Stochastic modeling of scrape-off layer fluctuations

$\begin{array}{llll}\text { R. Kube } & \text { O. E. Garcia } & \text { A. Theodorsen }\end{array}{ }^{1} \quad$ D. Brunner ${ }^{2}$

 $\begin{array}{lll}\text { A. Kuang } & \text { B. LaBombard }\end{array}{ }^{2} \quad$ J. Terry ${ }^{2}$${ }^{1}$ Department of Physics and Technology, UiT - The Arctic University of Norway and ${ }^{2}$ MIT Plasma Science and Fusion Center

August 24, 2017

Bursts in single point measurements correspond to traversing blobs

(1) Stochastic model of data time series
(2) Comparison to experimental measurements
(3) Conclusions

Superpose uncorrelated pulses to model data time series

Superposition of K pulses in a time interval $[0: T]$

$$
\Phi_{K}(t)=\sum_{k=1}^{K(T)} A_{k} \phi\left(\frac{t-t_{k}}{\tau_{\mathrm{d}}}\right)
$$

where k labels a pulse and

- A_{k} denotes the pulse amplitude
- t_{k} denotes pulse arrival time
- ϕ denotes a pulse shape
- τ_{d} denotes pulse duration time

Intermittency parameter: $\gamma=\tau_{\mathrm{d}} / \tau_{\mathrm{w}}$

Pulses arrive uncorrelated and form a Poisson process

Choose distribution for all random variables

- $P_{K}(K \mid T)$ gives the number of bursts in time interval $[0 ; T]$
- $P_{A}\left(A_{k}\right) \rightarrow$ distribution of pulse Amplitudes.
- $P_{t}\left(t_{k}\right) \rightarrow$ distribution of pulse arrival times.

Consider a Poisson process:
(1) Pulses arrive uncorrelated: $P_{t}\left(t_{k}\right)=1 / T$
(2) Avg. rate of pulse arrival is $1 / \tau_{\mathrm{w}}$

$$
P_{K}(K \mid T)=\exp \left(\frac{-T}{\tau_{\mathrm{w}}}\right)\left(\frac{T}{\tau_{\mathrm{w}}}\right)^{K} \frac{1}{K!}
$$

Exponentially distributed pulse amplitudes: $\langle A\rangle P_{A}\left(A_{k}\right)=\exp \left(A_{k} /\langle A\rangle\right)$
We often normalize the process as

$$
\widetilde{\Phi}=\frac{\Phi-\langle\Phi\rangle}{\Phi_{\mathrm{rms}}}
$$

Intermittency parameter governs pulse overlap

Model experimental data with double-exponential pulses

Experimental data is approximated by a double-exponential pulse shape

$$
\phi(\theta)=\Theta(-\theta) \exp \left(\frac{\theta}{\lambda}\right)+\Theta(\theta) \exp \left(-\frac{\theta}{1-\lambda}\right)
$$

In physical units: $\theta=\left(t-t_{k}\right) / \tau_{\mathrm{d}}, \tau_{\mathrm{d}} \approx 10 \mu \mathrm{~s}$.
λ defines pulse asymmetry:

$$
\begin{array}{r}
\tau_{\mathrm{r}}=\lambda \tau_{\mathrm{d}} \\
\tau_{\mathrm{f}}=(1-\lambda) \tau_{\mathrm{d}}
\end{array}
$$

Notation: $I_{n}=\int_{-\infty}^{\infty} \mathrm{d} \theta[\phi(\theta)]^{n}$
Normalization: $I_{1}=1$

Correlation and power spectral density depend on pulse asymmetry

Correlation function of the pulse shape is given by

$$
\begin{aligned}
\rho_{\phi}(\theta) & =\frac{1}{I_{2}} \int_{-\infty}^{\infty} \mathrm{d} \chi \phi(\chi) \phi(\chi+\theta) \\
& =\frac{1}{1-2 \lambda}\left[(1-\lambda) \exp \left(-\frac{|\theta|}{1-\lambda}\right)-\lambda \exp \left(-\frac{|\theta|}{\lambda}\right)\right]
\end{aligned}
$$

Wiener-Khinchin theorem states that the power spectral density is the Fourier-transform of the autocorrelation function

$$
\begin{aligned}
\sigma_{\phi}(\omega) & =\int_{-\infty}^{\infty} \mathrm{d} \theta \rho_{\phi}(\theta) \exp (-i \omega \theta) \\
& =\frac{2}{\left[1+(1-\lambda)^{2} \omega^{2}\right]\left[1+\lambda^{2} \omega^{2}\right]}
\end{aligned}
$$

The mean of the process can be computed analytically

Averaging the process over all random variables and neglect finite box effects by extending time integration to the entire real axis:

$$
\begin{aligned}
\left\langle\Phi_{K}\right\rangle & =\int_{-\infty}^{\infty} \mathrm{d} A_{1} P_{A}\left(A_{1}\right) \int_{-\infty}^{\infty} \frac{\mathrm{d} t_{1}}{T} \ldots \int_{-\infty}^{\infty} \mathrm{d} A_{K} P_{A}\left(A_{K}\right) \int_{-\infty}^{\infty} \frac{\mathrm{d} t_{K}}{T} \sum_{k=1}^{K} A_{k} \phi\left(\frac{t-t_{k}}{\tau_{\mathrm{d}}}\right) \\
& =\frac{K}{T} \tau_{\mathrm{d}}\langle A\rangle
\end{aligned}
$$

Average over number of pulses K :

$$
\langle\Phi\rangle=\frac{\tau_{\mathrm{d}}}{\tau_{\mathrm{w}}}\langle A\rangle
$$

Mean value of the process increases with pulse overlap and average pulse amplitude.

The variance can be computed analytically

$$
\begin{aligned}
\left\langle\Phi_{K}^{2}\right\rangle= & \int_{-\infty}^{\infty} \mathrm{d} A_{1} P_{A}\left(A_{1}\right) \int_{-\infty}^{\infty} \frac{\mathrm{d} t_{1}}{T} \cdots \int_{-\infty}^{\infty} \mathrm{d} A_{K} P_{A}\left(A_{K}\right) \int_{-\infty}^{\infty} \frac{\mathrm{d} t_{K}}{T} \\
& \sum_{k=1}^{K} A_{k} \phi\left(\frac{t-t_{k}}{\tau_{\mathrm{d}}}\right) \sum_{l=1}^{K} A_{l} \phi\left(\frac{t-t_{l}}{\tau_{\mathrm{d}}}\right)
\end{aligned}
$$

This results in $K(K-1)$ terms with $k \neq I, K$ terms with $k=I$.

$$
\begin{aligned}
\left\langle\Phi_{K}^{2}\right\rangle & =\tau_{\mathrm{d}} I_{2}\left\langle A^{2}\right\rangle \frac{K}{T}+\tau_{\mathrm{d}}^{2} I_{\mathrm{1}}^{2}\langle A\rangle^{2} \frac{K(K-1)}{T^{2}} \\
\Rightarrow\left\langle\Phi^{2}\right\rangle & =\frac{\tau_{\mathrm{d}}}{\tau_{\mathrm{w}}} I_{2}\left\langle A^{2}\right\rangle+\langle\Phi\rangle^{2}
\end{aligned}
$$

where $\langle K(K-1)\rangle=\langle K\rangle^{2}$ has been used.

Auto-correlation is determined by the pulse shape

Auto-correlation function is computed from $\langle\Phi(t) \Phi(t+k)\rangle$

$$
\begin{aligned}
& R_{\Phi}(r)=\langle\Phi\rangle^{2}+\Phi_{\text {rms }}^{2} \rho_{\phi}\left(\frac{r}{\tau_{\mathrm{d}}}\right) \\
& =\langle\Phi\rangle^{2}+\frac{\Phi_{\mathrm{rms}}^{2}}{1-2 \lambda}\left[(1-\lambda) \exp \left(-\frac{|r|}{(1-\lambda) \tau_{\mathrm{d}}}\right)-\lambda \exp \left(-\frac{|r|}{\tau_{\mathrm{d}}}\right)\right]
\end{aligned}
$$

Power spectral density

$$
\begin{aligned}
\Omega_{\Phi}(\omega) & =2 \pi\langle\Phi\rangle^{2} \delta(\omega)+\Phi_{\mathrm{rms}}^{2} \tau_{\mathrm{d}} \sigma_{\phi}\left(\tau_{\mathrm{d}} \omega\right) \\
& =2 \pi\langle\Phi\rangle^{2} \delta(\omega)+2 \Phi_{\mathrm{rms}}^{2} \frac{\tau_{\mathrm{d}}}{\left[1+(1-\lambda)^{2} \tau_{\mathrm{d}}^{2} \omega^{2}\right]\left[1+\lambda^{2} \tau_{\mathrm{d}}^{2} \omega^{2}\right]}
\end{aligned}
$$

- $\lambda=0$: Power law tail, $\sim \omega^{-2}$
- $\lambda=1 / 2$: Power law tail, $\sim \omega^{-4}$
- Else: broken power law, curved spectrum.

Probability distribution function

For exponentially distributed amplitudes and exponential wave forms is the process Gamma distributed:

$$
\langle\Phi\rangle P_{\Phi}(\Phi)=\frac{\gamma}{\Gamma(\gamma)}\left(\frac{\gamma \Phi}{\langle\Phi\rangle}\right)^{\gamma-1} \exp \left(-\frac{\gamma \Phi}{\langle\Phi\rangle}\right)
$$

SOL fluctuations measured in a density scan

- Ohmic L-mode plasma
- Lower single-null magnetic geometry
- Density varied from $\bar{n}_{\mathrm{e}} / n_{\mathrm{G}}=0.12 . .0 .62$
- Probe head dwelled at the limiter radius
- 4 electrodes with Mirror Langmuir probes
- Approximately $1 s$ long data time series in steady state

Mirror Langmuir Probe allows fast $I_{\mathrm{s}}, T_{\mathrm{e}}$, and V_{f} sampling

Low density discharge, $\bar{n}_{\mathrm{e}} / n_{\mathrm{G}}=0.12$

- Intermittent, large amplitude bursts in I_{s}.
- Bursts in n_{e} and T_{e} appear correlated
- Timescale approximately $25 \mu \mathrm{~s}$
- Irregular potential waveform

High density discharge, $\bar{n}_{\mathrm{e}} / n_{\mathrm{G}}=0.62$

- Bursts appear more isolated
- Average density larger by factor of 10
- Average electron temperature approx. 8 eV

Ion saturation current histograms are well described by a Gamma distribution

A.

Theodorsen, O.E. Garcia, and M. Rypdal, Phys. Scr. 92054002 (2017)

Electron temperature histograms are well described by a Gamma distribution

PSD of I_{S} shows broken power law

PSD of T_{e} shows broken power law

I_{s} shows exponential autocorrelation function

T_{e} shows exponential autocorrelation function

Bursts in I_{s} are approximated by double-exponential waveform

Bursts in T_{e} are approximated by double-exponential waveform

Time between bursts in I_{s} signal is exponentially distributed

Exponential distribution describes the time between events in a Poisson process.

Time between bursts in T_{e} signal is exponentially distributed

Burst amplitude distribution - Isat

Burst amplitude distribution - Te

Conclusions

Overview of estimated parameters

	$\frac{\overline{\mathrm{e}}_{\mathrm{e}}}{n_{\mathrm{G}}}$	$\gamma(\mathrm{PDF})$	$\gamma\left(\frac{\Phi_{\mathrm{rms}}}{\langle\Phi\rangle}\right)$	$\tau_{\mathrm{d}}(\mathrm{PSD})$	$\tau_{\mathrm{d}}, \mathcal{R}$	$\tau_{\mathrm{d}}(\mathrm{CA})$	τ_{w}	$\langle A\rangle$
I_{s}	0.12	2.68	8.0	$15.0 \mu \mathrm{~s}$	$15.0 \mu \mathrm{~s}$	$13.2 \mu \mathrm{~s}$	$234 \mu \mathrm{~s}$	1.0
I_{s}	0.28	1.60	5.7	$12.1 \mu \mathrm{~s}$	$11.3 \mu \mathrm{~s}$	$10.3 \mu \mathrm{~s}$	$169 \mu \mathrm{~s}$	1.1
I_{s}	0.59	0.68	4.4	$15.6 \mu \mathrm{~s}$	$12.8 \mu \mathrm{~s}$	$8.24 \mu \mathrm{~s}$	$171 \mu \mathrm{~s}$	2.1
T_{e}	0.12	11.82	25	$15.4 \mu \mathrm{~s}$	$14.9 \mu \mathrm{~s}$	$17.3 \mu \mathrm{~s}$	$280 \mu \mathrm{~s}$	0.8
T_{e}	0.28	6.07	13	$13.2 \mu \mathrm{~s}$	$12.6 \mu \mathrm{~s}$	$14.2 \mu \mathrm{~s}$	$241 \mu \mathrm{~s}$	0.8
T_{e}	0.59	0.75	4.6	$23.4 \mu \mathrm{~s}$	$16.7 \mu \mathrm{~s}$	$12.2 \mu \mathrm{~s}$	$198 \mu \mathrm{~s}$	1.8

Conclusions

Theory	Experimental data
Process is Gamma distributed	I_{s} and T_{e} time series are Gamma distributed
Pulses arrive uncorrelated	Waiting time between bursts in I_{s} and T_{e} is exponential distributed
Exponential distributed pulse amplitude	Burst amplitudes in I_{s} and T_{e} are expon. distributed
Double-exponential pulse shape	PSD, autocorrelation function and cond. avg. of I_{s} and T_{e} time series agre

- Less burst overlap at high densities
- Burst duration time changes little with $\bar{n}_{\mathrm{e}} / n_{\mathrm{G}}$.
- Burst amplitude increases with $\bar{n}_{\mathrm{e}} / n_{\mathrm{G}}$

Thank you for your attention.

