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I. INTRODUCTION

Standard computational models in the study of the electronic structure of molecules

and solids, are formulated within the framework of one-electron basis sets. The quality of

the one-electron basis determines the overall accuracy which can be obtained by a chosen

computational model. For non-linear molecules, due to the simplicity in the calculation of

three- and four-centre two-electron integrals, the Gaussian type functions (GTFs) are usually

the preferred type of basis sets. If m is the size of the one-electron basis, the number of two-

electron integrals required, scales as m4, and the transformation of the two-electron integrals

to a molecular one-electron basis, scales as m5. The coupled-cluster model, CCSD(T) is

widely used for calculation of the electron correlation energy. The computational cost of the

model scales as n3
occn

4
virt where nocc and nvirt are respectively the number of occupied and

virtual orbitals. Since nocc is proportional to m, and if the whole virtual space is adopted

the overall scaling of the model is m7. However, since the pioneering work by Pulay1 and

Sæbø and Pulay2–5, a huge amount of work has been directed towards defining truncated

virtual spaces in the coupled-cluster hierarchy of computational models. As a result, the

computational feasibility of the models has been drastically improved. The very recent

work by Nagy and Kállay6 demonstrates this point. Nevertheless, the dilemma related to

contradictory requirements of accuracy and computational efficiency remains: high accuracy

requires a large m while computational efficiency a smaller m. This dilemma is in particular

difficult for large molecules.

Our approach to partly circumvent this difficult dilemma is based on a well-known obser-

vation: in a molecular complex the dominant part of the electron density is located in the

near regions of the nuclei. Accordingly, if we can identify an entity like a perturbed atom in

a molecule, we can “custom-design” basis sets for each atom in the system. The basis set

for an atom should be very accurate in the near region of the corresponding nucleus and less

accurate in the outer regions of the nucleus. One way of identifying perturbed atoms in a

complex is the PATMOS model (Perturbed AToms in MOlecules and Solids) introduced by

Røeggen and Gao7. This model is therefore the theoretical framework of our approach. It

allows for accurate, but shorter one-electron basis sets at the expense of different basis sets

for different atoms. Furthermore, in our approach there is a straightforward way of defining

truncated virtual spaces for calculations of the electron correlation energy.
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Our basis set approach has some similarity with the dual-basis technique used in quan-

tum chemistry8–13. In these techniques a small basis set is adopted for the Hartree-Fock

calculation and the larger basis set is used for the electron correlation calculation. Our

approach is different since we are using the same combination of small and large basis sets

for both the Hartree-Fock and the correlation calculations. Hence, in order not to confuse,

our basis set approach with the standard dual-basis techniques, we shall tentatively denote

our approach the PATMOS basis set procedure. However, we would like to emphasize that

the PATMOS model can of course also be used with regular basis sets. The PATMOS basis

set approach is an additional feature of the model.

The structure of the article is as follows: Section II is devoted to a short description of the

PATMOS model. Section III includes the key ideas concerning the atom-adapted basis sets,

a strategy for optimizing the unrestricted Hartree-Fock wave function, and prcedures for

constructing truncated virtual spaces. Section IV is focussed on periodic systems. The basis

set problem is in particular difficult for this type systems due to the frequent occurrence

of linear dependency when basis sets are expanded. In Section V we present some test

calculations on one-dimensional periodic systems: arrays of hydrogen atoms and lithium

atoms.

II. THE PATMOS MODEL

The PATMOS model7 is based on four basic assumptions. First, the root function is an

unrestricted Hartree-Fock (UHF) wave function. Second, localized orbitals are determined

by the Edmiston-Ruedenberg localization scheme. Third, a minimal distortion principle

is adopted for defining atoms (or ions) in complex. Fourth, the total energy is calculated

according to an energy incremental scheme.

A. The perturbed atom

Let {ψαi ; 1 ≤ i ≤ Nα} and
{
ψβi ; 1 ≤ i ≤ Nβ

}
denote respectively the spatial parts of the

α− and β-type orbitals of the UHF wave function, i.e.

ΨUHF = det
{
ψα1α · · ·ψαNααψ

β
1β · · ·ψ

β
Nβ
β
}
. (1)
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According to the Edmiston-Ruedenberg procedure14, the localized orbitals are obtained by

minimizing the following functionals,

Eα
Coul =

Nα∑
i<j

[
ψαi ψ

α
i |ψαj ψαj

]
, (2)

and

Eβ
Coul =

Nβ∑
i<j

[
ψβi ψ

β
i

∣∣∣ψβj ψβj ] , (3)

by unitary transformations of the orbitals involved. In Eqs. (2)-(3) the Mulliken notation is

adopted for the two-electron integrals.

In order to define perturbed atoms in the complex, we introduce the intra-atomic part of

the UHF energy:

EUHF
intra =

Natoms∑
A=1


NA
α∑

i=1

〈ψA;α
i |hAψ

A;α
i 〉+

NA
β∑

i=1

〈ψA;β
i |hAψ

A;β
i 〉

+

NA
α∑

i<j

([
ψA;α
i ψA;α

i

∣∣∣ψA;α
j ψA;α

j

]
−
[
ψA;α
i ψA;α

j

∣∣∣ψA;α
i ψA;α

j

])

+

NA
β∑

i<j

([
ψA;β
i ψA;β

i

∣∣∣ψA;β
j ψA;β

j

]
−
[
ψA;β
i ψA;β

j

∣∣∣ψA;β
i ψA;β

j

])

+

NA
α∑

i=1

NA
β∑

j=1

[
ψA;α
i ψA;α

i

∣∣∣ψA;β
j ψA;β

j

] , (4)

where hA is the one-electron Hamiltonian associated with nucleus A, charge ZA, and nuclear

position RA, i.e.

hA(r) = −1

2
∇2 − ZA

|RA − r|
. (5)

The orbitals
{
ψA;α
i ; 1 ≤ i ≤ NA

α

}
and

{
ψA;β
i ; 1 ≤ i ≤ NA

β

}
are the localized spatial parts of

the spin orbitals associated with the nucleus A.

The perturbed atom is then obtained by minimizing the functional EUHF
intra with respect

to all possible distributions of the orbitals with respect to the nuclei. In practice only a

small fraction of the distributions is required. Core orbitals are put in place straightaway,

and only a small set of interchange among the “nearest neighbor” valence orbitals is needed.

The optimal distribution is the one which has the lowest value of EUHF
intra . A perturbed atom

is then a nucleus and a set of electrons represented in the wave function by a set of spin
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orbitals, i.e. a set of α-type orbitals and/or a set of β-type orbitals. The number of spin

orbitals, i.e. NA
α +NA

β , determines whether the perturbed atom is a neutral entity or an ion.

B. The correlation energy

The orbital energy incremental scheme was introduced in quantum chemistry by Nesbet15.

In Nesbet approach, the correlation energy is a sum of one-electron corrections, two-electron

corrections, three-electron corrections, and so on. For an N -electron system with UHF wave

function

ΨUHF = det {ψ1ψ2 · · ·ψN} , (6)

and where {ψi; 1 ≤ i ≤ N} are the occupied spin orbitals, the correlation energy is written

as

εcorr =
N∑
i=1

εi +
N∑
i<j

εij +
N∑

i<j<k

εijk + · · · . (7)

The energy corrections are obtained by partial full configuration interaction (FCI) calcula-

tions. Nesbet’s original work has been refined by Stoll and co-workers16–18, by Røeggen19,20

and more recently by Bytautas and Ruedenberg21. A multireference incremental scheme has

been introduced by Voloshina and Paulus22 in a correlation treatment of bulk metals.

In this work we generalize the Nesbet approach by considering the perturbed atom as the

basic unit. The UHF wave function is written as

ΨUHF = det

{
Natoms∏
A=1

(
ψA1 · · ·ψANA

)}
, (8)

where {ψAi ; i = 1, · · · , NA} are the spin orbitals of atom A. The correlation energy is then

a sum of intra- and inter-atomic corrections:

Ecorr =
Natoms∑
A=1

Ecorr
A +

Natoms∑
A<B

Ecorr
AB +

Natoms∑
A<B<C

Ecorr
ABC + · · · . (9)

The correlation terms in Eq. (9) are calculated by a size extensive correlation model (CM),

for example FCI, a Nesbet hierarchy of orbital corrections or a coupled-cluster model. For

atom A we have an effective Hamiltonian:

HA
eff =

NA∑
i=1

hAeff(ri) +

NA∑
i<j

1

rij
. (10)
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The effective one-electron Hamiltonian is given by

hAeff(ri) = h(ri) +
Natoms∑
B 6=A

NB∑
j=1

(JBj −KB
j ). (11)

If only Coulomb interaction are included,

h(ri) = −1

2
∇2
i −

Natoms∑
B=1

ZB
|RB − ri|

. (12)

In Eq. (11), JBj and KB
j are, respectively, Coulomb and exchange operators defined by the

spin orbital ψBj . The intra-atomic correlation energy is then calculated as follows:

HA
effΨCM

A = λCM
A ΨCM

A , (13)

EUHF
A = 〈ΨUHF

A |HA
effΨUHF

A 〉, (14)

ECM
A = λCM

A − EUHF
A . (15)

The energy eigenvalue equation Eq. (13) is solved by means of the chosen correlation model,

and ΨUHF
A is the UHF wave function defined by the spin orbitals

{
ψAi ; 1 ≤ i ≤ NA

}
. If CM

is the FCI model, then

ECM
A = Ecorr

A . (16)

Otherwise, ECM
A is an approximation to Ecorr

A .

The diatomic correlation terms are determined by a similar set of equations:

HAB
eff ΨCM

AB = λCM
ABΨCM

AB , (17)

EUHF
AB = 〈ΨUHF

AB |HAB
eff ΨUHF

AB 〉, (18)

ECM
AB = λCM

AB − EUHF
AB − ECM

A − ECM
B . (19)

The definitions of the symbols in Eqs. (17)–(19) are obtained by straightforward modifi-

cations of Eqs. (10)–(12). Furthermore, three-atomic and higher order corrections can be

generated in a similar way.

III. ATOM-ADAPTED BASIS SETS

A localized orbital associated with a perturbed atom is most appropriately described

by a large atom-centered basis set on the nucleus in question and smaller basis sets on the
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partner nuclei of this particular atom. Hence, in this novel approach we specify two different

atom-centered basis sets for each nucleus: a small basis set,
{
χA,sbµ ;µ = 1, · · · ,msb

A

}
, and a

large basis set,
{
χA,lbµ ;µ = 1, · · · ,mlb

A

}
. The basis set for atom A is then

ΩA
dual =

{
χA,dual
µ ;µ = 1, · · · ,mdual

A

}
=
{
χA,lbµ ;µ = 1, · · · ,mlb

A

}Natoms⋃
B 6=A

{
χB,sbµ ;µ = 1, · · · ,msb

B

}
. (20)

The spatial part of a spin orbital (α- or β-type)

ψAi =

mdual
A∑
µ=1

Udual
µ,i χ

A,dual
µ . (21)

The orbitals of the UHF wave functions are subjected to orthogonality constraints:

〈ψA,αi |ψ
B,α
j 〉 = δijδAB, (22)

〈ψA,βi |ψ
B,β
j 〉 = δijδAB. (23)

Since we have different basis sets for different atoms, these constraints require special atten-

tion in the optimization of the UHF wave function.

A. Optimization of the UHF function

The optimization of the UHF function is a two-step procedure. In step one we calculate

the UHF function for the complex using a small basis set for all atoms. We then localize

the spin orbitals and define the atoms (ions).

For the periodic systems we use a simplified localization scheme. The orbitals of the atoms

of the reference unit cell are at each step of the iterative sequence localized by maximizing

the overlap with the orbitals of the isolated atoms, i.e. we use the minimal distortion

localization scheme introduced by Ahmadi and Røeggen23. By this procedure the atoms are

in a sense predefined. For cases involving electron transfer, we will have atoms with dipole

character.

In step two we start with the localized orbitals in step one, as start orbitals. The orbitals

satisfy the orthogonality requirement expressed by Eqs. (22)–(23). Then we proceed through

a set of iterative cycles. In each cycle the UHF wave function for each atom is calculated.

The UHF equations are solved in an orbital space orthogonal to the occupied orbtials of

7



the partner atoms. Let PB,α
occ denote the projection operator defined by the occupied α-type

orbtials of atom B. The dual space ΩA
dual, Eq. (20), is modified:

χ̂A,dual
µ =

(
1−

Natoms∑
B 6=A

PB,α
occ

)
χA,dual
µ , 1 ≤ µ ≤ mdual

A . (24)

A linear independent set of functions,
{
φA,αµ ; 1 ≤ µ ≤ m̃dual

A ≤ mdual
A

}
, is constructed from

the set of modified functions
{
χ̂A,dual
µ ; 1 ≤ µ ≤ mdual

A

}
. The Hartree-Fock equations for α-

type orbtials are then solved within the space
{
φA,αµ

}
. A similar approach is adopted for

the β-type orbitals.

If we denote the spin orbitals of the previous cycle,
{
ψA,old
i ; 1 ≤ i ≤ NA; 1 ≤ A ≤ Natoms

}
,

and the spin orbitals of the present cycle,
{
ψA,new
i ; 1 ≤ i ≤ NA; 1 ≤ A ≤ Natoms

}
, we have

by construction:

〈ψA,new
i |ψB,old

j 〉 = 0, B 6= A, 1 ≤ i ≤ NA, 1 ≤ j ≤ NB. (25)

However, 〈ψA,new
i |ψB,new

j 〉, is not strictly zero when B 6= A. Hence, we modify the new

orbitals in order to come closer to the orthogonality condition. We introduce orbital correc-

tions

∆ψAi = ψA,new
i − ψA,old

i , (26)

and modified orbitals

ψ̂A,mod
i = ψA,old

i + λ∆ψAi , 1 ≤ i ≤ NA, 1 ≤ A ≤ Natoms. (27)

In Eq. (27) λ is a parameter in the range 0 < λ ≤ 1 For each atom we perform a symmetric

orthonormalization of the spin orbitals
{
ψ̂A,mod
i ; 1 ≤ i ≤ NA

}
, i.e.

{
ψ̂A,mod
i

}
→
{
ψA,mod
i

}
,

such that

〈ψA,mod
i |ψA,mod

j 〉 = δij, 1 ≤ i, j ≤ NA, 1 ≤ A ≤ Natoms. (28)

Then we define an overlap functional:

L(λ) =
Natoms∑
A<B

NA∑
i=1

NB∑
j=1

|〈ψA,mod
i |ψB,mod

j 〉|2. (29)

By minimizing L(λ) we obtain orbitals which are more in accordance with the orthogonality

constraints. In the end of the iteration procedure, the orthogonality constraints are strictly

fulfilled due to Eq. (25).
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B. Truncated virtual orbital spaces

The use of truncated but efficient, virtual orbital spaces for electron correlation calcu-

lations, is of paramount importance. In the pioneering works by Pulay1 and Pulay and

Sæbø2–5, there is a truncated virtual space for each pair of occupied orbitals. In this work

the truncation of virtual space is closely related to the incremental scheme adopted for the

calculation of the electron correlation energy.

The occupied orbitals of atom A are expressed in terms of the basis ΩA
dual, i.e. Eq. (20).

Since the occupied orbitals are localized in a region close to the nucleus of atom A, an efficient

truncated virtual orbital space for the intra-atomic corelation energy, can be obtained from

a proper modification of the large basis set
{
χA,lbµ ; 1 ≤ µ ≤ mlb

A

}
. The modification is due to

orthogonality constraints. All virtual orbitals must be orthogonal to all occupied orbitals of

the system. Let us first consider the virtual space of α-type orbitals. An auxilliary virtual

space is constructed from ΩA
dual:

χA,aux
µ =

(
1−

Natoms∑
B=1

PB,α
occ

)
χA,dual
µ , 1 ≤ µ ≤ mdual

A . (30)

In Eq. (30) PB,α
occ denotes the projection operator defined by the occupied α-type orbitals

of atom B, and χA,dual
µ ∈ ΩA

dual. Let PA,aux
virt denote the projection operator associated with

the auxilliary space
{
χA,aux
µ ; 1 ≤ µ ≤ mdual

A

}
. In the next step we project the basis functions{

χA,lbµ ; 1 ≤ µ ≤ mlb
A

}
onto this auxilliary space:

χ̂A,lbµ = PA,aux
virt χA,lbµ , 1 ≤ µ ≤ mlb

A. (31)

The functions
{
χ̂A,lbµ ; 1 ≤ µ ≤ mlb

A

}
satisfy the orthogonality constraints by construction.

Then we diagonalize the overlap matrix (〈χ̂A,lbµ |χ̂A,lbν 〉) and select the eigenfunctions corre-

sponding to the (mlb
A −NA

α ) largest eigenvalues.

The proper truncated virtual space for atom A is then obtained by some appropriate

matrix multiplications defined by the preceding steps. Since we have the same number

of virtual orbitals as for an isolated atom, there is no basis set superposition error at the

correlation level in this computational scheme. We would also like to stress that the use of

the auxilliary virtual space is important in order to have a truncated virtual space which is

not too much distorted by the occupied orbitals of the partner atoms.
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The construction of the truncated virtual spaces for the diatomic correlations follows a

similar procedure as for the intra-atomic case. For the cluster (A,B) we have a dual space:

ΩAB
dual =

{
χAB,dual
µ ; 1 ≤ µ ≤ mdual

AB

}
=
{
χA,lbµ ; 1 ≤ µ ≤ mlb

A

}⋃{
χB,lbµ ; 1 ≤ µ ≤ mlb

B

} Natoms⋃
C 6=A,B

{
χC,sbµ ; 1 ≤ µ ≤ msb

C

}
. (32)

An auxilliary space for α-type orbitals is defined by

χAB,aux
µ =

(
1−

Natoms∑
C=1

PC,α
occ

)
χAB,dual
µ , 1 ≤ µ ≤ mdual

AB . (33)

Let PAB,aux
virt denote the projection operator associated with the auxilliary space

{
χAB,aux
µ ; 1 ≤ µ ≤ mdual

AB

}
,

and the large space for (A,B),

ΩAB,lb =
{
χA,lbµ ; 1 ≤ µ ≤ mlb

A

}⋃{
χB,lbµ ; 1 ≤ µ ≤ mlb

B

}
=
{
χAB,lbµ ; 1 ≤ µ ≤ (mlb

A +mlb
B)
}
. (34)

In order to satisfy the orthogonality condition, the elements of ΩAB,lb are projected onto the

space of the auxilliary functions:

χ̂AB,lbµ = PAB,aux
virt χAB,lbµ , 1 ≤ µ ≤ (mlb

A +mlb
B). (35)

Then we diagonalize the overlap matrix (〈χ̂AB,lbµ |χ̂AB,lbν 〉) and select the (mlb
A+mlb

B−NA
α −NB

α )

eigenvectors associated with the largest eigenalues. By a trivial transformation of the orbitals

we arrive at the proper truncated virtual space for α-type orbitals of the diatomic cluster

(A,B).

It remains to be said that the virtual β-type orbitals are obtained by similar procedures.

The extension to three-atom truncated virtual spaces is of course straightforward. Further-

more, basis set superposition error is of concern, then the intra-atomic corrections to be

used in Eq. (19), should be recalculated with the dimer virtual spaces as virtual spaces.

IV. PERIODIC SYSTEMS

As stated in the Section I, the basis set problem is in particular difficult for periodic

systems. Our approach on large systems is slightly modified when we are dealing with this

type of system.
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An infinite system of periodic unit cells is approximated by a finite set of identical unit

cells where Nuc
model is the number of unit cells in the model. Further, we define a basis

function (BF) region as a unit cell and a certain number of nearest neighbor unit cells. The

number of unit cells included in the BF-region is denoted Nuc
bf . See illustration in Fig. 1.

The basis set for an atom in the reference cell is then

{χA,lbµ ; 1 ≤ µ ≤ mlb
A}

BF-region⋃
B 6=A

{χB,sbµ ; 1 ≤ µ ≤ msb
B}. (36)

As shown by Røeggen and Gao7, the PATMOS energy can be partitioned in the following

way:

EPATMOS =
Natoms∑
A=1

(EUHF
A +Ecorr

A ) +
Natoms∑
A<B

(ECoul
AB +Eexch

AB +Ecorr
AB ) +

Natoms∑
A<B<C

Ecorr
ABC + · · · . (37)

In Eq. (37) ECoul
AB and Eexch

AB are respectively the Coulomb and exchange part of the interaction

energy between the atoms A and B. Effective atomic energies can be introduced:

EPATMOS =
Natoms∑
A=1

Eeff
A , (38)

where

Eeff
A = EUHF

A + Ecorr
A +

1

2

Natoms∑
B 6=A

(ECoul
AB + Eexch

AB + Ecorr
AB )

+
1

3


Natoms∑
B,C

A<B<C

Ecorr
ABC +

Natoms∑
B,C

B<A<C

Ecorr
BAC +

Natoms∑
B,C

B<C<A

Ecorr
BCA

+ · · · . (39)

For a periodic system, the important term is the sum of effective atomic energies for the

atoms of the reference cell, i.e.

EPATMOS
uc =

Nuc
atoms∑
A=1

Eeff
A , (40)

where Nuc
atoms is the number of atoms in the unit cell. As we increase the number of unit cells

in the model, i.e. Nuc
model, the term EPATMOS

uc should converge to the corresponding term for

the infinite system.
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V. TEST CALCULATIONS

To illustrate the features of the advocated basis set approach, we consider test cases on

periodic systems. One-dimensional arrays of hydrogen and lithium atoms are chosen as test

systems.

Our code requires family type basis sets. The procedure for constructing the basis sets

is described in Appendix in the work by Røeggen and Gao7. The parameters defining the

basis sets are given in Table I. The correlation energy is calculated according to the Nesbet

scheme15, i.e. Eq. (7). Since our work is essentially a basis set study, it is sufficient to include

only the two-elctron terms in the Nesbet scheme. The two-electron correlation terms are

calculated by the FCI model. Hence, the calculations scale as m4
virt, where mvirt is the

number of virtual orbitals. In this work we use an integral threshold of 10−7 Hartree for the

Cholesky decomposition of the two-electron matrix.

A. One-dimensional array of H atoms

Our basis set of calculations is on a chain of H atoms with an equal nearest neighbor

distance of rH1,H2 = 2 bohr, and hence a unit cell distance of ruc = 4 bohr. The calculations

yield an α-type orbital centered on one nucleus and a β-type orbital on the second nucleus of

the unit cell. The extension of the corresponding electron densities are described by charge

ellipsoids7. This geometrical information is displayed in Fig. 2.

Three different uncontracted GTF basis sets are chosen as small basis (sb) sets: (10s1p),

(10s2p) and (10s2p1d). Two large basis sets are adopted: an uncontracted (13s4p3d1f) GTF

and an uncontracted (13s6p5d4f3g2h1i) GTF. The last set is an even-tempered extension

of the (13s4p3d1f) set. A model system with Nuc
model = 13 and Nuc

bf = 13, (sb) = (10s2p1d)

and (lb) = (13s4p3d1f), implies that the number of basis functions for an atom is equal to

572. On the other hand, using the (lb) set on all atoms, yields 1222 basis functions. Hence

the (sb/lb) combination gives a substantial reduction of the number of basis functions. It

should be mentioned that for the actual geometry, and parameters Nuc
model = Nuc

bf = 13, a

larger small basis than (10s2p1d) generated linear dependency.

In Table II we present calculations of the unit cell energies at both the UHF and the

PATMOS level for different values of the parameters: Nuc
model—the number of unit cells

12



included in the model, and Nuc
bf —the number of unit cells included in the basis function

region. Pertaining to the results conveyed by this table, we first notice the close similarity

of the UHF results for the two basis sets (sb) and (sb/lb). This is of course due to the fact

that the GTF set (10s2p1d) is fairly close to the basis set limit for HF calculations on the H

chain. Accordingly, large basis sets are not very important at the UHF level. However, for

the electron correlation part, a large basis is important. The main information presented in

this table is that high accuracy requires large values for both Nuc
model and Nuc

bf . In Table III

we consider three different small basis sets. We notice that even with smallest basis, i.e.

(10s1p), the error is quite small. This result is important since it suggests that the advocated

basis set approach works well for periodic systems.

Motta et al.24 have very recently published an extensive study of finite chains of hydrogen

atoms. A variety of many-body methods were considered. H chains with nearest neighbor

distance R ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 3.6} bohr were included in their report.

In their work they introduced the thermodynamic limit as

ETDL(R) = lim
N→∞

E(N,R), (41)

where E(N,R) is the energy per atom for a chain with N atoms and distance R. They

estimated the thermodynamic limit by extrapolation with N ranging from 10 to 102. They

also use the term equation of state (EOS) to refer to ETDL(R) versus R at zero temperature.

Furthermore, they also extrapolated to the complete basis set limit. Table VI (Final equation

state for the hydrogen chain at the thermodynamic limit) in Ref.24 summarizes their results.

From Table VI of Motta et al.24 we include the wave function based models AFQMC (Auxiliary-

Field Quantum Monte Carlo), UCCSD (Coupled Cluster theory with Single and Double

excitations and UHF as a reference state), and UHF (Unrestricted Hartree Fock). AFQMC

is included for comparison since it is supposed to give the most accurate result, but with

a somewhat large random uncertainty. UCCSD is included since it is based on UHF as

a root function, as is also the case for the PATMOS models. In our Table IV we include

the results for the three selected models from Motta et al.24 together with the UHF and

PATMOS results. We have also included in Table IV the results obtained by what we denote

a basis set corrected PATMOS model, i.e. PATMOS(13s4p3d1f/13s6p5d4f3g2h1i). This

correction is based on the following observation. For the distance R = 2.0 bohr we have

respectively correlation contribution to the energy per atom equal −0.023761 Hartree and
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−0.023593 Hartree for the parameter combinations Nuc
model = Nuc

bf = 13 and Nuc
model =

Nuc
bf = 7. Hence, in order to estimate the change in PATMOS energy by changing

(lb) = (13s4p3d1f) to (lb) = (13s6p5d4f3g2h1i) we might just as well use the PAT-

MOS model with the parameters Nuc
model = Nuc

bf = 7. We then calculate the energy per

atom difference between PATMOS(13s6p4d4f3g2h1i) and PATMOS(13s4p3d1f) and add

this difference to the energy per atom obtained by PATMOS(13s4p3d1f) with parameters

Nuc
model = Nuc

bf = 13. In Table IV these basis set corrected results are marked with the

heading PATMOS(13s4p3d1f/13s6p5d4f3g2h1i). To avoid linear dependency, threshold

equal 10−7, we have for the two smallest distances, R = 1.4 bohr and R = 1.6 bohr, changed

the small basis from (sb) = (10s2p1d) to (sb) = (10s1p). Furthermore, in calculating the

basis set corrections for these distances the two most diffuse s-type functions were deleted

in the larger basis sets for the same reason.

Pertaining to the results presented in Table IV, we would like to emphasize the fol-

lowing points. First, the UHF results obtained with the (sb/lb) combination compare

favourably with the converged results of Motta et al. Our (sb/lb) approach yields prac-

tically the same results as the computationally much more expensive procedure with

very large basis sets required for the extrapolation to the complete basis set limit. Sec-

ond, for distances R ≥ 1.6 bohr, the PATMOS(13s4p3d1f) results are closer to the

AFQMC results than the results of UCCSD. By including the basis set correction, i.e.

the PATMOS(13s4p3d1f/13s6p5d4f3g2h1i), the agreement with AFQMC is overall better.

If we compare our most accurate results, i.e. PATMOS(13s4p3d1f/13s6p5d4f3g2h1i), and

the results of the UCCSD model, with the AFQMC calculations, the UCCSD model has a

mean absolute error of 0.00186 Hartree and a maximum absolute error of 0.00219 Hartree.

The corresponding quantities for the PATMOS model are respectively 0.00074 Hartree and

0.00214 Hartree. Accordingly, the PATMOS model has a somewhat oscillatory character.

This feature is not related to the model as such, but due to the adopted correlation model

in this study. Truncation in the Nesbet scheme at the two-electron level, implies that all

poly-electron terms are neglected. The relative error of the calculated correlation energy by

this truncation is usually between 1 and 10%. The error can be either positive or negative,

depending on the system and the configuration of the nuclei. An error of 5% corresponds

roughly to 0.0012 Hartree per atom of the H chain. It is therefore very likely that the good

agreement obtained for the distances (1.6, 2.0 and 2.8 bohr) are due to a fortuitous cancel-
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lation of errors, i.e. neglected three-electron terms with different signs. For distances where

there are larger discrepancies between the AFQMC and the PATMOS model, it is likely

that the most important three-electron terms have the same sign. Therefore, by including

three-electron terms in this type of calculations the oscillatory character of the errors will

be drastically reduced.

B. One-dimensional array of Li atoms

The one-dimensional array of Li atoms has an equal nearest neighbor distance of rLi1,Li2 =

5.74421 bohr, the experimental equilibrium distance of nearest neighbor atoms in bcc solid

lithium25. As dispalyed in Fig. 3, the bonding in this system is characterized by one-

electron bonds between the nuclei. Hence the perturbed atom in this case has electric dipole

character.

In the calculations on the Li atoms we have one fixed small basis set: an uncon-

tracted (11s2p) GTF basis, and two large basis sets: uncontracted (15s7p2d1f) GTF

and (19s8p7d5f2g1h) GTF. As in the hydrogen study we include only two-electron FCI

calculations. Core-core correlation terms are neglected since their magnitude are less than

10−6 Hartree. However, core-valence correlation terms are important due to the large shift of

the valence orbitals from isolated atom to perturbed atoms of the Li chain. Three-electron

correlation terms can for this system be safely neglected. For the isolated Li atom the total

PATMOS energy using the basis set (19s8p7d5f2g1h), is respectively −7.477094 Hartree and

−7.477080 Hartree with and without three-electron correlation energies (estimated nonrela-

tivistic limit26 for the Li energy is −7.478060 Hartree). By using the smaller of the two (lb)

sets, i.e. (15s7p2d1f), the PATMOS energy for the isolated atom is −7.472984 Hartree. The

isolated atomic energies are obtained by performing calculation on Li with an internuclear

distance equal 100.0 bohr.

In Table V we present the effective unit cell energies and correlation contributions for

different values of the model parameters Nuc
model and Nuc

bf . As for the results of this table we

would like to emphasize that the energies converge nicely with the size of the model system,

but more slowly than the H atom case. The slower convergence is of course due to the dipole

character of the perturbed atoms. However, the correlation terms, intra- and interatomic

contributions, have a somewhat faster convergence.
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Energy differences, say binding energies, are important in chemistry. In Table VI we look

at the energy difference between the effective unit cell energy and two isolated Li atoms. By

using the two different large basis sets, we notice that the smaller of the basis sets, yields a

result which is in “error” by approximately 1.5%.

To conclude, our calculations on the Li atoms demonstrate clearly that the advocated

basis set approach can be used for metallic type systems if the perturbed atoms can be

described by orbitals located in vicinity of the corresponding nuclei.

VI. CONCLUDING REMARKS

As emphasized in the Introduction, accurate calculations on large systems are very de-

manding with respect to the quality of the one-electron basis sets. We have demonstrated

in this work that the adoption of a combination of large and small basis sets for the atoms

involved might be a way of circumventing the dilemma between the use of large basis sets

and computational feasibility. Furthermore, the results obtained for the H chain suggest

that the PATMOS model works well for periodic systems, in particular if we use a more so-

phisticated correlation approach such as UCCSD(T) or the Nesbet scheme where the most

important three-electron FCI terms are included.

Our approach is based on the assumption that it is possible to define what we call

“perturbed atoms” in a system. We have not yet shown that this is always the case, even

if it is highly likely. The obvious challenge is the metals. In a forthcoming work we shall

report on more comprehensive studies of Li chains and lattices.
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TABLE III. Changes in effective unit cell energies with different basis sets for the H-atom chain.

Reference basis: (10s2p1d/13s4p3d1f). Model parameters: Nuc
model = Nuc

bf = 13. Nearest neighbor

distance: 2.0 bohr.

Basis sets ∆EUHF,eff
uc (sb/lb) ∆EPATMOS,eff

uc (sb/lb)

sb lb (Eh) (Eh)

10s1p 13s4p3d1f 0.000030 0.000023

10s2p 13s4p3d1f 0.000020 0.000022

10s2p1d 13s4p3d1f 0.000000 0.000000

(−1.077797) (−1.125317)
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TABLE IV. The equation of state for the chain of H atoms calculated by different models. PATMOS

and UHF with model parameters Nuc
model = Nuc

bf = 13. Literature data from Motta et al24.

R AFQMC24 UCCSD24 UHF24 UHF PATMOS PATMOSa

(13s4p3d1f) (13s4p3d1f/13s6p5d4f3g2h1i)

(bohr) (Eh) (Eh) (Eh) (Eh) (Eh) (Eh)

1.4 −0.54044(35) −0.53897(22) −0.51234(3) −0.51202 −0.53779 −0.53830

1.6 −0.55971(36) −0.55778(15) −0.53256(2) −0.53240 −0.55918 −0.55987

1.8 −0.56569(30) −0.56354(7) −0.53925(1) −0.53918 −0.56366 −0.56448

2.0 −0.56444(34) −0.56238(2) −0.53894(1) −0.53890 −0.56266 −0.56449

2.4 −0.55313(31) −0.55105(2) −0.52978(1) −0.52976 −0.55184 −0.55253

2.8 −0.53886(29) −0.53666(7) −0.51883(1) −0.51881 −0.53839 −0.53888

3.2 −0.52557(23) −0.52403(12) −0.51058(1) −0.51058 −0.52620 −0.52658

3.6 −0.51611(22) −0.51462(14) −0.50556(1) −0.50555 −0.51654 −0.51683

a Explanation in the body of the text.
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TABLE VI. Binding energies per lithium atom using two different large basis sets. Unit cell

dimension ruc = 2rLi1,Li2 = 10.0 bohr, on the repulsive branch of the potential energy curve, and

model parameters Nuc
model = Nuc

bf = 7.

Basis sets ∆E =
(
EPATMOS,eff

uc − 2EPATMOS
atom (isolated)

)
/2

sb lb (Eh)

11s2p 15s7p2d1f 0.019987

11s2p 19s8p7d5f2g1h 0.020273
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Figure Captions

Figure 1: Model of infinite, one-dimensional periodic system of unti cells.

Figure 2: Intersection between the xy-plane and the charge ellipsoids of α- and

β-type orbitals of the atoms in the reference cell of the one-dimensional

array of H atoms. The number of unit cells in model and the number

of unit cells in the basis function region are respectively Nuc
model = 13

and Nuc
bf = 13. Half axes and distance in scale. Basis: (sb/lb) =

(10s2p1d/13s4p3d1f).

Figure 3: Intersection between the xy-plane and the charge ellipsoids of the valence

α- and β-type orbitals in the reference cell of the one-dimensional array

of Li atoms. The number of unit cells in the model and the number

of unit cells in the basis function region are respectively Nuc
model = 13

and Nuc
bf = 13. Half axes and distance in scale. Basis: (sb/lb) =

(11s2p/15s7p2d1f).
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Figure 1, Inge Røeggen et al, J. Chem. Phys.
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Figure 2, Inge Røeggen et al, J. Chem. Phys.
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Figure 3, Inge Røeggen et al, J. Chem. Phys.
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