Stochastic modeling of scrape-off layer fluctuations

R. Kube¹ O. E. Garcia¹ A. Theodorsen ¹ D. Brunner² A. Kuang² B. LaBombard² J. Terry²

 $^1\text{Department}$ of Physics and Technology, UiT - The Arctic University of Norway and ^2MIT Plasma Science and Fusion Center

August 24, 2017

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctua

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctua

August 24, 2017 2 / 33

Bursts in single point measurements correspond to traversing blobs

(日) (四) (王) (王) (王)

Stochastic model of data time series

Comparison to experimental measurements

Stochastic modeling of scrape-off layer fluctu:

Superpose uncorrelated pulses to model data time series

Superposition of K pulses in a time interval [0: T]

$$\Phi_{K}(t) = \sum_{k=1}^{K(\mathcal{T})} A_k \phi\left(rac{t-t_k}{ au_{ ext{d}}}
ight)$$

where k labels a pulse and

- A_k denotes the pulse amplitude
- tk denotes pulse arrival time
- ϕ denotes a pulse shape
- $\tau_{\rm d}$ denotes pulse duration time

Intermittency parameter: $\gamma=\tau_{\rm d}/\tau_{\rm w}$

Pulses arrive uncorrelated and form a Poisson process

Choose distribution for all random variables

- $P_{\mathcal{K}}(\mathcal{K}|\mathcal{T})$ gives the number of bursts in time interval [0; \mathcal{T}]
- $P_A(A_k) \rightarrow$ distribution of pulse Amplitudes.
- $P_t(t_k) \rightarrow$ distribution of pulse arrival times.

Consider a Poisson process:

• Pulses arrive uncorrelated: $P_t(t_k) = 1/T$

2 Avg. rate of pulse arrival is $1/ au_{
m w}$

$$P_{K}(K|T) = \exp\left(rac{-T}{ au_{\mathrm{w}}}
ight) \left(rac{T}{ au_{\mathrm{w}}}
ight)^{K} rac{1}{K!}$$

Exponentially distributed pulse amplitudes: $\langle A \rangle P_A(A_k) = \exp(A_k / \langle A \rangle)$ We often normalize the process as

$$\widetilde{\Phi} = \frac{\Phi - \langle \Phi \rangle}{\Phi_{\rm rms}}$$

Stochastic modeling of scrape-off layer fluctu:

Intermittency parameter governs pulse overlap

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctu:

Model experimental data with double-exponential pulses

Experimental data is approximated by a double-exponential pulse shape

$$\phi(heta) = \Theta\left(- heta
ight) \exp\left(rac{ heta}{\lambda}
ight) + \Theta\left(heta
ight) \exp\left(-rac{ heta}{1-\lambda}
ight)$$

In physical units: $heta=(t-t_k)/ au_{
m d}$, $au_{
m d}pprox 10\mu{
m s}.$

Correlation and power spectral density depend on pulse asymmetry

Correlation function of the pulse shape is given by

$$\begin{split} \rho_{\phi}(\theta) &= \frac{1}{l_2} \int_{-\infty}^{\infty} \mathrm{d}\chi \phi(\chi) \phi(\chi + \theta) \\ &= \frac{1}{1 - 2\lambda} \left[(1 - \lambda) \exp\left(-\frac{|\theta|}{1 - \lambda}\right) - \lambda \exp\left(-\frac{|\theta|}{\lambda}\right) \right] \end{split}$$

Wiener-Khinchin theorem states that the power spectral density is the Fourier-transform of the autocorrelation function

$$\sigma_{\phi}(\omega) = \int_{-\infty}^{\infty} \mathrm{d} heta
ho_{\phi}(heta) \exp\left(-i\omega heta
ight)$$

$$= rac{2}{\left[1 + (1 - \lambda)^2 \omega^2\right] \left[1 + \lambda^2 \omega^2
ight]}$$

O.E. Garcia and A. Theodorsen, Phys. Plasmas 24 032309 (2017).

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctu:

The mean of the process can be computed analytically

Averaging the process over all random variables and neglect finite box effects by extending time integration to the entire real axis:

$$\langle \Phi_K \rangle = \int_{-\infty}^{\infty} \mathrm{d}A_1 P_A(A_1) \int_{-\infty}^{\infty} \frac{\mathrm{d}t_1}{T} \dots \int_{-\infty}^{\infty} \mathrm{d}A_K P_A(A_K) \int_{-\infty}^{\infty} \frac{\mathrm{d}t_K}{T} \sum_{k=1}^{K} A_k \phi\left(\frac{t-t_k}{\tau_d}\right)$$
$$= \frac{K}{T} \tau_d \langle A \rangle$$

Average over number of pulses K:

$$\langle \Phi
angle = rac{ au_{
m d}}{ au_{
m w}} \langle A
angle$$

Mean value of the process increases with pulse overlap and average pulse amplitude.

R. Kube et al. (UiT)

August 24, 2017 9 / 33

イロト 不得下 イヨト イヨト

The variance can be computed analytically

$$\begin{split} \langle \Phi_K^2 \rangle &= \int\limits_{-\infty}^{\infty} \mathrm{d} A_1 P_A(A_1) \int\limits_{-\infty}^{\infty} \frac{\mathrm{d} t_1}{T} \dots \int\limits_{-\infty}^{\infty} \mathrm{d} A_K P_A(A_K) \int\limits_{-\infty}^{\infty} \frac{\mathrm{d} t_K}{T} \\ &\sum_{k=1}^{K} A_k \phi\left(\frac{t-t_k}{\tau_\mathrm{d}}\right) \sum_{l=1}^{K} A_l \phi\left(\frac{t-t_l}{\tau_\mathrm{d}}\right) \end{split}$$

This results in K(K-1) terms with $k \neq l$, K terms with k = l.

$$\begin{split} \langle \Phi_{K}^{2} \rangle &= \tau_{\mathrm{d}} I_{2} \langle A^{2} \rangle \frac{K}{T} + \tau_{\mathrm{d}}^{2} I_{1}^{2} \langle A \rangle^{2} \frac{K(K-1)}{T^{2}} \\ \Rightarrow \langle \Phi^{2} \rangle &= \frac{\tau_{\mathrm{d}}}{\tau_{\mathrm{w}}} I_{2} \langle A^{2} \rangle + \langle \Phi \rangle^{2} \end{split}$$

where $\langle K(K-1) \rangle = \langle K \rangle^2$ has been used.

イロト イポト イヨト イヨト

Auto-correlation is determined by the pulse shape

Auto-correlation function is computed from $\langle \Phi(t)\Phi(t+k) \rangle$

O.E. Garcia and A. Theodorsen, Phys. Plasmas 24 032309 (2017).

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctua

(日) (同) (三) (三)

Power spectral density

$$\begin{split} \Omega_{\Phi}(\omega) &= 2\pi \langle \Phi \rangle^2 \delta(\omega) + \Phi_{\rm rms}^2 \tau_{\rm d} \sigma_{\phi}(\tau_{\rm d} \omega) \\ &= 2\pi \langle \Phi \rangle^2 \delta(\omega) + 2\Phi_{\rm rms}^2 \frac{\tau_{\rm d}}{\left[1 + (1 - \lambda)^2 \, \tau_{\rm d}^2 \omega^2\right] \left[1 + \lambda^2 \tau_{\rm d}^2 \omega^2\right]} \end{split}$$

- $\lambda = 0$: Power law tail, $\sim \omega^{-2}$
- $\lambda=1/2:$ Power law tail, $\sim \omega^{-4}$
- Else: broken power law, curved spectrum.

O.E. Garcia and A. Theodorsen, Phys. Plasmas 24 032309 (2017).

R. Kube et al. (UiT)

August 24, 2017 12 / 33

Probability distribution function

For exponentially distributed amplitudes and exponential wave forms is the process Gamma distributed:

$$\langle \Phi \rangle P_{\Phi}(\Phi) = \frac{\gamma}{\Gamma(\gamma)} \left(\frac{\gamma \Phi}{\langle \Phi \rangle} \right)^{\gamma-1} \exp\left(-\frac{\gamma \Phi}{\langle \Phi \rangle} \right)$$

O.E. Garcia, Phys. Rev. Lett. 108 265001 (2012).

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctu:

August 24, 2017 13 / 33

- N

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctua

August 24, 2017 14 / 33

SOL fluctuations measured in a density scan

- Ohmic L-mode plasma
- Lower single-null magnetic geometry
- Density varied from $\overline{n}_{\rm e}/n_{\rm G}=0.12..0.62$
- Probe head dwelled at the limiter radius
- 4 electrodes with Mirror Langmuir probes
- Approximately 1s long data time series in steady state

Mirror Langmuir Probe allows fast $I_{\rm s}$, $T_{\rm e}$, and $V_{\rm f}$ sampling

• MLP biases electrode to 3 voltages per microsecond.

- Voltage range is dynamically adjusted
- Probe current measured in each voltage state
- Fit input voltage and current is subject to 12pt smoothing (running average)
- Fit U-I characteristic on (U,I) samples
- Largest error on $T_{\rm e}$.
- Resolves fluctuations on μs time scale

August 24, 2017

Low density discharge, $\overline{n}_{ m e}/n_{ m G}=0.12$

- Intermittent, large amplitude bursts in *I*_s.
- Bursts in \textit{n}_{e} and \textit{T}_{e} appear correlated
- Timescale approximately $25 \mu s$
- Irregular potential waveform

High density discharge, $\overline{n}_{ m e}/n_{ m G}=0.62$

- Bursts appear more isolated
- Average density larger by factor of 10
- Average electron temperature approx. 8eV

Ion saturation current histograms are well described by a Gamma distribution

Α.

Theodorsen, O.E. Garcia, and M. Rypdal, Phys. Scr. 92 054002 (2017)

Electron temperature histograms are well described by a Gamma distribution

PSD of $I_{\rm s}$ shows broken power law

R. Kube et al. (UiT)

A (10) N (10)

PSD of $T_{\rm e}$ shows broken power law

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctu:

-August 24, 2017

A (10) F (10)

$I_{ m s}$ shows exponential autocorrelation function

R. Kube et al. (UiT)

August 24, 2017

(日) (同) (三) (三)

23 / 33

${\cal T}_{\rm e}$ shows exponential autocorrelation function

24 / 33

Bursts in $\textit{I}_{\rm s}$ are approximated by double-exponential waveform

Bursts in $\mathcal{T}_{\rm e}$ are approximated by double-exponential waveform

・ 同 ト ・ ヨ ト ・ ヨ ト

Time between bursts in $I_{\rm s}$ signal is exponentially distributed

Exponential distribution describes the time between events in a Poisson process.

Time between bursts in ${\it T}_{\rm e}$ signal is exponentially distributed

Burst amplitude distribution - Isat

A⊒ ▶ ∢ ∃

Burst amplitude distribution - Te

.∃ →

47 ▶

Conclusions

R. Kube et al. (UiT)

Stochastic modeling of scrape-off layer fluctua

August 24, 2017 3

31 / 33

æ

Overview of estimated parameters

	$\frac{\overline{n}_{\rm e}}{n_{\rm G}}$	γ (PDF)	$\gamma\left(\frac{\Phi_{\rm rms}}{\langle\Phi angle} ight)$	$ au_{ m d}$ (PSD)	$ au_{ m d}, \mathcal{R}$	$ au_{ m d}$ (CA)	$ au_{ m w}$	$\langle A \rangle$
I _s	0.12	2.68	8.0	$15.0 \mu s$	$15.0 \mu s$	$13.2\mu s$	$234 \mu s$	1.0
$I_{\rm s}$	0.28	1.60	5.7	$12.1 \mu \mathrm{s}$	$11.3 \mu s$	$10.3 \mu s$	$169 \mu s$	1.1
$I_{\rm s}$	0.59	0.68	4.4	$15.6 \mu \mathrm{s}$	$12.8 \mu s$	$8.24 \mu s$	$171 \mu s$	2.1
$T_{\rm e}$	0.12	11.82	25	$15.4 \mu s$	$14.9 \mu s$	$17.3 \mu s$	$280 \mu s$	0.8
$T_{\rm e}$	0.28	6.07	13	$13.2 \mu \mathrm{s}$	$12.6 \mu s$	$14.2 \mu s$	$241 \mu s$	0.8
$T_{\rm e}$	0.59	0.75	4.6	23.4 $\mu { m s}$	$16.7 \mu \mathrm{s}$	$12.2 \mu s$	$198 \mu s$	1.8

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Theory	Experimental data		
Process is Gamma distributed	$I_{ m s}$ and $T_{ m e}$ time series are Gamma distributed		
Pulses arrive uncorrelated	Waiting time between bursts in $I_{ m s}$ and ${\cal T}_{ m e}$ is exponential distributed		
Exponential distributed pulse amplitude	Burst amplitudes in $I_{ m s}$ and ${\cal T}_{ m e}$ are expon. distributed		
Double-exponential pulse shape	PSD, autocorrelation function and cond. avg. of $I_{\rm s}$ and $T_{\rm e}$ time series agre		

- Less burst overlap at high densities
- Burst duration time changes little with $\overline{n}_{\rm e}/n_{\rm G}$. ۲
- Burst amplitude increases with $\overline{n}_{\rm e}/n_{\rm G}$ ۰

3

Thank you for your attention.

3

(日) (同) (日) (日) (日)