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Abstract 

Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved 

in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We 

investigated melanoma phenotype modulation induced by the metastasis-promoting 

microenvironmental protein S100A4, focusing on the relationship between enhanced cellular 

motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 

cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation 

genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed 

mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating 

a metabolic switch towards aerobic glycolysis, known as the Warburg effect. Reversal of the 

glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the 

S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit 

from the glycolytic switch and therefore, become more vulnerable to glycolysis inhibition. In 

conclusion, our data indicates that transition to the invasive phenotype in melanoma involves 

dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, 

which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the 

metabolic reprogramming may therefore be effective against invasive phenotype.  

Keywords: Melanoma, Phenotype switch, Warburg effect, S100A4, Metabolic reprogramming. 

Abbreviations: DCA, dichloracetate; LDH, lactate dehydrogenase; MITF, Microphthalmia-

associated transcription factor; NMR, nuclear magnetic resonance; PGC1-α, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha. PPP, pentose phosphate pathway; 

TCA, tricarboxylic acid. 
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1. Introduction 

Metastasis relies on cancer cells with phenotypic plasticity to enable accomplishment of all steps 

in the metastatic cascade. An important example of such plasticity is the transition to an invasive 

(mesenchymal) phenotype, which not only facilitates dissemination from a primary tumor and 

extravasation at distant sites [1], but also can promote therapy resistance [2]. Invasiveness is 

consequently considered as a hallmark of aggressive, metastatic cancer cells, and factors 

involved in acquisition or maintenance of the invasive phenotype might be highly relevant 

targets in anti-metastasis therapy.  

Malignant melanoma is one of the most aggressive forms of human cancer, and melanoma cells 

exhibit considerable phenotypic plasticity [3]. Comparison of melanoma cell lines with high 

versus low invasive capacity revealed that the melanocyte differentiation genes controlled by the 

master regulator of the lineages, Microphthalmia-associated transcription factor (MITF), were 

among the signature genes clearly distinguishing the two phenotypes. While highly expressed in 

poorly invasive cells, low expression in the counterpart indicated that invasive cells are less 

differentiated [4, 5]. Further signifying the importance of the dedifferentiation state for 

melanoma aggressiveness, is the observation that less differentiated melanoma cells show higher 

resistance to therapy [6]. Although an association between aggressiveness and invasive 

dedifferentiated phenotype has been acknowledged, the mechanisms involved in acquisition of 

such phenotype are not fully clarified. It has been reported previously that melanoma cells can 

switch between proliferative/differentiated and invasive/dedifferentiated phenotypes during 

metastasis progression [7, 8]. Further, it was proposed that the tumor microenvironment plays a 

significant role in regulation of the phenotype switch [7], due to a multitude of factors present in 
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the microenvironment that may influence the malignant phenotype [9]. Among such factors are 

members of the S100-protein family that affect many cellular processes including cell migration 

and invasion [10]. A number of these proteins, such as S100A4 (also known as metastasin 

(Mts1) or fibroblast-specific protein 1 (FSP1)) are associated with metastasis and poor prognosis 

in several cancer types, including melanoma [11]. Both cancer cells and stromal cells express 

and secrete S100A4, actualizing the protein as an important factor in the tumor 

microenvironment [12-16]. Extracellular S100A4 has been shown to induce motility in several 

cancer types [17, 18]. The protein is also known as a regulator of epithelial-mesenchymal 

transition (EMT), being particularly enriched in mesenchymal, stem cell-like subpopulations of 

carcinoma [2, 19].  

Metabolic plasticity has emerged as an important feature to aid cancer cells during tumor 

progression. Cancer cells can utilize glycolysis rather than oxidative phosphorylation even in the 

presence of oxygen (known as the Warburg effect) [20, 21]. Aerobic glycolysis assures not only 

supply of energy and building blocks for fast proliferating cells, but can also be beneficial for 

invasive, metastatic cells [22]. However, the relationship between metabolism and metastasis is 

poorly understood, and e.g. mitochondrial oxidation has been linked with both pro-metastatic 

[23] and anti-metastatic [22, 24] effects. Interestingly, it has been recently shown that the main 

regulator of melanocyte differentiation, MITF controls an important regulator of mitochondrial 

metabolism, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) 

[25, 26]. These reports suggest interconnectivity between differentiation and metabolic 

pathways, and further propose that development of the invasive dedifferentiated phenotype could 

involve metabolic reprogramming.  
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In the present study, we investigated phenotype modulation induced by the pro-metastatic 

protein S100A4 in malignant melanoma in vitro, focusing on the relationship between enhanced 

cellular motility, differentiation status and metabolic alterations. We revealed that upon 

stimulation with S100A4, melanoma cells acquire the invasive dedifferentiated phenotype and 

simultaneously switch their metabolism to glycolysis. This data supports the concept of 

glycolytic flux as a metastasis-associated mechanism, and proposes metabolic inhibitors as a 

promising approach against metastatic cells. 

2. Materials and methods 

2.1. Cell lines  

The malignant melanoma cell lines Melmet 1 and Melmet 5 were established at the Norwegian 

Radium Hospital (Norway) as described previously [27]. The cells were cultured in RPMI 1640 

medium (Lonza, Belgium) supplemented with 10 % fetal calf serum (FCS) (PAA, Austria) and 2 

mM GlutaMAX (Gibco, UK). All cells cultures were maintained at 37 °C in a humidified 

atmosphere containing 5% CO2 and were routinely tested for mycoplasma contamination and 

cell ID.  

2.2. Compounds 

Human recombinant S100A4 was produced as described previously [18], and routinely used at 

2 µg/ml to stimulate (typically for 48 hrs) the melanoma cells growing in RPMI with 5 % FCS. 

Dichloracetate (DCA) was purchased from Sigma-Aldrich (St.Louis, MO) and dissolved in PBS 

to a 2M stock solution.  

2.3. Migration and invasion assays 

Cell migration and invasion was measured in a 24-well trans-well plate (triplicate wells) with 

8 µm pore size filter inserts (Costar, Cambridge, MA). For the invasion assay, the inserts were 
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coated with 50 μg Matrigel (BD Biosciences, Bedford, MA). Fifty thousand [3H] thymidine 

(PerkinElmer, Waltham, MA)-labeled melanoma cells were seeded out in the upper 

compartment, and medium with/without S100A4 was applied in the lower chamber. After 

incubation for 48 hrs, the cells from the upper and the lower side of the filter were harvested 

separately and analyzed in a liquid scintillation analyzer (Packard Instrument Company, 

Chicago, IL) to measure [3H] counts. The migration/invasion was evaluated by quantification of 

the [3H] counts from the lower side compared to the total [3H] counts from both sides of the 

inserts. Additionally, the migration was scored by the wound healing assay as described in the 

Supplementary Methods. 

For separation of the migrated and non-migrated cell fractions, the migrated cells from under the 

filter and the non-migrated cells remaining above the filter were harvested as illustrated in Fig. 

2D, and transferred to separate tubes with TRI Reagent® (Invitrogen, Carlsbad, CA) for isolation 

of RNA as described below.   

2.4. Cell proliferation and survival  

To follow cell proliferation over time, 4000 melanoma cells were seeded out in 96-well plates 

(Falcon Corning, Durham, NC) and incubated with/without S100A4, tracking the cell growth by 

IncuCyteTM live cell imaging system (IncuCyte, Essens Bioscience, U.K.). Phase contrast 

pictures were collected every 2-3 hrs, and the percentage of cell confluence was calculated as a 

measure of cell proliferation. To evaluate the effect of DCA, the cells were pre-incubated 

with/without S100A4 before DCA was added for additional 2 day-treatment. The cell growth 

was followed by IncuCyte. Finally, cell survival was measured by the CellTiter® 96 AQueous 

Non-radioactive Cell Proliferation Assay (Promega, Madison, WI), measuring absorbance at 490 

nm using a Victor plate reader (Wallac Oy, Turku, Finland). 
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2.5. Detection of apoptosis by Annexin V  

For detection of apoptosis, 70000 cells were seeded out in a 12-well plate, pre-incubated 

with/without S100A4 for 48 hrs before DCA was added for additional 1 day-treatment. After 

harvesting, the cells were re-suspended in 100 µl staining buffer with 5 µl Annexin V FITC (BD 

Pharmingen, San Jose, CA) and stained at room temperature for 15 min followed by a quick 

staining with 1 µg/ml propidium iodide (PI). The samples were analyzed on LSRII flow 

cytometer (BD Bioscience), and the data were analyzed using FlowJo software (FlowJo, Ashlan, 

OR). 

2.6. Measurements of lactate, glucose, LDH enzymatic activity and ATP   

The level of lactate and glucose in culture medium was measured by the nuclear magnetic 

resonance (NMR) analysis as described below, or by blood gas analyzer GEM Premier 4000 

(Instrumentation Laboratory, Bedford, MA). Additionally, the lactate concentration was 

measured by Lactate Colorimetric Assay (Biovision, Milpitas, CA) following the manufacturer 

instructions. The enzymatic activity of intracellular lactate dehydrogenase (LDH) was measured 

in 96-well plates by using the Pierce LDH Cytotoxicity Assay Kit (Thermoscientific, Rockford, 

IL) following the manufacturer instructions. For ATP, the cells were cultured in 96-well white 

plates (Corning, NY), and the ATP level was detected by CellTiter-Glo® Luminescent Cell 

Viability-assay (Promega, Madison, WI) measuring ATP-dependent bioluminescence on a 

Victor plate reader. 

2.7. Gene expression analysis 

Melmet 1 and Melmet 5 cells were cultured with/without S100A4 for 48hrs, and total RNA was 

isolated using TRI Reagent®. For global gene expression analysis, Illumina microarray 

hybridization and data analysis was performed as previously described [15]. Briefly, total RNA 
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(750 ng) were used for labeling and hybridization according to manufacturers protocol (Illumina 

Inc, San Diego, CA) using Illumina Human HT-12v4 Expression BeadChip. Preprocessed data 

was imported into J-Express v2012 (www.molmine.com) to identify differently expressed genes 

by Significance of Microarray (SAM) analysis. Genes were considered significant if fold change 

FC ≥ 1.5 and false discovery rate FDR ≤ 5%. The microarray data have been deposited in 

NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number 

GSE65897 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65897).  

The expression of selected genes was examined by qPCR. One ug RNA was reverse transcribed 

using qScript cDNA Syntesis Kit (Quanta Biosciences, Gaithersburg, MD) and qPCR reactions 

were performed on the CFX Connect™ Real-Time PCR Detection System (Bio-Rad, Hercules, 

CA). All qPCR reactions were run in duplicates in 25 µl volume containing 25 µg cDNA, 

200 nM FAM-labeled probe, 300 nM of each primer and 1x Perfecta qPCR Supermix (Quanta 

BioSciences). All primers were designed using the probe finder software from Roche Applied 

Science available online at the Universal Probe Library Assay Design Center.  The probes were 

from the Universal Probe Library collection (Roche Applied Science, Germany). The primer 

sequences and probe numbers are listed in the Supplementary Table S1. Relative gene expression 

was calculated by the ∆∆Ct method. 

2.8. Immunoflourescence 

Melanoma cells were grown on glass cover-slips with/without S100A4 for 48 hrs, fixed in 4% 

paraformaldehyde for 15 min on ice before staining over night with mouse anti-MITF (Thermo 

Scientific, Waltham, MA) diluted in PBS/0.05% saponin 1:100. After staining for 60 min with 

donkey anti-mouse 488 (Jackson ImmunoResearch, West Grove, PA) diluted 1:500, the cover-

slips were mounted in Prolong Gold mounting medium containing DAPI (Life Technologies, 

http://www.molmine.com/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65897
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Carlsbad, CA). Fluorescent images were obtained using Zeiss LSM710 confocal microscope 

equipped with Plan-Apochromat X 63/1.4 Oil DICII objective and analyzed using the ZEN 2011 

software and Adobe Photoshop CS5. 

2.9. Immunoblotting 

Protein lysates were prepared in lysis buffer (50mM Tris-HCl,  150 mM NaCl and 0.1% NP-40, 

pH 7.5) supplemented with the protease- and phosphatase-inhibitor cocktails, CompleteMini and 

PhosSTOP (Roche, Manmheim, Germanys). Total cellular proteins (20 μg) were separated by 

SDS-PAGE, in a NuPAGE® Novex Bis-Tris Gel, 4-12% (Invitrogen) and subsequently electro-

transferred to a 0.45 μm PVDF membrane (Merck Millipore, Darmstadt, Germany). The 

membrane was incubated overnight at  4 °C with the primary antibodies: PGC1-α (#4259, Cell 

Signaling Technology, Danvers, MA) diluted 1:1000 and α-tubulin (#CP06, Calbiochem, Merck 

Millipore) diluted 1:5000. Appropriate horseradish peroxidase-conjugated secondary antibodies 

and SuperSignal West Dura Extended Duration Substrate (Thermo Scientific) were used for 

visualization in a G:BOX  instrument (Syngene, Cambridge, UK) using the GeneSnap software. 

Relative PGC1-α level normalized to α-tubulin was quantified using the Gene Tools 

densitometry software (Syngene, Cambridge, UK).  

2.10. Oxygen consumption and extracellular acidification rate 

The oxygen consumption rate (OCR, pmol/min) and extracellular acidification rate (ECAR, 

mpH/min) were measured using XFe96 or XFe24 Extracellular Flux Analyzers from Seahorse 

Bioscience (North Billerica, MA) following the manufacturer’s protocol. Briefly, the melanoma 

cells were seeded out at a density 5000-7000 cells/96-well (minimum 10 parallels for each 

treatment) or 15000 cells/24-well (minimum 5 parallels for each treatment) and incubated 

with/without S100A4 for 48 hrs. Before the analysis, the cells were re-suspended in the Seahorse 
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assay medium, and the drugs from the XF Cell Mito Stress test kit (Seahorse Bioscience) were 

added: oligomycin (1μM), FCCP (1 μM and 0.5 μM for Melmet 1 and Melmet 5, respectively) 

and rotenone/antimycin A mix (1 μM each). To evaluate the effect of DCA, the cells were pre-

incubated with/without S100A4 for 48 hrs before DCA was injected through an injection port, 

giving a final concentration of 10mM. The data were analyzed by XFe Wafe software (Seahorse 

Bioscience). 

2.11. NMR analysis of cell culture medium 

Melmet 1 and Melmet 5 cells were incubated with/without S100A4 for 48 hrs, and 500 µl 

aliquots of culture medium were mixed with 100 µl of D2O. The MR spectroscopy was 

performed at using a Bruker Avance III Ultrashielded Plus 600 MHz spectrometer (Bruker 

Biospin GmbH, Germany), equipped with a 5 mm QCI Cryoprobe with integrated, cooled 

preamplifiers for 1H, 2H and 13C. Proton spectra were acquired using 1D NOESY (Bruker: 

noesygppr1d) with presaturation and spoiler gradients as described previously [28]. The spectra 

were collected with 32 scans and 4 dummy scans. The acquisition time was 2.65 sec, measuring 

the FID via collection of 64 K complex data points. Sweep width was 20.5682 ppm. Spectra 

were Fourier transformed to 128 K after 0.3 Hz exponential line broadening. The glucose signal 

at 5.24 ppm and the lactate signal at 1.33 ppm were identified. After baseline correction, the 

amount of glucose and lactate in the culture medium was assessed by integration of the signals. 

2.12. NMR analysis of cell extracts 

Melmet 5 cells were pre-incubated with or without S100A4 for 48 hrs (estimated to reach a cell 

number of ~50 millions) and subsequently incubated for 6 hrs in RPMI medium, where glucose 

was substituted with 2 g/L [1,2 -13C] glucose (Sigma). The cells were harvested in ice-cold 80% 

methanol, and spun at 18 000 rpm for 15 min at 4 °C. The cell extracts were vacuum dried and 
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stored at -80 °C until NMR analysis. The extracts were reconstituted in 680 µl PBS/D2O buffer 

solution containing 1 mM trimethyl-silyl propionic acid (TSP) as a chemical shift reference. 

Proton spectra were acquired using 1D NOESY (Bruker: noesygppr1d) sequence as described 

above. Proton decoupled 13C spectra were acquired using a power gated coupling sequence with 

a 30º pulse angle (Bruker: zgpg30). The spectra were collected with 16 K scans and 16 dummy 

scans. The acquisition time was 1.65 sec, measuring the FID via collection of 96 K complex data 

points over a sweep width of 197.175 ppm. All the experiments were carried out at a constant 

temperature of 300 K. Spectral assignments (Supplementary Table S2) were done on the basis of 

1D: NOESY, 2D: HSQC (Supplementary Fig. S1) and COSY (Supplementary Fig. S2) spectra, 

human metabolome database (HMDB; www.hmdb.ca) and previously published data [29]. The 

13C spectra were Fourier transformed with a 3.0 Hz exponential line broadening and the 

chemical shift was calibrated to the TSP peak (δ0 ppm). After baseline correction, the amounts 

of [4-13C] glutamate, [3-13C] glutamate, [2,3-13C] lactate, [3-13C] lactate, [3-13C] serine, [2-

13C] glycine, [2,3-13C] alanine and [2-13C] α-glucose in the extracts were assessed by 

integration of the signals and normalized to the amount of protein.  

2.13. Statistical analyses 

Statistical analysis were performed using two-tailed Student`s t-test (specified in the figure 

legend when paired analysis was used). The threshold for statistical significance was defined as 

p ≤ 0.05.  

3. Results 

3.1. S100A4 stimulates motility in poorly migratory melanoma cells 

Given the importance of invasiveness in the metastatic process, we investigated whether 

melanoma cells gain invasive properties under the influence of S100A4. Two melanoma cell 
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lines, Melmet 1 and Melmet 5, representing the highly invasive and poorly invasive phenotype, 

respectively [30], were utilized. By use of a trans-well chamber assay, we showed that both 

migration and invasion were stimulated by S100A4 in the poorly motile Melmet 5 cells, with a 

fold increase of 1.8 and 2.4, respectively (Fig. 1A) (from 14% to 24% migration, and from 0.5% 

to 1.3% invasion, Supplementary Fig.  S3A). No changes were seen in the highly motile 

Melmet 1 cells (~ 60 % migration and invasion regardless S100A4). The S100A4 mediated 

increase of migration in Melmet 5, and no effect in Melmet 1 was confirmed by the wound 

healing assay (Supplementary Fig. S3B). S100A4 did not change the proliferation rate in any of 

the cell lines, indicating no effect on cell growth (Fig. 1B). Taken together, these results indicate 

that extracellular S100A4 stimulates invasiveness in poorly motile melanoma cells. 

3.2. S100A4-induced cell migration correlates with dedifferentiation 

To further elucidate how extracellular S100A4 can contribute to the acquisition of the invasive 

phenotype, we performed a global gene-expression analysis of S100A4 stimulated versus non-

stimulated Melmet 1 and Melmet 5 cells. We focused on the 105 genes defined by Hoek et al. [5] 

as the non-invasive/invasive signature genes. The most apparent S100A4 induced alterations 

were observed in Melmet 5, where we found down-regulation of melanocyte differentiation 

genes controlled by the master regulator of the lineage, MITF (Fig. 2A). The Melmet 1 cells, 

which generally express low levels of the differentiation genes, showed no clear changes in 

response to S100A4. Analysis by qPCR confirmed the down-regulation of MITF and its target 

genes, MLANA and TYR in Melmet 5 (Fig. 2B), but not in Melmet 1 (Supplementary Fig. S4A). 

Furthermore, the down-regulation of MITF protein in Melmet 5 was validated by 

immunofluorescence, where the number of highly positive MITF nuclei was reduced in S100A4 

stimulated cells (Fig. 2C). No S100A4 dependent changes in the MITF protein level (which was 
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very low) were seen in Melmet 1 (Supplementary Fig. S4B). S100A4-mediated down-regulation 

of MITF was also seen in several other melanoma cell lines (Supplementary Fig. S4C), but this 

was not further pursued in the study.  

To further investigate the molecular characteristics of the migrated versus the non-migrated 

Melmet 5 cells, we separated these cell fractions from trans-well inserts as illustrated in Fig. 2D. 

We found significantly reduced expression of MLANA and TYR in the migrated cells (Fig. 2E), 

validating the notion that motile cells are less differentiated. The lowest level of the 

differentiation genes was observed in the migrated cells stimulated with S100A4 (Fig. 2E). 

Taken together, these observations suggest that extracellular S100A4 promotes a dedifferentiated 

state associated with increased cell motility. 

3.3. S100A4 modulates the expression of genes associated with metabolism 

In addition to the differentiation genes, our global gene expression analysis revealed S100A4 

influence on metabolism genes in Melmet 5 cells (Table 1). Some of these genes, including 

NNMT, KYNU and AKR1C1/2 have been linked to the invasive transcriptional signature 

identified by Hoek et al. [5] and Jeffs et al. [4]. Interestingly, NNMT, which appears to regulate 

cell migration [31], was one of the top genes that correlated with S100A4 in breast cancer 

patients when analyzed by bc-GenExMiner (data not shown). The S100A4-mediated regulation 

of genes involved in different metabolic activities was validated by qPCR, revealing much higher 

changes in Melmet 5 cells compared to Melmet 1 (Fig. 3A). The reactive oxygen species (ROS) 

detoxification genes (SOD-2 and metallothioneins), the critical glycolysis-associated gene 

(LDHA), and the genes regulating NAD+/NADH levels (NNMT, NAMPT and KYNU), were 

significantly up-regulated in Melmet 5 cells (Fig. 3A). On the contrary, the gene involved in 

mitochondrial biogenesis/activity, PGC1-α was down-regulated in Melmet 5, which was further 
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verified by Western blotting (Fig. 3B). Furthermore, the lower expression of PGC1-α was 

identified in the migrated versus the non-migrated Melmet 5 cells, and the lowest PGC1-α 

expression was observed in the migrated cells stimulated with S100A4 (Fig. 3C). Based on these 

results, we hypothesized that extracellular S100A4 adjusts cellular metabolism to support the 

invasive phenotype. 

3.4. S100A4 suppresses mitochondrial activity and potentiates glycolysis  

The observed differences in metabolism genes motivated further studies on relevant metabolic 

parameters in S100A4 stimulated versus non-stimulated cells. Oxygen consumption rate (OCR), 

reflecting mitochondrial respiration, was evaluated by an Extracellular Flux Analyzer. OCR was 

measured under basal conditions and after sequential addition of compounds targeting 

mitochondrial oxidation: oligomycin (inhibits ATP synthase), FCCP (uncouples ATP synthesis 

from the electron transport chain) and an antimycin A/rotenone mix (inhibits complex III and I in 

the respiration chain). In Melmet 5, but not Melmet 1 cells both basal respiration and maximal 

respiration were significantly lower in the S100A4 stimulated cells compared to the non-

stimulated controls (Fig. 4A and B). The same differences were observed when the OCR data 

were normalized to DNA content in each well (data not shown). The observation that S100A4 

reduces OCR correlates nicely with the S100A4 mediated down-regulation of PGC1-α (Fig. 3), 

together suggesting a suppressive influence of the protein on mitochondrial activity in Melmet 5 

cells.  

Extracellular acidification rate (ECAR), which reflects glycolysis-associated proton release, was 

enhanced in S100A4 stimulated Melmet 5 cells, but not Melmet 1 (Fig. 4C). Furthermore, the 

ratio between ECAR and OCR was enhanced in Melmet 5 upon stimulation with S100A4 
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(Fig. 4 D), indicating a metabolic shift towards more glycolytic phenotype (Supplementary 

Fig. S5). 

To validate S100A4 effect on glycolysis, we measured the level of remaining glucose and 

released lactate in the cell culture medium from S100A4 stimulated versus non-stimulated cells 

by proton NMR spectroscopy. As visualized in the example spectrum in Figure 5A, Melmet 5 

cells, but not Melmet 1 consumed more glucose (less glucose left in the medium) (Fig. 5B) and 

produced more lactate (Fig. 5C) upon stimulation with S100A4. Furthermore, the ratio between 

lactate and glucose levels was increased in S100A4 stimulated Melmet 5 cells (Fig. 5D), 

indicating potentiated conversion of glucose to lactate. Similar changes in lactate and glucose 

levels were observed when analyzing the culture medium using a blood gas analyzer or a Lactate 

Colorimetric Assay Kit (Supplementary Fig. S6). The latter also revealed that S100A4 dependent 

elevation in lactate secretion in Melmet 5 was detectable as late as day 2 after the protein 

addition (Supplementary Fig. S6C). This suggests that S100A4 stimulated potentiation of 

glycolysis is a relatively slow/late event.      

We exclude the possibility that the observed effects on OCR, ECAR, glucose and lactate levels 

could be due to a higher number of cells in the S100A4-samples. First, S100A4 does not 

influence cell proliferation, as shown in Fig. 1B. Secondly, we counted the cells (Supplementary 

Fig. S7), evaluated total DNA content by staining with PicoGreen (data not shown) and 

measured total protein amount (absorbance at 280 nm) by a NanoDrop Instrument (data not 

shown) in S100A4 stimulated versus non-stimulated samples. No significant differences in any 

of these parameters were observed, confirming that S100A4 does not increase cell 

number/proliferation.  
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To note, we did not detect any differences in the levels of ROS (detected by the ROS sensitive 

probe DCFH-DA), NAD+/NADH (detected by Abcam NAD+/NADH assay kit) or ATP (detected 

by CellTilter-Glo assay) in cells stimulated with S100A4 versus non-stimulated controls (data 

not shown).  

3.5. Exploring glucose metabolic flux by 13C NMR 

Since analysis of the culture medium indicated increased glucose consumption upon S100A4 

stimulation, the metabolic fate of glucose was further examined using 13C NMR. Tracing 

downstream metabolites of [1,2-13C] glucose in cell extracts from S100A4 stimulated versus 

non-stimulated Melmet 5 cells allowed assessment of glycolytic flux as well as the utilization of 

glucose in different biochemical pathways as illustrated in Figure 6. Although, we saw a slight 

increase in the level of intracellular lactate, the difference was not statistically significant 

(Fig. 7). This might be due to rapid secretion of the produced lactate out from the cells, and the 

significantly elevated level of lactate in the culture medium (Fig. 5) supports this possibility. 

Importantly, we found that the levels of [4,5-13C] glutamate, a product of the tricarboxylic acid 

(TCA) cycle, were significantly reduced (p=0.038) in the S100A4 stimulated cells (Fig. 7). This 

indicates that S100A4 suppresses the activity of the TCA cycle, in accordance with the reduced 

oxygen consumption observed in Figure 4. TCA cycle turnover rate was assessed by comparing 

the relative enrichment of 13C in the 4-C and 3-C (not formed until glutamate has completed at 

least one full turn in the TCA cycle) positions of glutamate. No changes in their relative levels 

were observed, indicating that S100A4 did not have any effect on the turnover rate. 

Glucose has several alternative metabolic fates, and we therefore explored the flux of glucose 

into secondary pathways. As illustrated in Figure 6, lactate is not only formed through 

glycolysis, but also via the pentose phosphate pathway (PPP). Glycolysis yields [2,3-13C] 
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lactate, whereas PPP yields [3-13C] lactate. The ratio between these isotopomers was not 

significantly altered by S100A4, indicating that the protein does not alter the fraction of glucose 

entering PPP. In addition, we measured the levels of [3-13C] serine and [2-13C] glycine. These 

amino acids are formed when glucose exits glycolysis at the level of 3-P-glycerate through the 

action of phosphoglycerate dehydrogenase (PHGDH). Even though we saw reduced expression 

of PHGDH in response to S100A4 (Table 1), no significant change in the levels of [3-13C] 

serine and [2-13C] glycine in cell extracts was observed (Fig. 7B). Finally, we found that the 

levels of [2,3-13C] alanine, which is formed from pyruvate, were unchanged by S100A4. This 

further supports the notion that the primary metabolic effect of S100A4 stimulation is increased 

production of lactate, likely through up-regulation of LDH, which generates lactate from 

pyruvate. To validate the involvement of LDH, we measured its enzymatic activity in S100A4 

stimulated cells versus non-stimulated controls. We observed a small, but statistically significant 

increase of 7 ± 1.8 % (p=0.01 by paired t-test, n=4) (data not shown). 

In summary, the NMR analysis suggests that S100A4 selectively regulates the metabolic fate of 

glucose at the level of pyruvate, favoring aerobic lactate formation and suppressing the entry into 

the TCA cycle.  

3.6. S100A4 stimulated cells are more vulnerable to glycolysis inhibition  

To further explore the significance of the potentiated glycolysis for the S100A4 stimulated cells, 

we treated the cells with DCA aiming to reverse the Warburg effect. DCA inhibits pyruvate 

dehydrogenase kinase, thereby shifting pyruvate metabolism from lactate (glycolysis) into the 

TCA cycle [32]. To validate the DCA effect on metabolism, we followed changes in ECAR and 

OCR in Melmet 5 cells. We observed DCA-induced reduction in ECAR and increase in OCR, 

which was accompanied by elevation in the ATP level (Fig. 8A-C). Collectively, this validates 
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that DCA shifts the metabolism from glycolysis to mitochondrial oxidation, i.e. the opposite 

direction than seen with S100A4.  

To investigate whether the reversal of the glycolytic switch by DCA prevents S100A4 effects on 

cell motility and dedifferentiation, we treated Melmet 5 cells with DCA followed by S100A4 and 

scored cellular migration and expression of the differentiation genes. The DCA treated cells 

demonstrated doubling in migration and down-regulation of the differentiation genes in response 

to S100A4 (data not shown), similar to the cells without DCA (shown in Fig. 1A and 2B). This 

indicates that DCA-reduced glycolysis and potentiated mitochondrial oxidation does not prevent 

the transition to the invasive phenotype.  

Next, we asked how the reversal of the glycolytic switch by DCA affects survival and growth of 

S100A4 stimulated cells compared to non-stimulated controls. We observed that S100A4 pre-

stimulation potentiated the DCA effect on apoptosis and growth inhibition in Melmet 5 cells 

(Fig. 9), but not in Melmet 1 cells (Supplementary Fig. S8).  Thus, we found that S100A4 

stimulated Melmet 5 cells showed slower growth (Fig. 9A), reduced cell survival (Fig. 9B) and 

contained a substantially higher fraction of apoptotic cells (Fig. 9C and D) compared to the non-

stimulated controls after DCA treatment. This indicates that S100A4 stimulated cells that 

undergo phenotype transition, gain survival benefit from the glycolytic switch and, consequently, 

become more vulnerable to glycolysis inhibition. 

Collectively, our results indicate that S100A4 promotes the invasive dedifferentiated phenotype 

and also alters cellular metabolism by attenuating mitochondrial activity and potentiating the 

glycolytic pathway. Pharmacological interference with such metabolic reprogramming forces the 

S100A4 stimulated cells into apoptosis/growth arrest, signifying further studies on metabolic 

inhibitors as a promising approach against metastatic cells.  
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4. Discussion 

In the present study, we explored how melanoma cells may switch from a non-invasive state to 

an invasive phenotype, and revealed cell dedifferentiation and metabolic reprogramming as 

important features related to this transition. In well-differentiated, poorly motile melanoma cells, 

we observed enhanced migration/invasion, dedifferentiation and a metabolic switch to glycolysis 

upon stimulation with the metastasis-promoting protein S100A4. None of these properties were 

induced by S100A4 in highly invasive melanoma cells. On this basis, we hypothesized that 

enhanced cellular motility and alterations in differentiation and metabolism may be 

interconnected. 

Our conclusion that S100A4 stimulated cells increase glycolytic flux and reduce mitochondrial 

oxidation was supported at both, a metabolic and a transcriptional level. The increase in glucose 

uptake, secretion of lactate, ECAR and LDHA gene expression indicates stimulated glycolysis. 

The decrease in OCR, entry of glucose into the TCA cycle and PGC1-α gene expression 

indicates reduced mitochondrial oxidation. Consistent with our findings, several studies have 

linked attenuation of mitochondrial metabolism/down-regulated PGC1-α to tumor promotion and 

metastasis [24, 33]. In contrast, LeBleu et al. have shown that PGC1-α/oxidative 

phosphorylation stimulate cell migration and metastasis in breast cancer [23]. The contribution 

of mitochondrial oxidation could be context-dependent, and therefore different in breast cancer 

and melanoma. A such difference has been reported previously; it was shown that Wnt5a (a 

known driver of the invasive phenotype in melanoma) activates glycolysis in melanoma in 

contrast to oxidative phosphorylation in breast cancer [34].  

In line with our observations that pro-metastatic factor S100A4 activates glycolysis, Liu et al. 

reported that an anti-metastasis factor KISS1 activates mitochondrial oxidation [24]. The reverse 
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metabolic switch induced by the metastasis suppressor KISS1, and the metastasis promoter 

S100A4, strongly proposes an association between regulation of metastasis and metabolism. 

Both studies support the concept of glycolysis as a metastasis-associated mechanism. This is in 

agreement with the fact that high serum levels of LDH (a critical enzyme of lactate production in 

the final stage of glycolysis) is a biomarker for poor prognosis in different cancers, including 

melanoma, where LDH is also used as a part of staging for metastatic disease [35, 36].  

Switching from oxidative phosphorylation to glycolysis may be beneficial for metastatic cells 

due to several reasons. First, a common explanation why cancer cells exploit aerobic glycolysis 

is the supplement of “building blocks” needed for proliferation. However, S100A4 neither 

increased cell proliferation nor enhanced shunting of glucose through the PPP and the glycine-

serine pathways that provide nucleotides and amino acids. This proposes that S100A4 stimulated 

cancer cells adjust their metabolism to support invasiveness, not proliferation. Second, the 

reliance on glycolysis may provide survival benefits in episodes of restricted oxygen supply 

faced by metastatic cells during dissemination and organ colonization. Third, matrix-detached 

disseminating cells are particularly sensitive to ROS, a consequence of oxidative 

phosphorylation [37]. By switching to glycolysis and thereby reducing accumulation of 

damaging ROS, the invading cells could achieve survival benefit. In line with this, we observed 

that S100A4 stimulated cells up-regulate antioxidants like SOD-2, indicating a combined attempt 

to reduce oxidative stress. Fourth, extracellular acidification/lactate release can modulate the 

tumor microenvironment to promote metastasis e.g. activate proteases that facilitate invasion 

[38],  or “educate” pro-tumorigenic stromal cells [39]. Such “education” takes place upon 

stimulation with S100A4, as we have shown previously [15]. Finally, glycolysis might support a 

dedifferentiation state, and less differentiated melanoma cells are more invasive as shown in this 
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study, and demonstrated by others [7, 8]. It is generally accepted that glycolysis supports 

stemness, while oxidative phosphorylation potentiates lineage differentiation [40]. On the other 

hand, recent studies disclosed that the differentiation factor MITF positively regulates PGC1-α 

and, consequently, mitochondrial oxidation [25, 26]. In line with this, we observe that S100A4-

induced down-regulation of MITF is accompanied by down-regulation of PGC1-α and reduced 

mitochondrial oxidation. Such complex interplay between metabolism and differentiation may be 

important for the maintenance of the invasive phenotype. 

In the present study, we used the metastasis associated protein S100A4 to stimulate invasiveness. 

The pro-metastatic functions of S100A4 are not fully clarified, although S100A4-mediated 

activation of proteolytic enzymes, like matrix metalloproteinases, has often been pointed out [17, 

18]. Our presented results allow speculations that S100A4 might act as a broader regulator, 

which modulates essential programs of differentiation and metabolism. To explain the 

association between S100A4-induced invasive phenotype and activated glycolysis, at least two 

scenarios can be foreseen. Our initial assumption was that S100A4 activates glycolysis and 

thereby drives/initiates invasiveness. However, this possibility is unlikely, because: a) increase in 

the glycolysis product lactate was a relatively late event; b) suppression of a glycolytic switch by 

DCA did not suppress the S100A4 stimulated invasiveness or dedifferentiation. An alternative 

scenario, where activated glycolysis can be seen as a form of metabolic adaptation that supports 

the invasive phenotype, is more probable. Switching to glycolysis might be essential for energy 

production and, thus, survival in invasive cells with reduced mitochondrial oxidation. In line 

with this scenario, we observed that reversal of the glycolytic switch by DCA, sensitizes the 

S100A4 stimulated cells to undergo apoptosis and reduce cell growth. The fact that metastatic, 

less-differentiated cells are more vulnerable to DCA than well-differentiated cancer cells, has 
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also been observed by others [41]. Altogether, this strengthens the notion that cancer cells with 

enhanced invasiveness benefit from a glycolytic switch i.e. become dependent on the metabolic 

reprogramming. This suggests that such cells could be targeted by metabolic inhibitors.  Drugs 

targeting lactate production/release are under rapid development [42], and attempts to combine 

them with other anti-melanoma agents, like BRAF inhibitors or pro-oxidants are emerging [43, 

44]. Increased knowledge of metabolic alterations associated with the invasive phenotype may 

point to novel drug combinations to target metastatic cells.   

In conclusion, we have shown that transition to the invasive phenotype in melanoma is 

accompanied by dedifferentiation and metabolic reprogramming. The metabolic switch from 

mitochondrial oxidation to glycolysis is beneficial for survival/growth of cancer cells that 

undergo such phenotype transition, which makes these cells particularly vulnerable to metabolic 

inhibitors. We propose that drugs targeting cellular metabolism, particularly glycolysis might be 

a promising approach against metastatic cells. 
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Figure captions  

Figure 1. S100A4 stimulates melanoma cell motility without affecting proliferation. (A) Effect 

of S100A4 on migration and invasion in Melmet 1 and Melmet 5 cells was evaluated in a trans-

well chamber by stimulating the cells for 48 hrs, and calculating fold change in the fraction of 

migrated cells compared to the non-stimulated controls (where migration was set to 1). Error 

bars indicate SD (Melmet 1, n=1, 3 parallel wells) and SEM (Melmet 5, n=3); * p<0.05. (B) 

Proliferation of melanoma cells with/without S100A4 was tracked by IncuCyte and presented as 

fold increase in cell confluence as a function of time. Representative graphs from at least three 

independent experiments are shown; error bars indicate SD (from at least 5 parallel wells) in the 

presented experiment. 

Figure 2. S100A4 induces dedifferentiation in the melanoma cells. (A) Microarray based heat-

map of hierarchical clustering of 102 genes associated with invasive/proliferative phenotype 

(based on the gene list from Hoek et al. [5]) in Melmet 1 and Melmet 5 cells stimulated for 

48 hrs with S100A4 compared to non-stimulated controls (n=3). The red and green colors 

represent expression levels ranging from high (red) to low (green) on a log2-transformed scale. 

An area with primarily the most significant affected genes is shown enlarged with annotations, 

revealing an over-representation of melanocyte differentiation genes. (B) Relative expression of 

melanocyte differentiation genes, MITF, MLANA and TYR in S100A4 stimulated Melmet 5 

cells compared to non-stimulated controls (where the expression was set to 1), as detected by 

qPCR. (C) Immunofluorescence staining of MITF (green, right panels) and nucleus stained with 

DAPI (blue on the phase contrast (PH) background, left panels) in Melmet 5 cells with/without 

S100A4 stimulation for 48hrs; scale bar, 50 μm. (D) Illustration how the separation of the non-

migrated and migrated cell fractions from a trans-well chamber was performed. (E) Relative 
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expression of the MITF, MLANA and TYR genes in migrated and non-migrated Melmet 5 cell 

fractions (separated as shown in Fig. 2D) with/without S100A4 stimulation. Error bars indicate 

SEM (n=3), * p<0.05 (paired t-test in Fig. 2E). 

Figure 3. S100A4 modulates expression of metabolism-associated genes. (A) Relative 

expression of gene associated with various metabolic processes (specified under the X-axis) in 

S100A4 stimulated cells compared to non-stimulated controls (where the expression was set to 

1). Error bars indicate SEM (n ≥ 3). p<0.05 for all genes unless denoted NS, non-significant. (B) 

Western immunoblot analysis of PGC1-α (α-tubulin as a loading control) in Melmet 1 and 

Melmet 5 cells with/without S100A4 stimulation. Relative PGC1-α level (normalized to α-

tubulin) was quantified by densitometric analysis (error bars indicate SD, n=2).  (C) Relative 

expression of the PGC1-α gene in migrated and non-migrated Melmet 5 cell fractions (separated 

as shown in Fig. 2D) with/without S100A4 stimulation. Error bars indicate SEM (n=3), * 

p<0.05.  

Figure 4. S100A4 reduces oxygen consumption and elevates extracellular acidification. (A) 

OCR in control and S100A4 stimulated (for 48 hrs) Melmet 1 and Melmet 5 cells under basal 

conditions and after sequential addition of oligomycin (O), FCCP and antimycinA/rotenone 

(A+R). Representative graphs from three independent experiments are shown for Melmet 5 (a 

single experiment using 11 parallel wells was performed on Melmet 1); error bars indicate SD in 

the presented experiments. OCR (B), ECAR (C) and ECAR/OCR ratio (D) under basal 

conditions in control and S100A4 stimulated cells. Error bars indicate SD (Melmet 1, n=1, 11 

parallel wells) and SEM (Melmet 5, n=5, paired t-test). * p<0.05. 

Figure 5. S100A4 activates glucose consumption and lactate secretion. Melanoma cells were 

cultured with/without S100A4 for 48 hrs, and the culture medium was analyzed by proton NMR. 
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(A) Illustrative proton NMR spectra of S100A4 stimulated (blue) and non-stimulated control 

(grey) Melmet 1 samples, and S100A4 stimulated (red) and non-stimulated control (black) 

Melmet 5 samples. The enlarged spectral regions show S100A4-induced differences in glucose 

and lactate levels in Melmet 5, but not in Melmet 1 cells. Relative glucose (B) and lactate (C) 

levels calculated by integrating the glucose (5.24 ppm) and lactate (1.33 ppm) signals in the 

NMR spectra and setting the value in the control samples to 1. Error bars indicate SEM (n=3),* 

p<0.05. (D) Ratio between the levels of lactate and glucose. Data from three independent 

experiments are shown.  

Figure 6. Utilization of [1,2-13C] glucose in different metabolic pathways. Metabolic flow chart 

of 13C-labelled metabolite patterns representing glycolysis, the pentose phosphate pathway 

(PPP), glycolytic metabolism-linked biosynthesis of amino acids, and tricarboxylic acid (TCA) 

cycle. The circles symbolize the carbon backbone of the molecules. Dark red circles mark the 

position of the label. Blue circles mark the position of the label after conversion in the PPP and 

re-entry to glycolysis. Light red circles indicate that 50% or less of the molecules formed are 

labeled in that position. The pathway-associated enzymes, whose expression was found to be 

modulated by S100A4 (Table 1), are indicated in grey boxes.  

Figure 7. S100A4 induced changes in the metabolic fate of [1,2-13C] glucose. Melmet 5 cells 

with/without S100A4 pre-stimulation were labeled with [1,2-13C] glucose for 6 hrs, and cell 

extracts were analyzed by 13C NMR. (A) Illustrative 13C NMR spectra, where the red and the 

black lines indicate S100A4 stimulated and non-stimulated samples, respectively. The enlarged 

spectral region show reduced amount of glutamate in the stimulated cells. (B) Signal intensity 

arbitrary units (a.u.) of the selected metabolites (indicated on the X axis) in the 13C NMR 
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spectra from three independent experiments; horizontal lines indicate average, and error bars 

indicate SEM (n=3), * p<0.05.  

Figure 8. DCA suppresses glycolysis and potentiates mitochondrial oxidation. (A) Changes in 

ECAR and OCR in Melmet 5 cells after injection of 10 mM DCA (indicated by the arrow). A 

representative graph from three independent experiments is shown, where error bars indicate SD 

of 5 parallel wells in the presented experiment. (B, C) DCA-induced change in basal ECAR and 

OCR (B) and the ATP level (C) in Melmet 5 cells treated for 2 hrs. Error bars indicate SEM 

(n=3), * p<0.05.  

Figure 9. S100A4 potentiates the DCA effect on apoptosis and growth inhibition in Melmet 5 

cells. (A) Growth of Melmet 5 cells with/without S100A4 pre-stimulation and with/without 

treatment with 20 mM DCA was tracked by IncuCyte, and shown as changes in cell confluence 

as a function of time. The DCA addition moment is indicated by the arrow. A representative 

graph from three independent experiments; data indicates average from 3 parallel wells, where 3 

regions per well were tracked; *, p<0.05 at the end point. (B) DCA effect on survival of 

Melmet 5 wells with/without S100A4 pre-stimulation. Cell viability was scored by the MTS 

assay, and relative survival was calculated setting the values in the respective “No DCA” cells to 

100%. Error bars indicate SEM (n=4); * p<0.05. (C and D) DCA-induced apoptosis as detected 

by Annexin V-FITC staining. Cells with/without S100A4 pre-stimulation were treated with 

30mM DCA for 24 hrs before the flow cytometric analysis for apoptosis. The percentages of 

apoptotic (Annexin-positive) cells under each condition are shown in (C), where error bars 

indicate SEM (n=4); * p<0.05. The representative dot-plots are shown in (D), where the numbers 

in the right-quadrants indicate % of early-apoptotic (lower quadrant) and late-apoptotic (higher 

quadrant) cells in the presented experiment. 
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Additional files. 

Supplementary Figure S1. 2D Heteronuclear (13C-1H) single-quantum correlation (HSQC) 

spectrum of cell extracts from Melmet 5 cells incubated with [1,2-13C] glucose for 6 hrs. On the 

top the proton spectrum is shown and on the left hand side the 13C spectrum is shown. Dotted 

red lines show the cross peak assignments between proton and 13C spectra.  

Supplementary Figure S2. 2D Homonuclear (1H-1H) Shift Correlation (COSY) spectrum of 

cell extract from Melmet 5 cells incubated with [1,2-13C] glucose for 6 hrs. The proton spectra 

are shown both on top and on left hand side. The correlated cross peaks in the COSY spectra are 

shown with dotted red lines. 

Supplementary Figure S3. Effect of S10A4 on melanoma cell motility. (A) Chemo-tactic 

migration and invasion of Melmet 1 and Melmet 5 cells in a trans-well chamber incubated 

with/without S100A4 for 48 hrs. Bars indicate percentage of migrated cells; error bars indicate 

SD (Melmet 1, n=1, 3 parallel wells) and SEM (Melmet 5, n=3). (B) Relative wound density in 

percent (Y axis) as a function of time (X axis) for the Melmet 1 and Melmet 5 cells with/without 

S100A4 stimulation in a wound healing assay. Representative graphs from at least three 

independent experiments are shown; error bars indicate SD from 10 parallel wells. 

Supplementary Figure S4. Effect of S100A4 on expression of the melanocyte differentiation 

genes in Melmet 1 and several other melanoma cell lines. (A) Relative expression of MITF, 

MLANA and TYR in Melmet 1 cells stimulated with S100A4 compared to non-stimulated 

controls (where the expression was set to 1), as detected by qPCR. Error bars indicate SD (n=2); 

n.d., non-detectable. (B) Immunofluorescence staining of MITF (green, right panels) and nucleus 

(blue, left panels) in Melmet 1 cells with/without S100A4 stimulation; scale bar, 50 μm. (C) 

Relative expression of MITF in a panel of melanoma cell lines (specified in the X axis) 

with/without S100A4 stimulation.  
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Supplementary Figure S5. S100A4-induced metabolic shift in Melmet 5. OCR versus ECAR in 

the control and the S100A4 stimulated cells. ECAR and OCR values from five independent 

experiments are plotted, where each experiment is coded by a symbol+color; filled symbols 

represent control samples without S100A4, while unfiled symbols of the same shape/color 

represent the S100A4 stimulated samples.  

Supplementary Figure S6. Effect of S100A4 on glucose and lactate levels in the culture 

medium from cells with/without S100A4 as detected by blood gas analyzer or Lactate 

Colorimetric Assay. Relative levels of glucose (A) and lactate (B) measured 2 days after addition 

of S100A4 (controls - no S100A4) as measured by a blood gas analyzer. Error bars indicate SEM 

(n=3), * p<0.05. (C) Relative levels of lactate detected in Melmet 5 cell culture medium at 

different time points. Aliquots were collected at 6, 24 hrs (denoted as < 24hrs) and 48, 72 hrs 

(denoted as > 48) after the addition of S100A4 and analyzed by the Lactate Colorimetric Assay. 

Error bars indicate SEM (n=5), *p<0.05.   

Supplementary Figure S7. S100A4 does not influence cell proliferation as measured by 

counting Melmet 1 and Melmet 5 cells with/without S100A44 stimulation. The results from three 

independent experiments are shown, where symbols indicate average, and error bars indicate SD 

of 6 parallel wells in each experiment. 

Supplementary Figure S8. S100A4 does not influence the DCA effect on apoptosis and growth 

inhibition in Melmet 1 cells. (A) Growth of Melmet 1 cells with/without S100A4 pre-stimulation 

and with/without 10 mM DCA treatment was tracked by IncuCyte, and shown as changes in cell 

confluence as a function of time. A representative graph from two independent experiments; data 

indicates average from 5 parallel wells, where 3 regions per well were tracked; (B) DCA effect 

on survival of Melmet 1 cells with/without S100A4 pre-stimulation. Cell survival was scored by 
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the MTS assay, and relative survival was calculated setting the values in the respective “No 

DCA” cells to 100%. Error bars indicate SD (n=2); (C and D) DCA-induced apoptosis as 

detected by Annexin V-FITC staining. Cells with/without S100A4 pre-stimulation were treated 

with 30mM DCA for 24 hrs before the flow cytometric analysis for apoptosis. The percentages 

of apoptotic (Annexin-positive) cells under each condition are shown in (C), where error bars 

indicate SD (n=2). The representative dot-plots are shown in (D), where the numbers in the right-

quadrants indicate % of early-apoptotic (lower quadrant) and late-apoptotic (higher quadrant) 

cells in the presented experiment. 

 

Supplementary Table S1. Primer sequence and probes used for qPCR. 

Supplementary Table S2. Metabolite assignments in 1H and 13C NMR spectrum 

Supplementary Methods.  
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