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ABSTRACT

A simple analytical model for tidal energy loss at fjord sills and its partitioning into local dissipation

and radiated internal tides is presented. The analytical model builds on a two-layer assumption with

quasi-steady nonlinear flow over the sill and wave radiation in the far field. When the interface is situated

above sill level, upstream- and downstream-propagating internal waves are generated as the bottom-

layer flow becomes partially blocked because of a hydraulic control over the sill. When this control sets

in, energy is lost in the transition from supercritical flow over the sill to subcritical flow downstream of the

sill. The analytical model is compared with observations at the Drøbak sill in the Oslo Fjord and with

idealized numerical simulations with a nonhydrostatic primitive equation model. The overall good

agreement between observations, analytical model, and numerical model results indicates that the hy-

draulic control over the sill is a key player for both the generation of internal tides and the local energy

loss. The tidal energy loss decreases with increasing height of the interface above the sill. At the same

time, the fraction of energy dissipated locally increases from about 20% for the interface situated at sill

level to .50% when the upper-layer thickness is less than about 80% of the sill depth. These results

correspond well with the observations in the Oslo Fjord where more energy is dissipated near the sill than

is radiated away.

1. Introduction

The oscillating flow of stratified fluids over topogra-

phy has received much attention since it was recog-

nized that tides lose considerable amounts of energy at

rough topography in the deep ocean (Sjöberg and

Stigebrandt 1992; Egbert and Ray 2000) and that this

may explain a large part of the energy required to mix

the abyssal ocean (Munk andWunsch 1998). It has also

received attention because tidal flow over fjord sills

seems to be related to the strength of mixing in fjord

basins and thereby governs the ventilation and the

amount of oxygen-consuming material a fjord can re-

ceive without developing oxygen deficiency (e.g.,

Stigebrandt et al. 1996).

The small dimensions of fjords relative to the deep

ocean, their sill at the entrance, and the often relatively

strong currents over the sill that are needed to adjust theCorresponding author: Lars Arneborg, lars.arneborg@smhi.se
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fjord state to the variable conditions outside the fjord

make them excellent places to study stratified flow over

topography. The fjord studies have mainly followed

two branches. One branch (e.g., Stigebrandt 1976,

1979; Stigebrandt and Aure 1989; Stacey 1985) has

focused on the harmonic forcing of internal tides of

the same frequency as the tidal forcing. Stigebrandt

and Aure (1989) showed that the amount of work

needed to mix the basin waters inside fjord sills was

proportional to theoretical estimates of the energy

flow into internal tides radiating away from the sills.

The suggested dissipation mechanism was the break-

ing of internal tides at the sloping topography away

from the sill. Some peculiarities of that theory is that

the relation seems to hold even for fjords much shorter

than the internal waves claimed to cause the mixing

and that it assumes that the internal tides mainly lose

their energy below sill level. To our knowledge, in-

ternal tide wave breaking away from the sill of fjords

remains to be confirmed. Another branch (e.g.,

Farmer and Armi 1999; Klymak and Gregg 2004; Inall

et al. 2004; Staalstrøm et al. 2015) has focused on the

internal hydraulics at fjord sills, where tidal flow often

causes large internal hydraulic jumps on the lee side of

sills. We have found no fjord studies systematically

investigating the relative amounts of tidal energy go-

ing into hydraulic jumps and radiated internal tides

and the importance of these components for basin

water mixing. However, there are a number of recent

studies in ocean settings investigating these questions

(see below).

Based on a dataset from Oslo Fjord in June 2012,

Staalstrøm et al. (2015, hereinafter SALB) showed

that most of the tidal energy loss dissipated close to the

sill in strong hydraulic jumps and that only about 10%–

40% of the barotropic energy loss radiated into the

fjord as internal tide energy. This is a similar fraction

of radiated to dissipated energy, as in the much more

energetic Loch Etive (Inall et al. 2004; Stashchuk et al.

2007), and much smaller than in Knight Inlet, where as

much as two-thirds radiates into the fjord (Klymak and

Gregg 2004). The most ambitious campaign to mea-

sure radiated and dissipated energy losses at a topo-

graphic ridge has been done in Hawaii in the Hawaiian

Ocean Mixing Experiment (HOME) experiment,

where 15% of the total barotropic energy loss was

estimated to dissipate locally near the topography

(Klymak et al. 2006). In some ocean general circula-

tion models (OGCMs) tidal mixing has since then been

parameterized under the assumption that 1/3 of the

barotropic tidal energy loss dissipates locally and

contributes to mixing, whereas the radiated part is

unaccounted for (e.g., Simmons et al. 2004; Saenko and

Merryfield 2005). Examples of later estimates of the

fraction of tidal loss dissipated locally, based mainly on

high-resolution numerical models, Musgrave et al.

(2016; Mendocino Escarpment, 28%), andAlford et al.

(2015; Luzon Strait, 40%), indicate that the fraction is

variable but do not provide any direct answers to the

reason for this variability.

A serious attempt to understand the fraction of

energy dissipated locally was done in a model study

(Klymak et al. 2010) that suggested that the total

barotropic energy loss was well described by linear

internal wave generation theory and that the dissi-

pated part corresponds to the energy flux contribution

from the high modes that have a group velocity that is

too small to escape the topography. This model

predicts a much smaller local dissipation at the Hawaii

Ridge than the 15% estimated from the HOME ob-

servations. In addition, it predicts a dissipation that

increases with the tidal velocity amplitude cubed,

whereas the results in Musgrave et al. (2016) suggest

something closer to the tidal velocity squared.Winters

and Armi (2012, 2013) discussed the dynamics of

continuously stratified, blocked tidal flow over a sill

and nicely showed that for most supercritical crests a

quasi-steady, hydraulic-controlled flow develops in a

layer above the crest and that this reduces the gener-

ation of radiated internal tides. However, they did not

present a theory to predict this reduction in internal

tides or the energy dissipated in the nonlinear flow

near the sill.

In the present paper, we investigate the relationship

between local energy loss at the sill and internal tide

radiation and reuse and develop a set of existing the-

ories to predict energy flux in the internal tide and

local dissipation in a hydraulic jump for the idealized

two-layer tidal flow over a short, steep sill. The theo-

retical development basically builds on the develop-

ment of Baines (1988) and subsequent papers but is

applied in a quasi-steady sense on an oscillating tidal

flow to obtain the abovementioned energy partition-

ing. There is considerable literature on two-layer

jumps and bores and on the ability of two-layer hy-

draulic theory to predict energy losses in jumps (e.g.,

Chu and Baddour 1977; Wood and Simpson 1984;

Baines 1984; Klemp et al. 1997; Li and Cummins 1998;

White and Helfrich 2014). In the present work, these

propagating bores belong to the radiated part of the

energy that is extracted from the barotropic tides, and

their energy losses are therefore not considered. In-

spired by observations (e.g., SALB), the local energy

loss at the sill is assumed to be caused by a quasi-

steady hydraulic jump at the sill, a feature that has

received much less theoretical attention (e.g., Holland
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et al. 2002) than the two-layer bore moving into sta-

tionary water. The energy loss in that jump is mainly

governed by the differences in energy heads upstream

and downstream of the sill, which in turn are governed

by the blocking at the sill in the case the flow is hy-

draulically controlled there. Entrainment into the

jump is assumed to be of secondary importance rela-

tive to the downstream baroclinic volume flux changes

imposed by the sill and the hydraulic control. Under

these assumptions, it turns out that it suffices to de-

scribe the hydraulic control at the sill and the up-

stream and downstream propagation of internal waves

to predict both the local energy loss and the radiated

energy, as described in more detail below. The theo-

retical two-layer predictions are compared with the

2012 Oslo Fjord dataset also presented in SALB and

with two-dimensional, high-resolution simulations with

the nonhydrostatic MITgcm model over idealized

topography.

In section 2, we present the theory and the method

used to calculate energy fluxes in the theory and in the

numerical simulations. In section 3, we briefly present

the dataset from the Oslo Fjord. In section 4, we de-

scribe the idealized numerical simulations, and in sec-

tion 5, we compare the theoretical predictions with the

observations and the results of the numerical simula-

tions. The results are discussed in section 6.

2. Theory

We consider a time-varying, uniform-width, two-layer

barotropic flow over a sill (Fig. 1) with the deep-water

barotropic velocity u0 varying in time as

u
0
5U

0
cos(vt) , (1)

where U0 is the barotropic velocity amplitude, and

v is the tidal frequency. Assuming a much smaller

surface elevation than interface changes (rigid-lid

approximation), the barotropic volume flux can be

considered independent of position x, which means

that the barotropic velocity at the sill us is related to

that in deep water as

u
s
5

H

H2 d
u
0
, (2)

where H is the deep-water depth, and d is the height

of the sill. Now, we combine two approximations to

describe the time-varying hydraulic flow over the sill

and the internal wave radiation away from the sill. In

the near field over the sill, we assume that the flow

quickly adjusts to a quasi-steady state in equilibrium

with the barotropic forcing at that time. In order for

that to be true, the tidal excursion length (e.g.,

Winters and Armi 2013) must be large relative to the

width of the sill L during a tidal cycle. This can be

expressed as

U
s

vL
� 1, (3)

where Us is the barotropic velocity amplitude over the

sill. This may be a conservative estimate since the

lower-layer velocity is larger than the barotropic sill

velocity; furthermore, the lower layer may only be

hydraulically active in a region close to the sill crest.

The resulting two-layer hydraulic flow over a sill is

thoroughly described in Baines (1995), which we to

some extent follow here. In the far field away from the

sill, the sill is mainly felt by the restrictions in volume

fluxes in the upper and lower layers, imposed by the

near-field hydraulics at the sill. These cause internal

waves to be radiated away from the sill, raising the

interface on the upstream side and lowering it on

the downstream side. A further assumption here is that

the mixing at the sill does not have a strong impact

on the layer volume fluxes. The local energy loss is

FIG. 1. Definition sketch of two-layer flow over a sill, showing the barotropic velocities u0 and

us away from and over the sill, respectively.
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then calculated from the change in lower-layer Bernoulli

function, assuming that no energy loss takes place in the

upper layer, as described further below. A somewhat

provocative implication of these assumptions is that the

integrated local energy loss is determined by the large-

scale flow via the hydraulic control and the internal wave

radiation rather than by small-scale processes, such as

shear instability, internal wave overturning, and so on.

a. Near-field flow

In the hydraulic theory, we assume that volume fluxes

are conserved in each layer, that no mixing occurs be-

tween the layers, and that (apart from in the hydraulic

jumps) energy is conserved in each layer. The volume

flux in each layer can be written as the barotropic part

plus the baroclinic part, that is,

q
1
5 u

0
H

1
1q

bc
, and (4)

q
2
5 u

0
H

2
2 q

bc
, (5)

where qbc is the baroclinic part of the volume flux

counted positive in the upper layer and negative in the

lower layer. These are of equalmagnitude due to the rigid-

lid assumption. Given the volume conservation in each

layer, the upper- and lower-layer velocities at the sill, u1s
and u2s, and upstream, u1u and u2u, can be calculated as

u
1s
5

q
1

H
1
2h

s

, u
1u
5

q
1

H
1
2h

u

, and (6)

u
2s
5

q
2

H
2
2 d1h

s

, u
2u
5

q
2

H
2
1h

u

, (7)

where hu (hs) is the interface elevation upstream (at

the sill).

Energy conservation in both layers can, using the

Boussinesq and hydrostatic approximations, be expressed

as (e.g., Baines 1995)

1

2
(u2

2u 2 u2
1u)1 g0h

u
5

1

2
(u2

2s 2u2
1s)1 g0h

s
, (8)

where g0 5 g(r2 2 r1)/r0 is the reduced gravity, r0 is

a reference density, and r1 and r2 are the upper and

lower layer densities, respectively.

The character of the flow is determined by the com-

posite Froude number at the sill (e.g., Baines 1995; Armi

1986), which with our notation can be written as

G2
s 5

u2
1s

g0(H
1
2h

s
)
1

u2
2s

g0(H
2
2d1h

s
)
. (9)

As long as G2
s is less than unity, the flow is symmetric

over the sill, and the sill will just give rise to a local dent

in the interface needed to accelerate the lower layer

over the sill (Fig. 2a). There will be no upstream or

downstream influence of the sill, and therefore in order

to calculate the interface elevation and layer velocities

at the sill, (4) to (8) can be closed by setting hu 5
qbc 5 0.

When the barotropic flow is increased such that

G2
s 5 1. (10)

The flow has the possibility to develop an asymmet-

ric state over the sill (Fig. 2b; e.g., Baines 1995). If the

flow is increased above the limiting case, the flow will

develop an asymmetric state, and in order to maintain

that state, the composite Froude number must remain

equal to unity. The velocities and interface elevation

at the sill will adjust to meet that requirement, which

will change the volume fluxes and the upstream in-

terface elevation such that hu 6¼ 0 and qbc 6¼ 0. With

three extra variables hu, qbc, and Gs and two equa-

tions (9) and (10), an additional relation is re-

quired to close the system of equations. That relation

is obtained from the far-field flow, which, as described

below, is a radiation condition for long interfacial

waves.

In the asymmetric state, the flow will develop a

jump that adjusts to the downstream state. Energy is

not conserved past the jump, but we assume that

volume fluxes in each layer are conserved. In reality,

mixing will increase the volume of intermediate water

between the two layers, but we do not take this into

account in the present approach. The baroclinic vol-

ume flux will therefore also be present downstream

and cause radiation of interfacial waves in that

direction.

b. Far-field flow

As long as the barotropic velocity is small enough for

the composite Froude number to be less than unity at

the sill, the far field does not feel the presence of the sill.

When the flow becomes controlled at the sill, the

changed volume fluxes in each layer cause baroclinic

responses that propagate upstream and downstream

from the sill. The approach we follow here is to let the

barotropic flow increase with small increments. For each

increment, the flow adjusts by radiating small internal

waves on the baroclinic flow that exists at that moment,

that is, due to the previously radiated internal waves.

The dispersion relation for long internal waves in a two-

layer flow with nonzero velocities u1 and u2 in the layers

can be written as

(u
1
2 c)2

g0h
1

1
(u

2
2 c)2

g0h
2

5 1, (11)

1524 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47



where h1 5 H1 2 h, and h2 5 H2 1 h (see Fig. 2). One

sees that the composite Froude number condition (9)

emerges for zero phase velocity c5 0. The phase velocities

can be found by solving the quadratic equation, yielding

c
6
5U

m
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 2

h
1
h
2

H2
(u

1
2 u

2
)2

r
(12)

(e.g., Armi 1986), where c0 is the phase speed for the

case of zero layer velocities (u1 5 u2 5 0), c1 and c2
correspond to the solutionwith1 and2, respectively, and

Um is an advective current relative to which the internal

waves move equally fast upstream and downstream:

U
m
5

u
1
h
2
1 u

2
h
1

H
. (13)

Note that this is different from the barotropic current

and is weighted toward the velocity in the thinnest layer.

If we consider an infinitesimal interface elevation

change dh with corresponding changes in layer veloci-

ties du1 and du2 propagating in the positive x direction

with speed c, volume conservation gives us the following

relations:

(u
1
2 c)h

1
5 (u

1
1 du

1
2 c)(h

1
2 dh), and (14)

(u
2
2 c)h

2
5 (u

2
1 du

2
2 c)(h

2
1 dh) , (15)

where we have neglected surface elevation changes

according to the rigid-lid approximation. The de-

rivatives of the layer velocities with respect to the in-

terface elevation can therefore be written as

du
1

dh
52

1

h
1

(c2 u
1
), and (16)

du
2

dh
5

1

h
2

(c2 u
2
) . (17)

FIG. 2. Principal sketch of the flow situations (a) when the flow over the sill is subcritical and

(b) when it is critical at the sill.
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From (14) and (15), the following exact relation can also

be derived

dq
bc

dh
52c , (18)

where, as in (4) and (5), qbc is the baroclinic volume

flux counted positive in the upper layer and negative

in the lower layer. We now have a closed set of

equations.

After the composite Froude number has reached

unity at the sill, the procedure we consider is to stepwise

increase the barotropic forcing beyond this point by

d calculating the upstream (c2 , 0) internal wave phase

speed from (12), provided it exists;
d solving the equation system (4)–(10), with (18) pro-

viding the extra equation relating the increase in hu

and qbc;
d calculating the downstream internal wave phase speed

from (12);
d solving for the downstream change in interface eleva-

tion using (18) with the now known change in baro-

clinic volume flux;
d calculating the changes in downstream layer velocities

u1d and u2d from (16) and (17); and
d updating all layer velocities and interface elevations.

The solution of the nonlinear equation system is de-

termined by the MATLAB routine fsolve, which works

well for small increases in the barotropic velocity. The

situation with a too strong barotropic forcing to provide

an upstream wave, that is, c2 $ 0, corresponds to up-

stream critical and supercritical conditions, and we as-

sume that the interface elevation and baroclinic volume

flux remain unchanged for stronger barotropic currents.

This corresponds to flow types E and F in Baines (1984).

We do not expect that this regime is properly repre-

sented by our model but leave it like this for future

improvements.

c. Radiated energy fluxes and local dissipation

In the theoretical model as well as when analyzing

the results of the numerical model, the energy balance

is obtained for a control volume with vertical bound-

aries well upstream and downstream of the sill and the

hydraulic jump but close to the sill in terms of an in-

ternal wavelength. When we look at a complete tidal

cycle, each of these boundaries will go through being

both upstream and downstream, so we now change our

notation from upstream and downstream to left

and right.

The mechanical energy equation can be written as

[e.g., Gill 1982, his (4.7.3)]

›

›t

�
1

2
ru2 1 rg(z1H

1
)

�

1= �
��

1

2
ru2 1 rg(z1H

1
)1p

�
u

�
52« , (19)

where the second term is the potential energy relative to

the mean interface positions, p is the pressure, « is the

dissipation of mechanical energy, and u 5 (u, w) is the

velocity vector. There are additional viscous and diffusive

fluxes, which we have neglected here. Integration over the

control volume and averaging over a tidal cycle yields

›

›t

ð
V

�
1

2
ru2 1 rg(z1H

1
)

�
dV1F

R
2F

L
52

ð
V

« dV ,

(20)

where

F
L(R)

5

(ð0
2H

�
1

2
ru21rg(z1H

1
)1p

�
u dz

)
x5x

L(R)

(21)

is the total energy flux through the left (right) boundary

of the control volume, and the overbar denotes aver-

aging over a tidal cycle. The second and third terms

within the brackets of (21) contain large terms that al-

most balance, so we introduce perturbation variables as

r0 5 r2 r, p0 5 p2 p, and u0 5 u2 u. In the following,

we leave out left and right to simplify. Equation (21) can

now be rewritten as

F5

ð0
2H

�
1

2
ru02 1 r0g(z1H

1
)1p0

�
u0 dz

1

ð0
2H

�
1

2
r
0
(u21 3u02)1 rg(z1H

1
)1p

�
u dz. (22)

In the end, we are interested in the divergence of this

flux over the sill, so purely symmetric terms with respect

to the sill could be left out. In the second integral, the

terms within square brackets can be expected to be

symmetric, but the mean velocity (caused, e.g., by in-

terfacial Stokes drifts and conversion of water masses

due to mixing on the sill) turns out to be asymmetric,

meaning that the whole term becomes asymmetric,

representing a mean advection of kinetic and mean

potential energies. The first two terms of the first in-

tegral represent the advection of perturbation kinetic

and potential energies by the time-dependent part of the

flow. The last term is the work performed by the per-

turbation pressure and is the dominating term in the

limit of small perturbations and zero mean flow.

In the following, we assume that the second integral in

(22), that is, the advection of potential and kinetic

1526 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47



energies by the mean flow, is negligible. In reality this

means that the divergence of these mean advection

terms become part of the dissipation term calculated

below. In that case the energy flux can be written as

F’

ð0
2H

�
1

2
ru02 1M0

�
u0 dz , (23)

where M0 5 r0g(z1H1)1 p0 is the perturbation of the

Montgomery potential. The energy flux can be sepa-

rated into barotropic and baroclinic parts:

F
BT

5M0
BTu

0
BTH, F

BC
5

ð0
2H

�
1

2
ru02

BC 1M0
BC

�
u0
BC dz ,

(24)

where the barotropic and baroclinic parts of the Mont-

gomery potential and velocity are defined as

M0
BT 5

1

H

ð0
2H

M0 dz , u0
BT 5

1

H

ð0
2H

u0 dz , (25)

and M0
BC 5M0 2M0

BT and u0
BC 5 u0 2u0

BT. In (24), we

have not included the barotropic kinetic energy advec-

tion term because that term is symmetric with respect to

the sill and does not contribute to the flux divergence.

We now, again, examine the integrated mechanical

energy equation for the control volume [(20)]. Under

periodic tidal forcing, and a small sill area compared with

the total domain, the rates of change of mean energies

within the volume are negligible. The energy input to the

system comes from the barotropic tide interacting with

the sill and should therefore be equal to the convergence

C of barotropic energy at the sill, that is,

C52DF
BT

’DF
BC

1

ð
r«dV , (26)

where DF 5 FR 2 FL. In other words, the energy loss

from the barotropic tides at the sill goes into the radia-

tion of internal waves and local dissipation to heat

within the volume.

Alternatively, the loss of barotropic energy can be

calculated from the work done by the horizontal drag

force at the sill on the barotropic flow. Neglecting fric-

tion, this can be calculated as the product of the baro-

tropic velocity u0 and the horizontal component of the

pressure force on the bottom, that is,

C52u
0

ð
p[x,2H(x), t]

dH

dx
dx. (27)

This can be seen, for example, by considering an analogy

with the work needed to force a sill back and forth in a

quiescent fluid. As we will show below, the two ways to

calculate the conversion of energy from model results

give close to identical results.

In the theoretical model, the total energy loss in the

upper layer is assumed to be zero, that is,

1

2
u02
1u 1

M0
1u

r
1

5
1

2
u02
1d 1

M0
1d

r
1

. (28)

Here, subscripts u and d denote the conditions just up-

stream of the sill and just downstream of the hydraulic

jump, respectively (Fig. 2). An energy loss mainly in the

lower layer is supported by observations of hydraulic flow

over Stonewall bank on the Oregon shelf (Nash and

Moum 2001) and is also the case for the type of hydraulic

jumps investigated by Holland et al. (2002). In analogy

with a one-layer hydraulic jump, it seems reasonable that it

mainly is the active, supercritical layer that loses energy.

Without loss of generality, one can set M0
1u 5 0,

whereby (28) provides an equation to determine M0
1d.

Under the hydrostatic approximation, the oscillating

part of the lower-layer Montgomery potentials are re-

lated to those in the upper layer through

M0
2 5M0

1 1 r
0
g0h . (29)

So, when the far-field velocities and interface elevations

have been determined as described above, the baro-

tropic and baroclinic components of the velocities and

Montgomery potentials can be extracted, and the energy

fluxes FBC and FBT can be calculated according to (24).

The local energy loss at the sill can be calculated from

the lower-layer volume flux times the instantaneous

decrease in lower-layer energy from the upstream to the

downstream side of the sill, that is,

D5

ð
r«dV5 rh

2u
u
2u

�
1

2
u02
2u 1

M0
2u

r
0

2
1

2
u02
2d 2

M0
2d

r
0

�
.

(30)

This provides an alternative means of determining the

radiation of baroclinic energy, since the sum of the local

and radiated energy losses must be equal to the total

energy loss from the barotropic tides, that is,

DF
BC

52DF
BT

2D . (31)

The theory predicts a nonlinear response to the baro-

tropic forcing, that is, with zero response at small ve-

locities and rapidly increasing response after a certain

threshold. This means that the radiated field is not si-

nusoidal. However, as will be seen below, the modeling

results tend to yield a more sinusoidal response, with the
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amplitudes corresponding well to the predictions of the

theory. This leads us to calculate the mean values in (31)

based on the response at maximum tide, assuming a si-

nusoidal response to the sinusoidal forcing.

3. Dataset

The tides over theDrøbak sill (Fig. 3) were investigated
during 3 days of June 2011 with 13 along-fjord and 2 cross-

fjord, high-resolution transects of stratification and tur-

bulence microstructure. The dataset is described in more

detail in SALB. The Drøbak sill is about 18m deep and

separates basins of 80–100-m depth. During the experi-

ment there was a rather strong halocline at about 11-m

depth, and the barotropic tidal velocities were about

0.4ms21 over the sill. During some of the tidal periods we

found strong hydraulic jumps during flood tide and none

during ebb. We also found the opposite situation with

jumps only during ebb and none during flood. SALB at-

tribute these varying conditions to the presence of low-

frequency baroclinic currents. Here, we will concentrate

on one of the tidal periods with weak mean baroclinic

flows, corresponding to transects 9, 11, and 12 on 22 June

(SALB). When comparing these observations with two-

layer theory, a density difference of 12kgm23 between

the two layers is representative for the real stratification.

In SALB, the volume-integrated dissipation rates near the

sill were estimated from dissipation rate estimates from

microstructure transects by multiplying each observation-

based value with a representative volume, taking into

account the fjord width at that position and depth as well

as the distance between casts.

4. Modeling study

The nonhydrostatic version of the MITgcm model

(Marshall et al. 1997) was set up in two dimensions to

study two-layer stratified flow over a sill. The model

domain was 100 or 50m deep rising to 30-m depth at the

sill. The sill was described as

h(x)5H2 de2(xs/L)2 , (32)

FIG. 3. Map of Oslo Fjord and the Dröbak sill with the black line showing the location of the transect in Fig. 4, and

the blue and red circles showing the positions of the CTD casts in Fig. 4c.
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where x 5 0 at the sill, L (525km) is half the domain

width, and s (5150) is a scaling variable giving a sill width

of 235mat the inflection point. The vertical grid resolution

was 0.4m at 20-m depth increasing to 1.2m at the bottom.

The horizontal grid resolution was 0.7m near the sill, in-

creasing toward 70m at the lateral boundaries situated at

x 5 625km. The lateral boundaries were forced with a

sinusoidal barotropic current with a period of 12h. This is

slightly different than the 12.4h of the dominant M2 tides

of the observations, which does not influence the rele-

vance of the results. The initial stratification was a two-

layer stratification, with case-to-case varying strength and

depth of the density step, as given in Table 1. The density

was represented by temperature only, with a 18C tem-

perature difference between the layers and a thermal ex-

pansion coefficient a that varied between the cases. The

temperature was kept equal to that at t 5 0 at the lateral

boundaries. Barotropic and baroclinic waves are reflected

at the boundaries, so in order to avoid barotropic seiches, a

gentle startup was applied to the lateral boundary condi-

tions at the beginning, with an adjustment time scale of

1.5h. Since the main emphasis of this study is the region

near the sill, simulations were ended when reflected in-

ternal waves reached within the vicinity of the sill.

Energy fluxes were calculated at x 5 61000m for a

tidal cycle starting at 6 and ending at 18 h from the ini-

tiation of each simulation.

5. Results

Here, we first show some examples of the observations

from SALB and compare with the predictions from the

theory. Then we present some examples of the model

results with qualitative comparisons with the observa-

tions. Finally, we do quantitative comparisons between

model and theory for a range of cases with varying tidal

forcing and interface position relative to sill depth.

a. Observations versus theory

An example of a transect across the sill during flood

tide with dissipation rates of turbulent kinetic energy

and density stratification is shown in Fig. 4. The strati-

fication is seen to be nearly two layer with the pycnocline

situated at about 10-m depth and isopycnals situated

somewhat higher in the water column upstream than

downstream. The isopycnals on the upstream side,

above about 40-m depth and below the pycnocline, bend

up over the sill and dive downwith the pycnocline on the

downstream side before they jump up again, one by one,

to meet the downstream levels. The dissipation rates are

extremely high, above 1023Wkg21 in the downstream

region where the isopycnals jump up. For a more thor-

ough discussion of these features, see SALB.

In Fig. 5, we show a comparison between the observed

density field and the predicted two-layer, near-field re-

sponse for the flood tide presented above and the fol-

lowing slack and ebb tides. During slack tide the theory

predicts subcritical conditions over the sill, but during

flood and ebb, the theory predicts a controlled situation

at the sill with G 5 1 and upstream- and downstream-

propagating waves leaving an asymmetric situation at

the sill. The two branches on the downstream side cor-

respond to the supercritical branch prior to the jump and

the downstream, subcritical situation left by the radiated

wave of depression. The 19 kgm23 isoline is seen to

follow the theory rather well for all three cases both on

TABLE 1. Summary of numerical cases; a is the thermal expansion coefficient. The em dash (—) signifies the same value as above.

Case name U0 (m s21) a 3 104 (K21) H1 (m) H (m) d (m) g0 3 1000 (m s22) Us/c0 H1/(H 2 d) d/H Us/(vL)

case_a10e-4_18 0.05 10 10.4 100 70 9.8 0.55 0.35 0.7 1.15

case_a10e-4_28 — — 15.2 — — — 0.47 0.51 — —

case_a10e-4_38 — — 19.6 — — — 0.42 0.65 — —

case_a10e-4_51 — — 25.1 — — — 0.39 0.84 — —

case_a10e-4_63 — — 30.5 — — — 0.37 1.02 — —

case_a1e-4_38 — 1 19.6 — — 0.98 1.34 0.65 — —

case_a2e-4_38 — 2 — — — 1.96 0.95 — — —

case_a5e-4_38 — 5 — — — 4.9 0.60 — — —

case_a100e-4_38 — 100 — — — 98 0.13 — — —

case_a40e-4_38 0.1 40 — — — 39.2 0.42 — — 2.3

case_a160e-4_38 0.2 160 — — — 157 0.42 — — 4.6

case_a2e-4_18 0.05 2 10.4 — — 1.96 1.23 0.35 — 1.15

case_a2e-4_63 — — 30.5 — — — 0.82 1.02 — —

case_a20e-4_18 — 20 10.4 — — 19.6 0.39 0.35 — —

case_a20e-4_63 — — 30.5 — — — 0.26 1.02 — —

case_a10e-4_18sh 0.1 10 10.4 50 20 9.8 0.59 0.35 0.4 —

case_a10e-4_38sh — — 19.6 — — — 0.49 0.65 — —

case_a10e-4_63sh — — 30.5 — — — 0.49 1.02 — —
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the upstream and downstream sides and near the sill,

except during ebb, when the theory shows a slightly

larger upstream response than the observations. Just

downstream of the sill, the isoline is seen to follow the

supercritical branch for some time before it jumps up

toward the subcritical branch.

The volume-integrated local dissipation within 500m

from the sill crest was estimated from the observed

dissipation rates (SALB) to be 17606 640, 456 11, and

1520 6 570 kW for the flood, slack, and ebb transects

shown in Fig. 5. The corresponding theoretical values

are 800, 0, and 1580kW, respectively, based on a channel

width of 500m. The differences between observational

and theoretical estimates for the flood tide may be

caused by the many assumptions in the theoretical es-

timates as well as by an underestimate in SALB of the

many uncertainties involved in estimating the integral

of a very heterogeneous field from a rather coarse

transect. However, the theoretical estimates are in the

right order of magnitude, and especially for the ebb tide

the correspondence is surprisingly good.

The theoretical estimate of the fraction of barotropic

energy loss dissipated in the hydraulic jump is 75% for a

barotropic velocity amplitude of U0 5 0.4m s21. This is

well within the band 60%–90% reported in SALB.

b. Numerical model results

Figure 6 shows an example of modeled temperature

and velocity fields near the sill during flood tide. The

numerical model results show a bottom layer that dives

down on the downstream side of the sill and jumps up

again in a rather chaoticmanner farther downstream.The

FIG. 4. (a) Transect 9 from south to north along the line shown in Fig. 3b, showing the dissipation rates (Wkg21; log10 scale) and density

stratification (contours, kgm23) as functions of distance and depth. (b) Time series of the barotropic velocity over the sill (m s21) and the

timing of all transects, with the actual transect in red. (c) The density profiles at the southern (red) and northern (blue) limits of the transect

are given in the right-hand panel.
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model is also seen to resolve Kelvin–Helmholtz-like bil-

lows at the upper edge of the supercritical bottom current

in the region where the observations show maximum

dissipation rates. Eddies of upper-layer water are en-

gulfed into the bottom layer more than 20m below the

interface before they seemingly disintegrate. A similar

engulfment does not take place in the upper layer. This

process therefore entrains more surface layer water into

the bottom layer than opposite, that is, creating in-

termediary water masses downstream with properties

closer to the bottom layer than to the upper layer. This

mechanism is difficult to validate with observations, but

the large dissipation rates observed quite deep along the

downstream side of the sill (Fig. 3) indicate that turbu-

lence and mixing is stronger below the pycnocline than

above, as expected for this kind of mixing.

The velocity field shows a countercurrent in the

layer of mixed water above the bottom jet. This

interfacial layer moves upstream when the tide

slackens and transports mixed water to the other side

of the sill in an internal, high-mode bore (not shown).

Farther downstream, the bottom jet separates from

the bottom and continues as an internal jet on top of a

countercurrent at the bottom. This feature has been

observed by, for example, Inall et al. (2004) in Loch

Etive. The large shear between the jet and the stag-

nant water below in a water mass practically without

stratification must cause large turbulence production

and mixing.

c. Numerical model versus theory

To compare the model response with the theoretical

predictions, the upper-layer thickness is estimated as

h
1
5

1

Dr

ð0
2H

(r
max

2 r) dz , (33)

FIG. 5. (bottom) Transects over the sill with density anomaly contours and two-layer theory predictions of the interface positions (red

lines). The lower red line on the downstream sides of the left- and right-hand panels corresponds to the supercritical branch the flowwould

take without a dissipative jump. (top) The barotropic tidal velocity over the sill and the timing of each transect (red circles).
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where rmax is the initial bottom layer density, and Dr is

the initial density difference. The model layer velocities

are calculated as the average velocities in each layer.

Figure 7 shows an example of the modeled and pre-

dicted interface positions and layer velocities on the sill

and at the right-hand side of the sill (far-field solution) as

functions of the barotropic velocity far from the sill. This

is an example where the flow becomes critical at the sill

but remains subcritical upstream. The interface posi-

tions have been made nondimensional with the upper-

layer depth, and the velocities have been made

nondimensional with the internal wave velocity c0 in

undisturbed water far from the sill. The model and

theory tend to give similar results for all variables at the

end points of the curves, but the theoretical prediction of

zero baroclinic response for small velocities is not

reflected in the model that tends to respond more line-

arly to the forcing. The numerical model shows some

high-frequency variability, as could be expected based

on the short-wave variability seen in Fig. 6. However,

the overall resemblance between model and theory is

satisfactory.

When increasing the barotropic amplitude (Fig. 8), the

theoretical solution reaches a situation when the up-

stream flow becomes supercritical and internal waves are

swept downstream. The model and theory still give sim-

ilar magnitudes in response, but the high-frequency var-

iability in the numerical model output, especially in

interface position, is much larger, and there is a hysteresis

in the responses not accounted for in the theory. In-

spection of the flow fields show that the high-frequency

response is caused by large-amplitude internal wave

FIG. 6. Example of (top) modeled temperature and (bottom) horizontal velocity fields near the

sill at flood tide. In the bottom panel temperature contours are shown with 0.18C intervals.
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trains that develop when the internal control is swept

downstream and are propagating back over the sill when

the tide slackens.

The barotropic energy loss predicted by model and

theory is shown as function of barotropic velocity over

the sill in Fig. 9a. The energy loss is made non-

dimensional with the theoretical linear theory solution

for internal wave generation with an interface situated

at sill level (e.g., Stigebrandt and Aure 1989):

F
ref

5 r
0

d(H2 d)

H
U2

s c0 , (34)

Note that this is twice the value used in, for example,

Stigebrandt and Aure (1989), who only consider wave

radiation on one side of the sill. The model and theo-

retical predictions generally agree well, except at small

velocities for interfaces above sill level, where the

model gives small energy losses even for cases where

the theory does not, and for large velocities, where the

theory also tends to give smaller values than the model.

For the interface situated at sill level (black line), the

predictions tend toward the reference value for small

barotropic velocities [(34)], as expected. The model

and theoretical results show the same general decrease

with increasing height of the interface above sill level.

The bends in the theoretical curves occur when the flow

becomes supercritical upstream. The purest wave ra-

diation cases, where we expect the theory to work best,

are therefore situated to the left of these bends. The

barotropic energy losses calculated from the bottom

drag [(27)] are also shown and are seen to give almost

identical results to those calculated from barotropic

wave radiation.

The radiation of baroclinic energy (Fig. 9b) also

show a general agreement between model and theory,

and the curves show a similar behavior as the barotropic

energy losses (Fig. 9a), except that these are somewhat

smaller because part of the barotropic energy is lost

locally and does not radiate away. The energy that does

not radiate away is shown in Fig. 9c. This part is seen to

FIG. 7. Theoretical (thick) and modeled (left) interface positions and (right) layer velocities as function of

barotropic velocity over one tidal cycle. The dashed lines show the theoretical prediction at larger barotropic

velocities. The interface position is the far-field response to the right of the sill. The layer velocities are the lower-

layer velocities at the sill (black) and to the right of the sill (red) and the upper-layer velocity to the right of the sill

(blue). The results are for Us/c0 5 0.43 and H1/(H 2 d) 5 0.65.
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be about 20% for the interface positioned at sill level

and for weak forcing (Fig. 9d), increasing toward 100%

for the interface approaching the surface. Also for in-

creasing velocities, the radiative part of the barotropic

energy loss decreases, as one would expect when waves

are not allowed to radiate upstream from the sill.

To test the theory for a different relative sill height,

the model was run for three cases with a sill with height

of 40% of the basin depth rather than 70%, as in the

above examples. The theoretical predictions and the

model results for these three cases are shown in Fig. 10.

Generally the nondimensional curves look much like

those for the taller sill, but there is a tendency that the

baroclinic radiation constitutes a smaller fraction of the

barotropic energy loss for the smaller sill. The agree-

ment between model and theory is as good as for the

taller sill.

Finally, one of the main assumptions of the theory is

that the excursion length over the sill is large compared

to the sill width [(3)]. We have run the numerical model

with nondimensional excursion lengths of Us/(vL) 5
1.1, 2.3, and 4.6 (Table 1), and the results of these runs

give next to identical nondimensional energy fluxes

(Fig. 9), so the requirement of (3) can probably safely be

relaxed to Us/(vL) . 1.

6. Discussion

The magnitude and partitioning of barotropic energy

loss estimated from high-resolution observations over a

real fjord sill have been investigated with a theoretical

model and with a fully nonlinear numerical model with

idealized geometry and stratification. Both theory and

model describe the observed interface responses on each

side of the sill, the total energy loss from the barotropic

tides, and the partitioning of this energy between radiated

baroclinic energy and local energy loss in a satisfactory

manner. When running the model on a range of different

nondimensional forcing strengths and interface positions,

the model results and theory also compare favorably,

except in the weak and strong ends of the forcing regime,

where themodel generally tends to give larger barotropic

energy losses than the theory.

The fact that the theory compares relatively well

with results from the much more complicated numer-

ical model (Figs. 9, 10) indicates that many of the

FIG. 8. As in Fig. 7, but for a case with Us/c0 5 0.6.
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assumptions of the theory are reasonable. The most

questionable assumption is that the mixing in the

downstream hydraulic jump does not strongly influ-

ence the layer volume fluxes. Note that this assumption

does not influence the hydraulic control or the up-

stream wave propagation, only the local energy loss

and the downstream-propagating wave. As an oppo-

site extreme, one could assume that the entrainment

into the lower layer is as strong as the lower-layer

blocking at the sill, that is, that the lower-layer down-

stream volume flux is equal to the lower-layer baro-

tropic volume flux. That would cause a density change

in the lower layer close to the sill and a baroclinic

adjustment of the resulting lower-layer horizontal

density gradient. However, the blocking effect on the

downstream interface would be cancelled, and there

would be no downstream-propagating interfacial

waves. In the present theory, the upstream- and

downstream-propagating waves contribute with about

equal amounts of energy flux, so in that case the

internal wave radiation would be about half of that

predicted in the present theory. Figures 9b and 10b

clearly show that the present assumption, with a small

tendency to underestimate the radiation, fits much

better with the numerical model results than a theory

with half that estimate. We therefore interpret these

results as a confirmation that mixing does not impose a

strong influence on the radiated energy, the total en-

ergy loss, and the partitioning between radiated and

locally lost energy. A somewhat provocative, but

promising, implication of this is that both the local

dissipation and radiated energy is governed by large-

scale hydraulic processes that can be predicted by

theory and models that do not necessarily have to

include the small-scale processes causing the energy

loss and mixing.

This does not mean that mixing does not influence the

dynamics. Mixing does influence the dynamics by gen-

erating mixed fluid of intermediary density that moves

away from the sill. That is a subtidal baroclinic motion

FIG. 9. The (a) loss of barotropic energy, (b) radiation of baroclinic energy, (c) rate of local dissipation, and

(d) fraction of barotropic energy dissipated locally at the sill as function of the nondimensional barotropic velocity

over the sill for sill height d/H 5 0.7. The lines correspond to theory, and the circles correspond to model results.

The barotropic energy loss estimated from the bottom drag [(27)] is also shown (1). The various colors correspond

to upper-layer depths, H1/(H 2 d) equal to 1 (black), 0.83 (magenta), 0.67 (cyan), 0.5 (red), and 0.33 (blue). The

black dashed line in (a) shows the theoretical prediction for a jet at the sill [see (35)].
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that goes on during all tidal phases and is clearly seen in

animations of the model results (not shown) and in the

right-hand side of the bottom panel of Fig. 6.

The results of the theoretical and numerical in-

vestigations (Figs. 9, 10) show that the barotropic energy

loss for a two-layer fluid compares best with the linear

theory reference estimate [(34)] for small-amplitude

motions (Us/c0 / 0) when the interface is situated at

sill level, as is also assumed in that theory. The results

also show that the barotropic energy loss decreases rel-

ative to this reference case, when the interface height

rises above sill level and when the barotropic forcing

increases. The ratio of local energy loss to barotropic

energy loss is smallest, about 20%, for an interface sit-

uated at sill level and increases toward 100% as the in-

terface rises toward the surface. Themain reason for this

increase in local energy loss and decrease in radiated

energy is that the blocking effect of the sill becomes

much weaker when the interface is far above the sill. It is

this effect that explains why so large a fraction of the

barotropic tidal energy loss at the Oslo Fjord sill is lost

locally. It does not, however, explain why as much as

two-thirds of the tidal energy loss is radiated from the

Knight Inlet sill, where the interface is situated at about

10–20-m depth, far above the sill at about 60m. Ac-

cording to the present theory less than 10% should be

allowed to escape the sill in that case (blue line in

Fig. 9b). One possible explanation for this discrepancy

may be the two-layer approximation that neglects

deeper stratification and highermodes. The downstream

response in Knight Inlet clearly is not a first-mode re-

sponse (e.g., Farmer and Armi 1999).

The theory does not allow for higher vertical-mode

responses at the sill, and it remains a question how this

influences the results. The observations suggest that

higher modes are present in the real fjord (Fig. 4), since

the layers below 40-m depth do seem to be more or less

blocked by the sill. This is seen by the isopycnals below

this level not rising toward the sill by the low dissipation

rates below this level as well as by the line of increased

dissipation rates starting at 40-m depth upstream and

rising toward the sill, as an indication of shear at this level.

That is, in reality the water below 40m is not advected

over the sill, whereas in a two-layer model there is no

vertical shear in the lower layer. However, the numerical

model does to some degree allow higher modes as the

stratification develops from the initial two-layer stratifi-

cation toward amore continuous stratification, and we do

FIG. 10. As in Fig. 9, but for sill height d/H 5 0.4.
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not see any strong change in the results when analyzing

the initial tidal period as compared to the later periods.

This indicates that the higher modes do not influence

the overall results when the lower-layer stratification is

weak. We suggest that the higher modes mainly influ-

ence the results in the region with weak forcing where

the two-layer theory predicts zero response but where

higher modes could possibly be generated. This effect

could be investigated by including a second interface in

the theory and model and/or by introducing a linear

stratification below the interface in the model, which

we leave for future research. It may possibly be this

mechanism that gives the relatively high radiation from

the Knight Inlet sill.

The model was tested with three values of the non-

dimensional excursion length [(3)], all giving similar

results. This shows that the theoretical assumption of

hydraulic, quasi-steady flow at the sill is realistic for the

investigated cases, but it does not provide a lower bound

for the forcing or sill widths where this is not the case.

The fact that the lower-layer velocity is typically much

larger than the barotropic velocity over the sill probably

makes (3) a rather conservative assumption.

Stigebrandt and Aure (1989) suggest an alternative

barotropic energy loss mechanism at large velocities

(Us . c0) in so-called jet fjords where the barotropic

kinetic energy over the sill is assumed to be lost in a jet

inside the sill:

F
jet
5
0:42

2
r
0
(H2 d)U3

s . (35)

This is shown as the black dashed line in Fig. 9a, which

should be valid for large values of the barotropic forcing.

There is no indication that the barotropic energy loss

shows such an increasing trend at large velocities, nei-

ther in theory nor in model results, and this expression is

seen to predict too large energy losses. It may be spec-

ulated that this is the reason why the predicted mixing

efficiency (fraction of barotropic energy loss used to mix

the basin water) of the fjord basins investigated in

Stigebrandt andAure (1989) is much lower for jet basins

than for than for wave basins; basically, the real baro-

tropic energy loss may be much smaller than predicted

for these jet basins. It may, however, be noted that the

present results are obtained for a pure 2D case, whereas

real fjord mouths are often both narrow and shallow, for

example, causing strong 3D jets, which are absent in 2D

configurations.

Even though the present theory does not cover all flow

types of stratified flow over topography, it does provide

simple estimates of local dissipation and radiated energy

due to tidal interaction with steep topography that may

be expected to work well when there is a strong

pycnocline not too far above the topography. Such sit-

uations are common in fjords, archipelagos, and on the

continental shelf. With some further steps, the theory

can be developed into a parameterization of mixing over

rough topography in coastal circulation models that are

too coarse to represent the small-scale processes in-

vestigated in this work. This would provide an alterna-

tive to present parameterizations, using a constant

fraction of the barotropic energy loss (e.g., Simmons

et al. 2004), but also to the more advanced parameteri-

zation suggested by Klymak et al. (2010). An important

difference between the parameterization of local dissi-

pation in this model and that of Klymak et al. (2010) is

that our dissipation tends to scale as the square of the

tidal velocity (Fig. 9c), whereas that of Klymak et al.

(2010) scales as the cube of the tidal velocity. The high-

resolution, nonhydrostatic simulations of Musgrave

et al. (2016) support dissipation rates that scale in the

vicinity of the square of the tidal velocity.
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