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A Comparative Study of Sea Clutter Covariance
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Abstract—Estimation of the polarimetric covariance matrix
is an important task in statistical modeling of sea clutter for
maritime applications of polarimetric synthetic aperture radar
(PolSAR) data. This work provides a comprehensive study of four
covariance matrix estimators: the maximum likelihood estimators
under the Gaussian distribution (G-ML) and the K distribution
(K-ML), an approximation of the latter (AK-ML), and a robust
M-estimator. It adds to previous theoretical studies of these
algorithms by evaluating their performance with respect to both
estimation accuracy and computational efficiency. Experiments
are performed on simulated datasets. Various texture conditions
of the sea clutter are considered in the study.

Index Terms—Synthetic aperture radar, Polarimetry, Sea clut-
ter, Statistical modeling, Covariance matrix estimation, Texture.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) pro-
duces high quality measurements of the Earth surface,

and has been widely utilized in different remote sensing
applications. Sea clutter is an example of a natural surface
which consists of distributed scatterers, and where all polari-
metric information is contained in the covariance matrix of
the single-look complex (SLC) scattering vector. Therefore,
covariance matrix estimation is an important factor in the
analysis of PolSAR images of the sea. For instance, constant
false alarm rate (CFAR) ship detection based on PolSAR
imagery relies upon accurate statistical estimation of the sea
clutter [1]–[3]. The covariance matrix estimate is also applied
in the polarimetric whitening filter (PWF), which processes
the SLC scattering vector into a full-resolution pixel intensity
and provides effective speckle reduction [4].

In this study, the main objective is to investigate and
compare different covariance matrix estimators for sea clut-
ter. The covariance matrix is commonly estimated from a
neighborhood of pixels within a sliding window. The classical
sample covariance matrix (SCM) estimator has been applied
as a good default option in previous studies. It is the maximum
likelihood (ML) covariance matrix estimator under the simple
assumption that the distribution of the scattering vector is
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complex, circular and zero-mean multivariate Gaussian. The
ML estimators both for the general case of a compound
Gaussian scattering vector and the particular case of gamma
distributed texture were derived in [5]. An approximation
for this case is introduced here, which provides comparable
accuracy and reduces the computational cost. The M-estimator
for the covariance matrix was introduced in [6] as an efficient
alternative to the ML estimator, and has recently won popu-
larity in the PolSAR literature [7]–[9], where it is known as
the fixed-point (FP) estimator.

Whereas the theoretical properties of the ML estimator and
the M-estimator have been studied in detail [7], [8], little has
been done to assess and compare estimators for the sea clutter
covariance matrix in terms of accuracy and speed. This work
provides a systematic study of the emerging candidates and
examines their performance under various texture conditions,
ranging from low through moderate to high cases. In the
experiments, simulated sea clutter is used as reference data
in a quantitative accuracy assessment. However, the model
covariance matrix used to generate data is obtained from a
real Radarsat-2 quadrature polarimetric (quad-pol) dataset.

This paper is organized as follows. Section II gives a brief
introduction to sea clutter statistics. Section III is devoted to a
systematic outline of covariance matrix estimation approaches
and detailed descriptions of each estimator. In Section IV,
different covariance matrix estimators are examined under
various texture conditions. Their performance is evaluated in
terms of estimation accuracy and computational efficiency.
Section V presents the main conclusions.

II. SEA CLUTTER STATISTICS

The PolSAR image provides a representation of the local
scattering properties of the sea clutter. The scattering vector,
i.e., the Sinclair matrix represented in vector form, is the basis
for statistical data analysis and modeling. It is defined as

s = [shh shv svh svv]
′ , (1)

where [·]′ is the transposition operator and str represents
complex scattering coefficients subscripted with transmit po-
larization t and receive polarization r, that can be horizontally
(h) or vertically (v) oriented. The vector samples {si}ni=1 of
size n obtained in local neighborhoods of the sea are assumed
independently and identically distributed (IID). Eq. (1) shows
the quad-pol SLC measurement of a SAR system.

The product model is commonly assumed to be an appro-
priate statistical model for the sea clutter in various scenarios.
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Introduced by Yueh et al. [10], the multivariate product model
decomposes the scattering vector as

s =
√
τx , (2)

where the real and positive random texture variable, τ ∈ R+,
represents spatial variability of the reflectivity, and the speckle
is represented by an independent d-dimensional circular com-
plex Gaussian vector, x ∼ NC

d (0,Σ), with zero mean vector
and covariance matrix Σ. A study by Vachon et al. [2]
indicates that sea clutter imaged by the Envisat ASAR C-
band sensor can be significantly non-Gaussian. Therefore,
it seems appropriate to assume e.g. a gamma distributed
texture variable, in which case the scattering vector will be
multivariate K distributed [10].

When a gamma distributed texture variable is assumed, it
introduces an additional shape parameter, α, which must be
determined to define the distribution. The shape parameter
indicates the texture condition; the larger (smaller) the shape
parameter, the lower (higher) the texture variation level. The
Gaussian case with no texture corresponds to α = ∞.
Moment-based methods for shape parameter estimation have
been studied in [11], [12]. Experiments verify that the variance
of moment-based estimator increases with moment order. In
this study, we use a method based on fractional moments
of single-look intensity, which is applied to all available
polarimetric channels before averaging the results, as in [13].
From [14], the mth-order moment of a K-distributed SAR
intensity I is given as

E{Im} = E{I}mΓ(L+m)

LmΓ(L)

Γ(α+m)

αmΓ(α)
, (3)

where E{·} is the expectation operator, L is the number
of looks, Γ(·) is the gamma function, and α is the shape
parameter. In the method of fractional moments, the moment
order is set to m = 0.5, and eq. (3) is solved numerically
for α after the population moments have been replaced by
sample moments computed from data. The sample moments
may attain values for which eq. (3) has no solution. This
happens when the sample moments fall outside the admissible
region for the population moments. It has no consequence in
practice, since this case can be interpreted as α̂ =∞, and we
revert to a Gaussian model for the scattering vector.

III. COVARIANCE MATRIX ESTIMATORS

To obtain a nonsingular estimate of the covariance matrix,
we need a data sample of size n ≥ d from the PolSAR
imagery. The covariance matrix estimate for a given pixel
is usually based on a neighborhood of pixels, and a sliding
window technique is used to produce an estimate for the
whole image. In general, the covariance matrix estimator is
formulated as

Ĉ =
1

n

n∑
k=1

w · sks†k , (4)

where n is the number of samples used for estimation, † is the
complex conjugate transpose operator, and w is a weighting
function distinguishing different estimation approaches.

A. Maximum likelihood estimator
In [5], Gini and Greco derived the general ML covariance

matrix estimator based on the product model, which is given
as

Ĉ
(i+1)

ML =
1

n

n∑
k=1

hd+1(s†k(Ĉ
(i)

ML)−1sk)

hd(s
†
k(Ĉ

(i)

ML)−1sk)
· sks†k , (5)

where i = 0, 1, 2, . . . , N is the iteration number and N is
the number of iterations, d is the dimension of the scattering
vector, and the function hd(q) is defined as

hd(q) =

∫ +∞

0

τ−d exp

(
− q

τ

)
pτ (τ)dτ , (6)

with the probability density function (pdf) of texture, pτ (τ).
Eq. (5) is an iterative solution of a transcendental equation.
The estimate at the (i+1)th step is obtained from the estimate
at step i. This process requires prior knowledge of the texture
pdf pτ (τ) and an appropriate starting point.

Eq. (5) can be rewritten by defining the weighting function
wo(q) = hd+1(q)/hd(q). Then the general ML covariance
matrix estimator is written as

Ĉ
(i+1)

ML =
1

n

n∑
k=1

wo(s
†
k(Ĉ

(i)

ML)−1sk) · sks†k . (7)

To implement it, a texture pdf must be assumed.
1) Gaussian distribution based ML estimator: The simplest

special case of the product model is when we assume a
constant texture variable. The scattering vector then becomes
complex multivariate Gaussian distributed, and the ML esti-
mator reduces to the familiar SCM estimator whose weighting
function is constant, wG = 1. It can thus be written as

ĈG =
1

n

n∑
k=1

1 · sks†k . (8)

This approach is the computationally most simple, but unfor-
tunately, it suffers a performance loss in spiky clutter [1]. Note
that the Gaussian distribution based ML (G-ML) estimate can
be used to initialize all of the iterative estimators and is known
to be complex Wishart distributed [15].

2) K distribution based ML estimator: For real sea clut-
ter, the constant texture assumption is often too simple and
inaccurate. In this study, gamma distributed texture with unit
mean value (E{τ} = 1) is assumed, thus the scattering vector
becomes multivariate K distributed [10]. The pdf of the mean
normalized gamma distributed texture variable τ is defined as

pτ (τ) =
1

Γ(α)
(α)ατα−1 exp(−ατ) , (9)

where α is the shape parameter. The weighting function for
this case was found in [5] as

wK(q) =

√
α

q

Kα−d−1(
√

4αq)

Kα−d(
√

4αq)
, (10)

where Kν(q) is the modified Bessel function of the second
kind with order ν. Therefore, the K distribution based ML
(K-ML) estimator becomes

Ĉ
(i+1)

K =
1

n

n∑
k=1

wK(s†k(Ĉ
(i)

K )−1sk) · sks†k . (11)
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This transcendental equation still needs to be solved iteratively,
which includes evaluating the complicated Bessel K function.
Note that the shape parameter of the texture pdf must be
estimated. Hence, we have a compound estimation problem.

3) Approximate K distribution based ML estimator: Ap-
proximations of the K-ML estimator can be achieved through
a number of methods. The authors have recently proposed one
possible option [3]. It computes the approximate bounds of the
Bessel K function ratio in eq. (10), but suffers serious limita-
tion for highly textured clutter. An interesting interpretation of
wo and some intuitive approximations of wK are given in [16]
in the context of polarimetric target detection and estimation
theory.

To obtain the required accuracy, a new approximate K
distribution based ML (AK-ML) estimator is derived by ap-
proximating the nonlinear memoryless function hd(q) defined
in eq. (6). After inserting the unit mean gamma distribution
in eq. (9) as the texture distribution, it is rewritten as

hd(q) =
αα

Γ(α)

∫ ∞
0

exp(f(τ ;α, q)) dτ (12)

by means of the function

f(τ ;α, q) = (α− d− 1) ln τ − q

τ
− ατ . (13)

In order to use Laplace’s method to approximate the integral
in eq. (12), we find the first and second derivative of f(τ) as

f ′(τ ;α, q) =
(α− d− 1)

τ
+

q

τ2
− α , (14)

f ′′(τ ;α, q) = − (α− d− 1)

τ2
− 2q

τ3
. (15)

Note that the shape parameter α is strictly positive, as is the
texture variable τ . As seen from eq. (11), the input to hd(q)
is a quadratic form in a positive definite matrix, so q is also
positive. Extrema of f(τ) are located at solutions of f ′(τ) = 0,
which is equivalent to ατ2 − (α− d− 1)τ − q = 0. The only
positive and thus physically valid solution is

τ0 =
β +

√
β2 + 4αq

2α
, (16)

where β = α−d−1. The second derivative at τ0 is f ′′(τ0) =
−(β τ0 + 2q)/τ30 . By showing

β τ0 =
β2

2α

(
1 +

√
1 +

4αq

β2

)
> 0 , (17)

it follows that f ′′(τ0) < 0, and we can conclude that f(τ0) =
β ln τ0 − q/τ0 − ατ0 is the unique maximum of f(τ). The
Laplace approximation can then be applied. It yields [17]

hd(q) '
αα

Γ(α)

(
2π

−f ′′(τ0)

) 1
2

ef(τ0)

=
αα

Γ(α)

(
2πτ30d

βdτ0d + 2q

)1
2

τβd

0d
exp

(
− q

τ0d
− ατ0d

)
,

(18)

where the indices of βd and τ0d indicate that they depend
on d. Hence, the weighting function of the K-ML estimator

hd+1(q)/hd(q) is approximated by

wAK(q) =

 βd + 2q
τ0d

βd+1 + 2q
τ0d+1

1
2

τ
1+βd+1

0d+1

τ1+βd

0d

× exp

((
q

τ0d
− q

τ0d+1

)
+ α(τ0d − τ0d+1

)

)
,

(19)

with the previously given expressions for β and τ0 inserted.

B. M-estimator

A rather different approach was proposed by Tyler [6], who
derived his covariance matrix estimator as a particular case of
Huber’s general class of robust ML-type estimators, known as
M-estimators. The M-estimator is defined as

Ĉ
(i+1)

M =
1

n

n∑
k=1

d

s†k(Ĉ
(i)

M )−1sk

· sks†k

=
1

n

n∑
k=1

wM (s†k(Ĉ
(i)

M )−1sk) · sks†k , (20)

where wM (q) = d/q. Most notably, the M-estimator does
not require any prior information about the texture pdf. More
recently, a large interest in this approach is observed in the
radar literature. The M-estimator was rediscovered in [5],
[18]. Pascal et al. proved the existence and uniqueness of its
solution, the convergence of its recursive scheme under any
initialization [7], and that it is asymptotically complex Wishart
distributed [8]. Many applications to analysis of PolSAR data
have followed, such as [9].

C. Comparison and Discussion

Four different approaches to covariance matrix estimation
have been presented: the G-ML, K-ML and AK-ML estimators
and the M-estimator. Table I gathers the key differences be-
tween the estimators. Note that all estimators except the G-ML
must be solved iteratively. Due to different pdf assumptions
of the texture in the product model, the primary difference
between each estimator comes down to the weighting function
w(q). The input q represents s†k(Ĉ)−1sk, whose values are
scattered around its expectation value of E{q} = d.

In Fig. 1, the behavior of the weighting functions, wG, wK ,
wAK and wM , are compared under various texture conditions,
ranging in shape parameter α = 1 to 10. Due to the capability
to adapt to various texture conditions, the weighting function
in the K-ML estimator is obviously more flexible compared
to wG and wM . This was also shown in [5]. We have found
experimentally that the approximation error of wAK increases
as q and α go to zero, whereas the relative error is worst at
α = d+ 1. Still, the approximation performs well in general.
However, the flexibility shown by the K-ML and AK-ML
approaches requires the additional task of shape parameter
estimation. This will introduce extra variance to the covariance
matrix estimation.
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TABLE I
COVARIANCE MATRIX ESTIMATORS COMPARISON.

Weighting functions Texture pdf assumption Parameter estimation
ML wo(q) = hd+1(q) / hd(q) no specific model depend on model

G-ML wG(q) = 1 constant variable no need
K-ML wK(q) =

√
α/q · Kα−d−1(

√
4αq) / Kα−d(

√
4αq) gamma distribution shape parameter

AK-ML wAK(q) =

(
βd + 2q

τ0d
/βd+1 + 2q

τ0d+1

)1
2

× τ1+βd+1
0d+1

/τ
1+βd
0d

× exp

((
q
τ0d
− q
τ0d+1

)
+ α(τ0d − τ0d+1

)

) gamma distribution shape parameter

M wM (q) = d / q no specific model no need

Fig. 1. The covariance matrix estimator weighting functions, wG, wK , wAK
and wM , at different specified shape parameters α in logarithmic scale.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the covariance matrix es-
timators discussed in Section III, a number of multivariate
K distributed scattering vectors are simulated with a population
mean covariance matrix obtained from real sea clutter in a
quad-pol SAR dataset. In the experiments, various texture
conditions are considered by specifying the shape parameters
used in the simulation (α = 1 to 20). The estimate from the
G-ML estimator is used to initialize all the iterative estimators
in this study. Monte Carlo simulations are implemented with
sample sizes of 64, 256 and 1024. Note that a small number
of samples is often preferred in practice, because of the
increasing risk of non-stationary statistics in large estimation
windows.

In this study, the Kullback-Leibler (KL) matrix distance
derived under the Wishart model [19] is applied in the com-
parison of the estimation accuracy of the covariance matrix
estimators. Its symmetric measure is defined as

DKL =
tr(C−1Ĉ) + tr(Ĉ

−1
C)

2
− d , (21)

where tr(·) is the trace operator, Ĉ and C represent the
estimated and reference mean covariance matrix, respectively.
We also compare the covariance matrix estimators with re-
spect to computational efficiency, which is represented by the
computation time and the number of iterations.

A. Estimation accuracy
Fig. 2 shows the experimental results of the covariance

matrix estimation comparison. Note that a shape parameter
estimate of α̂ > 50 can in practice be considered as a non-
textured case, i.e., the sample of scattering vectors is complex
multivariate Gaussian distributed.

From Fig. 2, it is clear that the K-ML estimator (black
line) provides the best estimation results under all conditions,
i.e. the smallest KL matrix distance. The new proposed AK-
ML estimator (black dashed line) is very close to the exact
K-ML, especially with a limited but practical number of
samples. However, when a large sample size is available,
it shows some relative performance loss under high texture
conditions. The other two approaches, G-ML (red line) and
M (blue line), are much less flexible. The G-ML estimator
shows a large estimation error under high texture conditions.
The M-estimator generally does not approach the accuracy of
the ML estimators unless for extremely high texture cases.
These results are explained by our theoretical study of the
weighting functions in Section III-C, where the wG and wM
cannot adapt to the range of texture conditions. An increase
in estimation accuracy with larger sample sizes is seen as
expected. However, the relative performance across different
estimators stays consistent with little variations.

B. Computational efficiency
Table II shows a comparison of computation time and

number of iterations for covariance matrix estimation under
different texture conditions with 256 samples. In our exper-
iments, convergence is defined as less than 0.001% change
in the matrix determinant between iterations. The number of
iterations required to reach convergence varies between several
to dozens of times, and it increases with the texture level. A
limit of 50 iterations is set to avoid an excessive number of
iterations under extremely high texture conditions.

Obviously, the simple G-ML estimator, ĈG, is the most
efficient. It is followed by the M-estimator, ĈM , which

TABLE II
MEAN COMPUTATION TIME [ms] AND NUMBER OF ITERATIONS FOR

COVARIANCE MATRIX ESTIMATION UNDER LOW (α = 11-20), MODERATE
(α = 6-10) AND HIGH (α = 1-5) TEXTURE CONDITIONS WITH 256

SAMPLES AND 10,000 REPETITIONS.

Textures ĈG ĈK ĈAK ĈM

low 0.194 / 0 6.69 / 4.4 4.27 / 4.3 2.13 / 3.6
moderate 0.174 / 0 9.27 / 6.8 5.60 / 6.8 2.00 / 3.7

high 0.136 / 0 20.0 / 18 12.7 / 21 1.64 / 3.9
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(a) Number of samples = 64. (b) Number of samples = 256. (c) Number of samples = 1024.

Fig. 2. G-ML, K-ML, AK-ML and M covariance matrix estimation accuracy in terms of the KL matrix distance at specified shape parameters with 64, 256
and 1024 samples. Each data point represents the mean value of 2000 repetitions.

also shows consistently short computational time due to its
fast converging, uncomplicated, but non-adaptive weighting
function. In general, the K-ML and AK-ML covariance matrix
estimators, ĈK and ĈAK , are more time consuming than the
others, which is mainly because of their sophisticated weight-
ing functions and the iterative computations. The AK-ML is
still significantly faster than the K-ML, and the speed-up effect
is most noticeable under high texture conditions. The savings
also increase when the number of polarimetric channels, d, is
lowered. This happens because the weighting function then
take up a larger proportion of the estimator’s computation
time, since other operations such as matrix inversion and
computation of the quadratic form q become less costly. In
total, the AK-ML estimator provides a compromise between
accuracy and speed, which may make it more attractive for
operational applications than what the K-ML has been.

V. CONCLUSIONS

A set of relevant approaches to covariance matrix estimation
were investigated in the context of sea clutter statistical mod-
eling via a comparative study of the G-ML, K-ML and AK-
ML estimators, and the robust M-estimator. The estimation
accuracy and the computational efficiency were measured
to evaluate estimator performance, and need to be balanced
according to user needs to make a choice.

In summary, the G-ML estimator is fast due to its simplicity,
and it is expected to perform well under low to moderate
texture conditions. The K-ML estimator models the sea clutter
more accurately than the G-ML estimator under high texture,
but at increased computational cost. The newly proposed AK-
ML estimator is comparable to the K-ML, especially with
small sample sizes, when only a small loss in accuracy is
observed under high texture conditions. Its computational cost
is significantly lower than for the K-ML estimator under all
conditions. The M-estimator does not provide any distinct
advantages in any of the studied cases. However, because it
requires no assumption of the texture distribution, it makes an
alternative to the G-ML in highly textured clutter.
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