Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake*

Miroslava Soldánová ${ }^{\mathrm{a}, \dagger}$, Simona Georgieva ${ }^{\mathrm{a}, \dagger} \dagger$, Jana Roháčová ${ }^{\mathrm{a}, \mathrm{b}}$, Rune Knudsen ${ }^{\mathrm{c}}$, Jesper A.
Kuhn ${ }^{\text {c }}$, Eirik H. Henriksen ${ }^{\text {c }}$, Anna Siwertsson ${ }^{\text {c }}$, Jenny C. Shaw ${ }^{\text {d }}$, Armand M. Kuris ${ }^{\text {d }}$, Per-Arne
Amundsen ${ }^{\text {c }}$, Tomás Scholz ${ }^{\text {a,b }}$, Kevin D. Lafferty ${ }^{\text {e }}$, Aneta Kostadinova ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005
České Budějovice, Czech Republic
${ }^{\text {b }}$ Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
${ }^{\text {c }}$ Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N9037 Tromsø, Norway
${ }^{\mathrm{d}}$ Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California 93106 USA
${ }^{\mathrm{e}}$ United States Geological Survey, Western Ecological Research Center c/o Marine Science Institute, University of California, Santa Barbara, California 93106 USA
${ }^{\dagger}$ Equal contributors

* Corresponding author. Tel.: +420-38-777 5933; fax: +420-38-5310388.

E-mail address: aneta.kostadinova@uv.es; kostadinova@paru.cas.cz

Note: Supplementary data associated with this article.

International Journal for Parasitology 47 (2017) 327-345
http://dx.doi.org/10.1016/j.ijpara.2016.12.008

Abstract

To identify trematode diversity and life-cycles in the sub-Arctic lake Takvatn, we characterised 120 trematode isolates from mollusc first intermediate hosts and metacercariae from second intermediate host fishes and invertebrates using molecular techniques. Phylogenies based on nuclear and/or mitochondrial DNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicate that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

Keywords: Trematode diversity, intermediate hosts, phylogeny, mitochondrial DNA, nuclear DNA, Takvatn, Norway, sub-Arctic

1. Introduction

Arctic and sub-Arctic ecosystems are often regarded as relatively simple and species poor due to past glaciations and extreme seasonality (Hoberg et al., 2012). Such low host diversity should translate to low parasite diversity (Hechinger and Lafferty, 2005; Kamiya et al., 2014; Poulin, 2014). However, taxonomically complex and diverse parasite assemblages can occur at high latitudes (e.g. Storer 2000; 2002; Hemmingsen and MacKenzie 2001; Muzzafar and Jones 2004; Perdiguero-Alonso et al., 2008; Kutz et al., 2012; for a detailed review see Hoberg, 2013). Notwithstanding, our knowledge of parasite diversity at high latitudes stems from research on terrestrial and marine host-parasite systems, and data from the freshwater environment are scarce.

Digenetic trematodes are an important and species-rich group in lakes and other aquatic systems (Choudhury et al., 2016; Faltýnková et al., 2016; Scholz et al., 2016). Due to the sequential use of different host species throughout complex life-cycles, digenean diversity and abundance in the first intermediate mollusc hosts is inherently linked to host diversity and abundance and reflects the dynamics of the trophic web at the ecosystem level (Hechinger and Lafferty, 2005; Lafferty et al., 2006, 2008). Digeneans are easily sampled in their intermediate hosts and are usually transmitted to their definitive hosts via predation; they can thus serve as indicators capturing host diversity, trophic interactions and food web function in an ecosystem. However, it can be difficult to identify larval stages and link life-cycle stages in intermediate hosts and sexually mature adults (Nolan and Cribb, 2005; Faltýnková et al., 2016).

Molecular methods using accumulated sequence data make possible rapid molecular identification in large-scale digenean surveys in North America (Brant and Locker, 2009; Detwiler et al., 2010, 2012; Locke et al., 2010a, b, 2011) and Europe (Kostadinova et al., 2003; Aldhoun et al., 2009a, b; Jouet et al., 2010; Georgieva et al., 2013a, b, 2014; Blasco-Costa et al., 2014; Faltýnková et al., 2014; Pérez-del-Olmo et al., 2014; Selbach et al., 2014, 2015; Zikmundová et al., 2014). For instance, morphological and molecular genetic approaches detected several novel species within the Diplostomidae (five species, see Blasco-Costa et al., 2014; Faltýnková et al., 2014), Schistosomatidae (four species, see Aldhoun et al., 2009a, b; Jouet et al., 2010) and Echinostomatidae (two species, see Georgieva et al., 2012; 2013a) in Iceland. These data indicate unexpected digenean diversity in high latitude ecosystems (BlascoCosta et al., 2014). However, these diversity data result from systematic sampling of specific taxonomic groups and, to date, no attempt has been made to assess digenean biodiversity baselines in a single freshwater ecosystem in the Arctic.

Here, using recent European morphological and sequence datasets, we present the first known estimates of digenean diversity, transmission pathways and host associations in a sub-

Arctic lake. While assessing benthic macroinvertebrates and their parasites in the littoral food web in Takvatn (Norway), we examined samples of several free-living animal taxa potentially acting as intermediate hosts for digeneans. Using coarse-grained identification, based on morphology and molecular approaches, we characterised digenean diversity across both first and second intermediate hosts, linked the parasite life-cycle stages in the first (mollusc), the second (invertebrate/vertebrate) intermediate and definitive hosts, and established digenean diversity baselines and genetic datasets for identifying and exploring host-parasite interactions and food web studies in Arctic lakes.

2. Materials and methods

2.1. Study lake

Takvatn is an oligotrophic, dimictic, sub-Arctic lake located in Målselv drainage, Troms County, northern Norway ($69^{\circ} 07^{\prime} \mathrm{N}, 19^{\circ} 05^{\prime} \mathrm{E}$; elevation 214 m ; surface area of $14.2 \mathrm{~km}^{2}$; maximum depth of $c .80 \mathrm{~m}$; for detailed environmental characteristics of the lake (see Amundsen et al., 2009). Faunal diversity and food web relationships in Takvatn have been studied for more than 30 years (e.g. Klemetsen et al., 2002; Amundsen et al., 2009; Klemetsen and Elliott, 2010; Klemetsen and Knudsen, 2013). Parasites in fish hosts have also been studied (e.g. Knudsen et al., 1996, 1997, 2002, 2003, 2008, 2010, 2014; Amundsen et al., 2013) but only with morphological identification (but see Kuhn et al., 2015).

The fish, zooplankton and parasites of the pelagic food web in Takvatn are well studied (see Amundsen et al., 2009 and references therein). A detailed three-year study on macroinvertebrate diversity in the rocky-intertidal zone demonstrated the presence of 25 taxa (18 insects and 7 non-insects (see Klemetsen and Elliott, 2010 for details). Of these, the gastropod Radix peregra (identified here as R. balthica), the amhipod Gammarus lacustris and oligochaetes were common non-insect taxa and mayfly, stonefly and chironomid larvae dominated among the insect taxa.

A few aquatic bird censuses during the breeding season over a period of 30 years listed 21 species (divers, ducks, gulls, terns and waders) in Takvatn (Klemetsen and Knudsen, 2013). Of these, six species were present in all censuses and breeding pairs were observed for 12 species: Anas penelope; Anas platyrhynchos; Aythya fuligula; Bucephala clangula; Gavia arctica; Larus canus; Melanitta fusca; M. nigra; Mergus serrator; Sterna paradisaea; Tringa hypoleucos and T. totanus. Two salmonids, the Arctic charr Salvelinus alpinus and the brown trout Salmo trutta, and the three-spined stickleback Gasterosteus aculeatus live in the lake (see Klemetsen et al., 2002).

2.2. Sampling

Whereas most studies on trematode diversity focus on snail hosts, we considered a range of first and second intermediate hosts (allowing us to find more species and discern life-cycles). In total, 3,496 macrozoobenthic invertebrate specimens of 51 species belonging to three phyla, five classes, 11 orders and 26 families were collected during the ice-free period in 2012 (August and October) and 2013 (June and September) from several sampling sites of the lake littoral (see Supplementary Table S1 for details).

Substantial sampling in the profundal zone (at depths of 20-40 m) in August 2012 found only 209 invertebrates. Therefore, subsequent sampling was focused on the littoral zones (depths of 3-8 m), characterised by the co-occurrence of dense mats of brittleworts (Nitella sp.) and mosses. At most sampling sites, invertebrates were collected using a sieve sampler pulled behind a boat through abundant submerged vegetation. We sampled by hand and/or with a strainer from the sediment surface and vegetation (Equisetum spp.), at two shallow sites at the southeastern part of the lake (0.5 m deep) where the snail Radix balthica was found in high densities.

In the laboratory, invertebrates were sorted to major taxonomic groups and identified to the lowest possible taxon (see Supplementary Table S1). Each specimen was given a unique code and provisional identification and examined for the presence of parasites. Annelids and arthropods were initially compressed between glass slides and infected specimens dissected. Molluscs were placed individually into containers with filtered lake water under a light source to stimulate cercarial emergence; if emergence was not observed within two days, the molluscs were dissected. Annelids and arthropods were identified according to Nilsson $(1996,1997)$ and molluscs according to Glöer (2002). Digenean life-cycle stages were initially examined live and photomicrographs were taken whenever possible. Preliminarily identification of the cercariae and metacercariae to familial/generic level was carried out using the keys of Faltýnková et al. (2007, 2008) and other relevant sources, e.g. Sudarikov et al. (2002). All isolates from the first samples were given provisional identification labels; these were consistently applied to the subsequent samples. Voucher material is deposited in the Helminthological Collection of the Institute of Parasitology (HCIP), Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice under accession numbers HCIP D-735-D-750. Representative photomicrographs for the metacercariae from which the molecular samples were directly derived (i.e. hologenophores sensu Pleijel et al., 2008) are provided in Supplementary Fig. S1.

Intramolluscan stages (parthenitae) were identified from molecular data. To facilitate connection of some life-cycle stages in molluscs and fishes, metacercariae from the eyes of three specimens of each of the three fish species present in the lake were sampled. Subsamples of
digenean life-cycle stages from all provisionally identified parasite taxa were fixed in molecular grade ethanol for DNA isolation and sequencing. A few previously collected adult specimens of Crepidostomum sp. and metacercariae from Diplostomum phoxini collected from Lake Øvre Heimdalsvatnet ($61^{\circ} 42^{\prime} 24.8^{\prime \prime} \mathrm{N}, 8^{\circ} 86^{\prime} 75.12^{\prime \prime} \mathrm{E}$) were also used to generate molecular data. Foot tissue taken from infected Radix spp. and two morphotypes of small clams were examined for the presence of metacercariae, washed with distilled water and fixed in molecular grade ethanol for DNA isolation and sequencing.

2.3. Sequence generation

Total genomic DNA was isolated from single ethanol-fixed rediae, sporocysts, metacercariae and adults or from 50-100 pooled cercariae emerged from a single infected mollusc using the protocols described in Georgieva et al. (2013a). Tissue from snails and small clams was also used for DNA isolation and amplification. Polymerase chain reaction (PCR) amplifications were carried out in a total volume of $25 \mu \mathrm{l}$ using illustra puReTaq Ready-To-Go PCR beads (GE Healthcare, UK) following the manufacturer's instructions. Partial fragments of the mitochondrial genes cytochrome c oxidase subunit 1 (cox1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1), and the nuclear 28S rRNA gene (domains D1-D3) and the complete ribosomal internal transcribed spacer region ITS1-5.8S-ITS2 (or ITS2), were amplified depending on the parasite (or mollusc host) family-level group (see Supplementary Tables S2 and S3 for details on the primers and PCR conditions used).

PCR amplicons were purified using Qiagen QIAquick ${ }^{\text {TM }}$ PCR purification kit (Qiagen Ltd., UK) following the manufacturer's protocol and sequenced directly for both strands using the same primers (cox1, nad1 and ITS1-5.8S-ITS2) or with additional internal primers (28S) with ABI Big Dye chemistry (ABI Perkin-Elmer, UK) alcohol-precipitated and run on an ABI Prism 3130x1 automated sequencer. Contiguous sequences were assembled, quality checked and edited manually using MEGA v6 (Tamura et al., 2013) and compared with those available in the GenBank database using BLASTn. Unique haplotypes were identified with DnaSP (Rozas et al., 2003) against all published sequences for a given species/lineage. Pairwise genetic distances were calculated using the p-distance model (i.e. the percentage of pairwise character differences with pairwise deletion of gaps) implemented in MEGA v6. All sequences are submitted to the GenBank database under accession numbers XXXXXX-XXXXXXX (see Table 2 for details).

2.4. Alignments and phylogenetic analyses

Newly-generated and published sequences for each gene/taxonomic group were aligned with MUSCLE (Edgar, 2004) implemented in MEGA v6. The alignments for protein-coding genes
included no insertions or deletions and were aligned with reference to the amino acid translation, using the echinoderm and flatworm mitochondrial code (translation table 9;
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi\#SG9) (Telford et al., 2000). However, these alignments were analysed solely as nucleotides as insufficient variability was provided by the amino acids alone; first, second and third positions within the included codons were included in these analyses.

Eleven alignments were analysed for parasites (see Table 1 for details). These represented a total of 307 sequences retrieved from the GenBank database for 149 species or species-level genetic lineages from the taxonomic groups targeted based on our provisional sorting/identification of the isolates sequenced from Takvatn. We selected up to three representative published sequences (the longest possible) per species/lineage as determined in previous studies (see Supplementary Table S4 for details). The ITS alignment (Trichobilharzia spp., Alignment 11; see Table 1) represents a concatenated data set of the ITS1 (2,062 nt long) and ITS2 (380 nt long) fragments in order to include all sequences for species of Trichobilharzia available in the GenBank database. Concatenation was made in SEAVIEW (Galtier et al., 1996) and resulted in a 2,442 nt long alignment which included ambiguously aligned regions; these were detected with the aid of Gblocks v0.91b (Castresana, 2000) implemented in SEAVIEW with less stringent parameters, and omitted prior to phylogenetic analysis. The final alignment was $1,297 \mathrm{nt}$ long.

Two alignments were analysed for the snail and clam hosts of the parasites sampled in Takvatn: Alignment 12 (ITS2 sequences for Radix spp.) and Alignment 13 (28 S rDNA sequences for small clams) (see Table 1).

Molecular identification of the parasite and host isolates sequenced from Takvatn was achieved in Bayesian Inference (BI) and Maximum Likelihood (ML) phylogenetic analyses. Prior to analyses, jModelTest 2.1.4 (Guindon and Gascuel, 2003; Darriba et al., 2012) was used to estimate the best-fitting models of nucleotide substitution based on Akaike Information Criteria (AIC); these are listed in Table 1. BI analyses were carried out with MrBayes version 3.2.6 (Ronquist et al., 2012) using Markov chain Monte Carlo (MCMC) searches on two simultaneous runs of four chains for 10^{7} generations, sampling trees every 10^{3} generations. The first 25% of the trees sampled were discarded as 'burn-in', determined by stationarity of lnL assessed using Tracer v. 1.5 (Rambaut and Drummond, 2009) and a consensus topology and nodal support estimated as posterior probability values (Huelsenbeck et al., 2001) were calculated from the remaining 75% of the trees. BI analyses were run on the Cipres Science Gateway v. 3.1 (http://www.phylo.org/sub_sections/portal/) (Miller et al., 2010), using MrBayes (3.2.6) on XSEDE. ML analyses were performed with PhyML 3.0 (Guindon et al., 2010) run on
the ATGC bioinformatics platform (http://www.atgc-montpellier.fr/) with a non-parametric bootstrap validation based on 1,000 pseudoreplicates. The outgroup taxa used in the analyses are listed in Table 1.

3. Results

Of the 3,496 individual invertebrates (51 species, 26 families and 11 orders), 919 (19 species of 14 families and nine orders) were infected with digeneans (see Supplementary Table S1 for details). The most abundant invertebrates, Gammarus lacustris and Radix balthica, were also the most frequently infected hosts in the lake. The infected arthropods included 373 amphipods (G. lacustris) and 229 aquatic insects ($15 \mathrm{spp} . ;$ predominantly larval stages, 13 spp .). Of the three snail species examined, R. balthica hosted most larval digeneans, whereas only two Gyraulus acronicus were infected and no parasites were found in the 14 Valvata piscinalis dissected (see Supplementary Table S1).

Our phylogenetic analyses based on 148 sequences for 120 digenean isolates from invertebrates and fish sampled from Takvatn revealed unexpected high species richness (24 species or species-level lineages) and uncovered substantial diversity of digeneans, including 16 putative new species, within five of the families typical in lake ecosystems, i.e. the
Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae (Faltýnková et al., 2016; Scholz et al., 2016). Molecular identification relied on (and now adds to) sequence and morphological databases for the European species of the last four families (Georgieva et al., 2013a, b, 2014; Blasco-Costa et al., 2014, Zikmundová et al., 2014; Selbach et al., 2015; Roháčová et al., unpublished data). Phylogenies developed here based on mitochondrial and nuclear DNA wherever applied, depicted the same distinct genetic lineages. Furthermore, the extensive sampling across a range of possible hosts allowed matching sequence data for different life-cycle stages thus achieving molecular elucidation of life-cycles for 14 species, more than 50% of the species discovered in the lake.

3.1. Family Allocreadiidae

Both, ML and BI analyses of the Allocreadiidae (Alignment 1 including sequence data for 25 species available in the GenBank database; see Tables 1, 2 and Supplementary Table S4 for details) resulted in consensus trees with similar topologies (Fig. 1). The newly-generated sequences from Takvatn fell into five distinct strongly supported monophyletic lineages, four within Crepidostomum and one within Allocreadium. Notably, Crepidostomum was resolved as polyphyletic with the five North American species (C. affine, C. auritum, C. cooperi, C. cornutum and C. illinoisense) included in a strongly supported clade comprising a range of
allocreadiid taxa with a North American distribution whereas two Eurasian species did not join the main (albeit unsupported) cluster formed by Crepidostomum spp. from Europe and Asia. One unidentified isolate of Crepidostomum from Europe clustered with species of Allocreadium with strong support and an Asian isolate of Crepidostomum auriculatum appeared as earliest divergent to all allocreadiids (Fig. 1). Phylogenetic analysis of Crepidostomum spp. alone (Alignment 2 including sequence data for 11 species available in the GenBank database; see Tables 1, 2 and Supplementary Table S4 for details) revealed similar patterns and support but with C. auriculatum clustering as earlier divergent with C. farionis and Crepidostomum sp. 1 with strong support from BI analysis (see Supplementary Fig. S2).

The sequences for 21 isolates sampled from clams, insects, gammarids and fish (see Table 2 for details) in Takvatn formed four strongly supported reciprocally monophyletic lineages within the cluster of the Eurasian species of Crepidostomum. The sequences for two progenetic metacercariae from the dytiscid beetle Oreodytes sanmarkii clustered within the clade of Allocreadium spp. with a maximum support. These results indicate that two pairs of closely related Crepidostomum spp. complete their life-cycles in the lake: (i) C. farionis (using the clams Pisidium casertanum and Sphaerium sp. as first intermediate hosts) and the closely-related sister species Crepidostomum sp. 1 (using Sphaerium sp. as first intermediate host and nymphs of the mayfly Siphlonurus lacustris as second intermediate hosts); and (ii) C. metoecus (using Pisidium casertanum as first intermediate host, G. lacustris as second intermediate host and Salmo trutta as definitive host) and the closely related sister species Crepidostomum sp. 2 (using nymphs of the mayfly Siphlonurus lacustris and the stonefly Diura bicaudata as second intermediate hosts, and S. trutta as definitive host) (Fig. 1). Notably, intraspecific variation was detected only for Crepidostomum sp. 2 with a difference of a single nucleotide position. The interspecific divergence between the pairs of Crepidostomum spp. from Takvatn was 0.8% (6nt) (C. farionis - Crepidostomum sp. 1) and between 0.8-1.0\% (6-7 nt) (C. metoecus - Crepidostomum sp. 2). The interspecific divergence between the two main clades of the Eurasian species of Crepidostomum ranged between 3.8-4.5\% (27-32 nt).

The sequences for the progenetic metacercarie ex O. sanmarkii were identical to a sequence for Allocreadium neotenicum from the UK (Bray et al., 2012). These isolates were, therefore, identified as A. neotenicum. Notably, the closest relative, the North American A. lobatum, differed by only two nucleotide positions.

3.2. Family Strigeidae

Phylogenetic reconstructions for representatives of the family Strigeidae were based on partial sequences for cox1 (Alignment 3 including data for 22 species/lineages available in the

GenBank database; see Tables 1, 2 and Supplementary Table S4 for details) and 28S rDNA (Alignment 4 including data for 8 species/lineages from GenBank; see Tables 1, 2 and Supplementary Table S4 for details). Individual gene analyses yielded tree topologies with congruent sister-group relationships among the available representatives of the family despite the different taxa composition (Fig. 2, Supplementary Fig. S3). Overall, the cox1 phylogeny comprising data for seven strigeid genera revealed the clade comprising Cotylurus, Ichthyocotylurus and Cardiocephaloides as earlier divergent (ML support only).

Species/lineages of Apatemon formed two clusters, one strongly supported and comprising five lineages sequenced in North America plus a lineage from Takvatn and the second supported from ML analysis only (84\%) containing a lineage from Takvatn and an unidentified species from New Zealand, Apatemon sp. "jamiesoni". Additionally, there was no support for the genera Australapatemon and Ichthyocotylurus, and Apharyngostrigea was recovered as paraphyletic (Fig. 2).

The newly-generated cox1 sequences for isolates from Takvatn clustered in three strongly supported reciprocally monophyletic lineages (Fig. 2). Two of these clustered within Apatemon spp. clades: (i) Apatemon gracilis (using R. balthica as first intermediate host and Gasterosteus aculeatus as second intermediate host); and (ii) a novel species of Apatemon in the second intermediate host (two metacercariae ex G. aculeatus). Both lineages contained sequences generated recently for metacercariae ex G. aculeatus from Takvatn by Kuhn et al. (2015): three labelled as "Strigeidae gen. sp." (GenBank KM212057, KM212064, KM212065) fell within the clade representing A. gracilis and two labelled as Apatemon sp. (GenBank KM212028; KM212029) clustered with the sequences for the novel species of Apatemon from Takvatn. Both species exhibited low levels of intraspecific divergence ($0-1.0 \%$ and $0.2-0.7 \%$, respectively).

Sequences from sporocysts ex R. balthica and metacercariae ex R. balthica and Gyraulus acronicus represented two haplotypes (intraspecific divergence $0-0.7 \%$) and formed a strongly supported lineage clustering with the only sequence for Cotylurus spp. available on GenBank (Fig. 2); this lineage was identified based on morphology and our unpublished sequences (Roháčová et al., unpublished data) as Cotylurus cornutus.

Phylogenetic analyses of the 28S rDNA dataset (Alignment 4; see Tables 1, 2 and Supplementary Table S4 for details) corroborated the distinct species status of the three strigeids from Takvatn (Supplementary Fig. S3). Notably, there was a strongly supported sister-group relationship between A. gracilis and Apatemon sp. "jamiesoni" sequenced in New Zealand in both cox1 (ML only, 84\%) and 28 S rDNA analyses. No 28 S rDNA sequence is available on GenBank for Cotylurus spp. but both, ML and BI analyses depicted a strongly supported
relationship between C. cornutus and an otherwise unpublished sequence for Nematostrigea serpens indicating that the latter has been misidentified (Supplementary Fig. S3).

3.3. Family Diplostomidae

The newly-generated sequences depicted six species of diplostomid completing their lifecycles in Takvatn with R. balthica and fishes acting as first and second intermediate hosts, respectively (Table 2). The cox1 phylogeny for Diplostomum spp. including data for 35 species/lineages available in the GenBank database (Alignment 5; see Tables 1, 2 and Supplementary Table S4 for details) demonstrated that the newly-sequenced isolates from Takvatn cluster into five strongly supported reciprocally monophyletic lineages (Fig. 3). These included Diplostomum phoxini (a cercarial isolate ex R. balthica and a metacercaria ex Phoxinus phoxinus from Lake Øvre Heimdalsvatnet, Norway; sequence divergence 0.2%) and four of the six lineages of Diplostomum recently discovered and described by Blasco-Costa et al. (2014) and Faltýnková et al. (2014) in Iceland.

Two of these lineages represented metacercariae in fish only: (i) Diplostomum sp. 'Lineage 3’ of Blasco-Costa et al. (2014) comprising metacercariae from the eye vitreous humour of the two salmonids studied [four haplotypes including three novel (out of 18 currently known haplotypes); intra-lineage divergence 0.5-2.0\%]; and (ii) Diplostomum sp. 'Lineage 5' of Blasco-Costa et al. (2014) comprising metacercariae from the eye vitreous humour of the two salmonids plus one metacercaria ex G. aculeatus [six haplotypes including five novel (out of 17); intra-lineage divergence 0-1.7\%].

The two remaining lineages both contained sequences generated from cercariae ex R. balthica and metacercariae from the eye vitreous humour and retina of G. aculeatus. Diplostomum sp. 'Lineage 4' of Blasco-Costa et al. (2014) was represented by five haplotypes including four novel (out of 23; intra-lineage divergence 0-1.5\%) and Diplostomum sp. 'Lineage 6' of Blasco-Costa et al. (2014) was represented by seven haplotypes including three novel (out of 20 ; intra-lineage divergence $0-1.7 \%$). There was a strongly supported sister-group relationship between Diplostomum sp. ‘Lineage 3' and Diplostomum sp. 'Lineage 4' and between Diplostomum sp. 'Lineage 5' and Diplostomum sp. 6 of Locke et al. (2010a) based on material from the St Lawrence River in Canada as shown in previous studies (see Georgieva et al., 2013b; Blasco-Costa et al., 2014) and Diplostomum sp. 'Lineage 6’ clustered with four lineages of Diplostomum spp. (species 8, 9, 13 and 17 of Locke et al., 2010a) from the St Lawrence River, Canada.

Single haplotypes recovered within 'Lineages 3-5' of Diplostomum from Takvatn have recently been reported from fishes and snails in central Europe or sub-Arctic: (i) within

Diplostomum sp. 'Lineage 3', haplotype S847 was shared with an isolate ex S. trutta from the River Ruhr, Germany (JX986868; Georgieva et al., 2013b) and an isolate ex S. alpinus from Hafravatn, Iceland (KJ726463; Blasco-Costa et al., 2014); (ii) within Diplostomum sp. ‘Lineage 4', haplotype S852 was shared with two isolates ex Perca fluviatilis from Lake Constance, Germany (JQ639182 and JQ639194; Behrmann-Godel, 2013) and three isolates ex G. aculeatus from Takvatn (KM212030, KM212032 and KM212033; Kuhn et al., 2015); (iii) within 'Lineage 5’, haplotype S836 was shared with three isolates ex S. trutta from Hafravatn, Iceland (KJ726492-KJ726494; Blasco-Costa et al., 2014).

Finally, within Diplostomum sp. 'Lineage 6', four haplotypes were shared among isolates sampled in our study and previously published sequences from metacercariae ex G. aculeatus in Takvatn by Kuhn et al. (2015) as follows: (i) haplotype 1: isolate S858 ex R. balthica and four isolates (KM212035, KM212036, KM212043 and KM212052); (ii) haplotype 2: isolates S835 and S828 ex G. aculeatus and four isolates (KM212037, KM212040, KM212041 and KM212047); (iii) haplotype 3: isolates S854 and S859 ex R. balthica and five isolates (KM212039, KM212042, KM212045, KM212046 and KM212051); and (iv) haplotype 4: isolate S832 ex G. aculeatus and isolate KM212054 of Kuhn et al. (2015). Notably, two of these haplotypes have been first discovered in sub-Arctic lakes in Iceland by Blasco-Costa et al. (2014): (i) haplotype 2 ex G. aculeatus was shared with two isolates ex R. balthica (KJ726505 and KJ726506) from Lake Nordic House, Reykjavik; and (ii) haplotype 3 ex R. balthica was shared with one isolate ex R. balthica (KJ726497) and two isolates ex G. aculeatus (KJ726496 and KJ726498), all from Lake Nordic House, Reykjavik.

Phylogenetic analyses of the available cox1 sequence data for species/lineages of Tylodelphys (Alignment 6; 14 spp.; see Tables 1, 2 and Supplementary Table S4 for details) revealed three well-supported clades (Fig. 4), one containing four African species/lineages plus two widely distributed European species, Tylodelphys clavata and T. excavata; one representing three species from North and South America; and one containing the newly-sequenced metacercarial isolates from the vitreous humour of the two salmonids in Takvatn and the North American Tylodelphys immer. The two haplotypes of the novel lineage differed by 0.5%; both differed from the sister-species, T. immer, by 5.0-5.8\%.

3.4. Family Plagiorchiidae

Large numbers of R. balthica were infected with Plagiorchis spp. The newly-generated cox1 sequences from selected cercarial isolates and three metacercariae ex G. lacustris and a larval cranefly Tipula salicetorum were aligned together with sequences for five European and one Korean species of Plagiorchis (Alignment 7; including sequence data for six species
available in the GenBank database; see Tables 1, 2 and Supplementary Table S4 for details). Both BI and ML analyses depicted seven novel species-level lineages (Fig. 5A); of these, two (Plagiorchis sp. 2 and Plagiorchis sp. 3) included matching sequences from cercariae and metacercariae (ex G. lacustris and T. salicetorum, respectively). The novel cox1 sequences represented 22 haplotypes (18 unique) as follows: Plagiorchis sp. 1 (eight; six unique); Plagiorchis sp. 2 (four; two unique); Plagiorchis sp. 3 (four unique); Plagiorchis sp. 4 (two unique); Plagiorchis sp. 5 (two unique); Plagiorchis sp. 6 (one); and Plagiorchis sp. 7 (one). Within the dataset studied, the intraspecific divergence range was $0-2.1 \%$ and the range for interspecific divergence was 3.5-17.7\%.

Analyses of 28S rDNA sequences for Plagiorchis spp. (Alignment 8; including data for seven species available in the GenBank database; see Tables 1, 2 and Supplementary Table S4 for details) confirmed that the lineages of Plagiorchis spp. are novel (Fig. 5B). Three lineages included matching sequences from cercariae ex R. balthica and metacercariae from benthic invertebrates as follows: Plagiorchis sp. 1 (larval T. salicetorum); Plagiorchis sp. 2 (G. lacustris), Plagiorchis sp. 3 (larval T. salicetorum and the dytiscid beetle Oreodytes alpinus), and Plagiorchis sp. 5 (larval alderfly Sialis lutaria and O. alpinus). However, the sequences for Plagiorchis sp. 4 and Plagiorchis sp. 6 were identical and there was no support for lineages Plagiorchis sp. 1, 2 and 3. The intraspecific sequence divergence between the lineages sampled at Takvatn was low ($0-2 \mathrm{nt}$) but still below the minimum interspecific genetic divergence (4-22 nt; mean 15 nt).

3.5. Miscellaneous groups with single species

Sequences for nad1 were generated from metacercarial isolates ex Pisidium casertanum and Sphaerium sp. and a redia ex R. balthica provisionally assigned to the family
Echinostomatidae. A preliminary analysis with a large number of echinostomatid sequences (data not shown) assigned the isolates from Takvatn to the genus Echinoparyphium. Analyses based on sequences for both nad1 (Alignment 9; see Tables 1, 2 and Supplementary Table S4 for details) and 28S rDNA (Alignment 10; see Tables 1, 2 and Supplementary Table S4 for details) for seven species of Echinoparyphium resulted in identification of the isolates from Takvatn as Echinoparyphium recurvatum (Fig. 6A, B). All new nad1 sequences represented novel haplotypes with intraspecific sequence divergence between 0.1 and 2.3%.

Identification of schistosome infections in R. balthica from Takvatn was attempted using concatenated sequences for the two internal transcribed spacers (ITS1 and ITS2) of the rRNA gene cluster (Alignment 11; see Tables 1, 2 and Supplementary Table S 4 for details). Phylogenies inferred from BI and ML were congruent with similar tree topologies (Fig. 7). The
newly-sequenced cercarial isolates clustered together with three isolates of the lineage T. franki haplotype "peregra" sampled in Iceland and considered by Jouet et al. (2010) to represent a distinct species based on analyses of sequences for the mitochondrial cox1 and nuclear (rRNA) genes. Genetic distances between Takvatn isolates ranged between 0 and 0.4% ($0-5 \mathrm{nt}$) and between Takvatn and Icelandic isolates ranged between 0.1 and $0.4 \%(1-5 \mathrm{nt})$. The overall relationships among Trichobilharzia spp. were similar to those depicted by Brant and Loker (2009). There was a strong support for Clade Q sensu Brant and Loker (2009), a group of morphologically and genetically similar species from North America and Europe, and for the sister-group relationship between this clade and Trichobilharzia regenti (BI only). Notably, the isolates from Takvatn clustered with strong support (BI) together with an isolate (ex Lymnaea stagnalis) of the polyphyletic T. franki within Clade Q (Fig. 7).

Partial 28S rDNA sequence was obtained from a single isolate of Notocotylus sp. (Table 2). A BLASTn search of the GenBank nucleotide database indicated a 99\% similarity (one gap; coverage 100\%) with Notocotylus sp. BH-2008 (EU712725) ex Physa gyrina from Nebraska, USA (Hanelt, 2009) and an unidentified pronocephaloidean (EU371602) ex Potamopyrgus antipodarum from Wyoming, USA (Adema et al., 2009).

3.6. Mollusc hosts

Four ITS2 sequences from R. balthica sampled in Takvatn were aligned together (Alignment 12, see Tables 1, 2 for details) with 26 sequences for isolates of Radix spp. from Europe, including sub-Arctic lakes in Iceland. The isolates from Takvatn clustered together with two Icelandic isolates [isolate IS2F (GenBank HQ003228) from Botnsvatn, referred to as R. balthica in GenBank and R. peregra and R. balthica by Jouet et al. (2010), and the isolate radix3.1 (GenBank GU574213) from Osland, referred to as R. peregra by Huňová et al. (2012)] plus the isolate SnUK20 from Scotland, UK (GenBank KT337604, referred to as R. balthica by Lawton et al., 2015) in a clade sister to Radix lagotis sequenced by Huňová et al. (2012), joined by a sequence for R. peregra from France (GenBank AJ319635) sequenced by Bargues et al. (2001) (see Supplementary Fig. S4). Sequences from Takvatn were identical with those for the Icelandic isolate of Jouet et al. (2010) and the Scottish isolate and differed by one nucleotide from the Icelandic isolate of Huňová et al. (2012) and by two nucleotides from the French isolate of R. balthica. However, relationships among Radix spp. were unresolved (see Supplementary Fig. S4).

Representative partial 28S rDNA sequences for the two morphs of pea clams were analysed together with selected sequences for species of Sphaerium, Pisidium and Musculium (Alignment 13, see Tables 1, 2 for details). One of the morphotypes was resolved as a sister
species to Sphaerium spp. (S. corneum and S. nucleus) with strong support from both BI and ML analyses and the second morphotype clustered with Pisidium casertanum (isolate from Greece; KF483338) (see Supplementary Fig. S5). The newly-generated sequence for Sphaerium sp. differed by 3 nt from the sequences for S. corneum and S. nucleus which were identical, and the new sequence for Pisidium sp. differed by 1 nt from Pisidium casertanum. Based on these results, the two species of pea clams are referred to as Sphaerium sp. and Pisidium casertanum.

4. Discussion

We found more digenean diversity in Takvatn than one might suspect for a sub-Arctic freshwater ecosystem: 24 species/species-level genetic lineages of ten genera and seven families, the latter being the most diverse and widely distributed suprageneric taxa in the freshwater environment (Faltýnková et al., 2016; Scholz et al., 2016). This high degree of digenean biodiversity is surprising given the restricted host fauna compared with other aquatic ecosystems and suggests that digenean diversity in the sub-Arctic freshwater environments is still vastly underestimated, even among parasites that use relatively well-studied fish hosts (Blasco-Costa et al., 2014).

Although fish parasites have been studied in Takvatn, only Crepidostomum spp. (assumed to be C. farionis and C. metoecus) had been recorded (e.g. Kristoffersen, 1995; Kuhn et al., 2016) and no attempts to identify metacercariae in fish had been made until recently (Kuhn et al., 2015; see below). We were surprised to find two pairs of genetically closely related species of Crepidostomum among the 21 isolates sequenced from Takvatn, considering that there are only four known European species of the genus, i.e. C. auriculatum (Wedl, 1858), C. farionis, C. metoecus and C. wikgreni Gibson \& Valtonen, 1988. Further molecular studies focused on the adult stages might reveal more Crepidostomum spp. in sub-Arctic freshwater ecosystems.

It is worth noting that we sequenced few metacercariae from fishes. However, the novel Apatemon and Tylodelphys, species, A. gracilis and five Diplostomum species and the presence of similar or shared haplotypes with isolates from a previous extensive sampling of Gasterosteus aculeatus in Takvatn (Apatemon gracilis, Apatemon sp., Diplostomum sp. 'Lineage 4' and Diplostomum sp. 'Lineage 6'; see Fig. 3 and intensity data in Kuhn et al., 2015) indicate that metacercariae in fish represent a diverse assemblage with high transmission rates in the lake. The fish parasite diversity in Takvatn, revealed by the molecular and phylogenetic approaches applied here, is higher from sub-Arctic diversity baselines compiled from studies relying on morphological identification (e.g. Poulin et al., 2011; Wrona et al., 2013). Our study adds 9 and 7 species, respectively, to species richness estimates for parasites in G. aculeatus (1-11 species;

Poulin et al., 2011) and salmonid and coregonid hosts (4-18 spp.; Wrona et al., 2013) in the subArctic and Arctic ecosystems.

Although we found 15 digenean species in R. balthica, this snail is the only compatible host for another four species (Apatemon sp., Diplostomum sp. 'Lineage 3', Diplostomum sp. 'Lineage 5' and Tylodelphys sp.) thus increasing the number of species to 19 (Table 3). Comparisons with the most comprehensive diversity baselines for digeneans in Radix spp. from Europe, reveal that digenean richness in R. balthica from Takvatn represents more than half of the species (58-68\%) recorded in R. peregra (33 spp.), R. ovata (syn. of R. balthica; 31 spp .) and R. auricularia (28 spp.) between 1878 and 2012 (see Faltýnková et al., 2016). Notably, 39 of the 55 mollusc species in the dataset (based on 246 surveys in 22 European countries) analysed by Faltýnková et al. (2016) host one to five species, thus highlighting the extraordinary digenean diversity in a single snail in Takvatn. Diversity estimates vary locally (Faltýnková et al., 2016) but the 19 digenean species in R. balthica in Takvatn is high compared with 12 species ($1-7$ species per lake) in R. auricularia in four interconnected lakes of the River Ruhr in Germany (Soldánová et al., 2010) and with 3-19 digenean species in 2-5 snail species per lake in six high latitude lakes in central Alberta (Gordy et. al., 2016).

Notably, two-thirds of the genetically distinct digenean lineages in our dataset from Takvatn did not match any reference sequence, suggesting that the 16 novel lineages are new species, including four of the five novel Diplostomum lineages 'just' discovered from sub-Arctic lakes in Iceland (Blasco-Costa et al., 2014; Faltýnková et al., 2014). The remaining 12 specieslevel lineages could not be matched with confidence to existing described species and, therefore, await detailed morphological examination and descriptions.

Our results suggest that most species assemblages within the major freshwater families are unique to sub-Arctic and Arctic ecosystems. This is supported by the novel Apatemon, Crepidostomum and Tylodelphys lineages and by the fact that two of the novel Diplostomum spp. lineages (lineages 5 and 6) and the lineage Trichobilharzia franki haplotype "peregra" have so far been detected in Iceland only, despite extensive sampling in Europe (e.g. Jouet et al., 2010; Georgieva et al., 2013b; Pérez-del-Olmo et al., 2014; Selbach et al., 2015; see also Soldánová et al. 2013 for a review on records of Trichobilharzia spp.). Further, four Trichobilharzia spp. have been recorded and molecularly characterised in snails and birds in Iceland [T. anseri (FJ469790, FJ469791, FJ469784); T. franki haplotype "peregra" (HM131185/ HM131168; HM131186/ HM131169; HM131187/ HM131171; present study); T. mergi (FJ469807, FJ469799); and Trichobilharzia sp. 3 (FJ469803, FJ469804) of Aldhoun et al. (2009a) (see Aldhoun et al., 2009a, b; Jouet et al., 2010)] compared with but three species (i.e. T. franki, T. regenti and T. szidati) reported in central Europe despite a much higher sampling effort there. Finally,

Plagiorchis diversity in sub-Arctic lakes in Iceland (Roháčová et al., unpublished data) includes five of the novel species-level lineages reported here, thus reinforcing our suggestion that our observations extend beyond Takvatn across a broader sub-Arctic geographic range.
Unfortunately, the sequence data of Gordy et al. (2016) cannot be used for comparisons with our data, because these authors sequenced a different cox1 fragment than that allowing molecular identification of species/lineages available on GenBank (e.g. Detwiler et al., 2010; Georgieva et al., 2014; Zikmundová et al., 2014; our study).

Taken together, these data help infer 165 host-trematode associations: 22 with the first intermediate mollusc hosts, 26 with the second intermediate hosts and 117 with the definitive fish and bird hosts (Table 3). Of these, 47 life-cycle links are firm, i.e. based on matching sequences for cercarial, metacercarial and adult (for two Crepidostomum spp.) isolates from the lake. Sequencing representative isolates from the first intermediate hosts and phylogenetic analyses helped us identify two mollusc intermediate hosts (Radix balthica and Pisidium casertanum) to the species level and another (Sphaerium sp.) to the genus level. All but five of the genetic lineages use R. balthica as their first-intermediate host and all but five mature in birds (Table 3) even though Takvatn has more fish than bird abundance and biomass. Matching sequence data for different life-cycle stages allowed us to elucidate the life-cycle of C. metoecus and partly elucidate the life-cycles for another 13 species in the lake. Of these, 12 species are trophically transmitted and only two species (T. franki haplotype•"peregra" and Notocotylus sp.) do not require a second-intermediate host (Table 3). Life-cycle data for Crepidostomum spp., the only assemblage using fishes as definitive hosts among the digeneans identified at Takvatn, indicate that both salmonids (S. trutta and S. alpinus) might act as definitive hosts, and Kuhn et al. (2015) found eight specimens of Crepidostomum sp. (assumed to be either C. metoecus or C. farionis) in G. aculeatus in the lake. Therefore, all three fish species present at Takvatn might host both Crepidostomum spp. (Table 3). Inferring definitive bird hosts based on either records at the species (C. cornutus and E. recurvatum; 15 host-parasite associations) or genus level (Apatemon spp., Diplostomum spp., Plagiorchis spp., Notocotylus sp. and T. franki haplotype "peregra"; 90 host-parasite associations) is plausible, considering the trophic behaviour of the potential bird hosts and host-parasite compatibility based on records for congeneric digeneans at the NHM Host-Parasite Database (Gibson et al., 2005). Our data, therefore, help complete the Takvatn host-parasite interaction network adding the benthic component, which is characterised by a 3-fold higher diversity of macroparasites (24 vs 8 species) and twice as many host-parasite links (165 vs 75) than the network in the pelagic zone (see Amundsen et al., 2009).

In conclusion, our study adds to the sequence database (Georgieva et al., 2013; BlascoCosta et al., 2014; Georgieva et al., 2014; Zikmundová et al., 2014) on digeneans in freshwater
ecosystems that will allow a direct and taxonomically consistent way to identify host-parasite interaction networks in future large-scale network and/or food web studies in Arctic lakes. With our approach, partitioning interactions with novel species/genetic lineages can now be achieved without having to complete life-cycles in the laboratory.

Acknowledgements

We thank two anonymous reviewers for their helpful criticisms and suggestions. This research was partially supported by the Czech Science Foundation, grants 15-14198S (MS, SG, JR, AK, TS) and P505/10/1562 (MS, AK, SG); Institute of Parasitology (RVO: 60077344; MS, SG, JR, AK, TS), and the Research Council of Norway (grant no. 213610) and UiT The Arctic University of Norway. SG and AK thank Drs Christoph Hahn and Phil Harris for providing fish samples from Lake Øvre Heimdalsvatnet (Norway). SG benefited from a postdoctoral fellowship of the Czech Academy of Sciences.

References

Adema, C.M., Lun, C.-M., Hanelt, B., Seville, R.S., 2009. Digenean trematode infections of native freshwater snails and invasive Potamopyrgus antipodarum in the Grand Teton National Park/John D. Rockefeller Memorial Parkway Area. J. Parasitol. 95, 224-227. Aldhoun, J.A., Faltýnková, A., Karvonen, A., Horák, P., 2009b. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitol. Int. 58, 314317.

Aldhoun, J.A., Kolářová, L., Horák, P., Skírnisson, K., 2009a. Bird schistosome diversity in Iceland: molecular evidence. J. Helminthol. 83, 173-180.
Amundsen, P.-A., Knudsen, R., Kuris, A.M., Kristoffersen, R., 2003. Seasonal and ontogenetic dynamics in trophic transmission of parasites. Oikos 102, 285-293.
Amundsen, P.-A., Lafferty, K.D., Knudsen, R., Primicerio, R., Klemetsen, A., Kuris, A.M., 2009. Food web topology and parasites in the pelagic zone of a subarctic lake. J. Anim. Ecol. 78, 563-572.

Amundsen, P.-A., Lafferty, K.D., Knudsen, R., Primicerio, R., Kristoffersen, R., Klemetsen, A., Kuris, A.M., 2013. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia. 171, 993-1002.

Atopkin, D.M., Shedko, M.B., 2014. Genetic characterization of far eastern species of the genus Crepidostomum (Trematoda: Allocreadiidae) by means of 28 S ribosomal DNA sequences. Adv. Biosci. Biotechnol. 5, 209-215.

Bargues, M.D., Vigo, M., Horák, P., Dvořák, J., Patzner, R.A., Pointier, J.P, Jackiewicz, M., Meier-Brook, C., Mas-Coma, S., 2001. European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infect. Genet. Evol. 1, 85-107.
Behrmann-Godel, J., 2013. Parasite identification, succession and infection pathways in perch fry (Perca fluviatilis): new insights through a combined morphological and genetic approach. Parasitology. 140, 509-520.
Blasco-Costa, I., Faltýnková, A., Georgieva, S., Skírnisson, K., Scholz, T., Kostadinova, A., 2014. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int. J. Parasitol. 44, 703-715.
Blasco-Costa, I., Poulin, R., Presswell, B., 2016. Species of Apatemon Szidat, 1928 and Australapatemon Sudarikov, 1959 (Trematoda: Strigeidae) from New Zealand: linking and characterising life cycle stages with morphology and molecules. Parasitol. Res. 115, 271-289.

Boyce, K., Hide, G., Craig, P.S., Reynolds, C., Hussain, M., Bodell, A.J., Bradshaw, H., Pickles, A., Rogan, M.T., 2014. High prevalence of the digenean Plagiorchis elegans in the wood mouse Apodemus sylvaticus in a periaquatic ecosystem. J. Helminthol. 88, 310-320.

Brant, S.V., Jouet, D., Ferté, H., Loker, E.S., 2013. Anserobilharzia gen. n. (Digenea, Schistosomatidae) and redescription of A. brantae (Farr \& Blankemeyer, 1956) comb. n. (syn. Trichobilharzia brantae), a parasite of geese (Anseriformes). Zootaxa 3670, 193-206.

Brant, S.V., Loker, E.S., 2009. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 95, 941963.

Bray, R., Foster, G.N., Waeschenbach, A., Littlewood, D.T.J., 2012. The discovery of progenetic Allocreadium neotenicum Peters, 1957 (Digenea: Allocreadiidae) in water beetles (Coleoptera: Dytiscidae) in Great Britain. Zootaxa 3577, 58-70.
Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552.
Chibwana, F.D., Blasco-Costa, I., Georgieva, S., Hosea, K.M., Nkwengulila, G., Scholz, T., Kostadinova, A., 2013. A first insight into the barcodes for African diplostomids
(Digenea: Diplostomidae): Brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infect. Genet. Evol. 17, 62-70.

Choudhury, A., Aguirre-Macedo, M.A., Curran, S.S., Ostrowski de Núñez, M., Overstreet, R.M., Pérez-Ponce de León, G., Portes Santos, C. 2016. Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Syst. Parasitol. 93, 271-282.
Choudhury, A., León-Règagnon, V., 2005. Molecular phylogenetics and biogeography of Bunodera spp. (Trematoda: Allocreadiidae), parasites of percid and gasterosteid fishes. Can. J. Zool. 83, 1540-1546.

Choudhury, A., Rosas-Valdez, R., Johnson, R. C., Hoffmann, B., Pérez-Ponce de León, G., 2007. The phylogenetic position of Allocreadiidae (Trematoda: Digenea) from partial sequences of the 18 S and 28 S ribosomal RNA genes. J. Parasitol. 93, 192-196.

Christiansen, A.Ø., Olsen, A., Buchmann, K., Kania, P.W., Nejsum, P., Vennervald, B.J., 2016. Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitol. Res. 115, 1027-1037.

Curran, S.S., Tkach, V.V., Overstreet, R.M., 2006. A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitol. 51, 238-248.

Curran, S.S., Tkach, V.V., Overstreet, R.M., 2011. Phylogenetic affinities of Auriculostoma (Digenea: Allocreadiidae), with descriptions of two new species from Peru. J. Parasitol. 97, 661-670.

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9, 772.

Detwiler, J.T., Bos, D.H., Minchella, D.J., 2010. Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Mol. Phylogenet. Evol. 55, 611-620.

Detwiler, J.T., Zajac, A.M., Minchella, D.J., Belden, L.K., 2012. Revealing cryptic parasite diversity in a definitive host: echinostomes in muskrats. J Parasitol. 2012, 98, 1148-1155.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.

Faltýnková, A., Georgieva, S., Kostadinova, A., Blasco-Costa, I., Scholz, T., Skírnisson, K., 2014. Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered recently in Iceland. Syst. Parasitol. 89, 195-213.

Faltýnková, A., Našincová, V., Kablásková, L., 2007. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: A survey of species and key to their identification. Parasite 14, 39-51.
Faltýnková, A., Našincová, V., Kablásková, L., 2008. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Syst. Parasitol. 69, 155-178.
Faltýnková, A., Sures, B., Kostadinova, A., 2016. Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93, 283-293.

Galtier, N., Gouy, M., Gautier, C., 1996. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543-548.
García-Varela, M., Sereno-Uribe, A.L., Pinacho-Pinacho, C.D., Hernández-Cruz, E., PérezPonce de Léon, G., 2015. An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1950 (Digenea: Diplostomidae) in central and northern Mexico. J. Helminthol. 28, 1-12.

Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., Kostadinova, A., 2014. Echinostoma 'revolutum' (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasit. Vectors 7, 520.
Georgieva, S., Kostadinova, A., Skírnisson, K., 2012. The life-cycle of Petasiger islandicus Kostadinova \& Skirnisson, 2007 (Digenea: Echinostomatidae) elucidated with aid of molecular data. Syst. Parasitol. 82, 177-183.

Georgieva, S., Selbach, C., Faltýnková, A., Soldánová, M., Sures, B., Skírnisson, K., Kostadinova, A., 2013a. New cryptic species of the "revolutum" group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit. Vectors. 6, 64.
Georgieva, S., Soldánová, M., Pérez-del-Olmo, A., Dangel, D.R., Sitko, J., Sures, B., Kostadinova, A., 2013b. Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. Int. J. Parasitol. 43, 57-72.

Gibson, D.I., Bray, R.A., Harris, E.A. (Compilers) (2005). Host-Parasite Database of the Natural History Museum, London. Available at: www.nhm.ac.uk/research-curation/scientific-resources/taxonomy-systematics/host-parasites/index.html
Glöer, P., 2002. Die Süßwassergastropoden Nord- und Mitteleuropas. Bestimmungschlüssel, Lebensweise, Verbreitung. ConchBooks, Hackenheim, 327 pp.

Gordy, M.A., Kish, L., Tarrabain, M., Hanington, P.C. 2016. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. (online).
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-21.

Guindon, S., Gascuel, O., 2003. A simple, fast and accurate method to estimate large phylogenies by Maximum-Likelihood. Syst. Biol. 52, 696-704.
Hanelt, B., 2009. Hyperparasitism by Paragordius varius (Nematomorpha: Gordiida) larva of monostome redia (Trematoda: Digenea). J. Parasitol. 95, 242-243.
Hechinger, R.F., Lafferty, K.D., 2005. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. Lond., B, Biol. Sci. 272, 10591066.

Hemmingsen, W., MacKenzie, K., 2001. The parasite fauna of the Atlantic cod, Gadus morhua L. Adv. Mar. Biol. 40, 1-80.

Hernández-Mena, D.I., García-Prieto, L., García-Varela, M., 2014. Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species. Parasitol. Int. 63, 315-323.
Hoberg, E.P., Galbreath, K.E., Cook, J.A., Kutz, S.J., Polley, L., 2012. Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Adv. Parasitol. 79, 1-97.

Hoberg, E.P., Kutz, S.J., Cook, J.A., Galaktionov, K., Haukisalmi, V., Henttonen, H., Laaksonen, S., Makarikov, A., Marcogliese, D.J., 2013. Parasites in terrestrial, freshwater and marine systems. In: Meltofte, H. (Ed.). Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity. Conservation of Arctic Flora and Fauna, Arctic Council, Akureyri, Iceland, pp. 420-449.
Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., 2001. Bayesian Inference of phylogeny and its impact on evolutionary biology. Science 294, 2310-2314.

Huňová, K., Kašný, M., Hampl, V., Leontovyč, R., Kuběna, A., Mikeš, L., Horák, P., 2012. Radix spp.: Identification of trematode intermediate hosts in the Czech Republic. Acta Parasitol. 57, 273-284.

Jouet, D., Skírnisson, K., Kolářová, L., Ferté, H., 2010. Molecular diversity of Trichobilharzia franki found in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect. Genet. Evol. 10, 1218-1227.

Kamiya, T., O'Dwyer, K., Nakagawa, S., Poulin, R., 2014. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography. 37, 689-697.

Klemetsen, A., Amundsen, P.-A., Grotnes, P.E., Knudsen, R., Kristoffersen, R., Svenning, M.A., 2002. Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Environ. Biol. Fishes 64, 39-47.

Klemetsen, A., Elliott, J.M., 2010. Spatial distribution and diversity of macroinvertebrates on the stony shore of a subarctic lake. Int. Rev. Hydrobiol. 95, 190-206.
Klemetsen, A., Knudsen, R., 2013. Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norv. 33, 21-27.
Knudsen, R., Amundsen, P.-A., Klemetsen, A., 2002. Parasite-induced host mortality: indirect evidence from a long-term study. Env. Biol. Fish. 64, 257-265.
Knudsen, R., Amundsen, P.-A., Klemetsen, A., 2003. Inter- and intra-morph patterns in helminth communities of sympatric whitefish morphs. J. Fish Biol. 62, 847-859.
Knudsen, R., Amundsen, P.-A., Nilsen, R., Kristoffersen, R., Klemetsen, A., 2008. Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Env. Biol. Fish. 83, 107-116.

Knudsen, R., Klemetsen, A., \& Staldvik, F., 1996. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. J. Fish Biol. 48, 12561265.

Knudsen, R., Kristoffersen, R., Amundsen, P.-A., 1997. Parasite communities in two sympatric morphs of Arctic charr, Salvelinus alpinus (L.), in northern Norway. Can. J. Zool. 75, 2003-2009.

Knudsen, R., Primicerio, R., Amundsen, P.-A., Klemetsen, A., 2010. Temporal stability of individual feeding specialization may promote speciation. J. Anim. Ecol. 79, 161-168.

Knudsen, R., Siwertsson, A., Adams, C.E., Newton, J., Amundsen, P.-A., 2014. Similar patterns of individual niche use are revealed by different time-integrated trophic tracers (stable isotopes and parasites). Ecol. Freshw. Fish. 23, 259-268.

Kostadinova, A., Herniou, E.A., Barrett, J., Littlewood, D.T.J., 2003. Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera reassessed via DNA and morphological analyses. Syst. Parasitol. 54, 159-176.

Kuhn, J.A., Kristoffersen, R., Knudsen, R., Jakobsen, J., Marcogliese, D.J., Locke, S.A., Primicerio, R., Amundsen, P.-A., 2015. Parasite communities of two three-spined stickleback populations in subarctic Norway - effects of a small spatial-scale host introduction. Parasitol. Res. 114, 1327-1339.

Kutz, S.J., Ducrocq, J., Verocai, G.G., Hoar, B.M., Colwell, D.D., Beckmen, K.B., Polley, L., Elkin, B.T., Hoberg, E.P., 2012. Parasites in ungulates of Arctic North America and Greenland: A view of contemporary diversity, ecology, and impact in a world under change. Adv. Parasitol. 79, 99-252.
Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson, A.P., Dunne, J.A., Johnson, P.T.J., Kuris, A.M., Marcogliese, D.J., Martinez, N.D., Memmot, J., Marquet, P.A., McLaughlin, J.P., Mordecai, E.A., Pascual, M., Poulin, R., Thieltges, D.W., 2008. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533-546.
Lafferty, K.D., Dobson, A.P., Kuris, A.M., 2006. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA. 103, 11211-11216.

Lawton, S.P., Lim, R.M., Dukes, J.P., Kett, S.M., Cook, R.T., Walker, A.J., Kirk, R.S., 2015. Unravelling the riddle of Radix: DNA barcoding for species identification of freshwater snail intermediate hosts of zoonotic digeneans and estimating their inter-population evolutionary relationships. Infect. Genet. Evol. 35, 63-74.
Lee, S.U., Huh, S., Sohn, W.M., 2004. Molecular phylogenic location of the Plagiorchis muris (Digenea, Plagiorchiidae) based on sequences of partial 28S D1 rDNA and mitochondrial cytochrome c oxidase subunit I. Kor. J. Parasitol. 42, 71-75.

Locke, S.A., Al-Nasiri, F., Caffara, M., Drago, F., Kalbe, M., Lapierre, A.R., McLaughlin, J.D., Nie, P., Overstreet, R.M., Souza, G.T.R., Takemoto, R.M., Marcogliese, D.J., 2015. Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. Int. J. Parasitol. 45, 841855.

Locke, S.A., McLaughlin, J.D., Dayanandan, S., Marcogliese, D.J., 2010a. Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int. J. Parasitol. 40, 333-343.

Locke, S.A., McLaughlin, J.D., Lapierre, A.R., Johnson, P.T., Marcogliese, D.J., 2011. Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. J. Parasitol. 97, 846-851.

Locke, S.A., McLaughlin, J.D., Marcogliese, D.J., 2010b. DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Mol. Ecol. 19, 2813-2827.

Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1-8.
Morgan, J.A.T., Blair, D., 1998a. Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology 116, 289-297.
Morgan, J.A.T., Blair, D., 1998b. Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand. Int. J. Parasitol. 28, 493-502.
Moszczynska, A., Locke, S.A., McLaughlin, J.D., Marcogliese, D.J., Crease, T.J., 2009. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol. Ecol. Resour. 9 (Suppl. 1), 75-82.
Muzzafar, S.B., Jones, I.L., 2004. Parasites and diseases of the auks (Alcidae) of the world and their ecology - A review. Mar. Ornithol. 32, 121-146.
Nilsson, A., 1996. Aquatic Insects of North Europe: A Taxonomic Handbook. Ephemeroptera, Plecoptera, Heteroptera, Megaloptera, Neuroptera, Coleoptera, Trichoptera and Lepidoptera, vol. 1. Apollo Books, Stenstrup, 274 pp.
Nilsson, A., 1997. Aquatic Insects of North Europe: A Taxonomic Handbook. Odonata, Diptera, vol. 2. Apollo Books, Stenstrup, 440 pp.
Nolan, M.J., Cribb, T.H., 2005. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv. Parasitol. 60, 102-163.
Otachi, E.O., Locke, S.A., Jirsa, F., Fellner, C., Marcogliese, D.J., 2015. Morphometric and molecular analysis of Tylodelphys sp. metacercariae (Digenea: Diplostomidae) from the vitreous humor of four fish species from Lake Naivasha, Kenya. J. Helminthol. 89, 404414.

Perdiguero-Alonso, D., Montero, F.E., Raga, J.A., Kostadinova, A., 2008. Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae), in the North East Atlantic. Parasit. Vectors. 1, 23.
Pérez-del-Olmo, A., Georgieva, S., Pula, H.J., Kostadinova, A., 2014. Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain. Parasit. Vectors 7, 502.

Pérez-Ponce de León, G., Choudhury, A., Rosas-Valdez, R., Mejia-Madrid, H., 2007. The systematic position of Wallinia spp. and Margotrema spp. (Digenea), parasites of Middle-American and Neotropical freshwater fishes, based on the 28S ribosomal RNA gene. Syst. Parasitol. 68, 49-55.

Pérez-Ponce de León, G., Razo-Mendivil, U., Mendoza-Garfias, B., Rubio-Godoy, M., Choudhury, A., 2015. A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae) in Astyanax mexicanus (Characidae) from Mexico revealed by morphology and sequences of the 28 S ribosomal RNA gene. Folia Parasitol. 62, 018.

Petkevičiūtè, R., Stunžènas, V., Stanevičiūtè, G., Sokolov, S.G., 2010. Comparison of the developmental stages of some European allocreadiid trematode species and a clarification of their life-cycles based on ITS2 and 28S sequences. Syst. Parasitol. 76, 169-178.
Pinto, H.A., Brant, S.V., de Melo, A.L., 2014. Physa marmorata (Mollusca: Physidae) as a natural intermediate host of Trichobilharzia (Trematoda: Schistosomatidae), a potential causative agent of avian cercarial dermatitis in Brazil. Acta Trop. 138, 38-43.
Platta, C.S., Choudhury, A., 2006. Systematic position and relationships of Paracreptotrematina limi, based on partial sequences of 28 S rRNA and cytochrome c oxidase subunit 1 genes. J. Parasitol. 92, 411-413.

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., Thollesson, M., 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogen Evol. 48, 369-371.

Poulin, R., 2014. Parasite biodiversity revisited: frontiers and constraints. Int. J. Parasitol. 44, 581-589.

Poulin, R., Blanar, C.A., Thieltges, D.W., Marcogliese, D.J., 2011. The biogeography of parasitism in sticklebacks: distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography 34, 540-551.

Pulis, E.E., Tkach, V.V., Newman, R.A., 2011. Helminth parasites of the wood frog, Lithobates sylvaticus, in Prairie Pothole wetlands of the northern Great Plains. Wetlands 31, 675685.

Rambaut, A., Drummond, A.J., 2009. Tracer 1.5. Available from http://beast.bio.ed.ac.uk/Tracer.
Razo-Mendivil, U., Pérez-Ponce de Léon, G., 2011. Testing the evolutionary and biogeographical history of Glypthelmins (Digenea: Plagiorchiida), a parasite of anurans, through a simultaneous analysis of molecular and morphological data. Mol. Phylogenet. Evol. 59, 331-341.

Razo-Mendivil, U., Mendoza-Garfias, B., Pérez-Ponce de León, G., Rubio-Godoy, M., 2014a. A new species of Auriculostoma (Digenea: Allocreadiidae) in the Mexican tetra Astyanax mexicanus (Actinopterygii: Characidae) from Central Veracruz, Mexico, described with the use of morphological and molecular data. J. Parasitol. 100, 331-337.

Razo-Mendivil, U., Pérez-Ponce de León, G., Rubio-Godoy, M., 2014b. Testing the systematic position and relationships of Paracreptotrema heterandriae within the Allocreadiidae through partial 28S rRNA gene sequences. J. Parasitol. 100, 537-541.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542.
Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.

Rudolfová, J., Hampl, V., Bayssade-Dufour, C., Lockyer, A.E., Littlewood, D.T.J., Horák, P., 2005. Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitol. Res. 95, 79-89.

Rudolfová, J., Sitko, J., Horák, P., 2007. Bird schistosomes of wildfowl in the Czech Republic and Poland. Folia Parasitol. 54, 88-93.

Scholz, T., Besprozvannykh, V.V., Boutorina, T.E., Choudhury, A., Cribb, T.H., Ermolenko, A.V., Faltýnková, A., Shedko, M.B., Shimazu, T., Smit, N.J., 2016. Trematode diversity in freshwater fishes of the Globe I: ‘Old World’. Syst. Parasitol. 93, 257-269.

Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Kalbe, M., Sures, B., 2014. Morphological and molecular data for larval stages of four species of Petasiger Dietz, 1909 (Digenea: Echinostomatodae) with an updated key to the known cercariae from the Palaearctic. Syst. Parasitol. 89, 153-166.

Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Sures, B., 2015. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the 'Diplostomum mergi' species complex. Parasit. Vectors 8, 300.

Soldánová, M., Selbach, C., Kalbe, M., Kostadinova, A., Sures, B., 2013. Swimmer’s itch: etiology, impact, and risk factors in Europe. Trends Parasitol. 29, 65-74.
Stanevičiūté, G., Stunžènas, V., Petkevičiūtè, R., 2015. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis. Comp. Cytogenet. 9, 257-270.

Storer, R.W., 2000. The metazoan parasite fauna of grebes (Aves: Podicipediformes) and its relationship to the birds’ biology. Miscellaneous Publications, Museum of Zoology, University of Michigan, No. 188.
Storer, R.W., 2002. The metazoan parasite fauna of loons (Aves: Gaviiformes), its relationship to the birds' evolutionary history and biology, and a comparison with the parasite fauna of
grebes. Miscellaneous Publications, Museum of Zoology, University of Michigan, No. 191.

Sudarikov, V.E., Shigin, A.A., Kurochkin, Yu.V., Lomakin, V.V., Sten'ko, R.P., Yurlova, N.I., 2002. [Metacercariae of trematodes parasitic in freshwater hydrobionts of central Russia. In: Freze, V. I. (Ed.), Trematode metacercariae parasitic in hydrobionts of Russia, vol. 1.] Nauka, Moscow, 296 pp (In Russian).
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.

Telford, M.J., Herniou, E.A., Russell, R.B., Littlewood, D.T.J., 2000. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc. Natl. Acad. Sci. U.S.A. 97, 11359-11364.

Tkach, V. V., Grabda-Kazubska, B., Pawlowski, J., Swiderski, Z., 1999. Molecular and morphological evidences for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma (Digenea, Plagiorchioidea). Acta Parasitol. 44, 170-179.

Tkach, V.V., Curran, S.S., Bell, J.A., Overstreet, R.M., 2013. A new species of Crepidostomum (Digenea: Allocreadiidae) from Hiodon tergisus in Mississippi and molecular comparison with three congeners. J. Parasitol. 99, 1114-1121.

Tkach, V.V., Grabda-Kazubska, B., Swiderski, Z., 2001b. Systematic position and phylogenetic relationships of the family Omphalometridae (Digenea, Plagiorchiida) inferred from partial lsrDNA sequences. Int. J. Parasitol. 31, 81-85.

Tkach, V.V., Kudlai, O., Kostadinova, A., 2016. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). Int. J. Parasitol. 46, 171185.

Tkach, V.V., Pawlowski, J., Mariaux, J., 2000. Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. Int. J. Parasitol. 30, 83-93.

Tkach, V.V., Pawlowski, J., Mariaux, J., Swiderski, Z., 2001a. Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In: Littlewood, D.T.J., Bray, R.A. (Eds.), Interrelationships of the Platyhelminthes. Taylor and Francis, London, UK, pp. 186-193.

Tkach, V.V., Schroeder, J.A., Greiman, S.E., Vaughan, J.A., 2012. New genetic lineages, host associations and circulation pathways of Neorickettsia endosymbionts of digeneans. Acta Parasitol. 57, 285-292.

Wrona, F.J., Reist, J.D., Amundsen, P.-A., Chambers, P.A., Christoffersen, K., Culp, J.M., di Cenzo, P.D., Forsstrom, L., Hammar, J., Heikkinen, R.K., Heino, J., Kahilainen, K.K., Lehtonen, H., Lento, J., Lesack, L., Luoto, M., Marcogliese, D.J., Marsh, P., Moquin, P.A., Mustonen, T., Power, M., Prowse, T.D., Rautio, M., Swanson, H.K., Thompson, M., Toivonen, H., Vasiliev, V., Virkkala, R., Zavalko, S., 2013. Freshwater ecosystems. In: Meltofte, H. (Ed.) Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp. 444-485.

Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M., Kostadinova, A., 2014. Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Syst. Parasitol. 88, 37-54.

Figure legends

Fig. 1. Phylogram from Bayesian inference (BI) analysis of the 28 S rDNA sequence alignment (Alignment 1, $721 \mathrm{nt}, 71$ sequences) for 27 species/lineages within the Allocreadiidae. Outgroup: Polylekithum ictaluri. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values >0.95 (BI) and >70 (ML) are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (R, redia; C, cercaria; M, metacercaria; A, adult). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: At, Atopkin and Shedko (2014); B, Bray et al. (2012); Ch, Choudhury et al. (2007), Choudhury and León-Règagnon (2005); Cu, Curran et al. (2006, 2011); Pe, Petkevičiūte et al. (2010); Pl, Platta and Choudhury (2006); PP, Pérez-Ponce de León et al. (2007, 2015); R-M, Razo-Mendivil et al. (2014a,b); T, Tkach et al. (2013).

Fig. 2. Phylogram from Bayesian inference (BI) analysis of the cytochrome c oxidase subunit 1 (cox1) sequence alignment (Alignment 3, 407 nt , 65 sequences) for 22 species/lineages of the Strigeidae. Outgroup: Diplostomum spathaceum. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values $>0.95(\mathrm{BI})$ and $>70(\mathrm{ML})$ are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (S, sporocyst; C, cercaria; M, metacercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: B-C, Blasco-Costa et al. (2016); H-M, Hernández-Mena et al. (2014); K, Kuhn et al. (2015); L, Locke et al. (2010b, 2011); Mo, Moszczynska et al. (2009); PDO, Pérez-del-Olmo et al. (2014).

Fig. 3. Phylogram from Bayesian inference (BI) analysis of the cytochrome c oxidase subunit 1 (cox1) sequence alignment (Alignment 5, $407 \mathrm{nt}, 112$ sequences) for 36 species/lineages of Diplostomum. Outgroup: Tylodelphys clavata. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values >0.95 (BI) and > 70 (ML) are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (C, cercaria; M, metacercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: B-C, Blasco-Costa et al. (2014); B-G, Behrmann-Godel (2013); Ch, Chibwana et al. (2013); G, Georgieva et al. (2013b); K, Kuhn et al. (2015); L, Locke et al. (2010a,b, 2015); Mo, Moszczynska et al. (2009); PDO, Pérez-del-Olmo et al. (2014); Se, Selbach et al. (2015).

Fig. 4. Phylogram from Bayesian inference (BI) analysis of the cytochrome c oxidase subunit 1 (cox1) sequence alignment (Alignment 6, $407 \mathrm{nt}, 39$ sequences) for 15 species/lineages of Tylodelphys. Outgroup: Diplostomum spathaceum. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values $>0.95(\mathrm{BI})$ and $>70(\mathrm{ML})$ are shown. Isolates from Lake Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (M, metacercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: Ch, Chibwana et al. (2013); G, Georgieva et al. (2013b); G-V, García-Varela et al. (2015); L, Locke et al. (2015); O, Otachi et al. (2015); PDO, Pérez-del-Olmo et al. (2014).

Fig. 5. Phylograms from Bayesian inference (BI) analyses for Plagiorchis spp. A, Analysis of the cytochrome c oxidase subunit 1 (cox1) sequence alignment (Alignment 7, $423 \mathrm{nt}, 41$ sequences) for 13 species/lineages. Outgroup: Choledocystus hepaticus. B, Analysis of the 28 rDNA sequence alignment (Alignment $8,1,171 \mathrm{nt}, 27$ sequences) for 14 species/lineages. Outgroup: Neoglyphe sobolevi. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values > 0.95 (BI) and > 70 (ML) are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (S , sporocyst; C, cercaria; M, metacercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: B, Boyce et al. (2014); L, Lee et al. (2004); R-M, Razo-Mendivil and Pérez-Ponce de Léon (2011); T, Tkach et al. (1999, 2000, 2001a,b); Z, Zikmundová et al. (2014).

Fig. 6. Phylograms from Bayesian inference (BI) analyses for Echinoparyphium spp. A, Analysis of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) sequence alignment (Alignment 9, 472 nt , 21 sequences) for 7 species/lineages. B, Analysis of the 28 rDNA sequence alignment (Alignment 10, 1,190 nt, 11 sequences) for 7 species/lineages. Outgroup: Echinostoma revolutum. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values >0.95 (BI) and > 70 (ML) are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (R , redia; M , metacercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: K, Kostadinova et al. (2003); D, Detwiler et al. (2010); M, Morgan and Blair (1998a,b); G, Georgieva et al. (2014); T, Tkach et al. (2001a, 2012, 2016); P, Pulis et al. (2011); S, Stanevičiūtè et al. (2015).

Fig. 7. Phylogram from Bayesian inference (BI) analysis of the concatenated ITS1 and ITS2 alignment (Alignment 11, 1,297 nt, 43 sequences) for 16 species/lineages of Trichobilharzia spp. from the analysis of the concatenated ITS1 and ITS2 gene data set. Outgroup: Anserobilharzia brantae. Nodal support is given as posterior probabilities (BI) and bootstrap values resulting from maximum likelihood (ML) analysis; only values >0.95 (BI) and $>70(\mathrm{ML})$ are shown. Isolates from Takvatn are coded as in Table 2 with indication of host name and life-cycle stage (S, sporocyst; C, cercaria). The scale-bar indicates the expected number of substitutions per site. Sequence identification is as in GenBank, followed by a letter: Al, Aldhoun et al. (2009a,b, unpublished); B, Brant and Loker (2009), Brant et al. (2013); Ch, Christiansen et al. (2016); J, Jouet et al. (2010); P, Pinto et al. (2014); R, Rudolfová et al. (2005, 2007).

Table 1 Details for the alignments used in the phylogenetic analyses

Trematode group	Gene/ region	Alignment	No. of newlygenerated sequences	No. of sequences retrieved from GenBank ${ }^{\text {a }}$	No. of species $^{\mathrm{a}, \mathrm{b}}$	Outgroup	Alignment length	Model
Family Allocreadiidae	$\begin{aligned} & \hline 28 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	1	23	48	26	Polylekithum ictaluri	721	GTR+I+ Γ
Genus Crepidostomum (Allocreadiidae)	$\begin{aligned} & \text { 28S } \\ & \text { rRNA } \end{aligned}$	2	11	18	9	Allocreadium lobatum	714	GTR+I
Family Strigeidae	cox1	3	21	44	22	Diplostomum spathaceum	407	GTR $+\mathrm{I}+\Gamma$
		4	8	10	8	Diplostomum phoxini	975	GTR $+\mathrm{I}+\Gamma$
Genus Diplostomum (Diplostomidae)	cox1	5	29	83	35	Tylodelphys clavata	407	HKY+I + Г
Genus Tylodelphys (Diplostomidae)	cox1	6	2	37	14	Diplostomum spathaceum	407	GTR $+\mathrm{I}+\Gamma$
Genus Plagiorchis (Plagiorchiidae)	cox1	7	28	13	6	Choledocystus hepaticus	423	GTR+I+ Γ
	$\begin{aligned} & \text { 28S } \\ & \text { rRNA } \end{aligned}$	8	16	11	7	Neoglyphe sobolevi	1,171	GTR $+\mathrm{I}+\Gamma$
Genus Echinoparyphium (Echinostomatidae)	nad1	9	5	16	7	Echinostoma revolutum	472	GTR $+\mathrm{I}+\Gamma$
	$\begin{aligned} & \text { 28S } \\ & \text { rRNA } \end{aligned}$	10	3	8	7	Echinostoma revolutum	1,190	GTR+I
Genus Trichobilharzia (Schistosomatidae)	$\begin{aligned} & \text { ITS1- } \\ & \text { ITS2 } \end{aligned}$	11	6	37	16	Anserobilharzia brantae	1,297	$\begin{aligned} & \text { GTR+I+ } \Gamma \\ & \& ~ H K Y+I \end{aligned}$
Radix spp. (Lymnaeidae)	ITS2	12	4	26	13	Lymnaea stagnalis	367	$\mathrm{GTR}+\mathrm{I}+\Gamma$
Pisidium spp. and Sphaerium spp. (Sphaeriidae)	$\begin{aligned} & 28 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	13	2	15	10	Eupera platensis	745	GTR $+\mathrm{I}+\Gamma$

Table 2 Summary data for the isolates from Lake Takvatn used for generation of the new cox1, nad1, 28S rDNA and ITS1-5.8S-ITS2/ITS2 sequences.

Species	Host species	Host family	Lifecycle stage $^{\text {a }}$	Isolate	Gene	GenBank accession number*
Family Allocreadiidae Looss, 1902						
Allocreadium neotenicum Peters, 1957	Oreodytes sanmarkii	Dytiscidae	M	ANTAK1, 2	28S	G203; G204
Crepidostomum farionis (Müller, 1780)	Pisidium casertanum	Sphaeriidae	R	CFTAK1, 2	28 S	S529; S530
	Sphaerium sp.	Sphaeriidae	R	CFTAK3, 4	28 S	G185; G186
	Pisidium casertanum	Sphaeriidae	C	CFTAK5, 6	285	G190; G191
Crepidostomum metoecus (Braun, 1900)	Pisidium casertanum	Sphaeriidae	R	CMTAK1	285	G189
	Gammarus lacustris	Gammaridae	M	CMTAK2-8	28S	$\begin{aligned} & \text { S491; S570; G195; G196; } \\ & \text { G197; G198; G199 } \end{aligned}$
	Salmo trutta	Salmonidae	A	CMTAK9	28 S	G193
Crepidostomum sp. 1	Sphaerium sp.	Sphaeriidae	C	CSP1TAK1	285	S526
	Siphlonurus lacustris	Siphlonuridae	M	CSP1TAK2	28 S	G202
Crepidostomum sp. 2	Siphlonurus lacustris	Siphlonuridae	M	CSP2TAK1	28 S	S486
	Diura bicaudata	Perlodidae	M	$\begin{aligned} & \text { CSP2TAK2, } \\ & 3 \end{aligned}$	28S	G200; G201
	Salmo trutta	Salmonidae	A	CSP2TAK4	28S	G194
Family Diplostomidae Poirier, 1886						
Diplostomum phoxini (Faust, 1918)	Radix balthica	Lymnaeidae	C	DPTAK1	cox1	S853
	Phoxinus phoxinus ${ }^{\text {d }}$	Cyprinidae	M	DPTAK2	cox 1	S845
Diplostomum sp. 'Lineage 3'b	Salmo trutta	Salmonidae	M	$\begin{aligned} & \text { DLIN3TAK1 } \\ & -3 \end{aligned}$	cox 1	S837; S839; 8840
	Salvelinus alpinus	Salmonidae	M	DLIN3TAK4	cox 1	S847
Diplostomum sp. 'Lineage 4 ${ }^{\text {b }}$	Radix balthica	Lymnaeidae	C	$\begin{aligned} & \text { DLIN4TAK1 } \\ & -3 \end{aligned}$	cox 1	S851; S852; S856
	Gasterosteus aculeatus	Gasterosteidae	M	DLIN4TAK4	cox 1	S831; S834
Diplostomum sp. 'Lineage 5'b	Gasterosteus aculeatus	Gasterosteidae	M	DLIN5TAK1	cox 1	S829
	Salmo trutta	Salmonidae	M	DLIN5TAK2	cox 1	S836
	Salvelinus alpinus	Salmonidae	M	$\begin{aligned} & \text { DLIN5TAK3 } \\ & -9 \end{aligned}$	cox 1	$\begin{aligned} & \text { S842; S843; S844; S846; S848; } \\ & \text { S849; S850 } \end{aligned}$
Diplostomum sp. 'Lineage 6'b	Radix balthica	Lymnaeidae	C	$\begin{aligned} & \text { DLIN6TAK1 } \\ & -5 \end{aligned}$	cox 1	S854; S855; S857; S858; S859
	Gasterosteus aculeatus	Gasterosteidae	M	DLIN6TAK6	cox 1	S828; S830; S832; S835

Tylodelphys sp.	-9					
	Salmo trutta	Salmonidae	M	TSPTAK1	cox 1	S838
	Salvelinus alpinus	Salmonidae	M	TSPTAK2	cox 1	S841
Family Echinostomatidae Looss, 1899						
Echinoparyphium recurvatum (Linstow, 1873)	Radix balthica	Lymnaeidae	R	ERTAK1	nad1/2	Ge621/S508
	Sphaerium sp.	Sphaeriidae	M	ERTAK2	$\begin{aligned} & \text { nad } 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S960/Ge591
	Pisidium casertanum	Sphaeriidae	M	ERTAK3	nad1	S961
	Sphaerium sp.	Sphaeriidae	M	ERTAK4,5	$\begin{aligned} & \text { nad1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S962; Ge622/S528
Family Notocotylidae Lühe, 1909						
Notocotylus sp.	Radix balthica	Lymnaeidae	C	NSPTAK1	28S	G205
Family Plagiorchiidae Lühe, 1901						
Plagiorchis sp. 1	Radix balthica	Lymnaeidae	S	PSP1TAK1, 2	cox 1	S881; S882
	Radix balthica	Lymnaeidae	C	PSP1TAK312	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S992; S940; S872; S873; S874;
						S942/S485; S533; S1005
	Tipula salicetorum	Tipulidae	M	PSP1TAK13	28S	S487
Plagiorchis sp. 2	Radix balthica	Lymnaeidae	S	PSP2TAK1	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	Ge756/S568
	Radix balthica	Lymnaeidae	C	$\begin{aligned} & \text { PSP2TAK2, } \\ & 3 \end{aligned}$	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S867; S869/S1003
	Radix balthica	Lymnaeidae	M	PSP2TAK4	cox 1	S871
	Gammarus lacustris	Gammaridae	M	PSP2TAK5, 6	$\begin{aligned} & \operatorname{cox1/2} \\ & 8 \mathrm{~S} \end{aligned}$	Ge754; Ge755/S489
Plagiorchis sp. 3	Radix balthica	Lymnaeidae	C	PSP3TAK1-3	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S879; S880; S939/S995
	Tipula salicetorum	Tipulidae	M	PSP3TAK4	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	Ge757/S510
	Oreodytes alpinus	Dytiscidae	M	PSP3TAK5	28S	S514
Plagiorchis sp. 4	Radix balthica	Lymnaeidae	C	PSP4TAK1	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S868/S1004
	Radix balthica	Lymnaeidae	M	PSP4TAK2	cox 1	S878
Plagiorchis sp. 5	Radix balthica	Lymnaeidae	C	$\begin{aligned} & \text { PSP5TAK1, } \\ & 2 \end{aligned}$	$\begin{aligned} & \operatorname{cox} 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	S866; S870/S1001
	Sialis lutaria	Sialidae	M	PSP5TAK3	28S	S511
	Oreodytes alpinus	Dytiscidae	M	PSP5TAK4	28 S	S490

Plagiorchis sp. 6	Radix balthica	Lymnaeidae	C	PSP6TAK1	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S943/S1002
Plagiorchis sp. 7	Radix balthica	Lymnaeidae	C	PSP7TAK1	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S991/S532
Family Schistosomatidae Stiles \& Hassall, 1898						
Trichobilharzia franki haplotype "peregra"c	Radix balthica	Lymnaeidae	C	TFPTAK1-6	$\begin{aligned} & \text { ITS1- } \\ & \text { 5.8S- } \\ & \text { ITS2 } \end{aligned}$	$\begin{aligned} & \text { G160; G161; G162; G163; } \\ & \text { G164; GeM1 } \end{aligned}$
Family Strigeidae Railliet, 1919						
Apatemon gracilis (Rudolphi, 1819)	Radix balthica	Lymnaeidae	S	AGTAK1-3	cox1	S550; S551; $\mathrm{S919}$
	Radix balthica	Lymnaeidae	C	AGTAK4-10	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S552; S553; S554; S917; S860; S861; Ge584/Ge586; S512
	Gasterosteus aculeatus	Gasterosteidae	M	$\begin{aligned} & \text { AGTAK11- } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S833; G178; G177/Ge585
Apatemon sp.	Gasterosteus aculeatus	Gasterosteidae	M	ASPTAK1, 2	$\begin{aligned} & \text { cox } 1 / 2 \\ & 8 \mathrm{~S} \end{aligned}$	G179; G180/Ge587; Ge588
Cotylurus cornutus (Rudolphi, 1808)	Radix balthica	Lymnaeidae	S	CCTAK1	cox1	S920
	Radix balthica	Lymnaeidae	M	CCTAK2-5	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S862; S863; S864; S865/Ge590
	Gyraulus acronicus	Planorbidae	M	CCTAK6, 7	$\begin{aligned} & \text { cox1/2 } \\ & 8 \mathrm{~S} \end{aligned}$	S555/Ge589; G28
Family Lymnaeidae Rafinesque, 1815						
Radix balthica (Linnaeus, 1758)	-	-	A	RBTAK1-4	ITS2	CS15-CS18
Family Sphaeriidae Deshayes, 1855						
Sphaerim sp.	-	-	A	SSPTAK1	28 S	G208
Pisidium casertanum (Poli, 1791)	-	-	A	PCTAK1	28 S	G207

${ }^{\text {a }}$ Life-cycle stages: A, adult; C, cercaria; R, redia; M, metacercaria/progenetic metacercaria of A. neotenicum.
${ }^{\mathrm{b}}$ Lineages discovered in Iceland and characterised molecularly and morphologically by Blasco-Costa et al. (2014) and Faltýnková et al. (2014), respectively.
${ }^{\text {c }}$ sensu Jouet et al. (2010).
${ }^{\text {d }}$ Metacercaria ex Phoxinus phoxinus sampled at Lake Øvre Heimdalsvatnet, Norway.
*Sequence codes in this column will be replaced with sequence IDs

Table 3 Summary data for the intermediate hosts of the molecularly identified isolates and the possible definitive hosts of the trematodes completing their life-cycles in Takvatn. Possible fish definitive hosts are inferred from life-cycle data available for congeneric parasites; possible bird definitive hosts at Takvatn are inferred based on the records of congeneric digeneans in the HostParasite Database of the Natural History Museum, London (Gibson et al., 2005); only bird species breeding at the lake are considered as possible hosts.

Species	First intermediate host	Second intermediate host	Definitive hosts
Family Allocreadiidae Allocreadium neotenicum Crepidostomum farionis		Pisidium casertanum;	Oreodytes sanmarkii

${ }^{\text {a }}$ Putative new species
${ }^{\mathrm{b}}$ Lineages discovered in Iceland and characterised molecularly and morphologically by Blasco-Costa et al. (2014) and Faltýnková et al. (2014)
${ }^{c}$ Lineage discovered in Iceland by Jouet et al. (2010) based on molecular data
${ }^{\mathrm{d}}$ No second intermediate host in the life-cycle

* Hosts of adult isolates sequenced

-/人KC839985 Anserobilharzia brantae W335 B

