THE ARCTIC UNIVERSITY OF NORWAY

Temperature and thermal emission of cosmic dust in the vicinity of the Sun, Vega and Fomalhaut

Margaretha Myrvang, Carsten Baumann, Ingrid Mann and Johann Stamm Institute of Physics and Technology, UiT Tromsø The Arctic University of Norway, Norway

INTRODUCTION

- Many stars are known to have debris disks and dust is distributed throughout these disks
- Cosmic dust around a star absorbs electromagnetic radiation and re-radiates at a longer wavelength, determined by its temperature.
- The dust emission contributes to the observed spectral energy distribution of the star
- Dust close to the Sun can possibly be measured with the ESA mission Solar Orbiter and NASA mission Parker Solar Probe (Fig.1)
- Observations suggest that there is a narrow ring of dust close to Vega and Fomalhaut

Figure 1: Artistic illustration of Parker Solar Probe to be launced in 2018 © NASA

MODEL CALCULATIONS

ission for Vega, MgFeO and 0.18-0.2 / 100 nm - 1 µm K-band H-band Blinc 15 20 4 5 6 7 8 9 10 Wavelength [µm]

Figure 3: Spectral energy distribution derived for Vega with different sizes in a ring between 0.18-0.2 AU, dust consisting of a mixture of MgO and FeO

Figure 4: Spectral energy distribution derived for Fomalhaut with different sizes in a ring between 0.18-0.2 AU, dust consisting of a mixture of MgO and FeO

Figure 5: Spectral energy distribution derived for the Sun with different sizes at 0.18-0.2 AU, dust consisting of astronomical silicate

Figure 6: Beta-values computed as a sideproject, here shown for Vega. The betavalues were used in trajectory calculations by Johann Stamm, poster nr. X4.312

RESULTS

- different from black body
- mass equivalent to under 200 Halley comets
- Fomalhaut: Only the slope of the spectral energy distribution with MgO/FeO for sizes 5-20 nm and 100 nm in a ring 0.18-0.2 AU seem to fit observations in the K-band and N-band (Fig.4). Total dust mass equivalent to under 100 Halley comets
- from Vega and Fomalhaut due to radiation pressure
- nm are influenced by sublimation at 0.18-0.2 AU
- of 0.2 AU
- at other distances and with other materials and sizes

Compare to observations:

<u>Vega</u> K-band: 2.12 µm [H-band: 1.65 µm [Blinc: 10.6 µm [3]

References:

1. Absil, O. et al. (2006): Circumstellar material in the Vega inner system revealed by CHARA/FLUOR. Astron. Astrophys. 452, 237-244.

2. Absil, O. et al. (2009): An interferometric study of the Fomalhaut inner debris disc I. Near-infrared detection of hot dust with VLTI/VINCI. The Astrophys. J, 704:150-160 3. Defrère, D. et al. (2011): Hot exozodiacal dust resolved around Vega with

IOTA/IONIC. Astron. Astrophys. 534, A5

4. Henning, Th. et al. (1995): Optical properties of oxide dust grains. Astron. Astrophys. Suppl. v.112, 143.

5. Li , A and J. M. Greenberg (1997): A unified model of interstellar dust. Astron. Astrophys. 323, 566

6. Menneson, B. et al. (2013): An interferometric study of the Fomalhaut inner debris disk. II. Keck Nuller mid-infrared observations. The Astrophys. J, 763:119

7. Su, K. et. al (2013): Asteroid belts in debris disk twins: Vega and Fomalhaut. The Astrophys. J, 763:118

This research is funded by the Research Council of Norway (grant number 262941) M.M. and J.S. acknowledge travel support from the Norwegian Space Center

• The dust temperature with various compositions and sizes is

• Vega: Spectral energy distribution with MgO/FeO and carbon for sizes 5-20 nm and 100 nm in a ring between 0.18-0.2 AU fit to observations in H-band, K-band and at 10.6 µm (Fig.3). Total dust

• Calculated beta-values show that sizes less than 1 µm are ejected

• Computed temperatures indicate that dust grains with size 5-100

• The temperatures suggest that the dust may only survive outward

• Future work can include modeling of spectral energy distribution

	<u>Fomalhaut</u>
1]	K-band: 2.18 µm [2]
[3]	N-band: 8.25-12.69 µm [6]

