International Journal of Cancer

Physical activity and risk of endometrial cancer in the Norwegian Women and Cancer (NOWAC) Study

Journal:	International Journal of Cancer
Manuscript ID	IJC-16-2034.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Borch, Kristin; UiT The Arctic University of Norway, Department of Community Medicine Weiderpass, Elisabete ; UiT The Arctic University of Norway, Department of Community Medicine; Karolinska Institutet, Department of Medical Epidemiology and biostatistics; Kreftregisteret, Institute of Population- Based Cancer Research; Samfundet Folkhalsan, Genetic Epidemiology Group Braaten, Tonje; Department of Community Medicine Tromsø, Norway, ISM Jareid, Mie; UiT - The Arctic University of Norway, Department of Community Medicine Gavrilyuk, Oxana; University of Tromsø, Institute of Community Meidicine Licaj, Idlir; Department of Community Medicine,
Key Words:	Endometrial cancer, physical activity, Prospective study, population attributable fraction

SCHOLARONE[™] Manuscripts

1	Physical activity and risk of endometrial cancer in the Norwegian Women
2	and Cancer (NOWAC) Study
3	Kristin B Borch ^{1*} , Elisabete Weiderpass ^{1, 2, 3, 4} , Tonje Braaten ¹ , Mie Jareid ¹ , Oxana A
4	Gavrilyuk ¹ , Idlir Licaj ¹
5	*Cooresponding author: Kristin Benjaminsen Borch, email:
6	Kristin.benjaminsen.borch@uit.no
7	Running title: Physical activity and endometrial cancer
8	Word count: Abstract: 250; main text: 3 853
9	Tables: 5 (Supplementary tables: 1)
10	Keywords: Endometrial cancer; physical activity; prospective study; population attributable
11	fraction.
12	
13	Novelty and impact statements:
14	We found evidence of a dose-response association between physical activity and overall
15	endometrial cancer. The novelty include use of repeated measurements for physical activity
16	and confounders combined with multiple imputation to address attrition, which is a particular
17	problem in observational epidemiology. As a nationally representative cohort our study gave
18	us an unique opportunity to calculate robust population attributable fractions. 22% of
19	endometrial cancer could be avoided if women increase their physical activity level.
20	Abbreviations:
21	BMI – body mass index
22	CI – confidence interval
23	CUP - Continous Update Project
24	PA – physical activity
25	PAF – population attributable fractions
20	$\Pi R = \Pi d Z d U T d U O$
27	NOWAC – The Norwegian Women and Cancer Study
29	WCRF/AICR - World Cancer Research Fund/American Institute for Cancer Research
30	
31	
32	Affiliations:

International Journal of Cancer

3	33	1. Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of		
4 5	34	Norway, Tromsø, Norway		
6 7	35	2. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden		
8 9	36	3. Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research,		
10	37	Oslo, Norway		
12	38	4. Genetic Epidemiology Group, Folkhälsan Research Centre, Samfundet Folkhälsan, Helsinki, Finland		
13 14 15 16 17	39 40 41	Funding: This project received financial support from the Norwegian Extra Foundation for Health and		
18	42	Rehabilitation through EXTRA funds.		
20 21 22	43 44	Conflict of interest: The authors declare that they have no conflict of interest.		
23 24	45			
25 26 27	46	Author's contributions		
28	47	KBB, EW and IL designed the study. IL and KBB preformed all statistical analyses, and		
29 30	48	drafted the manuscript. EW, MJ, and OG critically revised the manuscript. TB participated in		
31 32	49	the statistical analyses and revised the manuscript critically. All authors read and approved the		
33 34	50	final manuscript.		
35 36 37 38	51			
39				

52	Abstract
53	Few studies have investigated the association between endometrial cancer and physical
54	activity (PA) using repeated measures of PA and different subtypes of endometrial cancer.
55	We aimed to investigate the association between endometrial cancer and PA level at two
56	points in time in women with different body mass index (BMI) profiles, and to calculate the
57	population attributable fraction (PAF) of endometrial cancer for low PA levels.
58	We included 82,759 women with complete information on PA at baseline in the Norwegian
59	Women and Cancer Study; 52,370 had follow-up information on PA. 687 endometrial cancer
60	cases were identified. Multivariate cox proportional hazard models were used to estimate
61	hazard ratios (HR) and 95% confidence intervals (CI). The PAF indicated the proportion of
62	endometrial cancer that could be avoided in the population if these women had a higher PA
63	level.
64	There was a statistically significant association between low PA levels at baseline and follow-
65	up and endometrial cancer risk, with a dose-response trend (lowest PA level: HR=1.60, 95%
66	CI 1.16-2.20; highest PA level: HR=0.73, 95% CI 0.45-1.16 compared to the median).
67	Analyses that included follow-up measurements yielded similar results. 21.9% (95% CI 7.1-
68	34.3) of endometrial cancers could be avoided if women with low PA levels (≤ 4 in a 1-10
69	degree self reported PA scale) increased their PA levels to 5-10.
70	We found an inverse dose-response association between PA and endometrial cancer,
71	independent of BMI. In this nationally representative cohort, 21.9% of endometrial cancers
72	could potentially be avoided if PA levels increased to higher PA levels.

74 Introduction

Endometrial cancer is the sixth most common cancer, and the most frequent gynecologic malignancy among women in Norway. In 2014, 727 new cases were diagnosed and 81 women died of the disease [1]. Established risk factors for endometrial cancer include use of exogenous estrogens unopposed by progestagens, early menarche (10-12 years of age), late menopause, nulliparity, diabetes mellitus, and obesity. Currently, the majority of endometrial cancer, and about half of the cases in postmenopausal women are attributable to being overweight or obese [2-4]. As the population ages and the prevalence of overweight, obesity, and sedentary lifestyle increase, the incidence of endometrial cancer is also expected to increase, especially in postmenopausal women [5, 6]. Thus primary prevention of endometrial cancer through modifiable lifestyle factors is of potential public health importance. Physical activity (PA) is a modifiable lifestyle factor, which is important in the regulation of hormones and metabolic pathways. It is also associated with weight control, and thus may reduce endometrial cancer risk [7-9]. A pooled analysis of nine cohorts from Europe and the United States included 1.44 million participants and found a 21% reduced risk of endometrial cancer associated with recreational PA [10]. However, within individual studies, results are inconsistent [8]. For example, the Women's Health Study did not find any relationship between recreational PA and walking and endometrial cancer risk [11]. Similarly, there was no significant association between total PA – including occupational, recreational, and household-related PA – and endometrial cancer risk in the European Prospective Investigation into Nutrition and Cancer [12]. The 2007 evaluation by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) concluded that there is a probable relationship between PA and endometrial cancer despite the variety of PA assessments not allowing for meta-analysis on dose-response [7]. This conclusion was supported in their Continous Update Project (CUP) report from 2013 [8]. Of four cohort

International Journal of Cancer

studies published after the 2013 CUP report [10, 13-15], three found an inverse association between recreational PA and endometrial cancer risk [10, 15, 14], and one did not [13]. Few studies have investigated the association between endometrial cancer and PA using a total and repeated measure of PA and different subtypes of endometrial cancer [12, 16, 17]. Endometrial cancer is classified as type I (estrogen dependent), which constitutes the majority of cases (about 80%), and type II (estrogen independent), based on clinical, endocrine, and epidemiological observations. The most common histological subtypes of endometrial cancer are endometrioid carcinoma, serous carcinoma, carcinosarcoma, and clear cell carcinoma [18]. While the association between body mass index (BMI) and endometrial cancer is well established, the relationship between PA and endometrial cancer in women with different body sizes remains unclear. The present study aimed to investigate the association between endometrial cancer and PA level at two points in time in women with different BMI profiles in the Norwegian Women and Cancer (NOWAC) Study, and to calculate the population attributable fraction (PAF) of endometrial cancer for low PA levels.

117 The NOWAC Study

Methods

The NOWAC Study is a nationally representative cohort study that has been described in detail previously [19, 20]. Briefly, random samples of Norwegian women aged 30-70 years were invited to participate during three waves of data collection (1991/92, 1996/97, and 2003/04) [20]. More than 172,000 women completed a questionnaire with detailed questions regarding lifestyle, diet, and health, and were enrolled in the study (overall response rate: 52.7%). The NOWAC Study was approved by the Regional Committee for Medical Research Ethics and the Norwegian Data Inspectorate, and all participants included in the study gave written informed consent. In this analysis we used information from enrollment questionnaires completed in the period from 1996 to 2004 (baseline), and those with follow-up questionnaires completed 6-8 years after enrollment. In total 101,321 women completed questionnaires in these periods and were eligible for inclusion in this study. We excluded women with prevalent cancers other than non-melanoma skin cancer at baseline (n=4,454), those who emigrated or died before the start of follow-up (n=20), those with hysterectomy (n=5,426), and those who had missing information on PA level at baseline (n=8,662). Thus, the final analytical study sample consisted of 82,759 women. Follow-up information on PA level, smoking, weight, and height was available for for 52,370 (63.3%) of these women.

136 Assessment of PA level and covariates

137 PA level was assessed in the NOWAC questionnaires on a 10-point scale by the following

138 question: "By physical activity we mean activity both at work and outside work, at home, as

139 well as training/exercise and other physical activity, such as walking, etc. Please mark the

number that best describes your level of physical activity; 1 being very low and 10 being very

International Journal of Cancer

high". This PA scale has been validated [21] and refers to the total amount of PA across different domains, including recreation, occupation, transportation, and household in one global score. Moderate, but significant Spearman's rank correlation coefficients were found (range: 0.36-0.46; P<0.001) between PA level at enrollment and concurrent outcomes from criterion measures of a combined sensor monitoring heart rate and movement. The PA scale appeared valid to rank PA level in Norwegian women, but not to quantify a definite dose of PA [21]. Information on the covariates height, weight, age at menarche, parity, oral contraceptive use, menopausal status, age at menopause, hormone therapy use, years of education, smoking status and alcohol consumption, were obtained from NOWAC questionnaires. The women were considered postmenopausal if they stated that the period had stopped or reported use of hormonal therapy if they were \geq 53 years. This cut-off point is based on the definition used in

the the Million Women Study [22], and has been used by the NOWAC study earlier [23].

154 Information on height and weight was used to calculate BMI (kg/m^2) .

156 Cancer incidence, death, and emigration

Women diagnosed with a primary, invasive, malignant neoplasm of the endometrium (International Statistical Classification of Diseases, Injuries and Causes of Death Revision 7 codes 172.0 [24]) were identified through linkage to the Cancer Registry of Norway, from which date of diagnosis and morphology (International Classification of Diseases for Oncology, 3rd edition) were also obtained. Based on the morphology, endometrial cancers were categorized into overall endometrial cancer (all subtypes), endometrioid carcinoma, type 1 endometrial cancer (adenocarcinoma NOS, endometrioid, and squamous carcinomas), and other subtypes (non-endometrioid or non-type 1).

3	
4	
5	
6	
7	
8	
ğ	
10	
10	
11	
12	
13	
14	
15	
16	
17	
11	
10	
19	
20	
21	
22	
23	
24	
24 25	
20	
26	
27	
28	
29	
30	
31	
22	
3Z	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
<u>⊿</u> 7	
-11 10	
40	
49	
50	
51	
52	
53	
54	
55	
50	
26	
57	
58	
59	
60	

165 Information on date of death or emigration was obtained through linkage to the

- 166 Norwegian National Population Register.
- 167

1 2

168 Statistical methods

169 <u>Analyses using baseline data only</u>

We used Cox proportional hazard regression models to calculate hazard ratios (HRs) with
95% confidence intervals (CIs) comparing five categories of PA level (1-2, 3-4, 5-6, 7-8, and
9-10). PA level 5-6 was set as the reference group. Follow-up time was defined as the interval
between age at baseline and age at cancer diagnosis, death, emigration, or the end of followup (31 December 2013), whichever came first.

175 Departures from the proportional hazards assumption in the Cox models were tested through

the inclusion of an interaction variable between categories of PA and underlying time (age). A

177 preliminary analysis of baseline data only was used to select the covariates that were adjusted

178 for in the final models. In the preliminary model, we adjusted for: height (in metres), BMI

179 (normal weight: <25, overweight: 25–29.9, obese: \geq 30 kg/m²), age at menarche (<12, 13-14,

180 15+ years), parity (0, 1, 2, 3, 4+), oral contraceptive use (ever/never), menopausal status

181 (premenopausal, perimenopausal, postmenopausal, hormone therapy use \geq 53 years), hormone

therapy use (ever/never), years of education (≤ 9 , >9-12, ≥ 13 years), smoking status (never,

183 former, current), alcohol consumption (grams per day), and diabetes mellitus (yes/no). The

184 removal of each covariate had to be associated with a change in the regression coefficients of

at least 10% in any of the categories of PA level to be included in the final model. To test for

186 linear trend, we used the original, 10-point PA scale, modelled as a continuous variable in the

187 analyses. Interactions (log likelihood test) between PA and the above-mentioned categories of

188 BMI, educational attainment and smoking status were tested. The Wald χ^2 statistic was used

189 to test for heterogeneity between normal weight and obese women.

International Journal of Cancer

2 3	190	
4 5 6	191	
7 8	192	Analyses using repeated PA measurements
9 10	193	We used the method proposed by Hu et al [25], i.e., baseline data was used until follow-up
11 12	194	information became available, death, or emigration, whichever occurred first. Thereafter
13 14 15	195	follow-up information was applied until death, emigration, or the end of the study period,
16 17	196	which ever occurred first. In the analysis using repeated PA measurements, we also used
18 19	197	follow-up information on BMI and smoking once it became available.
20 21	198	
22 23 24	199	Complementary analysis - multiple imputation
25 26	200	Compared to women who did not drop out of the study, those who dropped out of the study at
27 28	201	follow-up (n=30,389 (36.7%)), were more often overweight (31.4% vs 29.2%) or obese
29 30	202	(10.3% vs 8.6%), more often reported oral contraceptive use (46.6% vs 43.5%) and hormone
31 32 33	203	therapy use (36.7% vs 31.7%), more often had a history of diabetes mellitus (2.9% vs 1.7%),
34 35	204	and had fewer years of education (24.3% vs 23.7%). They were also more often current
36 37	205	smokers, but on average they had a similar PA level and alcohol consumption as women who
38 39	206	did not drop out of the study. In order to deal with dropouts, we used multiple imputation
40 41 42	207	models [26] and compared the results with those of complete-case analyses. Multiple
42 43 44	208	imputation models were used under the assumption that data was missing at random. To
45 46	209	reduce sampling variability, we created 20 replicate datasets from the imputation simulation
47 48	210	[27]. We used the outcomes overall endometrial cancer, type 1 endometrial cancer, and
49 50	211	endometrioid carcinoma. Nelson-Aalen cumulative hazard estimator was included as a
51 52 53	212	predictor in the imputation models [28]. The estimates from the 20 imputed datasets were
54 55	213	combined using Rubin's rules [29]. All the analyses and multiple imputations were done in
56 57 58	214	STATA version 14.0 (Stata Corp, College Station, TX, USA).

2 3	215	
4 5 6 7 8 9 10 11 12	216	PAF calculation
	217	We calculated the PAF to estimate the proportion of endometrial cancer that could be avoided
	218	in the population if women had different PA levels, using the formula: $PAF = Pe^{*}(RRe-$
	219	1)/[$Pe^{RR+(1-Pe)}$], where Pe is the proportion of PA level in the study population and RRe is
13 14 15	220	the RR in the model adjusting for BMI (model 1) and the final baseline multivariable
16 17	221	proportional hazards regression model (model 2), including all aforementioned confounders
18 19	222	and BMI. We calculated two-sided 95% CIs for the PAFs using the PUNAF Stata module
20 21	223	[30]. The PA levels were divided into two levels; levels 1 to 4 were classified as exposed to
22 23	224	low PA levels and levels 5-10 as unexposed to low PA levels. The PAF was interpreted as the
24 25 26	225	proportion of overall endometrial cancers that would not occur in the average population if
27 28	226	PA levels were between 5 and 10 according to the scale.
29 30	227	
31 32	228	
33 34 25		
36 37		
38 39		
40 41		
42 43		
44 45 46		
47 48		
49 50		
51 52		
53 54 55		
56 57		
58 59		
60		10 John Wiley & Sons. Inc.
		,,,,,

2
2
3
4
5
6
7
0
8
9
10
11
12
12
13
14
15
16
17
10
IQ
19
20
21
22
22
23
24
25
26
27
20
28
29
30
31
32
22
33
34
35
36
27
57
38
39
40
41
12
72 40
43
44
45
46
17
+1 40
48
49
50
51
52
52
23
54
55
56
57
51
20
59
60

229	Results
230	The median age at baseline was 51 years. During a mean follow-up time of nearly 13 years,
231	687 cases of endometrial cancer were identified, with type 1 endometrial cancer
232	(adenocarcinoma not otherwise specified [NOS], endometrioid and squamous carcinoma)
233	accounting for 83.8% of the cases. The age at diagnosis ranged between 42 and 86 years, with
234	a mean of 62 years of age. Nearly half (43%) of the women reported a PA level between 5
235	and 6 (Table 1), and approximately 74% of the women reported a PA level between 5 and 10.
236	Women with a PA level >5 had a lower BMI, used less hormone therapy, reported less
237	diabetes mellitus, and were more often never smokers compared to women reporting low PA
238	levels.
239	Multivariable models of the associations between baseline and one follow-up
240	measurement of PA and endometrial cancer risk showes that compared to women with a PA
241	level of 5-6, those with a PA level of 1-2 had a 60% higher risk of overall endometrial cancer
242	(HR=1.60, 95% CI 1.16-2.20). For analyses using repeated PA measurements, the
243	corresponding risks adjusted for BMI and smoking status were similar to those obtained when
244	using baseline data only (HR=1.54, 95% CI 1.01-2.). In analyses using baseline data only and
245	those using repeated PA measurments, BMI and smoking status were negatively associated
246	with the risk of type 1 endometrial cancer and endometroid carcinomas. Compared to the age-
247	adjusted models, the associations were attenuated in the multivariable adjusted models that
248	included BMI (Table 2).
249	Interactions between PA and categories of BMI, educational attainment and smoking
250	status were not significant. However, as BMI is a strong risk factor for endometrial cancer, we
251	decided to investigate the association between PA and endometrial cancer risk in normal
252	weight, overweight, and obese women, even though the interaction term was not significant
253	(p=0.49). When analyses were stratified by BMI category the PA levels 7-10 were collapsed,

2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
<u>~~</u>
23
24
25
26
27
21
28
29
30
31
22
32
33
34
35
36
27
37
38
39
40
<u>4</u> 1
40
42
43
44
45
46
- 10 17
4/
48
49
50
51
50
5Z
53
54
55
56
57
57
58
59
60

254	PA was not associated with overall endometrial cancer among normal-weight women in
255	analyses using baseline data only (HR _{PA(1-2) vs (5-6)} =1.32, 95% CI 0.71-2.45). The
256	corresponding association in obese participants was HR PA(1-2) vs (5-6)=3.08 (95% CI 1.76-5.39)
257	$(p_{heterogeneity}=0.05)$ (Table 3).
258	Using multiple imputation, we found that the estimates at all levels of adjustment and for
259	all endpoints (overall endometrial cancer, type 1 endometrial cancer, and endometrioid
260	carcinoma) were consistent with those obtained from the complete-case analyses (Table 4).
261	PAF calculations showed that if women with a PA level ≤ 4 increased to levels 5-10 in the
262	scale, 21.9% (95% CI: 7.1-34.3) of endometrial cancers could be avoided (Table 5). PAF
263	calculations based on the proportional hazards regression model including BMI yielded a
264	lower proportion (17%, 95% CI: 2.3-29.5) (Table 5). The results did not differ substantially
265	for subtypes of endometrial cancer (Supplemental table 1)

266

267 Discussion

In this large Norwegian cohort we found an inverse dose-response association between PA 268 269 and endometrial cancer overall, type 1 endometrial cancer, and endometrioid carcinoma. The 270 results were consistent when using baseline data on PA and when using repeated PA 271 measurements, as well as when multiple imputation was used. Our findings further suggest that the association between PA and endometrial cancer is independent of BMI, as risk 272 273 estimates were attenuated, but still significant, when BMI was incorporated in the statistical 274 models. Stratification by BMI category indicated that the risk of low PA on endometrial cancer was statistically significant among obese women only (although the test for interaction 275 was not statistically significant, p=0.49). Among women with PA levels ≤ 4 , 21.9% of 276 endometrial cancer could potentially be avoided if these women adopted a PA level between 277 5-10 in the scale. 278

Page 13 of 48

International Journal of Cancer

1	
2	
2	
1	
4 5	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
40	
44 45	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 5-	
55	
56	
57	
58	
59	
60	

279	Other cohort studies investigating the association between total PA levels – which include
280	domains such as recreation, occupation, transportation, and household – and endometrial
281	cancer are sparse; most studies measured recreational PA only and few studies use repeated
282	measurements of PA. In contrast to our results, the European Prospective Investigation into
283	nutrition and Cancer reported a non-significant trend (p-trend 0.36) for total PA (including the
284	domains recreation, occupation, and household) when comparing active with inactive women
285	(multivariable adjusted model including BMI: HR=0.88, 95% CI 0.61-1.27) [12]. This was
286	similar for the Breast Cancer Detection Demonstration Project study, which measured the
287	total intensity of PA and found no significant associations with endometrial cancer [31].
288	Findings from the Netherlands Cohort Study on Diet and Cancer showed that total baseline
289	non-occupational PA was inversely associated with endometrial cancer, with a lower risk
290	observed for a PA corresponding to >30 minutes per day [17, 32]. In a Swedish cohort the
291	risk was decreased, although this decrease was not significant [16].
292	Several studies have reported on recreational PA and endometrial cancer. Nine
293	prospective cohort studies on recreational PA were included in the WCRF/AICR CUP report
294	up to 2012 [8], but due to different measures of PA, the meta-analysis of these studies only
295	looked at the highest vs lowest PA level (RR=0.73, 95% CI 0.58-0.93), and these results were
296	attenuated when the model was adjusted for BMI (RR=0.80, 95% CI 0.69-0.92). A limitation
297	of this meta-analysis was the high heterogeneity ($I^2=75.9\%$) of the individual studies [8].
298	Indeed, only three of these studies [33, 32, 34] found significant inverse associations, three
299	found no significant association [35, 11, 36], and three [37, 12, 16] found an inverse, but
300	insignificant association between endometrial cancer and recreational PA. Since the
301	publication of the WCRF/AICR CUP report from 2012 we have identified four additional
302	prospective cohort studies on recreational PA and endometrial cancer [10, 13-15]. The
303	Nurses' Health study investigated recreational PA in the past year and found no association

2
2
3
4
5
6
7
0
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
⊤ ΩE
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
51
38
39
40
<u>۱</u>
40
42
43
44
45
10
40
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59
60

304	between baseline recreational PA and endometrial cancer risk, however, brisk walking time
305	\geq 3 hours per week was inversely associated with endometrial cancer [15]. In the California
306	Teachers Study cohort, moderate and vigorous recreational PA was associated with a 25%
307	lower endometrial cancer risk [13]. The findings of Land et al [14] are in accordance with our
308	findings, although they studied recreational PA and had a small number of cases in a
309	population of women at high risk for breast cancer. A large pooled analysis of 12 cohorts was
310	recently published and reported a HR of 0.79 (95% CI 0.68-0.92) in the association between
311	recreational PA and endometrial cancer based on 5346 cases. However, the degree of
312	heterogeneity between cohorts was high $(I^2=69\%)[10]$.
313	Analysis of occupational PA measured twice during 1974 and 1981 in a Norwegian study
314	showed a significant trend, with a reduced risk for women who were consistently moderately
315	active; however, the association was attenuated in the multivariable model and the trend was
316	no longer significant [36]. The WCRF/AICR CUP report [8] included four cohort studies [16,
317	38, 12, 39], none of which found a significant association between occupational PA and
318	endometrial cancer. In a highest vs lowest occupational PA meta-analysis, the summary RR
319	was 0.79 (95% CI 0.71-0.88), with a high degree of heterogeneity between studies (I^2 =
320	75.9%) and concluded a probable inverse association between occupational PA and
321	endometrial cancer [8].
322	Overweight and obesity are strong risk factors for endometrial cancer, and studies suggest
323	that the association between PA and endometrial cancer is either mediated or confounded by
324	body weight, which can affect hormone profiles. Therefore, it is important to model the
325	association both with and without adjustment for BMI [15]. In our study, adjustment for BMI
326	in the multivariable analyses attenuated the associations. However, a modest inverse

- 327 association remained, suggesting that PA is independently associated with endometrial
- 328 cancer. Simultanously, the analyses of the different BMI categories showed that the

International Journal of Cancer

2
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
37
38
39
40
14
41
42
43
44
45
40
40
47
48
49
50
50
51
52
53
5/
55
56
57
58
50
29
60

352

329	association was more pronounced in obese than in normal-weight women. In our data, obesity
330	may confound the association between PA and overall endometrial cancer. Our findings are in
331	accordance with Friberg et al [16]. However, Moore et al adjusted for BMI in the association
332	between recreational PA and endometrial cancer and showed an attenuation of the estimates
333	from a significant towards a non-significant result compared to multivariable models
334	unadjusted for BMI (HR=0.98, 95% CI 0.89-1.09 vs HR=0.79, 95% CI 0.68-0.92) . This was
335	similar to several previous studies [14, 15, 33, 37]. Some studies have found a statistically
336	significant increased endometrial cancer risk in both inactive and active overweight women
337	[11], which correspond to our findings. Others have shown an effect modification, where the
338	inverse relationship was only seen among overweight or obese women [10, 37]. As in our
339	study, several other studies have reported no significant effect modification for BMI [33, 12,
340	16, 17, 31].
341	Heterogeneity in different study results may be explained by variations in the methods
342	used to assess PA (self-adminstered questionnaires, interviews, or use of job titles); PA
343	domains (recreation, occupation, transportation, household); frequency, duration, and
344	intensity of PA; and time periods in life when PA was measured, as well as different statistical
345	
	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence
346	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence to support a potential protective role of PA on endometrial cancer. The mechanisms involved
346 347	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence to support a potential protective role of PA on endometrial cancer. The mechanisms involved have been hypothesized as affecting endogenous sex hormone levels, insulin-mediated
346 347 348	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence to support a potential protective role of PA on endometrial cancer. The mechanisms involved have been hypothesized as affecting endogenous sex hormone levels, insulin-mediated pathways, and maintenance of energy balance [41].
346 347 348 349	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence to support a potential protective role of PA on endometrial cancer. The mechanisms involved have been hypothesized as affecting endogenous sex hormone levels, insulin-mediated pathways, and maintenance of energy balance [41]. Physical inactivity is considered an important risk factor for different cancers [42-44]. The
346 347 348 349 350	 methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence to support a potential protective role of PA on endometrial cancer. The mechanisms involved have been hypothesized as affecting endogenous sex hormone levels, insulin-mediated pathways, and maintenance of energy balance [41]. Physical inactivity is considered an important risk factor for different cancers [42-44]. The consistent associations between low PA levels and endometrial cancer risk in our study

- using a validated 10-point scale [21]. Our PAF estimation represents the minimum move
- required from low to higher levels of PA to create a significant change in the incidence of 353

endometrial cancer (21.9%, 95% CI: 7.1-34.3). However, the definite dose cannot be quantified and our results must be interpreted with caution. In the UK, Parkin found a PAF for endometrial cancer of 3.8% attributable to exercising less than the minimum recommended amount [43]. The proportion related to inadequate PA in the UK in 2002 was 30% for endometrial cancer, however that compared the highest (>60 minutes) and lowest (<30 minutes) PA levels, which gives a higher reference category than the recommendation of PA [45]. To quantify the PAF requires a realistic population distribution of the exposure of interest, which in our study is PA. We consider our cohort to be a nationally respresentative Norwegian cohort with a reliable population distribution of PA, and as such it should give a robust estimate. Furthermore, it is valuable to evaluate the impact of different factors in cancer prevention, which is helpful in prioritizing cancer prevention and intervention strategies. A major strength of our study is its prospective, population-based design, and the use of a high-quality, national cancer registry to identify endometrial cancer cases [20]. The large sample size and representativeness of the Norwegian female population 30 to 70 years of age gives a unique opportunity to calculate robust PAF estimates. The PA scale has been validated [21] and correlated well with all-cause mortality rates [46]. Furthermore, PA level, BMI, and smoking were re-assessed at follow-up. Self-reported BMI has been validated for the NOWAC study, indicating that there was a substantial agreement between self-reported and measured BMI values [47]. There was, however, a small but statistically significant under-reporting of weight, which would affect self-reported BMI; this tendency was largest among overweight and obese women [20, 47]. A survey of the PA levels in the adult population in Norway showed that 34% of women reached the national guidelines for PA [48]. This proportion is higher than in our study. The relatively large number of cases made it possible to investigate subtypes of endometrial cancer, however the proportion of type 2 endometrial

International Journal of Cancer

379	cancer was too low to allow for separate analyses. Multiple imputation of missing data, in
380	addition to complete-case analysis, confirmed our results. The PA assessment in our study
381	comprised all areas of PA, not only recreational PA. However, the total self-reported measure
382	of PA cannot differentiate intensity, duration, and frequency of PA, nor the type of PA in our
383	study, and given the self report of PA, measurement errors cannot be ruled out. However,
384	measurement errors would likely lead to a non-differential bias and a potential
385	underestimation of the true effect. The PA assessment used in this study may not apply to
386	women in other countries. Moreover, the potential for residual confounding, in particular by
387	BMI, remains.
388	
389	Conclusions
390	Overall, we found an inverse dose-response association between PA and endometrial cancer
391	with similar findings for subtypes of endometrial cancer. This risk was higher in obese
392	women. Also, 21.9% of the endometrial cancer cases could be attributable to low levels of
393	PA, and could potentially be avoided if women attained a higher PA level.
394	
395	
396	Ethical approval: All procedures performed in studies involving human participants were in
397	accordance with the ethical standards of the institutional and/or national research committee
398	and with the 1964 Helsinki declaration and its later amendments or comparable ethical
399	standards.

References

1. Cancer in Norway 2014 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer Registry of Norway. 2015. 2. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134. doi:10.1136/bmj.39367.495995.AE. 3. Schmid D, Behrens G, Keimling M, Jochem C, Ricci C, Leitzmann M. A systematic review and meta-analysis of physical activity and endometrial cancer risk. European Journal of Epidemiology. 2015;30(5):397-412. doi:10.1007/s10654-015-0017-6. 4. Gil KM, Von Grueningen VE. Physical Activity and Gynecologic Cancer Survivorship. In: Courneya KS, Friedenreich CM, editors. Physical Activity and Cancer. Berlin Heidelberg: Springer-Verlag 2011. 5. Lacey JV, Jr., Chia VM, Rush BB, Carreon DJ, Richesson DA, Ioffe OB, Ronnett BM, Chatterjee N, Langholz B, Sherman ME, Glass AG. Incidence rates of endometrial hyperplasia, endometrial cancer and hysterectomy from 1980 to 2003 within a large prepaid health plan. Int J Cancer. 2012;131(8):1921-9. doi:10.1002/ijc.27457. 6. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. The Lancet. 2005;366(9484):491-505. 7. World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global perspective. Washington DC: AICR; 2007. 8. World Cancer Research Fund/American Institute for Cancer Research. Continous Update Project Report. Food, Nutrition, Physical Activity, and the prevention of Endometrial Cancer. Available at http://www.dietandcancerreport.org. 2013. 9. Lindemann K, Eskild A, Vatten LJ, Bray F. Endometrial cancer incidence trends in Norway during 1953–2007 and predictions for 2008–2027. International Journal of Cancer. 2010;127(11):2661-8. doi:10.1002/ijc.25267. 10. Moore SC, Lee I, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Gonzalez ABd, Hartge P, Adami H-O, Blair CK, Borch KB, Boyd E, Check DP, Fournier A, Freedman ND, Gunter M, Johannson M, Khaw K-T, Linet MS, Orsini N, Park Y, Riboli E, Robien K, Schairer C, Sesso H, Spriggs M, Dusen RV, Wolk A, Matthews CE, Patel AV. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA internal medicine. 2016;176(6):816-25. doi:10.1001/jamainternmed.2016.1548. 11. Conroy MB, Sattelmair JR, Cook NR, Manson JE, Buring JE, Lee I-M. Physical activity, adiposity, and risk of endometrial cancer. Cancer Causes & Control. 2009;20(7):1107-15. doi:10.1007/s10552-009-9313-3. 12. Friedenreich C, Cust A, Lahmann PH, Steindorf K, Boutron-Ruault M-C, Clavel-Chapelon F, Mesrine S, Linseisen J, Rohrmann S, Pischon T, Schulz M, Tjønneland A, Johnsen NF, Overvad K, Mendez M, Arguelles MV, Garcia CM, Larrañaga N, Chirlague M-D, Ardanaz E, Bingham S, Khaw K-T, Allen N, Key T, Trichopoulou A, Dilis V, Trichopoulos D, Pala V, Palli D, Tumino R, Panico S, Vineis P, Bueno-de-Mesquita HB, Peeters PHM, Monninkhof E, Berglund G, Manjer J, Slimani N, Ferrari P, Kaaks R, Riboli E. Physical activity and risk of endometrial cancer: The European prospective investigation into cancer and nutrition. International Journal of Cancer. 2007;121(2):347-55. doi:10.1002/ijc.22676. 13. Dieli-Conwright CM, Ma H, Lacey JV, Henderson KD, Neuhausen S, Horn-Ross PL, Deapen D, Sullivan-Halley J, Bernstein L. Long-term and baseline recreational physical activity and risk of endometrial cancer: the California Teachers Study. Br J Cancer. 2013;109(3):761-8. doi:10.1038/bjc.2013.61. 14. Land SR, Liu Q, Wickerham DL, Costantino JP, Ganz PA. Cigarette Smoking, Physical Activity, and Alcohol Consumption as Predictors of Cancer Incidence among Women at High Risk of Breast Cancer in the NSABP P-1 Trial. Cancer Epidemiology Biomarkers & Prevention. 2014;23(5):823-32. doi:10.1158/1055-9965.epi-13-1105-t.

John Wiley & Sons, Inc.

2			
3	449	15. Du M, Kraft P, Eliassen AH, Giovannucci E, Hankinson SE, De Vivo I. Physical activity and risk of	
4	450	endometrial adenocarcinoma in the Nurses' Health Study. International Journal of Cancer.	
5	451	2014;134(11):2707-16. doi:10.1002/ijc.28599.	
6	452	16. Friberg E, Mantzoros CS, Wolk A. Physical Activity and Risk of Endometrial Cancer: A Population-	
7	453	Based Prospective Cohort Study. Cancer Epidemiology Biomarkers & Prevention. 2006;15(11):2136-	
8	454	40. doi:10.1158/1055-9965.epi-06-0465.	
9	455	17. Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, Physical Activity, and	
10	456	Endometrial Cancer Risk: Results From The Netherlands Cohort Study. Journal of the National Cancer	
11	457	Institute. 2004;96(21):1635-8. doi:10.1093/jnci/djh291.	
12	458	18. Murali R, Soslow RA, Weigelt B. Classification of endometrial carcinoma: more than two types.	
13	459	The Lancet Oncology. 2014;15(7):e268-e78. doi:http://dx.doi.org/10.1016/S1470-2045(13)70591-6.	
14	460	19. Lund E, Kumle M, Braaten T, Hjartåker A, Bakken K, Eggen A, Gram I. External validity in a	
16	461	population-based national prospective study – the Norwegian Women and Cancer Study (NOWAC).	
17	462	Cancer Causes and Control. 2003:14(10):1001-8. doi:10.1023/B:CACO.0000007982.18311.2e.	
18	463	20. Lund E. Dumeaux V. Braaten T. Hiartåker A. Engeset D. Skeie G. Kumle M. Cohort Profile: The	
19	464	Norwegian Women and Cancer Study (NOWAC) Kyinner og kreft. Int J Enidemiol. 2008;37(1):36-41.	
20	465	doi:10.1093/iie/dvm137	
21	466	21 Borch KB Ekelund U Brage S Lund E Criterion validity of a 10-category scale for ranking physical	
22	467	activity in Norwegian women Int I Behav Nutr Phys Act 2012;9(1):2	
23	468	22 Collaborators MWS Breast cancer and hormone-replacement therapy in the Million Women	
24	460	Study The Lancet 2003;362(9382):419-27 doi:http://dx.doi.org/10.1016/S0140-6736(03)14065-2	
25	405	23. Waaseth M. Bakken K. Dumeaux V. Olsen K. Bylander C. Figenschau Y. Lund F. Hormone	
26	470	replacement therapy use and plasma levels of sex hormones in the Norwegian Women and Cancer	
27	471	Postgenome Cohort - a cross-sectional analysis BMC Women's Health 2008-8(1):1	
28	472	24. WHO International Statistical Classification of Diseases and Polated Health Problems 10th	
29	475	Powision http://apps.who.int/classifications/icd10/browso/2015/on_2010_Accessed 27.11.2014	
3U 21	4/4	Revision. <u>Int.p.//apps.wno.int/classifications/itu10/browse/2013/en</u> . 2010. Accessed 27.11.2014.	
32	475	25. Full P, Tsialis AA, Daviulari W. Estimating the Parameters in the Cox Model When Covariate	
33	470	Valiables are Measured with Error. Biometrics. 1996, 54(4), 1407-19. doi:10.2507/2555007.	
34	4//	20. White IN, Callin JB. Bias and efficiency of multiple imputation compared with complete-case	
35	478	dialysis for missing covariate values. Statistics in Medicine. 2010;29(28).2920-51.	
36	479	001.10.1002/SIII.5944.	
37	480	27. Sterne J, while I, Carlin J, Spratt M, Royston P, Renward M, Wood A, Carpenter, Jr. Multiple	
38	481	imputation for missing data in epidemiological and clinical research: potential and pittalis. 2009.	
39	482	dol:10.1136/DMJ.D2393.	
40	483	28. White IR, Royston P. Imputing missing covariate values for the Cox model. Statistics in Medicine.	
41	484	2009;28(15):1982-98. doi:10.1002/sim.3618.	
42	485	29. Rubin DB. Multiple Imputation After 18+ Years. Journal of the American Statistical Association.	
43	486	1996;91(434):473-89. doi:10.2307/2291635.	
44 45	487	30. Benedict N. PUNAF: Stata module to compute population attributable fractions for cohort	
40	488	studies. <u>https://ideas.repec.org/c/boc/bocode/s45/193.html</u> . 2010. Accessed Accessed 23 June	
40 17	489		
47	490	31. Colbert LH, Lacey JV, Schairer C, Albert P, Schatzkin A, Albanes D. Physical activity and risk of	
49	491	endometrial cancer in a prospective cohort study (United States). Cancer Causes & Control.	
50	492	2003;14(6):559-67. doi:10.1023/a:1024866827775.	
51	493	32. Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, Physical Activity, and	
52	494	Endometrial Cancer Risk: Results From The Netherlands Cohort Study. International Journal of	
53	495	Gynecolocial Cancer. 2006;16 (suppl. 2):492.	
54	496	33. Gierach GL, Chang S-C, Brinton LA, Lacey JV, Hollenbeck AR, Schatzkin A, Leitzmann MF. Physical	
55	497	activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study.	
56	498	International Journal of Cancer. 2009;124(9):2139-47. doi:10.1002/ijc.24059.	
57			
58			
59			
60		19	

34. Terry P, Baron JA, Weiderpass E, Yuen J, Lichtenstein P, Nyrén O. Lifestyle and endometrial cancer risk: a cohort study from the Swedish twin registry. International Journal of Cancer. 1999;82(1):38-42. doi:10.1002/(SICI)1097-0215(19990702)82:1<38::AID-IJC8>3.0.CO;2-Q. 35. Folsom AR, Demissie Z, Harnack L. Glycemic index, glycemic load, and incidence of endometrial cancer: the Iowa Women's Health Study. Nutrition & Cancer. 2003;46(2):119-24 6p. 36. Furberg A-S, Thune I. Metabolic abnormalities (hypertension, hyperglycemia and overweight), lifestyle (high energy intake and physical inactivity) and endometrial cancer risk in a Norwegian cohort. International Journal of Cancer. 2003;104(6):669-76. doi:10.1002/ijc.10974. 37. Patel AV, Feigelson HS, Talbot JT, McCullough ML, Rodriguez C, Patel RC, Thun MJ, Calle EE. The role of body weight in the relationship between physical activity and endometrial cancer: Results from a large cohort of US women. International Journal of Cancer. 2008;123(8):1877-82. doi:10.1002/ijc.23716. 38. Moradi T, Nyrén O, Bergström R, Gridley G, Linet M, Wolk A, Dosemeci M, Adami H-O. Risk for endometrial cancer in relation to occupational physical activity: A nationwide cohort study in Sweden. International Journal of Cancer. 1998;76(5):665-70. doi:10.1002/(SICI)1097-0215(19980529)76:5<665::AID-IJC9>3.0.CO;2-O. 39. Weiderpass E, Pukkala E, Vasama-Neuvonen K, Kauppinen T, Vainio H, Paakkulainen H, Boffetta P, Partanen T. Occupational exposures and cancers of the endometrium and cervix uteri in Finland. American Journal of Industrial Medicine. 2001;39(6):572-80. doi:10.1002/ajim.1056. 40. Friedenreich CM. Physical Activity and Cancer Prevention: From Observational to Intervention Research. Cancer Epidemiology Biomarkers & Prevention. 2001;10(4):287-301. 41. Cust AE. Physical Activity and Gynecologic Cancer Prevention. Physical Activity and Cancer. In: Courneya KS, Friedenreich CM, editors. Recent Results in Cancer Research. Berlin Heidelberg: Springer; 2011. p. 159-85. 42. Mathers C, Stevens GA, Mascarenhas M. Global Health Risks: Mortality burden of disease attributable to selected major risk. Switzerland: WHO2009. Report No.: 9789241563871. 43. Parkin DM. 9. Cancers attributable to inadequate physical exercise in the UK in 2010. Br J Cancer. 2011;105(S2):S38-S41. 44. Olsen CM, Wilson LF, Nagle CM, Kendall BJ, Bain CJ, Pandeya N, Webb PM, Whiteman DC. Cancers in Australia in 2010 attributable to insufficient physical activity. Australian and New Zealand Journal of Public Health. 2015;39(5):458-63. doi:10.1111/1753-6405.12469. 45. World Cancer Research Fund/American Institute for Cancer Research. Policy and Action for Cancer Prevention. Food, Nutrition and Physical Activity: A Global Perspective. AICR: Washington, DC. 2009. 46. Borch KB, Braaten T, Lund E, Weiderpass E. Physical activity and mortality among Norwegian women - the Norwegian Women and Cancer Study. Clin Epidemiol. 2011;3(1):229-35. doi:10.1186/1479-5868-9-2. 47. Skeie G, Mode N, Henningsen M, Borch KB. Validity of self-reported body mass index among middle-aged participants in the Norwegian Women and Cancer study. Clinical Epidemiology. 2015;7:313-23. doi:10.2147/CLEP.S83839. 48. Hansen BH, Anderssen SA, Steene-Johannessen J, Ekelund U, Nilsen AK, Andersen ID, Dalene KE, Kolle E. Fysisk aktivitet og sedat tid blant voksne og eldre i Norge-Nasjonal kartlegging 2014-2015. Helsedirektoratet, Oslo2015.

	1	Physical activity and risk of endometrial cancer in the Norwegian Women
	2	and Cancer (NOWAC) Study
	3	Kristin B Borch ^{1*} , Elisabete Weiderpass ^{1, 2, 3, 4} , Tonje Braaten ¹ , Mie Jareid ¹ , Oxana A
	4	Gavrilyuk ¹ , Idlir Licaj ¹
	5	*Cooresponding author: Kristin Benjaminsen Borch, email:
	6	Kristin.benjaminsen.borch@uit.no
	7	Running title: Physical activity and endometrial cancer
	8	Word count: Abstract: 250; main text: 3 8 <u>53</u> 19
; ;	9	Tables: 3 <u>5</u> ; (supplementary tables: 1-figures: 1)
	10	Keywords: Endometrial cancer; physical activity; prospective study; population attributable
	11	fraction.
	12	
	13	Novelty and impact statements:
	14	We found evidence of a dose-response association between physical activity and overall
	15	endometrial cancer. The novelty include use of repeated measurements for physical activity
	16	and confounders combined with multiple imputation to address attrition, which is a particular
	17	problem in observational epidemiology. As a nationally representative cohort our study gave
	18	us an unique opportunity to calculate robust population attributable fractions 31 22% of
	19	endometrial cancer could be avoided if women increase their physical activity to the
	20	recommended-level.
	21	Abbreviations:
	22	BMI – body mass index
	23	CI – confidence interval
	24 25	PA – physical activity
	26	PAF – population attributable fractions
	27	HR – hazard ratio
	28	RR – relative risk
	29	NOWAC – The Norwegian Women and Cancer Study
	30 21	WCRF/AICK - World Cancer Research Fund/American Institute for Cancer Research
	21	
		1

International Journal of Cancer

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ I 20
22
23
24
25
26
27
28
29
30
31
32
33
3/
35
30
30
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52 50
ວ ວ
54
55
56
57
58
59
60

32 33 34	Affilia 1.	tions: Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of
35		Norway, Tromsø, Norway
36	2.	Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
37	3.	Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research,
38		Oslo, Norway
39	4.	Genetic Epidemiology Group, Folkhälsan Research Centre, Samfundet Folkhälsan, Helsinki, Finland
40 41 42 43	Fundi This p Rehab	ng: roject received financial support from the Norwegian Extra Foundation for Health and ilitation through EXTRA funds.
44 45	Confli	ct of interest: The authors declare that they have no conflict of interest.
40		
47	Autho	r's contributions
48	KBB,	EW and IL designed the study. IL and KBB preformed all statistical analyses, and
49	drafted	the manuscript. EW, MJ, and OG critically revised the manuscript. TB participated in
50	the sta	tistical analyses and revised the manuscript critically. All authors read and approved the
51	final n	nanuscript.
52		

60

Abstract

1

2	
3	
4 5	
5 6	
7	53
8	
g	54
10	
11	55
12	
13	56
14	F 7
15	57
16	58
17	50
18	59
19	
20	60
21	
22	61
23	
24	62
25	
26	63
27	C A
28	64
29	65
30	05
31	66
১∠ ৫৫	
34	67
35	
36	68
37	
38	69
39	70
40	70
41	71
42	/1
43	72
44	. –
45	73
46	
47	74
48	
49	75
50	
51	76
52 52	
ວວ 54	11
54	
56	
57	
58	
59	

Few studies have investigated the association between endometrial cancer and physical activity (PA) using repeated measures of PA and different subtypes of endometrial cancer. We aimed to investigate the association between endometrial cancer and PA level at two points in time in women with different body mass index (BMI) profiles, and to calculate the population attributable fraction (PAF) of endometrial cancer for low PA levels. We included 82,759 women with complete information on PA at baseline in the Norwegian Women and Cancer Study; 52,370 had follow-up information on PA. 687 endometrial cancer cases were identified. Multivariate cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). The PAF indicated the proportion of endometrial cancer that could be avoided in the population if these women had a higher PA level.<u>corresponding to ≥150 minutes of moderate/vigorous PA per week.</u> There was a statistically significant association between low PA levels at baseline and followup and endometrial cancer risk, with a dose-response trend (lowest PA level: HR=1.8560, 95% CI 1.1636-2.2053; highest PA level: HR=0.743, 95% CI 0.45-1.126 compared to the median). The Aanalyses that included including follow-up measurements yielded similar results. se associations were attenuated after adjustment for BMI, but remained significant. 231.94% (95% CI 7.16-34.349) of endometrial cancers could be avoided if women with low <u>PA levels (≤ 4 in a 1-10 degree self reported PA scale)</u> increased their PA levels to 5-10.at least 150 minutes/week . We found an inverse dose-response association between PA and endometrial cancer, independent of BMI. In this nationally representative cohort, 21.9% One of four endometrial cancers could potentially be avoided if PA levels increased to higher PA levels (5-10 in the scale)150 minutes per week.

78 Introduction

Endometrial cancer is the sixth most common cancer, and the most frequent gynecologic malignancy among women in Norway. In 2014, 727 new cases were diagnosed and 81 women died of the disease [1]. Established risk factors for endometrial cancer include use of exogenous estrogens unopposed by progestagens, early menarche (10-12 years of age), late menopause, nulliparity, diabetes mellitus, and obesity. Currently, the majority of endometrial cancer, and about half of the cases in postmenopausal women are attributable to being overweight or obese [2-4]. As the population ages and the prevalence of overweight, obesity, and sedentary lifestyle increase, the incidence of endometrial cancer is also expected to increase, especially in postmenopausal women [5, 6]. Thus primary prevention of endometrial cancer through modifiable lifestyle factors is of potential public health importance. Physical activity (PA) is a modifiable lifestyle factor, which is important in the regulation of hormones and metabolic pathways. It is also associated with weight control, and thus may reduce endometrial cancer risk [7-9]. A pooled analysis of nine cohorts from Europe and the United States included 1.44 million participants and found a 21% reduced risk of endometrial cancer associated with recreational PA [10]. However, within individual studies, results are inconsistent [8]. For example, the Women's Health Study did not find any relationship between recreational PA and walking and endometrial cancer risk [11]. Similarly, there was no significant association between total PA - including occupational, recreational, and household-related PA – and endometrial cancer risk in the European Prospective Investigation into Nutrition and Cancer [12]. The 2007 evaluation by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) concluded that there is a probable relationship between PA and endometrial cancer despite the variety of PA assessments not allowing for meta-analysis on dose-response [7]. This conclusion was supported in their Continous Update Project (CUP) report from 2013 [8]. Of four cohort

1		
2		
3 4		
5		
6 7	103	studies published after the 2013 CUP report [10, 13-15], three found an inverse association
8 9	104	between recreational PA and endometrial cancer risk [10, 15, 14], and one did not [13].
10 11	105	Few studies have investigated the association between endometrial cancer and PA using a
12 13	106	total and repeated measure of PA and different subtypes of endometrial cancer [12, 16, 17].
14 15	107	Endometrial cancer is classified as type I (estrogen dependent), which constitutes the majority
16 17	108	of cases (about 80%), and type II (estrogen independent), based on clinical, endocrine, and
18 19	109	epidemiological observations. The most common histological subtypes of endometrial cancer
20 21	110	are endometrioid carcinoma, serous carcinoma, carcinosarcoma, and clear cell carcinoma
22 23 24 25 26 27 28 29 30 31 32 33	111	[18]. While the association between body mass index (BMI) and endometrial cancer is well
	112	established, the relationship between PA and endometrial cancer in women with different
	113	body sizes remains unclear.
	114	The present study aimed to investigate the association between endometrial cancer and PA
	115	level at two points in time in women with different BMI profiles in the Norwegian Women
	116	and Cancer (NOWAC) Study, and to calculate the population attributable fraction (PAF) of
33 34	117	endometrial cancer for low PA levels.
35 36	118	
37 38	119	
39 40		
41 42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		_
57		5
58		
59		
60		
		John Wiley & Sons, Inc.

2
2
3
4
5
6
-
1
8
9
10
10
11
12
13
10
14
15
16
17
17
18
19
20
24
21
22
23
24
24
25
26
27
21
28
29
30
21
51
32
33
34
25
30
36
37
20
30
39
40
41
10
42
43
44
15
40
46
47
48
10
49
50
51
52
52
ეკ
54
55
56
50
57

1

120	Methods
121	The NOWAC Study
122	The NOWAC Study is a nationally representative cohort study that has been described in
123	detail previously [19, 20]. Briefly, random samples of Norwegian women aged 30-70 years
124	were invited to participate during three waves of data collection (1991/92, 1996/97, and
125	2003/04) [20]. More than 172,000 women completed a questionnaire with detailed questions
126	regarding lifestyle, diet, and health, and were enrolled in the study (overall response rate:
127	52.7%). The NOWAC Study was approved by the Regional Committee for Medical Research
128	Ethics and the Norwegian Data Inspectorate, and all particpants included in the study gave
129	written informed consent.
130	In this analysis we used information from enrollment questionnaires completed in the
131	period from 1996 to 2004 (baseline), and those with follow-up questionnaires completed 6-8
132	years after enrollment. In total 101,321 women completed questionnaires in these periods and
133	were eligible for inclusion in this study. We excluded women with prevalent cancers other
134	than non-melanoma skin cancer at baseline (n=4,454), those who emigrated or died before the
135	start of follow-up (n=20), those with hysterectomy (n=5,426), and those who had missing
136	information on PA level at baseline (n=8,662). Thus, the final analytical study sample
137	consisted of 82,759 women. Follow-up information on PA level, smoking, weight, and height
138	was available for for 52,370 (63.3%) of these women.
139	
140	Assessment of PA level and covariates
1/11	PA level was assessed in the NOWAC questionnaires on a 10-point scale by the following

PA level was assessed in the NOWAC questionnaires on a 10-point scale by the following
question: "By physical activity we mean activity both at work and outside work, at home, as
well as training/exercise and other physical activity, such as walking, etc. Please mark the
number that best describes your level of physical activity; 1 being very low and 10 being very

2 3 4		
5		
6 7	145	high". This PA scale has been validated [21] and refers to the total amount of PA across
8 9	146	different domains, including recreation, occupation, transportation, and household in one
10 11	147	global score. Moderate, but significant Spearman's rank correlation coefficients were found
12 13	148	(range: 0.36-0.46; P<0.001) between PA level at enrollment and concurrent outcomes from
14 15	149	criterion measures of a combined sensor monitoring heart rate and movement. This
16 17	150	corresponded to mean values of 0.8 (very low) and 3.4 hours per day (very high) of
18 19	151	moderate/vigorous PA, respectively, with a linear increase (<i>P for trend <</i> 0.001). The PA scale
20	152	appeared valid to rank PA level in Norwegian women, but not to quantify a definite dose of
22	153	PA [21].
23 24	154	Information on the covariates height, weight, age at menarche, parity, oral contraceptive
25 26	155	use, menopausal status, age at menopause, hormone therapy use, years of education, smoking
27	156	status and, alcohol consumption, were obtained from NOWAC questionnaires. The women
29 30	157	wereas considered postmenopausal if they stated that the period had stopped or had a
31 32	158	hysterectomy (excluded from the study) or reported use of hormonal therapy if they were
33 34	159	≥53 years. This cut-off point is based on the definition used in the the Million Women Study
35 36	160	[22], and has been used by the NOWAC study earlier [23]. Information on height and weight
37 38	161	was used to calculate BMI (kg/m ²).
39 40	162	
41 42	163	Cancer incidence, death, and emigration
43 44	164	Women diagnosed with a primary, invasive, malignant neoplasm of the endometrium
45 46	165	(International Statistical Classification of Diseases, Injuries and Causes of Death Revisions 7
47 48	166	and 10 codes 172.0 and C 54.1, respectively [24]) were identified through linkage to the
49	167	Cancer Registry of Norway, from which date of diagnosis and morphology (International

Classification of Diseases for Oncology, 3rd edition) were also obtained. Based on the

morphology, endometrial cancers were categorized into overall endometrial cancer (all

International Journal of Cancer

1).

Information on date of death or emigration was obtained through linkage to the Norwegian National Population Register. **Statistical methods** Analyses using baseline data only We used Cox proportional hazard regression models to calculate hazard ratios (HRs) with 95% confidence intervals (CIs) comparing five categories of PA level (1-2, 3-4, 5-6, 7-8, and 9-10). PA level 5-6 was set as the reference group. Follow-up time was defined as the interval between age at baseline and age at cancer diagnosis, death, emigration, or the end of followup (31 December 2013), whichever came first. Departures from the proportional hazards assumption in the Cox models were tested through the inclusion of an interaction variable between categories of PA and underlying time (age). A preliminary analysis of baseline data only was used to select the covariates that were adjusted for in the final models. In the preliminary model, we adjusted for: height (in metres), BMI (normal weight: <25, overweight: 25-29.9, obese: $\geq 30 \text{ kg/m}^2$), age at menarche (<12, 13-14, 15+ years), parity (0, 1, 2, 3, 4+), oral contraceptive use (ever/never), menopausal status (premenopausal, perimenopausal, postmenopausal, hormone therapy use $\geq <53$ years), hormone therapy use (ever/never), years of education ($\leq 9, >9-12, \geq 13$ years), smoking status (never, former, current), alcohol consumption (grams per day), and diabetes mellitus (yes/no). The removal of each covariate had to be associated with a change in the regression coefficients of at least 10% in any of the categories of PA level to be included in the final model. To test for linear trend, we used the original, 10-point PA scale, modelled as a

subtypes), endometrioid carcinoma, type 1 endometrial cancer (adenocarcinoma NOS,

endometrioid, and squamous carcinomas), and other subtypes (non-endometrioid or non-type

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

60

1 2

2		
3		
4		
5		
6		
7		
ò		
0		
9	_	
1	0	
1	1	
1	2	
1	3	
1	л Л	
4	4 6	
1	ວ	
1	6	
1	7	
1	8	
1	9	
2	ó	
~	4	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6 6	
<u>م</u>	2	
2	1	
2	8	
2	9	
3	0	
3	1	
2	י כ	
ა ი	~	
3	3	
3	4	
3	5	
3	6	
3	7	
2	'n	
ე ე	0	
3	9	
4	0	
4	1	
4	2	
4	3	
۵	۵	
1	F	
4	о с	
4	6	
4	7	
4	8	
4	9	
5	õ	
5	4	
ວ	1	
5	2	
5	3	
5	4	
5	5	
5	ล	
0 F	ט 7	
о -	1	
5	8	
5	a	

continuous variable in the analyses. Interactions (log likelihood test) between PA and the above-mentioned categories of BMI, educational attainment and smoking status were tested. The Wald $\chi 2$ statistic was used to test for heterogeneity between normal weight and obese women.not significant. As BMI is a strong risk factor for endometrial cancer, we decided to investigate the beiation between PA and endometrial cancer risk in normal weight, overweight women, even though the interaction term was not significant (p=0.49). The Wald $\chi 2$ statistic was used to test for heterogeneity between normal weight and obsese women. Analyses using repeated PA measurements We used the method proposed by Hu et al [25], i.e., baseline data was used until follow-up information became available, death, or emigration, whichever occurred first. Thereafter follow-up information was applied until death, emigration, or the end of the study period, which ever occurred first. In the analysis using repeated PA measurements, we also used follow-up information on BMI and smoking once it became available. Complementary analysis - multiple imputation Compared to women who did not drop out of the study, those who dropped out of the study at follow-up (n=30,389 (36.7%)), were more often overweight (31.4% vs 29.2%) or obese (10.3% vs 8.6%), more often reported oral contraceptive use (46.6% vs 43.5%) and hormone therapy use (36.7% vs 31.7%), more often had a history of diabetes mellitus (2.9% vs 1.7%), and had fewer years of education (24.3% vs 23.7%). They were also more often current smokers, but on average they had a similar PA level and alcohol consumption as women who

did not drop out of the study. In order to deal with dropouts, we used multiple imputation

219 models [26] and compared the results with those of complete-case analyses. Multiple

2	
3	
4	
5	
0 7	220
/ 2	
a	221
10	
11	222
12	
13	223
14	224
15	224
16	225
17	225
18	226
19	-
20	227
21	
22	228
23	
24	229
25	• • • •
26	230
27	221
28	231
29	222
30	252
31	233
ა∠ ეე	
33 34	234
35	
36	235
37	
38	236
39	
40	237
41	220
42	238
43	220
44	255
45	240
46	
47	241
48	
49	242
50	
51	
52	
53	
54	
55	
50	
5/ 50	
00 50	
29	
υo	

imputation models were used under the assumption that data was missing at random. To reduce sampling variability, we created 20 replicate datasets from the imputation simulation [27]. We used the outcomes overall endometrial cancer, type 1 endometrial cancer, and endometrioid carcinoma. Nelson-Aalen cumulative hazard estimator was included as a predictor in the imputation models [28]. The estimates from the 20 imputed datasets were combined using Rubin's rules [29]. All the analyses and multiple imputations were done in STATA version 14.0 (Stata Corp, College Station, TX, USA).

<u>PAF calculation</u>
We calculated the PAF to estimate the proportion of endometrial cancer that could be avoided in the population if women had different PA levels, using the formula: $PAF = Pe^*(RRe-1)/[Pe^*RR+(1-Pe)]$, where Pe is the proportion of PA level in the study population and RRe is the RR in the model adjusting for BMI (model 1) and the final baseline multivariable proportional hazards regression model (model 2), including all aforementioned confounders

and BMI. We calculated two-sided 95% CIs for the PAFs using the PUNAF Stata module

[30]. <u>The PA levels were divided into two levels; levels 1 to 4 were classified as exposed to</u>
 <u>low PA levels and levels 5-10 as unexposed to low PA levels.</u> The PAF was interpreted as the
 proportion of overall endometrial cancers that would not occur in the average population if

PA <u>levels</u> waswere between 5 and 10 according to the scale. ≥ 8, corresponding to 150 minutes per week according to the validation of PA in NOWAC, assuming that the distribution of the adjustment variables remained unchanged.

243	Results
244	The median age at baseline was 51 years. During a mean follow-up time of nearly 13 years,
245	687 cases of endometrial cancer were identified, with type 1 endometrial cancer
246	(adenocarcinoma not otherwise specified [NOS], endometrioid and squamous carcinoma)
247	accounting for 83.8% of the cases. The age at diagnosis ranged between 42 and 86 years, with
248	a mean of 62 years of age. <u>Nearly half (43%) of the women reported a PA level between 5</u>
249	and 6 (Table 1), and collapsing the upper part of the scale showed that a Approximately 74%
250	of the women reported a PA level between 5 and $10_{}$ with level ≥ 8 comprised 15% of the
251	participants. Women with a PA level >5 had a lower BMI, used less hormone therapy,
252	reported less diabetes mellitus, and were more often never smokers compared to women
253	reporting low PA levels. (Table 1).
254	Multivariable models of the associations between baseline and one follow-up
255	measurement of PA and endometrial cancer risk showes that compared to women with a PA
256	level of 5-6, those with a PA level of 1-2 had a 60% higher risk of overall endometrial cancer
257	(HR=1.60, 95% CI 1.16-2.20). Removing BMI from the models increased these estimates
258	(HR=1.85, 95% CI 1.36 2.36). For analyses using repeated PA measurements, the
259	corresponding risks adjusted for BMI and smoking status were similar to those obtained when
260	using baseline data only (HR-with BMI adjustment=1.54, 95% CI 1.01-2.17 and HR-without
261	BMI adjustment=1.80, 95% CI 1.19 2.72). In analyses using baseline data only and those
262	using repeated PA measurments, BMI and smoking status were negatively associated with the
263	risk of type 1 endometrial cancer and endometroid carcinomasneers. Compared to the age-
264	adjusted models, the associations were attenuated in the multivariable adjusted models that
265	included BMI (Table 2).
266	Interactions between PA and categories of BMI, educational attainment and smoking
267	status were not significant. However, aAs BMI is a strong risk factor for endometrial cancer,

John Wiley & Sons, Inc.

268	we decided to investigate the association between PA and endometrial cancer risk in normal
269	weight, overweight, and obese women, even though the interaction term was not significant
270	$(\underline{p=0.49})$. When analyses were stratified by BMI category the PA levels 7-10 were collapsed,
271	PA was not associated with overall endometrial cancer among normal-weight women in
272	analyses using baseline data only (HR _{PA(1-2) vs (5-6)} =1.32, 95% CI 0.71-2.45). The
273	corresponding association in obese participants was HR PA(1-2) vs (5-6)=3.08 (95% CI 1.76-5.39)
274	(p _{heterogeneity} =0.05) (Table 3).
275	Using multiple imputation, we found that the estimates at all levels of adjustment and for
276	all endpoints (overall endometrial cancer, type 1 endometrial cancer, and endometrioid
277	carcinoma) were consistent with those obtained from the complete-case analyses (Table 4).
278	(Supplemental Table 1). PAF calculations showed that if women with a PA level \leq 4 increased
279	to levels 5-10 in the scale that level to ≥ 8 , 21.931% (95% CI: $7.16-34.349$) of endometrial
280	cancers could be avoided (Table 5). PAF calculations based on the proportional hazards
281	regression model including BMI yielded a lower proportion (17%, 95% CI: 2.3-29.5) (Table
282	5). The results did not differ substantially for subtypes of endometrial cancer (Supplemental
283	table 1) (more than 1 in 4) (Supplementary Figure 1).
284	
285	Discussion
286	In this large Norwegian cohort we found an inverse dose-response association between PA
287	and endometrial cancer overall, type 1 endometrial cancer, and endometrioid carcinoma. The
288	results were consistent when using baseline data on PA and when using repeated PA

In this large Norwegian cohort we found an inverse dose-response association between PA and endometrial cancer overall, type 1 endometrial cancer, and endometrioid carcinoma. The results were consistent when using baseline data on PA and when using repeated PA measurements, as well as when multiple imputation was used. Our findings further suggest that the association between PA and endometrial cancer is independent of BMI, as risk estimates were attenuated, but still significant, when BMI was incorporated in the statistical models. Stratification by BMI category indicated that the risk of low PA on endometrial cancer was statistically significant among obese women only (although the test for interaction

was not statistically significant, p=0.49). Among women with PA levels ≤ 4 , 21.934% of endometrial cancer could <u>potentially</u> be avoided if these women adopted a PA level <u>between</u> <u>5-10 in the scale ≥ 8 , which corresponds to approximately 150 minutes of moderate/vigorous</u> <u>PA per week</u>.

Other cohort studies investigating the association between total PA levels – which include domains such as recreation, occupation, transportation, and household - and endometrial cancer are sparse; most studies measured recreational PA only and few studies use repeated measurements of PA. In contrast to our results, the European Prospective Investigation into nutrition and Cancer reported a non-significant trend (p-trend 0.36) for total PA (including the domains recreation, occupation, and household) when comparing active with inactive women (multivariable adjusted model including BMI: HR=0.88, 95% CI 0.61-1.27) [12]. This was similar for the Breast Cancer Detection Demonstration Project study, which measured the total intensity of PA and found no significant associations with endometrial cancer [31]. Findings from the Netherlands Cohort Study on Diet and Cancer showed that total baseline non-occupational PA was inversely associated with endometrial cancer, with a lower risk observed for a PA corresponding to >30 minutes per day [17, 32]. In a Swedish cohort the risk was decreased, although this decrease was not significant [16]. Several studies have reported on recreational PA and endometrial cancer. Nine prospective cohort studies on recreational PA were included in the WCRF/AICR CUP report up to 2012 [8], but due to different measures of PA, the meta-analysis of these studies only looked at the highest vs lowest PA level (RR=0.73, 95% CI 0.58-0.93), and these results were attenuated when the model was adjusted for BMI (RR=0.80, 95% CI 0.69-0.92). A limitation of this meta-analysis was the high heterogeneity ($I^2=75.9\%$) of the individual studies [8]. Indeed, only three of these studies [33, 32, 34] found significant inverse associations, three found no significant association [35, 11, 36], and three [37, 12, 16] found an inverse, but

2	
3 ⊿	
5	
6 7	31
8	27
9 10	52
11	32
12 13	32
14 15	32
16	32
18	32
19 20	32
21 22	32
23 24	32
25	22
26 27	34
28 29	33
30 31	33
32	33
33 34	33
35 36	33
37 38	33
39 40	33
41	33
42	33
44 45	33
46 47	34
48 49	3/
50	5-
51 52	34
53 54	34
55	
56 57	
58	
59	
υU	

9	insignificant association between endometrial cancer and recreational PA. Since the
0	publication of the WCRF/AICR CUP report from 2012 we have identified four additional
1	prospective cohort studies on recreational PA and endometrial cancer [10, 13-15]. The
2	Nurses' Health study investigated recreational PA in the past year and found no association
3	between baseline recreational PA and endometrial cancer risk, however, brisk walking time
4	\geq 3 hours per week was inversely associated with endometrial cancer [15]. In the California
5	Teachers Study cohort, moderate and vigorous recreational PA was associated with a 25%
6	lower endometrial cancer risk [13]. The findings of Land et al [14] are in accordance with our
7	findings, although they studied recreational PA and had a small number of cases in a
8	population of women at high risk for breast cancer. A large pooled analysis of 12 cohorts was
9	recently published and reported a HR of 0.79 (95% CI 0.68-0.92) in the association between
0	recreational PA and endometrial cancer based on 5346 cases. However, the degree of
1	heterogeneity between cohorts was high $(I^2=69\%)[10]$.
2	Analysis of occupational PA measured twice during 1974 and 1981 in a Norwegian study
3	showed a significant trend, with a reduced risk for women who were consistently moderately
4	active; however, the association was attenuated in the multivariable model and the trend was
5	no longer significant [36]. The WCRF/AICR CUP report [8] included four cohort studies [16]
6	38, 12, 39], none of which found a significant association between occupational PA and
7	endometrial cancer. In a highest vs lowest occupational PA meta-analysis, the summary RR
8	was 0.79 (95% CI 0.71-0.88), with a high degree of heterogeneity between studies (I^2 =
9	75.9%) and concluded a probable inverse association between occupational PA and
0	endometrial cancer [8].
1	Overweight and obesity are strong risk factors for endometrial cancer, and studies suggest

that the association between PA and endometrial cancer is either mediated or confounded bybody weight, which can affect hormone profiles. Therefore, it is important to model the

3 4		
5		
6 7	344	association both with and without adjustment for BMI [15]. In our study, adjustment for BMI
8 9	345	in the multivariable analyses attenuated the associations. However, a modest inverse
10 11	346	association remained, suggesting that PA is independently associated with endometrial
12 13	347	cancer. Simultanously, the analyses of the different BMI categories showed that the
14 15	348	association was more pronounced in obese than in normal-weight women. In our data, obesity
16 17	349	may confound the association between PA and overall endometrial cancer. Our findings are in
18 19	350	accordance with Friberg et al [16]. However, Moore et al adjusted for BMI in the association
20	351	between recreational PA and endometrial cancer and showed an attenuation of the estimates
22	352	from a significant towards a non-significant result compared to multivariable models
23 24 25	353	unadjusted for BMI (HR=0.98, 95% CI 0.89-1.09 vs HR=0.79, 95% CI 0.68-0.92) . This was
25 26	354	similar to several previous studies [14, 15, 33, 37]. Some studies have found a statistically
27	355	significant increased endometrial cancer risk in both inactive and active overweight women
29 30	356	[11], which correspond to our findings. Others have shown an effect modification, where the
31 32	357	inverse relationship was only seen among overweight or obese women [10, 37]. As in our
33 34	358	study, several other studies have reported no significant effect modification for BMI [33, 12,
35 36	359	16, 17, 31].
37 38	360	Heterogeneity in different study results may be explained by variations in the methods
39 40	361	used to assess PA (self-adminstered questionnaires, interviews, or use of job titles); PA
41 42	362	domains (recreation, occupation, transportation, household); frequency, duration, and
43 44	363	intensity of PA; and time periods in life when PA was measured, as well as different statistical
45 46	364	methods used in the data analysis [40]. Nevertheless, there is substantial biological evidence
47 48	365	to support a potential protective role of PA on endometrial cancer. The mechanisms involved
49 50	366	have been hypothesized as affecting endogenous sex hormone levels, insulin-mediated
51 52 53 54	367	pathways, and maintenance of energy balance [41].
55		

368	Physical inactivity is considered an important risk factor for different cancers [42-44]. The
369	consistent associations between low PA levels and endometrial cancer risk in our study
370	justify the estimation of PAFs. Our definition of low PA levels was based on self-reported PA
371	using a validated 10-point scale [21]. Our PAF estimation represents the minimum move
372	required from low to higher levels of PA to create a significant change in the incidence of
373	endometrial cancer (21.931%, 95% CI: 7.1-34.3). However, the definite dose cannot be
374	quantified and our results must be interpreted with caution. , which corresponded to an
375	increase in PA to 150 minutes of moderate/vigorous PA per week. This amount is in
376	accordance with World Health Organization Global Recommendations on PA for Health . In
377	the UK, Parkin found a PAF for endometrial cancer of 3.8% attributable to exercising less
378	than the minimum recommended amount [43]. The proportion related to inadequate PA in the
379	UK in 2002 was 30% for endometrial cancer, however that compared the highest (≥60
380	minutes) and lowest (<30 minutes) PA levels, which gives a higher reference category than
381	the recommendation of PA [45]. To quantify the PAF requires a realistic population
382	distribution of the exposure of interest, which in our study is PA. We consider our cohort to
383	be a nationally respresentative Norwegian cohort with a reliable population distribution of
384	PA, and as such it should give a more robust estimate. Furthermore, it is valuable to evaluate
385	the impact of different factors in cancer prevention, which is helpful in prioritizing cancer
386	prevention and intervention strategies.
387	A major strength of our study is its prospective, population-based design, and the use of a
388	high-quality, nationally representative_cancer registryation system to identify endometrial
389	cancer cases [20]. The large sample size and representativeness of the Norwegian female
390	population 30 to 70 years of age gives a unique opportunity to calculate robust PAF estimates.
391	The PA scale has been validated [21] and correlated well with all-cause mortality rates [46].
392	Furthermore, PA level, BMI, and smoking were re-assessed at follow-up. Self-reported BMI

3 4		
5		
6 7	393	has been validated for the NOWAC study, indicating that there was a substantial agreement
8 9	394	between self-reported and measured BMI values [47]. There was, however, a small but
10 11	395	statistically significant under-reporting of weight, which would affect self-reported BMI; this
12 13	396	tendency was largest among overweight and obese women [20, 47] . A survey of the PA
14 15	397	levels in the adult population in Norway showed that 34% of women reached the national
16 17	398	guidelines for PA [48]. This proportion is higher than in our study. The relatively large
18 19	399	number of cases made it possible to investigate subtypes of endometrial cancer, however the
20 21	400	proportion of type 2 endometrial cancer was too low to allow for separate analyses. Multiple
22	401	imputation of missing data, in addition to complete-case analysis, confirmed our results. The
23 24 25	402	PA assessment in <u>ourthis</u> study comprised all areas of PA, not only recreational PA. However,
25 26	403	the total self-reported measure of PA cannot differentiate intensity, duration, and frequency of
27	404	PA, nor the type of PA in our study, and given the self report of PA, measurement errors
29 30	405	cannot be ruled out. However, measurement errors would likely lead to a non-differential bias
31 32	406	and a potential underestimation of the true effect. The PA assessment used in this study may
33 34	407	not apply to women in other countries. Moreover, the potential for residual confounding, in
35 36	408	particular by BMI, remains.
37 38	409	

Conclusions

Overall, we found an inverse dose-response association between PA and endometrial cancer with similar findings for subtypes of endometrial cancer. This risk was higher in obese women. Also, 21.931% of the endometrial cancer cases could be were attributable to low levels of PA, and more than 1 in 4 cases could potentially be avoided if women attained a higher PA level_corresponding to 150 minutes per week or more.

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

1			
2			
3			
4			
5			
6			
7	422	References	
8			
a	423	1. Cancer in Norway 2014 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo:	
10	424	Cancer Registry of Norway. 2015.	
11	425	2. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to	
12	426	body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134.	
12	427	doi:10.1136/bmj.39367.495995.AE.	
1/	428	3. Schmid D, Behrens G, Keimling M, Jochem C, Ricci C, Leitzmann M. A systematic review and meta-	
14	429	analysis of physical activity and endometrial cancer risk. European Journal of Epidemiology.	
10	430	2015;30(5):397-412. doi:10.1007/s10654-015-0017-6.	
10	431	4. Gli KM, von Grueningen VE. Physical Activity and Gynecologic Cancer Survivorsnip. In: Courneya	
10	432	S, Friedenreich Civi, editors. Physical Activity and Cancer. Benin Heidelberg. Springer-verlag 2011.	
10	435	Jangholz B. Sherman ME. Glass AG. Incidence rates of endometrial hyperplacia, endometrial cancer	
19	435	and hysterectomy from 1980 to 2003 within a large prenaid health plan. Int I Cancer	
20	436	2012:131(8):1921-9. doi:10.1002/iic.27457.	
21	437	6. Amant F. Moerman P. Neven P. Timmerman D. Van Limbergen E. Vergote I. Endometrial cancer.	
22	438	The Lancet. 2005;366(9484):491-505.	
23	439	7. World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical	
24	440	Activity, and the Prevention of Cancer: a Global perspective. Washington DC: AICR; 2007.	
25	441	8. World Cancer Research Fund/American Institute for Cancer Research. Continous Update Project	
26	442	Report. Food, Nutrition, Physical Actvity, and the prevention of Endometrial Cancer. Available at	
27	443	http://www.dietandcancerreport.org. 2013.	
28	444	9. Lindemann K, Eskild A, Vatten LJ, Bray F. Endometrial cancer incidence trends in Norway during	
29	445	1953–2007 and predictions for 2008–2027. International Journal of Cancer. 2010;127(11):2661-8.	
30	446	doi:10.1002/ijc.25267.	
31	447	10. Moore SC, Lee I, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H,	
ა∠ ეე	448	Gonzalez ABG, Hartge P, Adami H-O, Blair CK, Borch KB, Boyd E, Check DP, Fournier A, Freedman ND,	
33	449	Guiller M, Johannson M, Knaw K-T, Linel MS, Orsini N, Park Y, Riboli E, Robielt K, Schairer C, Sesso H,	
34	450	with risk of 26 types of cancer in 1.44 million adults. JAMA internal medicine, 2016;176(6):816-25	
30	451	doi:10.1001/iamainternmed 2016 1548	
30	453	11. Conrov MB. Sattelmair JR. Cook NR. Manson JE. Buring JE. Lee I-M. Physical activity, adiposity.	
37	454	and risk of endometrial cancer. Cancer Causes & Control. 2009;20(7):1107-15. doi:10.1007/s10552-	
აი 20	455	009-9313-3.	
39	456	12. Friedenreich C, Cust A, Lahmann PH, Steindorf K, Boutron-Ruault M-C, Clavel-Chapelon F, Mesrine	
40	457	S, Linseisen J, Rohrmann S, Pischon T, Schulz M, Tjønneland A, Johnsen NF, Overvad K, Mendez M,	
41	458	Arguelles MV, Garcia CM, Larrañaga N, Chirlaque M-D, Ardanaz E, Bingham S, Khaw K-T, Allen N, Key	
4Z	459	T, Trichopoulou A, Dilis V, Trichopoulos D, Pala V, Palli D, Tumino R, Panico S, Vineis P, Bueno-de-	
43	460	Mesquita HB, Peeters PHM, Monninkhof E, Berglund G, Manjer J, Slimani N, Ferrari P, Kaaks R, Riboli	
44	461	E. Physical activity and risk of endometrial cancer: The European prospective investigation into	
45	462	cancer and nutrition. International Journal of Cancer. 2007;121(2):347-55. doi:10.1002/ijc.22676.	
46	463	13. Dieli-Conwright CM, Ma H, Lacey JV, Henderson KD, Neuhausen S, Horn-Ross PL, Deapen D,	
47	464	Sullivan-Halley J, Bernstein L. Long-term and baseline recreational physical activity and risk of	
48	405 166	enuometriai cancer: the camornia reachers Study. Br J Cancer. 2013;109(3):761-8. doi:10.1038/bic.2013.61	
49	400 467	14 Land SR Liu O. Wickerham DL. Costantino IP. Ganz DA. Cigarette Smoking. Drusical Activity, and	
50	468	Alcohol Consumption as Predictors of Cancer Incidence among Women at High Rick of Preast Cancer	
51	469	in the NSABP P-1 Trial. Cancer Enidemiology Biomarkers & Prevention 2014/23(5):823-32	
52	470	doj:10.1158/1055-9965.epi-13-1105-t.	
53		-/	
54			
55			
00 57		19	
5/ 50			
20 50			
29			

International Journal of Cancer

2		
3		
4		
5		
6	171	15 Du M. Kreft D. Elizacon All. Cigurnaucci E. Hankinson SE. Do Vivo I. Dhucical activity and rick of
7	471	15. Du M, Krail P, Ellassell AR, Glovalinucci E, Halikinson SE, De Vivo I. Physical activity and risk of
8	472	
9	474	16. Friberg E. Mantzoros CS. Wolk A. Physical Activity and Risk of Endometrial Cancer: A Population-
10	475	Based Prospective Cohort Study. Cancer Epidemiology Biomarkers & Prevention. 2006;15(11):2136-
11	476	40. doi:10.1158/1055-9965.epi-06-0465.
12	477	17. Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, Physical Activity, and
13	478	Endometrial Cancer Risk: Results From The Netherlands Cohort Study. Journal of the National Cancer
14	479	Institute. 2004;96(21):1635-8. doi:10.1093/jnci/djh291.
15	480	18. Murali R, Soslow RA, Weigelt B. Classification of endometrial carcinoma: more than two types.
16	481	The Lancet Oncology. 2014;15(7):e268-e78. doi: <u>http://dx.doi.org/10.1016/S1470-2045(13)70591-6</u> .
17	482	19. Lund E, Kumle M, Braaten T, Hjartaker A, Bakken K, Eggen A, Gram T. External validity in a
18	483 191	population-based hallonal prospective study – the Norwegian women and cancer study (NOWAC).
19	484 485	20 Lund F. Dumeaux V. Braaten T. Hiartåker A. Engeset D. Skeie G. Kumle M. Cohort Profile: The
20	486	Norwegian Women and Cancer Study (NOWAC) Kyinner og kreft. Int J Epidemiol. 2008:37(1):36-41.
21	487	doi:10.1093/ije/dym137.
22	488	21. Borch KB, Ekelund U, Brage S, Lund E. Criterion validity of a 10-category scale for ranking physical
23	489	activity in Norwegian women. Int J Behav Nutr Phys Act. 2012;9(1):2.
24	490	22. Collaborators MWS. Breast cancer and hormone-replacement therapy in the Million Women
20	491	Study. The Lancet. 2003;362(9382):419-27. doi: <u>http://dx.doi.org/10.1016/S0140-6736(03)14065-2</u> .
20	492	23. Waaseth M, Bakken K, Dumeaux V, Olsen K, Rylander C, Figenschau Y, Lund E. Hormone
28	493	replacement therapy use and plasma levels of sex hormones in the Norwegian Women and Cancer
20	494	Postgenome Conort - a cross-sectional analysis. BIVIC women's Health. 2008;8(1):1.
30	495	24. WHO. International Statistical Classifications /icd10/browse/2015/op. 2010. Accessed 27.11.2014
31	490 497	25 Hu P Tsiatis AA Davidian M Estimating the Parameters in the Cox Model When Covariate
32	498	Variables are Measured with Error. Biometrics. 1998;54(4):1407-19. doi:10.2307/2533667.
33	499	26. White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case
34	500	analysis for missing covariate values. Statistics in Medicine. 2010;29(28):2920-31.
35	501	doi:10.1002/sim.3944.
36	502	27. Sterne J, White I, Carlin J, Spratt M, Royston P, Kenward M, Wood A, Carpenter, Jr. Multiple
37	503	imputation for missing data in epidemiological and clinical research: potential and pitfalls. 2009.
38	504	doi:10.1136/bmj.b2393.
39	505	28. White IR, Royston P. Imputing missing covariate values for the Cox model. Statistics in Medicine.
40	507	2005,26(13).1562-56. 001.10.1002/300.5018. 29 Rubin DB Multiple Imputation After 18+ Years, Journal of the American Statistical Association
41	508	1996:91(434):473-89. doi:10.2307/2291635.
42	509	30. Benedict N. PUNAF: Stata module to compute population attributable fractions for cohort
43	510	studies. https://ideas.repec.org/c/boc/bocode/s457193.html. 2010. Accessed Accessed 23 June
44	511	2016.
45	512	31. Colbert LH, Lacey JV, Schairer C, Albert P, Schatzkin A, Albanes D. Physical activity and risk of
46	513	endometrial cancer in a prospective cohort study (United States). Cancer Causes & Control.
47	514	2003;14(6):559-67. doi:10.1023/a:1024866827775.
48	515	32. Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, Physical Activity, and
49	516	Endometrial Cancer Risk: Results From The Netherlands Conort Study. International Journal of
50	517	33 Gierach GL Chang S-C Brinton LA Lacey IV Hollenbeck AB Schatzkin A Leitzmann ME Physical
51	519	activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study.
52	520	International Journal of Cancer. 2009;124(9):2139-47. doi:10.1002/ijc.24059.
53	-	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
54 57		
00 50		
00 57		20
52		
50		
60		

1				
2				
3				
4				
5				
6				
7	521	34. Terry P, Baron JA, Weiderpass E, Yuen J, Lichtenstein P, Nyrén O. Lifestyle and endometrial cancer		
8	522	risk: a cohort study from the Swedish twin registry. International Journal of Cancer. 1999;82(1):38-		
à	523	42. doi:10.1002/(SICI)1097-0215(19990702)82:1<38::AID-IJC8>3.0.CO;2-Q.		
10	524	35. Folsom AR, Demissie Z, Harnack L. Glycemic index, glycemic load, and incidence of endometrial		
11	525	cancer: the Iowa Women's Health Study. Nutrition & Cancer. 2003;46(2):119-24 6p.		
10	526	36. Furberg A-S, Thune I. Metabolic abnormalities (hypertension, hyperglycemia and overweight),		
12	527	lifestyle (high energy intake and physical inactivity) and endometrial cancer risk in a Norwegian		
13	528	cohort. International Journal of Cancer. 2003;104(6):669-76. doi:10.1002/ijc.10974.		
14	529	37. Patel AV, Feigelson HS, Talbot JT, McCullough ML, Rodriguez C, Patel RC, Thun MJ, Calle EE. The		
15	530	role of body weight in the relationship between physical activity and endometrial cancer: Results		
16	531	from a large cohort of US women. International Journal of Cancer. 2008;123(8):1877-82.		
17	532	001:10.1002/IJC.23716.		
18	233 E24	38. Moraul T, Nyren O, Bergstrom R, Ghuley G, Linet M, Work A, Dosenieci M, Adami H-O. Risk for		
19	554	Swodon, International Journal of Cancer 1999;76(5):665, 70, doi:10.1002/(SICI)1007		
20	536	0215/10080520\76.52665AID_IIC0\2 0 CO.2.0		
21	530	39 Weidernass F. Pukkala F. Vasama-Neuvonen K. Kaunninen T. Vainio H. Paakkulainen H. Roffetta P.		
22	538	Partanen T. Occupational exposures and cancers of the endometrium and cervix uteri in Finland		
23	530	American Journal of Industrial Medicine, 2001;39(6):572-80, doi:10.1002/aiim.1056		
24	540	40 Friedenreich CM. Physical Activity and Cancer Prevention: From Observational to Intervention		
25	541	Research, Cancer Epidemiology Biomarkers & Prevention, 2001:10(4):287-301.		
26	542	41. Cust AE. Physical Activity and Gynecologic Cancer Prevention. Physical Activity and Cancer. In:		
27	543	Courneya KS, Friedenreich CM, editors. Recent Results in Cancer Research. Berlin Heidelberg:		
28	544	Springer; 2011. p. 159-85.		
29	545	42. Mathers C, Stevens GA, Mascarenhas M. Global Health Risks: Mortality burden of disease		
30	546	attributable to selected major risk. Switzerland: WHO2009. Report No.: 9789241563871.		
31	547	43. Parkin DM. 9. Cancers attributable to inadequate physical exercise in the UK in 2010. Br J Cancer.		
32	548	2011;105(S2):S38-S41.		
33	549	44. Olsen CM, Wilson LF, Nagle CM, Kendall BJ, Bain CJ, Pandeya N, Webb PM, Whiteman DC.		
34	550	Cancers in Australia in 2010 attributable to insufficient physical activity. Australian and New Zealand		
35	551	Journal of Public Health. 2015;39(5):458-63. doi:10.1111/1753-6405.12469.		
36	552	45. World Cancer Research Fund/American Institute for Cancer Research. Policy and Action for		
37	553	Cancer Prevention. Food, Nutrition and Physical Activity: A Global Perspective. AICR: Washington, DC.		
38	554	2009. 46. Dereh KB, Dreaten T, Lund F, Weidernass F, Dhwisel activity and mertality among Nerwagian		
39	555	40. BOICH NB, Bladtell T, Lunu E, Weldel pass E. Physical activity and montality among horwegian		
40	550	doi:10.1186/1470-5868-0-2		
41	558	47 Skeie G. Mode N. Henningsen M. Borch KB. Validity of self-reported body mass index among		
42	559	middle-aged participants in the Norwegian Women and Cancer study. Clinical Epidemiology.		Formattad: Font: Calibri, Nonvegian
43	560	2015;7:313-23. doi:10.2147/CLEP.S83839.		(Bokmål), Do not check spelling or
44	561	48. Hansen BH, Anderssen SA, Steene-Johannessen J, Ekelund U, Nilsen AK, Andersen ID, Dalene KE,	S. 1	grammar
45	562	Kolle E. Fysisk aktivitet og sedat tid blant voksne og eldre i Norge-Nasjonal kartlegging 2014-2015.		Formatted: Norwegian (Bokmål)
46	563	Helsedirektoratet, Oslo2015.		Formetted: Font: Calibri Nanyagian
47	564			(Bokmål) Do not check spelling or
48	564			grammar
49				
50				
51				
52				
53				
54				
55				
56		21		
57				
58				
59				

Table 1 Selected baseline characteristics of participants in the Norwegian Women and Cancer Study by physical activity level (n=82,759)

Characteristic	Physical activity level						
	1 to 4 N=21,	953 (26.5%)	5 to 1	9.5%)			
	1 to 2	3 to 4	5 to 6	7 to 8	9 to 10		
	N=3855	N=18,098	N=35,551	N=20,991	N=4264		
	(4.7%)	(21.9%)	(43.0%)	(25.4%)	(5.2%)		
Age (mean, ±SE)	53.2 (.11)	52.1 (.05)	51.5 (.03)	51.3 (.04)	51.9 (.10)		
Person-years at risk ¹	48 995	236 571	462 837	266 512	54 318		
Overall endometrial cancer (total cases n=687)	56 (8.2%)	181 (26.3%)	283 (41.2%)	139 (20.2%)	28 (4.1%)		
Endometrioid (total cases n=473	41 (8.7%)	134 (28.3%)	185 (39.1%)	100 (21.1%)	13 (2.7%)		
Type 1 endometrial cancer ² (total cases n=576)	47 (8.2%)	161 (28.0%)	226 (39.2%)	122 (21.2%)	20 (3.5%)		
Other subtypes ³ (total cases n=111)	9 (8.1%)	20 (18%)	57 (51.4%)	17 (15.3%)	8 (7.2%)		
BMI (mean, ±SE)	26.9 (.09)	25.8 (.03)	24.6 (.02)	23.8 (.02)	23.6 (.05)		
Missing (%)	2.2	2.0	1.7	1.7	2.2		
Age at menarche (mean, ±SE)	13.2 (.03)	13.3 (.01)	13.3 (.007)	13.7 (.01)	13.4 (.02)		
Missing (%)	1.6	1.6	1.4	1.2	1.7		
Parity (%)							
Nulliparity	10.4	9.2	8.2	8.0	8.2		
1-2	51.6	52.7	53.2	53.0	50.4		
≥3	38.0	38.1	38.5	39.0	41.4		
Ever use of oral contraceptives (%)	49.6	53.9	53.8	54.8	50.4		
Missing (%)	3.9	2.9	2.8	3.2	4.3		
Menopausal status (%)							
Premenopausal	38.4	47.4	50.0	48.8	44.4		
Perimenopause	7.0	5.9	5.9	6.5	6.1		
Postmenopausal	49.0	41.9	39.0	39.4	44.4		
Hormonal therapy use <53 years	3.0	2.8	2.8	3.1	3.3		
Missing	2.6	2.0	2.3	2.3	1.8		
Ever use of hormonal therapy (%)	36.9	35.5	32.5	31.4	29.6		
Missing (%)	2.8	2.4	2.6	2.4	3.4		
Years of education (mean, ±SE)	11.5 (.06)	12.2 (.03)	12.3 (.02)	12.6 (.02)	11.9 (.06)		

1
2
2
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
/1
40
42
43
44
45
46
47

Missing (%)	6.6	5.2	4.5	4.9	6.0
Smoking status (%)					
Never	29.6	36.1	37.3	37.4	35.2
Former	29.8	31.2	32.6	35.0	33.3
Current	39.1	31.4	28.9	26.3	30.0
Missing (%)	1.5	1.3	1.2	1.4	1.5
Alcohol consumption, mean ±SE (grams/day)	3.0 (.03)	3.4 (.03)	3.4 (.02)	3.5 (.03)	3.1 (.06)
Missing (%)	2.3	1.7	1.7	1.8	2.4
Diabetes mellitus (%)	4.4	2.1	1.6	1.3	1.6
Missing (%)	27.3	20.7	17.3	15.3	17.1

¹Total person years=1,069,232; average follow-up time 12.92 years (SD=3.65) ²Type 1 includes adenocarcinoma, endometrioid, squamous types ³Other subtypes are cases not equal to Type 1

Tonow-up	mow-up in the Norwegian women and Cancer Study (n=62 759)								
	Endometrial	1004							
	cancer	Models ^{1, 2, 3, 4}	1 to 2	3 to 4	5 to 6	7 to 8	9 to 10	p_trend	
		Crude n=687	1.73 (1.30-2.31)	1.21 (1.00-1.46)	1.00	0.87 (0.71-1.07)	0.83 (0.56-1.22)	0.00	
	Overall	PA + BMI n= 673	1.47 (1.09-1.97)	1.09 (0.9-1.32)	1.00	0.91 (0.74-1.11)	0.86 (0.58-1.27)	0.01	
	endometrial cancer	Multivariable without BMI n=607	1.85 (1.36-2.53)	1.28 (1.05-1.56)	1.00	0.89 (0.72-1.11)	0.71 (0.45-1.12)	0.00	
		Multivariable n=593	1.60 (1.16-2.20)	1.15 (0.94-1.41)	1.00	0.92 (0.74-1.15)	0.73 (0.45-1.16)	0.01	
		Crude n=576	1.83 (1.33-2.51)	1.35 (1.10-1.65)	1.00	0.96 (0.77-1.19)	0.74 (0.47-1.17)	0.00	
Baseline	Type 1	PA + BMI n=564	1.51 (1.10-2.09)	1.20 (0.97-1.47)	1.00	1.01 (0.81-1.26)	0.76 (0.48-1.22)	0.01	
Dusenne	endometrial cancer	Multivariable without BMI n=510	1.97 (1.4-2.78)	1.47 (1.19-1.82)	1.00	1.00 (0.79-1.26)	0.68 (0.4-1.15)	0.00	
		Multivariable n=498	1.66 (1.17-2.36)	1.31 (1.05-1.63)	1.00	1.04 (0.82-1.32)	0.69 (0.40-1.18)	0.00	
	Endometrioid subtype	Crude n=473	1.96 (1.39-2.75)	1.37 (1.10-1.72)	1.00	0.96 (0.75-1.22)	0.59 (0.33-1.03)	0.00	
		PA + BMI n=463	1.59 (1.12-2.25)	1.20 (0.96-1.51)	1.00	1.00 (0.79-1.29)	0.59 (0.33-1.06)	0.004	
		Multivariable without BMI n=428	2.25 (1.57-3.22)	1.51 (1.2-1.91)	1.00	1.01 (0.78-1.3)	0.61 (0.33-1.13)	0.00	
		Multivariable n=418	1.83 (1.26-2.64)	1.32 (1.04-1.67)	1.00	1.06 (0.82-1.37)	0.60 (0.32-1.15)	0.001	
		Crude n= 450	1.78 (1.22-2.58)	1.31 (1.04-1.65)	1.00	0.86 (0.67-1.10)	0.87 (0.54-1.40)	0.00	
_		PA + BMI n=438	1.48 (1.01-2.17)	1.18 (0.93-1.49)		0.91 (0.71-1.17)	0.98 (0.61-1.57)	0.04	
Repeated measurem ents PA		Multivariable without BMI n=393	1.80 (1.19-2.72)	1.35 (1.06-1.73)	1.00	0.92 (0.71-1.2)	0.71 (0.4-1.26)	0.00	
	Overall	Multivariable n=381	1.54 (1.01-2.35)	1.22 (0.95-1.58)	1.00	0.97 (0.74-1.26)	0.80 (0.45-1.41)	0.02	
1 / 1									
	Tune 1	Crude n = 387	1.98 (1.34-2.91)	1.39 (1.09-1.78)	1.00	0.83 (0.63-1.09)	0.93 (0.56-1.53)	0.00	
	Type 1	PA + BMI n=377	1.60 (1.08-2.39)	1.25 (0.97-1.61)	1.00	0.88 (0.67-1.17)	1.06 (0.64-1.75)	0.01	

Table 2 Relative risk estimates of endometrial cancer (overall, type 1, and endometrioid) by physical activity (PA) level at baseline and follow-up in the Norwegian Women and Cancer Study (n=82 759)

 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\end{array}$

	Multivariable without BMI n=337	2.10 (1.38-3.21)	1.46 (1.12-1.9)	1.00	0.94 (0.71-1.25)	0.8 (0.44-1.45)	0.00
	Multivariable n=327	1.75 (1.13-2.71)	1.33 (1.01-1.74)	1.00	0.99 (0.74-1.33)	0.91 (0.5-1.65)	0.01
	Crude $n = 321$	1.90 (1.24-2.89)	1.30 (1.00-1.70)	1.00	0.72 (0.53-0.97)	0.61 (0.32-1.16)	0.00
	PA + BMI n=311	1.55 (1.00-2.39)	1.18 (0.9-1.55)	1.00	0.76 (0.55-1.03)	0.7 (0.37-1.34)	0.01
Endometrioid	Multivariable without BMI n=290	2.15 (1.38-3.34)	1.34 (1.01-1.79)	1.00	0.78 (0.57-1.07)	0.65 (0.33-1.28)	0.00
	Multivariable n=280	1.77 (1.12-2.81)	1.22 (0.91-1.63)	1.00	0.82 (0.60-1.14)	0.75 (0.38-1.49)	0.01

¹Crude model with age as time-variable.

² Model with adjustment for BMI.

³Multivariable model adjusted for use of hormone therapy, oral contraceptive use, years of education, smoking, alcohol consumption (gram per day). ⁴Multivariable model same as above, but with adjustments for BMI included.

BMI: body mass index

Complete case models	Model ^{1,2}	ВМІ	1 to 2	3 to 4	5 to 6	7 to 10	p_trend
		Normal BMI n=318	1.28 (0.74-2.21)	1.06 (0.79-1.42)	1.00	0.83 (0.64-1.07)	0.10
	Crude	Overweight n=234	1.04 (0.60-1.83)	1.02 (0.75-1.39)	1.00	0.90 (0.64-1.26)	0.66
Baseline		Obese n=121	2.50 (1.49-4.20)	1.45 (0.92-2.29)	1.00	1.32 (0.74-2.36)	0.01
		Normal BMI n=281	1.32 (0.71-2.45)	1.19 (0.87-1.62)	1.00	0.86 (0.66-1.14)	0.07
	Multivariable	Overweight n=212	0.95 (0.51-1.77)	1.00 (0.73-1.39)	1.00	0.90 (0.63-1.28)	0.76
		Obese n=100	3.08 (1.76-5.39)	1.55 (0.93-2.56)	1.00	0.98 (0.48-1.99)	0.00
		Normal BMI n=182	1.26 (0.58-2.73)	0.85 (0.56-1.30)	1.00	0.80 (0.58-1.12)	0.39
D		Overweight n=169	1.44 (0.74-2.82)	1.39 (0.97-2.01)	1.00	1.16 (0.78-1.71)	0.61
Repeated	Crude	Obese n=87	1.78 (0.94-3.37)	1.39 (0.84-2.30)	1.00	0.73 (0.34-1.56)	0.01
17		Normal BMI n=164	1.17 (0.47-2.91)	0.90 (0.58-1.41)	1.00	0.86 (0.61-1.21)	0.53
	Multivariable	Overweight n=147	1.15 (0.52-2.53)	1.35 (0.92-2.00)	1.00	1.17 (0.78-1.77)	0.81
		Obese n=70	2.45 (1.22-4.91)	1.63 (0.92-2.89)	1.00	0.56 (0.21-1.50)	0.00

Table 3 Relative risk estimates of overall endometrial cancer by physical activity (PA) level at baseline and follow-up according to body mass index (BMI) status at baseline in the Norwegian Women and Cancer study (n=82,759)

¹Crude model with age as time-variable. ² Multivariable model adjusted for use of hormone therapy, oral contraceptive use, years of education, smoking, alcohol consumption (gram/day).

Table 4: Relative risk estimates of endometrial cancer (overall, type 1 and endometrioid) by physical activity (PA) level at baseline and follow-up with imputation for missing variables in the Norwegian Women and Cancer study (n=82,759)

Imputation	Models ^{1,2,3,4}	1 to 2	3 to 4	5 to 6	7 to 8	9 to 10	n trend
Inputation	WIGUEIS	1 10 2	5 10 4	5100	/ 10 0	9 10 10	p_uenu
	Crude n=687	1.76 (1.27-2.44)	1.34 (1.09-1.65)	1.00	0.80 (0.65-1.00)	0.73 (0.48-1.12)	0.00
	PA + BMI n= 687	1.47 (1.05-2.05)	1.22 (0.98-1.50)	1.00	0.85 (0.69-1.06)	0.80 (0.52-1.22)	0.001
Overall	Multivariable without BMI n=687	1.87 (1.32-2.63)	1.40 (1.13-1.74)	1.00	0.85 (0.69-1.07)	0.71 (0.45-1.13)	0.02
	Multivariable n=687	1.58 (1.11-2.24)	1.28 (1.02-1.59)	1.00	0.90 (0.72-1.13)	0.78 (0.49-1.22)	0.02
	Crude n=576	1.87 (1.23-2.83)	1.30 (1.00-1.70)	1.00	0.71 (0.53-0.96)	0.60 (0.31-1.14)	0.00
	PA + BMI n= 576	1.51 (0.99-2.31)	1.16 (0.89-1.52)	1.00	0.77 (0.57-1.04)	0.67 (0.35-1.27)	0.001
Type 1	Multivariable						
	without BMI n=576	2.05 (1.34-3.15)	1.34 (1.02-1.77)	1.00	0.77 (0.57-1.05)	0.66 (0.35-1.27)	0.00
	Multivariable n=576	1.66 (1.08-2.57)	1.19 (0.90-1.58)	1.00	0.83 (0.61-1.13)	0.74 (0.39-1.42)	0.002
	Crude n=473	1.89 (1.28-2.79)	1.45 (1.13-1.85)	1.00	0.76 (0.58-0.99)	0.48 (0.24-0.96)	0.00
Endometrioid	PA + BMI n = 473	1.51 (1.01-2.26)	1.28 (1.00-1.64)	1.00	0.82 (0.63-1.07)	0.54 (0.27-1.08)	0.01
	Multivariable						
	without BMI n=473	2.11 (1.42-3.14)	1.53 (1.18-1.97)	1.00	0.83 (0.63-1.09)	0.54 (0.27-1.07)	0.00
	Multivariable n=473	1.70 (1.13-2.56)	1.35 (1.05-1.75)	1.00	0.89 (0.68-1.17)	0.60 (0.30-1.20)	0.00
¹ Crude model w	vith age as time-variable.						

 ² Model with adjustment for BMI.
 ³Multivariable model adjusted for use of hormone therapy, oral contraceptive use, years of education, smoking, alcohol consumption (gram per day). ⁴Multivariable model same as above, but with adjustment for BMI included.

BMI: body mass index

 Table 5: Population attributable fraction (PAF) for the proportion of endometrial cancer in the population that would be avoided if low physical activity (PA) level increased

		Overall							
			Model 1 ¹ n=	673		Model 2 ²	n= 593		
PA level	Pe	PAF	PAF 95% CI	RR= 95% CI	PAF	PAF 95% CI	RR= 95% CI		
[1-4] to [5-10]	26.5 %	17%	[2.3-29.5]	1.21 [1.02-1.42]	21.9%	[7.1-34.3]	1.28 [1.08-1.52]		

¹Model 1: measured at baseline with age as time variable and adjusted for BMI.

²Model 2: Measured at baseline in a multivariable model adjusted for BMI, oral contraceptive use, hormone therapy use, years of education, smoking status, and alcohol consumption (grams per day).

Pe: proportion of low physical activity levels, RR: relative risk, CI: confidence interval