotor angular velocities.

Fig. 7. Quadrotor converging to and following the desired trajectory.


