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REFINEMENTS OF SOME LIMIT HARDY-TYPE
INEQUALITIES VIA SUPERQUADRACITY

James Adedayo Oguntuase, Lars-Erik Persson,
Olabiyi Olanrewaju Fabelurin, and

Abdullaziz G. Adeagbo-Sheikh

Abstract. Refinements of some limit Hardy-type inequalities are derived and
discussed using the concept of superquadracity. We also proved that all three
constants appearing in the refined inequalities obtained are sharp. The natural
turning point of our refined Hardy inequality is 𝑝 = 2 and for this case we have
even equality.

1. Introduction

Hardy stated in [5] and finally proved in [6] the following classical inequality:
for any 𝑝 > 1 and any integrable function 𝑓(𝑥) > 0 on (0, ∞), the inequality

(1.1)
∫︁ ∞

0

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑡) 𝑑𝑡

)︁𝑝

𝑑𝑥 6
(︁ 𝑝

𝑝 − 1

)︁𝑝
∫︁ ∞

0
𝑓𝑝(𝑥) 𝑑𝑥,

holds, where the constant ( 𝑝
𝑝−1 )𝑝 is the best possible.

Since then, Hardy’s inequality has been extensively studied. Consequently, a lot
of information about Hardy’s inequality abounds nowadays in literature, comprising
both its generalizations and applications in different ways (see e.g. [8, 9, 10] and
the references therein).

However, there exist very few Hardy-type inequalities with sharp constants in
the limit case and when the interval (0, ∞) is replaced by a finite one (0, 𝑙), 𝑙 < ∞.
We now proceed to give some known examples of such Hardy-type inequalities.

In 1928, Hardy himself (see [7]) proved the following first weighted version of
(1.1) as follows:

(1.2)
∫︁ ∞

0

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑡) 𝑑𝑡

)︁𝑝

𝑥𝑎𝑑𝑥 6
(︁ 𝑝

𝑝 − 𝑎 − 1

)︁𝑝
∫︁ ∞

0
𝑓𝑝(𝑥)𝑥𝑎𝑑𝑥
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holds for all measurable and non-negative functions 𝑓 on (0, ∞) whenever 𝑎 < 𝑝−1,
𝑝 > 1. He obviously thought that (1.2) is a generalization of (1.1). However,
recently Persson and Samko [12] pointed out that this is not genuinely true since
(1.2) is indeed equivalent to (1.1) through some suitable substitutions and variable
transformations. In the same paper, they stated and proved the following result:
Let 𝑔 be a nonnegative and measurable function on (0, 𝑙), 0 < 𝑙 6 ∞. If 𝑝 < 0 or
𝑝 > 1, then

(1.3)
∫︁ 𝑙

0

(︁ 1
𝑥

∫︁ 𝑥

0
𝑔(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
6 1 ·

∫︁ 𝑙

0
𝑔𝑝(𝑥)

(︁
1 − 𝑥

𝑙

)︁𝑑𝑥

𝑥
,

while in the case 𝑝 < 0 we assume that 𝑔(𝑥) > 0, 0 < 𝑥 6 𝑙. Furthermore, (1.3) is
equivalent to the following sharp local variant of (1.2):∫︁ 𝑙

0

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝

𝑥𝑎𝑑𝑥 6
(︁ 𝑝

𝑝 − 1 − 𝑎

)︁𝑝
∫︁ 1

0
𝑓𝑝(𝑥) 𝑥𝑎

(︁
1 −

(︁𝑥

𝑙

)︁ 𝑝−𝑎−1
𝑝

)︁
𝑑𝑥,

where the constant ( 𝑝
𝑝−1−𝑎 )𝑝 is sharp.

Throughout this paper we shall assume that log is the natural logarithm. In
[3], Bennett proved that if 𝛼 > 0, 1 6 𝑝 < ∞, and 𝑓 is a nonnegative measurable
function on [0, 1], then the inequalities∫︁ 1

0

[︁
log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
6 𝛼−𝑝

∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
,(1.4) ∫︁ 1

0

[︁
log 𝑒

𝑥

]︁−𝛼𝑝−1(︁ ∫︁ 1

𝑥

𝑓(𝑦) 𝑑𝑦
)︁𝑝 𝑑𝑥

𝑥
6 𝛼−𝑝

∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1−𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
(1.5)

hold. These inequalities hold also with the usual modifications if 𝑝 = ∞ see [2],
where it was also proved that the constant 𝛼−𝑝 is sharp. For 𝑝 = ∞ you just raise
both sides of (1.4) and (1.5) to power 1/𝑝 and let 𝑝 → ∞ to get the usual supremum
interpretation of (1.4) and (1.5) for 𝑝 = ∞. We refer interested readers to papers
[2, 4, 11] for more information about the proofs and applications of inequalities
(1.4) and (1.5).

Recently Barza et al. [2] obtained some refinements and extensions of inequal-
ities (1.4) and (1.5). Specifically, the following inequalities are derived and proved:

𝛼𝑝−1
(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝛼𝑝

∫︁ 1

0

[︁
log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
(1.6)

6
∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
,

𝛼𝑝−1
(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝛼𝑝

∫︁ 1

0

[︁
log 𝑒

𝑥

]︁−𝛼𝑝−1(︁ ∫︁ 1

𝑥

𝑓(𝑦) 𝑑𝑦
)︁𝑝 𝑑𝑥

𝑥
(1.7)

6
∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1−𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
,

where 𝑓 is a nonnegative measurable function on [0, 1]. Both constants 𝛼𝑝−1 and
𝛼𝑝 in (1.6) and (1.7) are sharp.
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The motivation for the current paper comes from the works of Bennett [3] and
Barza et al. [2]. Our aim is to obtain some further refinements and extensions
of (1.6) and (1.7). These inequalities have some remarkable properties e.g., that
now the natural “turning point” (the point where the inequality reverses) is 𝑝 = 2,
while all other inequalities above have turning point at 𝑝 = 1. Another remarkable
property is that our new inequalities contain three constants and all are sharp.

This paper is organized as follows: In Section 2, we present our main result
(Theorem 2.1) which is a refined version of inequalities (1.4), (1.5), (1.6), and
(1.7) via superquadracity argument (see Proposition 2.1). This proposition is then
employed to prove our main result which have refinement terms not present in the
results of Bennett [3] and Barza et al. [2]. This inequality has the remarkable
property that it holds in the reversed direction for 1 < 𝑝 6 2 so that for 𝑝 = 2 we
get a new identity (cf. Remark 3.1). We also show that the constants involved are
all sharp. In Section 3, we present further result and some examples and remarks.

2. Some inequalities involving superquadratic
and subquadratic functions

Definition 2.1. [1, Definition 2.1] A function Φ : [0, ∞) → R is said to be
superquadratic provided that for all 𝑥 > 0 there exists a constant 𝐶𝑥 ∈ R such
that Φ(𝑦) − Φ(𝑥) − 𝐶𝑥(𝑦 − 𝑥) − Φ(|𝑦 − 𝑥|) > 0 for all 𝑦 > 0. Φ is subquadratic
if −Φ is superquadratic. A function 𝑓 : [0, ∞) → R is superadditive provided
𝑓(𝑥 + 𝑦) > 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 > 0. If the reverse inequality holds, then 𝑓 is
said to be subadditive.

Lemma 2.1 (See [1, Lemma 2.2]). Let Φ(𝑥) : [0, ∞) → R be a superquadratic
function with 𝐶𝑥 as in Definition 2.1.

(1) Then Φ(0) 6 0.
(2) If Φ(0) = Φ′(0) = 0, then 𝐶𝑥 = Φ′(𝑥) whenever Φ is differentiable at 𝑥 > 0.
(3) If Φ > 0, then Φ is convex and Φ(0) = Φ′(0) = 0.

Here and in the sequel the notation Φ′(0) means Φ′
+(0).

Lemma 2.2 (See [1], Lemma 3.1). Suppose Φ : [0, ∞) → R is continuously
differentiable and that Φ(0) 6 0. If Φ′ is superadditive or Φ′(𝑥)

𝑥 is nondecreasing,
then Φ is superquadratic.

Before we state our main result, we state the following Proposition which is of
independent interest and very useful in the proof of our main result.

Proposition 2.1. Let Φ: [0, ∞) → R be a differentiable function such that
Φ(0) = Φ′(0) = 0. Then

(2.1) Φ(𝑦) − Φ(1) − Φ′(1)(𝑦 − 1) − Φ(|𝑦 − 1|)
{︃
> 0 if Φ superquadratic
6 0 if Φ subquadratic,

holds for all 𝑦 > 0. If Φ(𝑥) = 𝑥𝑝, then equality in (2.1) hold for all 𝑦 if and only if
𝑝 = 2.
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Proof. Since Φ(𝑥) is differentiable, it follows from Definition 2.1 and Lemma
2.1 that for 𝑥 = 1, there exists a constant 𝐶1 = Φ′(1) such that

Φ(𝑦) − Φ(1) − Φ′(1)(𝑦 − 1) − Φ(|𝑦 − 1|) > 0,

for all 𝑦 > 0 whenever Φ is superquadratic. The proof of the case when Φ is
subquadratic is similar to the one given above, except that the inequality sign is
reversed. The claimed equality case is obvious. �

Remark 2.1. By setting Φ(𝑥) = 𝑥𝑝 in Proposition 2.1, we get by Lemma 2.2,
that 𝑥𝑝 is superquadratic if 𝑝 > 2 and subquadratic if 1 < 𝑝 6 2. Furthermore,
Proposition 2.1 implies the following result:

Lemma 2.3. Let ℎ > 0; then

(2.2) ℎ𝑝 − 𝑝(ℎ − 1) − 1 − |ℎ − 1|𝑝
{︃
> 0 if 𝑝 > 2
6 0 if 1 < 𝑝 6 2.

Equality holds for all ℎ > 0 if and only if 𝑝 = 2 and when 𝑝 ̸= 2 if and only if
ℎ = 1.

Proof. Apply Proposition 2.1 with Φ(𝑥) = 𝑥𝑝, 𝑝 > 1. Then, we find that
(2.2) holds and equality holds if 𝑝 = 2 and when 𝑝 ̸= 2, ℎ = 1. The “only if" part
follows by considering the function 𝑓(ℎ) = ℎ𝑝 − 𝑝(ℎ − 1) − 1 − (ℎ − 1)𝑝 and noting
that 𝑓(ℎ) is increasing for 𝑝 > 2, decreasing for 𝑝 6 2 and 𝑓(1) = 1. �

Our main result reads:

Theorem 2.1. Let 𝛼, 𝑝 > 1 and 𝑓 be a nonnegative and measurable function
on [0, 1].

(1) If 𝑝 > 2, then

𝛼𝑝−1
(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝛼𝑝

∫︁ 1

0

[︁
log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
(2.3)

+
∫︁ 1

0

⃒⃒⃒
𝑥 log 𝑒

𝑥
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝(︁
log 𝑒

𝑥

)︁𝛼𝑝−1 𝑑𝑥

𝑥

6
∫︁ 1

0
𝑥𝑝

(︁
log 𝑒

𝑥

)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥

and

𝛼𝑝−1
(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝛼𝑝

∫︁ 1

0

[︁
log 𝑒

𝑥

]︁−𝛼𝑝−1(︁ ∫︁ 1

𝑥

𝑓(𝑦) 𝑑𝑦
)︁𝑝 𝑑𝑥

𝑥
(2.4)

+
∫︁ 𝑥

0

⃒⃒⃒
𝑥 log 𝑒

𝑥
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝[︁
log 𝑒

𝑥

]︁−𝛼𝑝−1 𝑑𝑥

𝑥

6
∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1−𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
.

All constants 𝛼𝑝−1, 𝛼𝑝 and 1 in front of the integrals on the left-hand side
in (2.3) and (2.4) are sharp. If 𝑝 > 2, then equality is never attained
unless f is identically zero.
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(2) If 1 < 𝑝 6 2, then both (2.3) and (2.4) hold in the reverse direction and
the constants in both inequalities are sharp. Also in this case all constants
𝛼𝑝−1, 𝛼𝑝 and 1 in front of the integrals on the left-hand side of reversed
inequalities (2.3) and (2.4) are sharp. If 1 < 𝑝 < 2, then equality is never
attained unless 𝑓 is identically zero.

(3) If 𝑝 = 2 we have equality in (2.3) and (2.4) for any measurable function
𝑓 and any 𝛼 > 1.

Proof. (a) Let 𝑝 > 1. Suppose that 𝑓 is continuous and nonnegative. Then
define for 𝑥 ∈ (0, 1] the function 𝐹 by

𝐹 (𝑥; 𝛼, 𝑝) : =
∫︁ 𝑥

0
𝑦𝑝

[︁
log 𝑒

𝑦

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑦)𝑑𝑦

𝑦
(2.5)

− 𝛼𝑝−1
(︁

log 𝑒

𝑥

)︁𝛼𝑝(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝

− 𝛼𝑝

∫︁ 𝑥

0

[︁
log 𝑒

𝑦

]︁𝛼𝑝−1(︁ ∫︁ 𝑦

0
𝑓(𝑠) 𝑑𝑠

)︁𝑝 𝑑𝑦

𝑦

−
∫︁ 𝑥

0

⃒⃒⃒
𝑦 log 𝑒

𝑦
𝑓(𝑦) − 𝛼

∫︁ 𝑦

0
𝑓(𝑠) 𝑑𝑠

⃒⃒⃒𝑝[︁
log 𝑒

𝑦

]︁𝛼𝑝−1 𝑑𝑦

𝑦
.

Differentiating (2.5) yields
𝑑

𝑑𝑥
𝐹 (𝑥; 𝛼, 𝑝) = 𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥) 1

𝑥
(2.6)

+ 𝑝

𝑥
𝛼𝑝

(︁
log 𝑒

𝑥

)︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝

− 𝑝𝑓(𝑥)𝛼𝑝−1
(︁

log 𝑒

𝑥

)︁𝛼𝑝(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝−1

− 𝛼𝑝
[︁

log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑠) 𝑑𝑠

)︁𝑝 1
𝑥

−
⃒⃒⃒
𝑥 log 𝑒

𝑥
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝[︁
log 𝑒

𝑥

]︁𝛼𝑝−1 1
𝑥

.

We assume without restriction that 𝑓(𝑡) > 0, 𝑡 > 0 (if not we first assume this and
use a limit argument). By putting

ℎ(𝑥, 𝛼) :=
𝑥(log 𝑒

𝑥 )𝑓(𝑥)
𝛼

∫︀ 𝑥

0 𝑓(𝑦) 𝑑𝑦
,

in (2.6) we obtain
𝑑

𝑑𝑥
𝐹 (𝑥; 𝛼, 𝑝) = 𝛼𝑝

[︁
log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑠) 𝑑𝑠

)︁𝑝 1
𝑥

× [ℎ𝑝(𝑥; 𝛼) − 𝑝(ℎ(𝑥; 𝛼) − 1) − 1 − |ℎ(𝑥; 𝛼) − 1|𝑝].

Hence, by Lemma 2.3, we get 𝑑
𝑑𝑥 𝐹 (𝑥; 𝛼, 𝑝) > 0. That is 𝐹 (𝑥; 𝛼, 𝑝) is strictly in-

creasing. In particular 𝐹 (1; 𝛼, 𝑝) > lim𝑥→0+ 𝐹 (𝑥; 𝛼, 𝑝). We claim that
lim

𝑥→0+
𝐹 (𝑥; 𝛼, 𝑝) = 0.
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To justify our claim, we use Hölder’s inequality in the following form:

(2.7)
∫︁ 𝑥

0
|𝑓1(𝑦)𝑓2(𝑦)|𝑑𝑦 6

(︁ ∫︁ 𝑥

0
|𝑓1|𝑝𝑑𝑦

)︁1/𝑝(︁ ∫︁ 𝑥

0
|𝑓2|𝑝

′
𝑑𝑦

)︁1/𝑝′

,

which holds for all continuous functions 𝑓, 𝑔 and for all 𝑝, 𝑝′ > 1 such that 1/𝑝 +
1/𝑝′ = 1. If we let

𝑓1(𝑦) = 𝑦1−1/𝑝
(︁

log 𝑒

𝑦

)︁𝛼+1−1/𝑝

𝑓(𝑦), 𝑓2(𝑦) = 𝑦−1+1/𝑝
(︁

log 𝑒

𝑦

)︁−𝛼−1+1/𝑝

,

then with 𝑝 and 𝑝′ = 𝑝/(𝑝 − 1), we find (2.7) gives∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦 =

∫︁ 𝑥

0

(︁
𝑦1−1/𝑝

(︁
log 𝑒

𝑦

)︁𝛼+1−1/𝑝

𝑓(𝑦)
)︁(︁

𝑦−1+1/𝑝
(︁

log 𝑒

𝑦

)︁−𝛼−1+1/𝑝)︁
𝑑𝑦

6
(︁ ∫︁ 𝑥

0
𝑦𝑝−1

(︁
log 𝑒

𝑦

)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑦) 𝑑𝑦

)︁1/𝑝

(︁ ∫︁ 𝑥

0

1
𝑦

(︁
log 𝑒

𝑦

)︁−𝛼𝑝/(𝑝−1)−1
𝑑𝑦

)︁(𝑝−1)/𝑝

=
(︁ ∫︁ 𝑥

0
𝑦𝑝−1

(︁
log 𝑒

𝑦

)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑦) 𝑑𝑦

)︁1/𝑝

(︁𝑝 − 1
𝛼𝑝

(︁
log 𝑒

𝑥

)︁−𝛼𝑝/(𝑝−1))︁(𝑝−1)/𝑝

=
(︁ ∫︁ 𝑥

0
𝑦𝑝−1

(︁
log 𝑒

𝑦

)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑦) 𝑑𝑦

)︁1/𝑝(︁𝑝 − 1
𝛼𝑝

)︁(𝑝−1)/𝑝(︁
log 𝑒

𝑥

)︁−𝛼

.

Hence, we get

0 <
(︁

log 𝑒

𝑥

)︁𝛼𝑝(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝

(2.8)

6
(︁𝑝 − 1

𝛼𝑝

)︁𝑝−1(︁ ∫︁ 𝑥

0
𝑦𝑝−1

(︁
log 𝑒

𝑦

)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑦) 𝑑𝑦

)︁
.

Taking the limit of (2.8) as 𝑥 → 0+, we obtain

lim
𝑥→0+

(︁(︁
log 𝑒

𝑥

)︁𝛼𝑝(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝)︁
= 0.

This consequently implies that lim𝑥→0+ 𝐹 (𝑥; 𝛼, 𝑝) = 0 and, in particular that,

𝐹 (1; 𝛼, 𝑝) > lim
𝑥→0+

𝐹 (𝑥; 𝛼, 𝑝) = 0.

So, we proved that (2.3) holds for all continuous functions. By standard approxi-
mating arguments, (2.3) holds for all measurable functions.

Now we proceed to prove that the constants in the inequality (2.3) are all sharp.
To this end, assume on the contrary that (2.3) holds for some constants 𝐶1, 𝐶2 such
that 0 < 𝐶1, 𝐶2 < ∞ and 𝐶2 > 𝛼𝑝, i.e.,

𝐶1

(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝐶2

∫︁ 1

0

[︁
log 𝑒

𝑥

]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
(2.9)
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+
∫︁ 1

0

⃒⃒⃒
𝑥 log 𝑒

𝑥
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝[︁
log 𝑒

𝑥

]︁𝛼𝑝−1 𝑑𝑥

𝑥

6
∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
.

By using the test function,

(2.10) 𝑓𝜖(𝑥) := 1
𝑥

(︁
log 𝑒

𝑥

)︁−(1+𝜖+𝛼)
, 𝜖 > 0

we find (after some calculations) that (2.9) yields
𝐶1

(𝜖 + 𝛼)𝑝
+ 𝐶2

𝜖𝑝(𝜖 + 𝛼)𝑝
+ 𝜖𝑝

𝜖𝑝(𝛼 + 𝜖)𝑝
6

1
𝜖𝑝

i.e., that 𝜖𝑝𝐶1 + 𝐶2 + 𝜖𝑝 6 (𝜖 + 𝛼)𝑝. By letting 𝜖 → 0+, we obtain that 𝐶2 6 𝛼𝑝, a
contradiction. Thus, the constant 𝐶2 = 𝛼𝑝 in (2.9) is sharp. We assume now that
(2.9) holds with 𝐶2 = 𝛼𝑝 for some 𝐶1 > 𝛼𝑝−1 and use the same test function 𝑓𝜖 in
(2.10) to obtain

𝐶1

(𝜖 + 𝛼)𝑝
+ 𝛼𝑝

𝜖𝑝(𝜖 + 𝛼)𝑝
+ 𝜖𝑝

(𝜖 + 𝛼)𝑝𝜖𝑝
6

1
𝜖𝑝

,

i.e., 𝐶1 6
(︀
(𝜖 + 𝛼)𝑝 − 𝜖𝑝 − 𝛼𝑝

)︀
/𝜖𝑝. Hence, by letting 𝜖 → 0+, we find

𝐶1 6 lim
𝜖→0+

(︁ (𝜖 + 𝛼)𝑝 − 𝜖𝑝 − 𝛼𝑝

𝜖𝑝

)︁
= 1

𝑝
lim

𝜖→0+

(𝜖 + 𝛼)𝑝 − 𝛼𝑝

𝜖
− 1

𝑝
lim

𝜖→0+
𝜖𝑝−1 = 𝛼𝑝−1.

This contradiction shows that 𝐶1 = 𝛼𝑝−1 is a sharp constant in (2.3). That the
constant 𝐶3 = 1, in front of the third integral in (2.3), is also sharp follows in a
similar way. In fact, consider (2.3) with the constants 𝐶1 = 𝛼𝑝−1, 𝐶2 = 𝛼𝑝 and
𝐶3 > 1. Then, by using the same test functions 𝑓𝜖(𝑥) as above and letting 𝜖 → 0+,
we get a contradiction. It is clear from Lemma 2.1 that for 𝑝 > 2, we cannot have
equality in (2.3) unless 𝑓 is identically zero.

The proof of (2.4) is similar. For this case we consider

𝐺(𝑥, 𝛼, 𝑝) : =
∫︁ 𝑥

0
𝑦𝑝

[︁
log

(︁ 𝑒

𝑦

)︁]︁(1−𝛼)𝑝−1
𝑓𝑝(𝑦)𝑑𝑦

𝑦

− 𝛼𝑝−1
(︁

log
(︁ 𝑒

𝑥

)︁)︁−𝛼𝑝(︁ ∫︁ 𝑥

0
𝑓(𝑠) 𝑑𝑠

)︁𝑝

− 𝛼𝑝

∫︁ 𝑥

0

(︁
log

(︁ 𝑒

𝑦

)︁)︁−𝛼𝑝−1(︁ ∫︁ 1

𝑦

𝑓(𝑠) 𝑑𝑠
)︁𝑝 𝑑𝑦

𝑦

−
∫︁ 𝑥

0
| 𝑦 log

(︁ 𝑒

𝑦

)︁
𝑓(𝑦) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦 |𝑝

[︁
log

(︁ 𝑒

𝑦

)︁]︁−𝛼𝑝−1 𝑑𝑦

𝑦

and argue in a similar way as above. Also, the proof of the sharpness of the
constants 𝛼𝑝−1, 𝛼𝑝 and 1 and cases of equality is similar as before, so we omit the
details.

(b) For the case 1 < 𝑝 6 2, the crucial inequality (2.2) holds in the reversed
direction (see Lemma 2.3). Hence, the reverse of inequality (2.3) holds in this case.
Moreover, the proof of the sharpness of the constants 𝛼𝑝−1, 𝛼𝑝 and 1 and the cases
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of equality only consist of obvious modifications of the proof above, so we leave out
the details.

(c) The proof of equality for the case 𝑝 = 2 is just an easy consequence and
modification of the proof above. �

3. Concluding result, remarks and examples

We put

𝐼1 = 𝛼𝑝−1
(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

+ 𝛼𝑝

∫︁ 1

0

[︁
log

(︁ 𝑒

𝑥

)︁]︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
,

𝐼2 =
∫︁ 1

0

⃒⃒⃒
𝑥 log

(︁ 𝑒

𝑥

)︁
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝(︁
log

(︁ 𝑒

𝑥

)︁)︁𝛼𝑝−1 𝑑𝑥

𝑥

and
𝐼3 =

∫︁ 1

0
𝑥𝑝

(︁
log

(︁ 𝑒

𝑥

)︁)︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
.

In particular, our result implies the following new information for the limit case of
Hardy’s inequality:

Example 3.1. (1) If 𝑝 > 2, then the Bennett and Barza et al. estimate 𝐼1 6 𝐼3
is improved to 𝐼1 + 𝐼2 6 𝐼3.

(2) For the case 1 < 𝑝 6 2 the Bennett and Barza et al. estimate 𝐼1 6 𝐼3 is
even turned to the two-sided estimate 𝐼1 6 𝐼3 6 𝐼1 + 𝐼2.

(3) For the case 𝑝 = 2 we get the remarkable new identity 𝐼3 = 𝐼1 + 𝐼2.

Remark 3.1. The natural “turning point” (when equality sign is reversed) in
the Hardy type inequalities is 𝑝 = 1. The example above is the only example so
far of a limit Hardy type inequality where the turning point is 𝑝 = 2. A similar
example of the limit Hardy inequality with turning point 𝑝 = 2 as that in Example
3.1 can be obtained by using (1.7) and (2.4) in a similar way as above.

Remark 3.2. All four inequalities in Theorem 2.1 contain three constants in
front of the integrals on the left-hand side and all are sharp. This is the only
inequality in the literature on the Hardy type inequalities with this property.

Proposition 3.1. Let 𝑓 be a positive and measurable function on (0, 1) and
let 𝑢 and 𝑣 be two weight functions on (0, 1) such that

𝑢(𝑦) =
∫︁ 1

𝑦

𝑣(𝑥)
𝑥2 𝑑𝑥.

If Ψ: [0, ∞) → ℜ is a non-negative superquadratic function, then

∫︁ 1

0
Ψ

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑣(𝑥)
𝑥

𝑑𝑥 6
∫︁ 1

0
Ψ(𝑓(𝑥))𝑢(𝑥)𝑑𝑥

𝑥

(3.1)

−
∫︁ 1

0

∫︁ 1

𝑦

Ψ
(︁⃒⃒⃒

𝑓(𝑦) − 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒)︁𝑣(𝑥)
𝑥2 𝑑𝑥 𝑑𝑦.
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If Ψ is subquadratic, then inequality (3.1) holds in the reverse direction. More-
over, in inequality (3.1) and the reverse inequality for subquadratic Ψ, equality holds
for 𝑓 ≡ 𝐶, 𝐶 > 0.

Proof. By using Jensen’s refined inequality of Abramovich et al. [1] for a
superquadratic function Ψ and Fubini’s theorem, we find that∫︁ 1

0
Ψ

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑣(𝑥)
𝑥

𝑑𝑥 6
∫︁ 1

0
Ψ(𝑓(𝑦))

(︁ ∫︁ 1

𝑦

𝑣(𝑥)
𝑥2 𝑑𝑥

)︁
𝑑𝑦

−
∫︁ 1

0

∫︁ 1

𝑦

Ψ
(︁⃒⃒⃒

𝑓(𝑦) − 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒)︁𝑣(𝑥)
𝑥2 𝑑𝑥 𝑑𝑦,

i.e.,∫︁ 1

0
Ψ

(︁ 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑣(𝑥)
𝑥

𝑑𝑥 6
∫︁ 1

0
Ψ(𝑓(𝑦))𝑢(𝑦)𝑑𝑦

𝑦

−
∫︁ 1

0

∫︁ 1

𝑦

Ψ
(︁⃒⃒⃒

𝑓(𝑦) − 1
𝑥

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒)︁𝑣(𝑥)
𝑥2 𝑑𝑥 𝑑𝑦.

The proof for the case when Ψ is subquadratic follows similarly, except that the only
inequality above holds in the reverse direction. By substituting 𝑓 ≡ 𝐶 in inequality
(3.1), we have after some easy calculations that equality holds in (3.1). �

Example 3.2. By using Proposition 3.1 with the superquadratic function
Ψ(𝑥) = 𝑥𝑝, 𝑝 > 2, for 𝑣(𝑥) = 𝑥𝑝(log 𝑒

𝑥 )𝛼𝑝−1, we find that

𝐼4 :=
∫︁ 1

0

(︁
log 𝑒

𝑥

)︁𝛼𝑝−1(︁ ∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

)︁𝑝 𝑑𝑥

𝑥
6

∫︁ 1

0
𝑓𝑝(𝑥)𝑢(𝑥)𝑑𝑥

𝑥

−
∫︁ 1

0

∫︁ 1

𝑦

⃒⃒⃒
𝑥𝑓(𝑦) −

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝(︁
log 𝑒

𝑥

)︁𝛼𝑝−1 𝑑𝑥

𝑥2 𝑑𝑥 𝑑𝑦 =: 𝐼5

where

𝑢(𝑥) := 𝑥

∫︁ 1

𝑥

𝑥𝑝−2(log 𝑒

𝑦
)𝛼𝑝−1𝑑𝑦.

Remark 3.3. If we put

𝐼6 : = 𝛼−𝑝

∫︁ 1

0
𝑥𝑝

[︁
log 𝑒

𝑥

]︁(1+𝛼)𝑝−1
𝑓𝑝(𝑥)𝑑𝑥

𝑥
− 𝛼−1

(︁ ∫︁ 1

0
𝑓(𝑥) 𝑑𝑥

)︁𝑝

− 𝛼−𝑝

∫︁ 𝑥

0

⃒⃒⃒
𝑥 log 𝑒

𝑥
𝑓(𝑥) − 𝛼

∫︁ 𝑥

0
𝑓(𝑦) 𝑑𝑦

⃒⃒⃒𝑝[︁
log 𝑒

𝑥

]︁𝛼𝑝−1 𝑑𝑥

𝑥
,

then, it follows from Example 3.2 and inequality (2.3) that we have the following
strict improvement of inequality (2.3),

𝐼4 6 min(𝐼5, 𝐼6),

where 𝐼4, 𝐼5 and 𝐼6 are as defined above and 𝑝 > 2.
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