
Faculty of Science and Technology
Department of Computer Science

Metadata state and history service for datasets
Enable extracting, storing and access to metadata about a dataset over time.
—
Roberth Hansen
INF-3990 Master’s Thesis in Computer Science - May 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

To Maria.

Thank you very much.

“When I’m working on a problem, I never think about beauty.
I think only how to solve the problem.

But when I have finished, if the solution is not beautiful,
I know it is wrong.”

–R. Buckminster Fuller

“The most important property of a program
is whether it accomplishes the intention of its user.”

–C.A.R Hoare

Abstract
Distributed Arctic Observatory (DAO) aims to automate, streamline and im-
prove the collection, storage and analysis of images, video and weather mea-
surements taken on the arctic tundra. Automating the process means that there
are no human users that needs to be involved in the process. This leads to a
loss of monitoring capabilities of the process. There are insufficient tools that
allow the human user to monitor the process and analyze the collected volume
of data.

This dissertation presents a prototype of a system to aid researchers in moni-
toring and analyzing metadata about a dataset. The approach is a system that
collects metadata over time, stores it in-memory and visualizes the metadata
to a human user.

The architecture comprises three abstractions Dataset, Instrument and Visual-
ization. The Dataset contains metadata. The Instrument extracts the metadata.
The Instrument supplies metadata to the Visualization abstraction.

The design comprises a Dataset, Metadata extractor, Dataset server, Web server
and Visualization. The Dataset is a file system. The Metadata extractor collects
metadata from the dataset. The Dataset server stores the collected metadata.
The Web server requests metadata from the dataset server and supplies it
to a web browser. The Visualization uses the metadata to create visualiza-
tions.

The Metadata extractor is a prototype written in Python and is executed
manually as a process. The Dataset server utilizes Redis as an in-memory
database andRedis is executedmanually as a process. Redis supports a selection
of data structures, this enables a logical mapping of metadata. The Web server
is implemented using the Django web framework and is served by Gunicorn
and Nginx. The Visualization is implemented in JavaScript, mainly utilizing
Google Charts to create the visualizations.

A set of experiments was conducted to document performance metrics for the
prototype. The results show that we can serve about 2500 web pages to 10

iv ABSTRACT

concurrent connections with a latency below 5 ms. The results show that we
can store 100 million key-value pairs in 9 GB of memory. Our calculations
indicates that it will take over 690 years to reach 9 GB of memory footprint
with the current structure of metadata.

This dissertation designs, implements and evaluates an artifact prototype that
allow researcher to monitor and analyze metadata about a dataset over time.
We contribute an architecture and design that enables and supports the creation
of visualizations of organized and processed metadata. The artifact validates
using in-memory storage to store the historic metadata.

Acknowledgements
I would like to thank my main advisor Professor Otto Anshus, and co-advisor
Associate professor John Markus Bjørndalen for you advice, ideas and feedback.
I want to especially thank Otto for our hours long discussions about defining
the architecture and design of the system, and of course naming things.

I want to express my gratitude to my fellow students, especially Simon who
pulled me through my first three years. And Nina who’s been a valuable
discussion partner.

I would like to thank my dad for always encouraging me and a special thanks
to my mom who has been taking care of my son Tobias when I’ve been writing
this thesis.

Tobias, you are the reason I do this.

Maria, you have been there for me for every step of this five year journey. Thank
you for listening to me,

But I

I love it when you read to me

And you

You can read me anything

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii
Listings . xiii

List of Listings xv

List of Abbreviations xvii

1 Introduction 1
1.1 Challenges . 2
1.2 Main contributions . 2
1.3 Outline . 3

2 Related work 5

3 Idea 7

4 Architecture 9
4.1 Human user abstraction . 9
4.2 Visualization abstraction . 11

4.2.1 Interact with human user 11
4.2.2 Request metadata 11
4.2.3 Transform metadata 11
4.2.4 Visualize information for user 12

4.3 Instrument . 12
4.3.1 Locate metadata dataset 12
4.3.2 Collect and return metadata 12
4.3.3 Metadata dataset . 12
4.3.4 Extract metadata . 13

vii

viii CONTENTS

4.4 Dataset . 13

5 Design 15
5.1 Visualization . 15

5.1.1 Visualization application 17
5.1.2 Web browser client 17

5.2 Web server . 17
5.3 Dataset service . 18
5.4 Dataset server . 19
5.5 Metadata extractor . 19

6 Implementation 21
6.1 Visualization . 21

6.1.1 Technologies . 21
6.1.2 Information types 23
6.1.3 Directory names . 25

6.2 Web server . 25
6.2.1 Commands . 26
6.2.2 Response . 26

6.3 Dataset server . 27
6.3.1 Commands . 27
6.3.2 Redis data structures 28
6.3.3 Redis pipelines . 29

6.4 Metadata extractor . 29
6.4.1 File system iteration 30
6.4.2 Metadata extraction 30
6.4.3 Unique hash ID . 31

6.5 Technologies . 31
6.6 File creation . 31

7 Experiments 35
7.1 Benchmarking tools . 36

7.1.1 wrk . 36
7.1.2 psutil . 38
7.1.3 Redis benchmark . 38

7.2 Experiment dataset . 38
7.3 Web browser client . 39
7.4 Web browser client - memory footprint 40

7.4.1 Methodology . 40
7.4.2 Metrics . 40

7.5 Web browser client - network usage 40
7.5.1 Methodology . 40
7.5.2 Metrics . 40

7.6 Web server . 40

CONTENTS ix

7.7 Web server - requests per second 42
7.7.1 Methodology . 42
7.7.2 Metrics . 42

7.8 Web server - latency . 42
7.8.1 Methodology . 42
7.8.2 Metrics . 42

7.9 Web server - CPU usage . 43
7.9.1 Methodology . 43
7.9.2 Metrics . 44

7.10 Dataset server - keys . 44
7.10.1 Methodology . 44
7.10.2 Metrics . 45

7.11 Dataset server - memory utilization 45
7.11.1 Methodology . 45
7.11.2 Metrics . 46

7.12 Dataset server - CPU utilization 46
7.12.1 Methodology . 46
7.12.2 Metrics . 46

7.13 Dataset server - requests per second 47
7.13.1 Methodology . 47
7.13.2 Metrics . 47

7.14 Metadata extractor - execution time 47
7.14.1 Methodology . 47
7.14.2 Metrics . 48

7.15 Metadata extractor - resource usage 48
7.15.1 Methodology . 48
7.15.2 Metrics . 49

7.16 System - Resource usage . 49
7.16.1 Methodology . 49
7.16.2 Metrics . 50

7.17 os.walk . 50
7.17.1 Methodology . 50
7.17.2 Metrics . 50

7.18 Reported disk usage . 51
7.18.1 Methodology . 51
7.18.2 Metrics . 51

8 Results 53
8.1 Web browser client - memory footprint 53
8.2 Web browser client - network usage 54
8.3 Web server - web pages . 55
8.4 Web server - Commands . 56
8.5 Web server - CPU utilization 58
8.6 Dataset server - keys . 60

x CONTENTS

8.7 Dataset server - memory utilization 61
8.8 Dataset server - CPU utilization 62
8.9 Dataset server - requests per second 63
8.10 Metadata extractor - execution time 63
8.11 Metadata extractor - resource usage 65
8.12 System - CPU utilization . 66
8.13 System - memory footprint 68
8.14 os.walk . 69
8.15 Reported disk usage . 70

9 Discussion 73
9.1 Thesis . 73
9.2 Optimizing Redis . 74
9.3 Scale . 75
9.4 The amount of keys . 76

9.4.1 One year of measurements 76
9.4.2 Dataset growth . 77

9.5 Prototype bottleneck . 78
9.6 React, abstractions and Google charts 78
9.7 Extract metadata on dataset change 79
9.8 Metadata extractor resource usage 79

10 Contributions 81

11 Summary and Conclusion 83

12 Future work 85

A The Road Towards the Artifact 87
A.1 Approach 1 . 88
A.2 Approach 2 . 89
A.3 Approach 3 . 91
A.4 Conclusion . 92

B Redis key size 93

C Redis mass-insertion 95

Bibliography 97

List of Figures
3.1 The system Idea . 8

4.1 System architecture. 10

5.1 System design . 16

6.1 System implementation. Each blue square is a process. . . . 22
6.2 Redis hash . 28
6.3 Redis sorted set . 29

7.1 wrk sample output . 37

8.1 Web server requests per second and latency for delivering
web pages . 56

8.2 Web server requests per second and latency for responding to
commands . 57

8.3 Gunicorn CPU utilization 59
8.4 nginx CPU utilization . 59
8.5 Dataset sever memory utilization 61
8.6 Dataset server CPU utilization 62
8.7 Metadata extractor execution time for Small, Medium and Big

datasets . 65
8.8 Metadata extractor CPU utilization and memory utilization . 66
8.9 System - CPU utilization in an idle state 67
8.10 System - CPU utilization under load 68
8.11 System memory utilization 69
8.12 os.walk execution time in both Python 2.6 and Python 3.6 . 70

A.1 Version 1 square placement 89
A.2 Version 2 static placement 90
A.3 Version 2 dynamic placement 90
A.4 Circular placement . 91

xi

List of Tables
6.1 Computer specifications . 32

7.1 Dataset differences . 39

8.1 Web client memory footprint 53
8.2 Web client network usage 54
8.3 Biggest data types . 60
8.4 Aggregate data type information 60
8.5 Total keyspace information 61
8.6 Requests per second from Redis benchmark 64
8.7 Reported disk usage . 71

9.1 Calculated memory utilization 76
9.2 Theoretical memory footprint of Big dataset 77

A.1 Directory size quota . 88

xiii

List of Listings
6.1 JSON response from total number of files command. 23
6.2 Example JSON response from metadata command. 24
6.3 Example JSON response from history command. 24
6.4 os.walk() function . 30
6.5 hash function . 31
6.6 File creation . 32

7.1 wrk command . 37
7.2 Redis benchmark command 38
7.3 psutil capture of CPU usage 43
7.4 Redis bigkeys command . 44
7.5 Mass insertion command 45
7.6 Redis benchmark command 47
7.7 Metadata extractor execution time 47
7.8 Metadata extractor resources usage 48
7.9 os.walk experiment . 50
7.10 Disk usage measurement 52

B.1 https://gist.github.com/epicserve/5699837 93

C.1 https://github.com/TimSimmons/redis-mass-insertion . . . 95

xv

List of Abbreviations
b Byte

CLI Command-Line Interface

COAT Climate-ecological Observatory for Arctic Tundra

DBMS Database Management System

GB Gigabyte

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

kb Kilobyte

mb Megabyte

ms Milliseconds

PID Process identifier

REST Representational State Transfer

s Seconds

TCP Transmission Control Protocol

URL Uniform Resource Locator

xvii

1
Introduction
Climate-ecologicalObservatory forArctic Tundra (COAT) is a long-term,ecosystem-
based and adaptive observation system. It aims to unravel how climate change
impacts arctic tundra ecosystems and to enable prudent science-based man-
agement.

Distributed Arctic Observatory (DAO) is a project that aims to automate, stream-
line and improve the collection, storage and analysis of images, videos and
weather measurements. The project is based around using custom IoT (Internet
of Things) hardware and software that can automate the collection process
and reporting. The stored data is classified using machine learning.

The automation of collection and storage of data means that no researcher
will have direct control over the collection and storage process. Because the
researcher is removed from the process, the researcher looses the ability to
monitor the process. If one of the steps in the automation process fails, there
are insufficient tools for a researcher to identify that a process has failed, and
where it failed. There are no tools that enables monitoring the volume of data
that is collected. Or that enables the analysis of information about the collected
volume of data.

The data is assumed stored in a file system. A file system primarily enables a
user to store, organize and access files. A file system has some metadata about
itself and for each file stored in the file system. Some file systems gives the user
the ability to get an overview of the disk usage, either by specifying what type

1

2 CHAPTER 1 INTRODUCT ION

of files are using disk space [1] or by specifying which directories are using
disk space [2].

If a researcher has access to metadata about the file system and a historic
view of the metadata, this can enable a researcher to monitor and analyze the
dataset. Our solution is to extract the metadata over time and visualize the
extracted metadata.

1.1 Challenges
A user has no simple ways of getting an overview and detailed information
about the state and history of a dataset. The user should be able to identify
trends and changes in the dataset. This can help a user identify trends that
are important for the understanding of the dataset. A user may want to look
for items in the dataset that has a steeper increase of size or occurrences
compared to the other items. If a user identifies a change that happens on
a regular frequency, but has stopped now. Then the user can analyze it and
determine why it stopped. This can indicate that something is wrong. We
want to enable the user to accomplish these tasks by visualizing information.
"The goal of visualization is to aid our understanding of data by leveraging
the human visual systems ability to see patterns, spot trends and identify
outliers."[9]

The dataset is assumed stored on commodity hardware that is used primarily
for storage. This leaves unused computer resources that we can utilize to create
a system that helps the user accomplish some of these tasks. The system will
create an overview of a dataset, detailed information about the dataset and a
historic representation of the dataset over time.

To represent a dataset over time, we create a system that extracts information
from the dataset at periodic intervals over a period of time. The extraction
process gathers information about the dataset to create an overview. And col-
lects information about each item in the dataset to create detailed information.
The extracted information is stored in an in-memory database. We can use the
stored metadata to create a visualization.

1.2 Main contributions
This thesis makes the following contributions:

1.3 OUTL INE 3

• An description of the approach and issues seen while progressing towards
the described artifact prototype.

• An architecture and design of a system that uses in-memory storage to
store information about a dataset over time.

• An architecture and design of a system that enables human users to
interact with and visualize stored information.

• Implementation of the artifact prototype system

• An evaluation of the system identifying the CPU utilization, memory
footprint and network activity between the parts of the system.

• Validating the idea of using in-memory storage to store dataset informa-
tion over time.

• Thoughts on future work and further improvements to the current pro-
totype.

1.3 Outline
The remainder of the thesis is structured as follows.

Chapter 2 presents Related work that covers large-scale data analytics,
metadata management of large storage systems and implementing file systems
in DBMS. The related work also covers visualization techniques.

Chapter 3 describes the basic Idea of the project. Detailing how the idea
is split into four divisions of concern: Human User, View, Information and
Dataset.

Chapter 4 presents the Architecture of the system. This includes every major
functionality that the prototype offers.

Chapter 5 presents the Design of the prototype. The design specifies each
system in the prototype.

Chapter 6 details the prototype Implementation. We go through each sys-
tem and describes how it is implemented.

4 CHAPTER 1 INTRODUCT ION

Chapter 7 describes the Experiments that we will perform. The experiments
covers each system in the prototype.

Chapter 8 presents the Results of the experiments.

Chapter 9 presents a Discussion about the project and the prototype.

Chapter 10 details the Contributions of this paper.

Chapter 11 is a Summary and Conclusion of the paper.

Chapter 12 describes Future work. We discuss the paths forward for the
prototype.

Appendix A detail the approach and issues seen while progressing towards
the described prototype. Includes a conclusion of the approach.

2
Related work
Implementing Filesystems by Tree-aware DBMSs Implementing Filesys-
tems by Tree-aware DBMSs [6] presents research to query data stored in a
filesystem by using semi-structured database technology. The paper focuses on
the ability to search/find and access stored data. The paper is based on the
idea of mapping a filesystem hierarchy to XML.

SynchronousMetadataManagement of Large Storage Systems The
paper Synchronous Metadata Management of Large Storage Systems [7] com-
pares three different approaches to store metadata. The three approaches
are; disk based relational database systems, main memory relational database
systems, in-memory key-value databases. They find that for the types of queries
they used, the in-memory key-value outperformed relational databases. This
is because of the extra features a relational database provide compared to
key-value stores. For their approach they claim that metadata stored in a
database system is valuable only if its kept in sync with the corresponding
filesystem.

Disco: A computing Platform for Large-Scale Data Analytics Disco:
A computing Platform for Large-Scale Data Analytics [8] presents a distributed
computing platform for MapReduce computations on a filesystem. Disco im-
plements a distributed filesystem specialized for the MapReduce use case. The
distributed filesystem is tag-based. Instead of an hierarchical directory based
organization, sets of data objects are tagged with names (tags).

5

6 CHAPTER 2 RELATED WORK

A tour through the Visualization Zoo A tour through the Visualization
Zoo [9] presents a collection of visualization techniques. These techniques in-
clude geographical maps, cartograms, node-link diagrams, tree layout, treemap,
nested circle and matrix.

Issues and Benefits of Using 3D Interfaces: Visual and Verbal Tasks.
The paper Issues and Benefits of Using 3D Interfaces: Visual and Verbal Tasks
[10] presents that the brain uses different parts to process icon’s in 2D and 3D
space.

A visualization Model for Web Sitemaps The paper A visualization
Model for Web Sitemaps [11] presents a visualization model that retrieves
relational links from a website and visualizes its sitemap. The visualization
uses an enclosure and connection approach for visualizing hierarchical infor-
mation.

Visualization of Large Hierarchical Data by Circle Packing The pa-
per Visualization of Large Hierarchical Data by Circle Packing [12] presents a
visualization model that uses nested circles. The radius of a circle represent
the size.

The Eyes Have It: A Task by Data Type Taxonomy for InformationVisualizations The paper The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations [13] presents the visual information-seeking
mantra: overview first, zoom and filter, then details on demand. The paper
also describes seven tasks that are useful for information-seeking: overview,
zoom, filter, details-on-demand, relate, history, extract.

DeepEye: An Automatic Big Data Visualization Framework The pa-
per DeepEye: An Automatic Big Data Visualization Framework [4] presents
system for automatically choosing a visualization after transforming the dataset.
They use machine learning to determine which type of visualization technique
is best suited for a particular dataset.

Towards the Understanding of Interaction in Information Visual-ization The paper Towards the Understanding of Interaction in Information
Visualization [5] presents a review of visualizations and the interaction with vi-
sualization. They propose a taxonomy of eleven categories of visual interaction
techniques, that can help future research. The categories are: filtering, selecting,
abstract/elaborate, overview and explore, connect/relate, history, extraction of
features, reconfigure, encode, participation/collaboration, gamification.

3
Idea
The idea is to create a system that gives a human user a method to visually view
information about a dataset. The method includes giving the user a method to
track dataset changes over time. We split the approach we will use into four
divisions of concern as shown in fig. 3.1.

The Human User wants to understand a dataset. If the Human User under-
stands the dataset, he can use the understanding to analyze the data. If the
Human User has access to information about the dataset over a period of time,
he can use the periodic information to look for trends and identify changes
over time in the dataset.

The View uses Information to create visualizations. The visualizations include
well known visualization techniques such as column charts, line charts and
tables. The View allows the user to give input that can control how a visualiza-
tion is shown by changing the zoom level, sorting the information or filtering
out some information. The input also controls which Information the View
visualizes.

Information is organized and processed metadata about a Dataset. The In-
formation stores collected metadata in-memory. The metadata is shaped into
Information before it is given to the View. Metadata is collected from the
Dataset on specific intervals over a period of time. This gives the Information
a history of metadata about a Dataset.

7

8 CHAPTER 3 IDEA

Figure 3.1: The system Idea

The Dataset is a volume of data that changes over time. The Dataset includes
different types of elements. Each element has some metadata associated with
itself.

4
Architecture
The system architecture is shown in fig. 4.1.

4.1 Human user abstraction
The system will have human users that interact with the visualization of
information about a dataset. We assume that the human user can absorb
information in a visual manner. The human user want to visualize information
to better understand the dataset. If the human user understand the information
he can gain insight into the dataset and use the information to analyze the
dataset. The human user wants to see information about the dataset over
a period of time. This will give the human user the ability to see trends in
the dataset. If the human user can identify certain trends, he can identify if
something doesn’t fit within the trend. Viewing information over a period of
time can also be used to monitor the dataset. If the human user knowns that a
certain change happens on a set interval, then he can monitor the dataset to
see if the change happens.

The human user wants to provide input to change the view of the information.
The input can:

• change which information is used to create the visualization.

9

10 CHAPTER 4 ARCH ITECTURE

Figure 4.1: System architecture.

4.2 V ISUAL IZAT ION ABSTRACT ION 11

• add more information to an existing visualization.

• change the way the information is visualized. This includes filtering and
sorting.

4.2 Visualization abstraction
4.2.1 Interact with human user
The visualization abstraction gives the human user options to give input to
the visualization. The input allows the user to change how the information is
visualized. If the visualization uses a specific visualization technique, the input
can change the technique that is used. The input can change how numbers
are represented if they are difficult for the human user to understand. The
visualization can change the visualization based on input about which time
period to visualize.

The input also allows the human user to give input about which information is
visualized. The input can add more information to the current visualization or
it can change the type of information that is visualized.

4.2.2 Request metadata
If the visualization abstraction receives input that require new information, the
visualization abstraction must request the new information. The visualization
abstraction requests new information from the Instrument. Each information
request consist of the target dataset and the requested information. The re-
quested information can include multiple metadata parts. The Instrument
only stores metadata. The visualization abstraction sends requests for each
metadata part including the target dataset to the Instrument.

4.2.3 Transform metadata
When each metadata part is returned from the Instrument, the visualization
abstraction must combine them into the requested information. When the
visualization abstraction combines themetadata into information, themetadata
must be transformed into a format that the visualization can understand. The
transformation includes converting strings to the appropriate data format such
as integers and dates. The transformation also includes sorting the metadata
elements.

12 CHAPTER 4 ARCH ITECTURE

4.2.4 Visualize information for user
The visualization abstraction uses the information that is combined and trans-
formed from metadata, to create visualizations for the human user. The visual-
ization abstraction stores the information that it uses to create visualizations in
memory. Based on the information that is requested, the visualization abstrac-
tion creates different types of visualization. Based on the type of visualization
that is used, the visualization abstraction creates different controls that can
take input from the human user.

4.3 Instrument
4.3.1 Locate metadata dataset
The Instrument receives requests from the visualization abstraction. The re-
quest includes the requested metadata and the target metadata dataset. In
principle there are multiple metadata datasets in the system. The Instrument
collects metadata from the target metadata dataset.

4.3.2 Collect and return metadata
Each request for metadata is a new metadata dataset collection procedure.
The collection procedure finds the requested metadata in the target metadata
dataset. When the collection procedure is finished, the metadata is returned
to the visualization abstraction.

4.3.3 Metadata dataset
The metadata dataset contains a history of metadata about a dataset and
each element within the dataset. The metadata dataset stores metadata for
set intervals over a period of time. The metadata dataset is stored in-memory.
The metadata dataset include aggregate metadata about the dataset and
individual metadata about each element.

Aggregate metadata of interest includes:

• Total size of a dataset

• Total number of items in a dataset

4.4 DATASET 13

• Element types

• Total number of each element type

Individual metadata of interest include:

• Name

• Date modified

• Size

• List of items within an element

• Number of items within an element

4.3.4 Extract metadata
The metadata that is stored in the metadata dataset is extracted from the
dataset. The extraction process collects aggregate metadata about the dataset
and the individual metadata for each element. The extraction process also
collects information about the structure of the dataset.

4.4 Dataset
The dataset is a data volume that contain different elements. Each element
has some metadata associated with itself. The dataset is structured in way that
some elements creates the structure and some elements are contained within
the structure. The elements that create the structure of the dataset, know who
they are connected to. The elements that are contained within the structure,
only knowwhich structural element they are connected to. The dataset changes
over time, with elements being removed and added to the dataset.

5
Design
The design of the system is shown in fig. 5.1.

5.1 Visualization
The visualization are the visual tool that shows the human user the requested
information. The visualization uses different types of visualization techniques
that include column charts, line charts, tables, indented tree layout [9] and
organization charts. All of these techniques are common and well known, and
they are chosen on the basis of the conclusion in appendix A.4.

The prototype has buttons that allow the human user to manipulate how
the visualizations show the information. The human user can modify how
information is used for the visualization. The human user can add information
to an existing visualization. The human user can change which information is
used for the visualization, this will create a new visualization based on the new
information. The human user can filter out information. One filter is based on
making the visualization show information for a specific period. The human
user can filter information based on the dataset composition, and only show
parts of the dataset. Some visualizations allow the human user to change the
unit of numbers, for example if some information is shown in bytes, the unit
can be changed to kilobyte or megabyte.

15

16 CHAPTER 5 DES IGN

Figure 5.1: System design

5.2 WEB SERVER 17

5.1.1 Visualization application
The visualization application runs in a web browser client. The application cre-
ates the visualizations that are displayed to the human user. The visualizations
are created with information that the application gets from the web browser
client.

The visualization application uses buttons to allow the user to give input that
changes how the visualization application creates the visualization. Some
operations such as filtering information is done by the visualization application.
While operations such as requesting new or additional information is executed
by the web browser client.

5.1.2 Web browser client
The web browser client executes the visualization application. The web browser
client keeps the information that is currently used by the visualization applica-
tion in memory. If the visualization application requests new information, the
web browser client will request the new information from the web server.

The web server has a list of commands that the web browser client can use
to request information from the web server. The requests for new information
uses the REST method GET.

5.2 Web server
The web server is responsible for delivering web pages to the web browser
client. The web server uses the client-server model and delivers web pages
on request. The communication between the web server and the web browser
client uses the HTTP protocol.

The web server provides a list of commands that the web browser client can
use to request information from the web server. The list of commands that the
web server provides include:

• Get one piece of dataset information

• Get dataset information over time

• Get dataset size over time

18 CHAPTER 5 DES IGN

• Get a list of dataset items

When the web server receives a request to one of the commands, the request
includes the target dataset and the information that the client requests.

One request for information can consist of several pieces of metadata. The web
server transforms the information requests into several metadata requests. The
dataset service has a list of commands that the web server can use to request
metadata from the dataset service. The web server is aware of all the dataset
servers that the dataset service include. The web server sends the metadata
request directly to the target dataset server.

The web server waits until it receives all of the metadata responses from the
dataset service. When the web server has all the metadata, it transforms the
metadata into the information that the web browser client requested and
returns it to the web browser client.

5.3 Dataset service
The dataset service is comprised of multiple dataset servers. Each of the dataset
servers provide a list of commands that clients can use. For this prototype the
clients are:

• The web server - requests metadata from the dataset service

• The metadata extractor - adds metadata to the dataset service

The list of commands that the dataset service provides includes:

• Get metadata about an element in the dataset

• Get metadata about the dataset

• Get metadata about an element in the dataset for a period of time

• Get a list of elements in the dataset

• Add metadata about an element in the dataset

• Add metadata about the dataset

• Add metadata about an element in the dataset for a period of time

5.4 DATASET SERVER 19

• Add a list of elements in the dataset

5.4 Dataset server
In this project the dataset service is realized with one dataset server. A dataset
server include one unique dataset. Adding more dataset servers to the system
gives us access to more unique datasets. But this approach would not scale the
individual dataset server capacity.

The dataset server uses the client-server model with a custom protocol. The
custom protocol uses stateless TCP connections. The dataset server uses a
single thread. The dataset server executes commands sequentially. Executing
commands sequentially makes each operation atomic. The dataset server stores
the contained dataset in an in-memory database. The in-memory database uses
data structures such as lists and sets to store metadata.

On request the in-memory database can save the dataset to disk. The in-memory
database can be configured to save the dataset to disk on a set interval. This
is not configured for this project, as the scope of the project didn’t include
handling failures and crashes.

5.5 Metadata extractor
The metadata extractor gathers metadata from a dataset. The dataset in this
project is a filesystem. The metadata extractor iterates through the filesystem
and gathers metadata about each file and directory. The metadata extractor
has the following properties:

• Runs on a interval, set by a human user.

• Temporarily stores gathered metadata in memory.

• Add the temporarily stored metadata to a target dataset server.

– Utilize commands provided by the dataset server.

– Open a TCP connection to the target dataset server.

– Bundle several commands into one TCP request.

6
Implementation
The implementation is shown in fig. 6.1.

6.1 Visualization
6.1.1 Technologies
The visualization uses HTML to create the web pages that contain the visu-
alization application. The visualization application is created with JavaScript.
The visualization application uses jQuery 1 to fetch information from the web
server. The visualization application uses two different approaches for creating
a JavaScript application.

React React 2 is an open-source project created by Facebook to build user
interfaces. React is a JavaScript library that is based on encapsulated compo-
nents. Since React is component based, all the JavaScript libraries that you
want to use needs to have a React component version. These components
can be developed by the original developer, or by an independent third-party
developer. React is often used together with Redux 3, which is a predictable

1. http://jquery.com/
2. https://reactjs.org/
3. https://redux.js.org/

21

22 CHAPTER 6 IMPLEMENTAT ION

Figure 6.1: System implementation. Each blue square is a process.

6.1 V ISUAL IZAT ION 23

state container for JavaScript. Redux is used in this prototype to handle state
in the React application.

Pure JavaScript For this prototype some of the JavaScript libraries that we
used, didn’t have React components created by the original developer. One
library had a React component created by a third-party developer and one
library didn’t have any React component. Creating parts of this prototype in
pure JavaScript gave us the ability to directly interact with JavaScript libraries
and use libraries without React components.

Google Charts One library that this prototype used extensively is Google
Charts ⁴. Google Charts is a visualization library for JavaScript developed by
Google. It supports a rich amount of chart types. It has an extensive command
list that gives the developer full control over each part of the chart creation.
Google Charts also includes features such as controls and dashboards, that
gives the human user control over specific parts of the chart.

react-google-charts ⁵ is a React component created by an independent developer.
The component is a wrapper for the full Google Charts library. The difference
between the React component and the native JavaScript library is discussed in
section 9.6.

6.1.2 Information types
The visualization can request three types of information from the web server.
Aggregate, metadata and historic.

Aggregate Aggregate information is one metric measured over time. An
example of this is the total number of files. The command for this is "GET
http://localhost/numfiles/". Aggregate information is retrieved as JSON. The
requested metric has multiple entries with an associated value seen in listing
6.1.

{
"2018−04−25 10:09:26" : 516385 ,
"2018−04−25 10:08:26" : 513547

}

Listing 6.1: JSON response from total number of files command.

4. https://developers.google.com/chart/
5. https://github.com/RakanNimer/react-google-charts

24 CHAPTER 6 IMPLEMENTAT ION

Metadata Metadata is a collection of information about one directory. Meta-
data is the latest information that is extracted about a directory. The command
for this is "GET http://localhost/metadata/*directoryname*/". Metadata is
retrived as JSON where each directory has multiple fields with information. An
example JSON response for the root directory is seen in listing 6.2

{
"name " : " . / " ,
" modif ied " : "2018−04−21 12:02:43" ,
" s i z e " : "121082556" ,
" id " : "9 eb593bdb228c2a330ddeee74a "

}

Listing 6.2: Example JSON response from metadata command.

Historic Historic information is a collection of metadata for one directory.
Historic information from one directory contains metadata for each collection
time. The command is "GET http://localhost/history/*directoryname*/". His-
toric information is retrieved as a list of JSON, where each entry is a complete
entry of metadata information. The collection time of each metadata is located
within the metadata. An example JSON response for the root history is seen
in listing 6.3. The collection time is called "m_time".

{
" 0 " : {

"name " : " . / " ,
" modif ied " : "2018−04−21 12:02:43" ,
" s i z e " : "121082556" ,
" id " : "9 eb593bdb228c2a330ddeee74a " ,
" m_time " : "2018−04−25 10:08:26"

} ,
" 1 " : {

"name " : " . / " ,
" modif ied " : "2018−04−21 12:02:43" ,
" s i z e " : "121082556" ,
" id " : "9 eb593bdb228c2a330ddeee74a " ,
" m_time " : "2018−04−25 10:09:26"

}
}

Listing 6.3: Example JSON response from history command.

6.2 WEB SERVER 25

6.1.3 Directory names
A standard Linux directory path is "/home/user/Documents/". The system
uses relative path names starting at the root directory. This would create
the command "GET http://localhost/metadata/home/user/Documents/". The
web server parses that command as a complete URL and that is not a valid URL
for the command "http://localhost/metadata/".

The system uses a default string name for the initial command. The name "root"
is a valid string to request information about the root directory. The root direc-
tory contains information about the other directories. All other directory names
are hash values,with the command "GET http://localhost/metadata/hash".

6.2 Web server
The web site is created in Python with the web framework Django ⁶. Django
is a high-level framework that focuses on rapid development. During devel-
opment the prototype web pages was delivered by the Django lightweight
development server. The development server is not design for anything else
than serving as a simple development server. When we did experiments for
this dissertation we deployed the web site to a production environment. The
production environment uses Gunicorn and nginx.

Gunicorn ⁷ is a web server that is compatible with various web frameworks and
uses the WSGI [14] calling convention. WSGI has two sides, the server/gateway
side which talks to a reverse proxy or load balancer. The application/framework
side which is compatible with Python frameworks. Gunicorn has one master
process and several worker processes. The master process delegates work to
the worker processes.

Gunicorn suggests [15] to use nginx ⁸ as a reverse proxy and web server that
faces the client side. Nginx is a open-source web server that can be used as
a reverse proxy, load balancer and HTTP cache. Nginx forwards all requests
from the web browser client to Gunicorn. Nxinx has one master process and
several worker processes. The master process delegates work to the worker
processes.

6. https://www.djangoproject.com/
7. http://gunicorn.org/
8. http://nginx.org/

26 CHAPTER 6 IMPLEMENTAT ION

6.2.1 Commands
The Django framework defines commands that the Gunicorn web server of-
fers to web browser clients. The list of commands that the web server offers
includes:

• numfiles - Total number of files over time

• numfiletypes - Number of files of each file format

• fthistory - Average file format size over time

• historicsize - Size of the dataset over time

• metadatada - Directory metadata

• history - Directory metadata over time

• files - List of files in current directory

• subfolder - List of subdirectories in current directory

Some of these commands include the name of the requested directory. The
directory name is either a string or a hash value, as detailed in section 6.1.3.
When the web server receives one of these commands it transforms the com-
mand into one or several dataset server commands. For example the metadata
history command uses three dataset server commands:

1. Get plain string name from hash value

2. Get list of historic metadata measurments

3. Get metadata for each list element

6.2.2 Response
The web server waits for all the responses from the dataset server. Each of the
metadata responses from the dataset server are formated as bytestrings. The
web server converts the bytestrings into integers, datetime objects and strings.
The web server combines all the converted metadata into one JSON object and
sends the JSON object as a response to the web browser client.

6.3 DATASET SERVER 27

6.3 Dataset server
The dataset server is realized using Redis ⁹. Redis is a single-threaded process.
Redis has two main components, the Redis server and the Redis in-memory
database. The Redis server allows clients to communicate with the Redis in-
memory database. The Redis server uses a custom protocol utilizing TCP. The
Redis database is realized as a data structure store. This means that Redis
natively supports many foundational data structures and provides a rich set of
commands for manipulating these data structures.

We chose Redis for this project specifically for the data structure support. Other
alternatives could have been TimesTen 1⁰ which is an in-memory relational
database. But this would have given us a lot of functionality that the system
doesn’t utilize. Another alternative is Memcached 11 which is an in-memory
key-value store. But this wouldn’t have given us enough data structures to
logical map the metadata that we want to store.

6.3.1 Commands
The dataset server in this project has two types of clients: the web server and
the metadata extractor. The dataset server provides a rich set of commands
that allow clients to manipulate the data types stored in Redis. The list of
commands that the dataset server provide includes more advanced commands
that we don’t use. The advanced commands include comparing elements of
the dataset and is discussed further in section 9.2.

The web server requests metadata from the dataset server, and uses these
commands:

• get - returns the value of a key

• zrange - returns the specified range of elements in a sorted set.

• smembers - returns all members of a set.

• hgetall - returns all fields and values of a hash.

• lrange - returns the specified range of elements in a list.

9. https://redis.io/
10. http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html
11. https://memcached.org/

28 CHAPTER 6 IMPLEMENTAT ION

Figure 6.2: Redis hash

The metadata extractor adds metadata to the dataset server, and uses these
commands:

• set - add value to a key.

• zadd - add an element with a score to a sorted set.

• lpush - add value to the head of the list.

• hmset - add field and value to a hash.

• sadd - add a member to a set.

6.3.2 Redis data structures
Redis provides the following data structures: key-value, hashes, sets, sorted
sets and lists [16].

Key-value Key-value is a plain (key, value) combination. Only used to get
the total number of directories.

Hash A hash is a collection of field-value pairs for a key. The key "Hash
name" has several fields associated with it. See fig. 6.2. The system uses hashes
to store metadata about a directory.

Set A set is an unordered collection of unique strings. The system uses sets
to store names of all files in a specific directory.

6.4 METADATA EXTRACTOR 29

Figure 6.3: Redis sorted set

Sorted set A sorted set is a set that is sorted based on a score. See fig. 6.3.
The system uses sorted sets to store information that either is sorted by date
or by value.

When adding items to a sorted set the command is zadd. The Redis-py library
changed the order of the arguments. Redis-py expects (name, score). The
official Redis command expects (score, name).

List Lists are implemented as linked lists. This means that adding a new
element to the head or tail is performed in constant time. The system only
adds elements to either head or tail. In a linked list access by index is slower than
lists based on arrays. In this prototype a list is only accessed sequentially and
not by index. The system uses lists to store hashes from previous measurement
dates.

6.3.3 Redis pipelines
Redis uses the request/response protocol. Every command sent to Redis cre-
ates a new request/response. Pipelining [17] is a technique to bundle several
commands into one request/response. For example the client can create five
sadd commands and add all five commands to a pipeline.The pipeline is sent to
the server as one request. The server reads all five sadd commands and atomi-
cally performs each command. The server creates five responses and the five
responses are put in the pipeline. The pipeline is sent as one response.

6.4 Metadata extractor
The metadata extractor prototype is written in Python 3.6. It iterates through
every file and directory in the file system.

30 CHAPTER 6 IMPLEMENTAT ION

6.4.1 File system iteration
os.walk() is a built-in Python function in the os library. The function walks
through every directory in the hierarchy.

for root , d i r s , f i l e s in os . walk (’ . / ’) :

Listing 6.4: os.walk() function

In listing 6.4 the current directory is supplied to the os.walk function. The
os.walk function returns a three-tuple (root, dirs, files). root is a string path
to the directory that os.walk currently resides in. dirs is a list of names for all
subdirectories in the root directory. files is a list of names for all files in the
root directory.

6.4.2 Metadata extractionDirectory metadata The directory metadata for each directory is added
to a Redis hash. Each field in the hash is either metadata or a key to other data
structures with directory information. The directory hash include the string
name, modified date, directory size, number of subdirectories and number of
files. It also include a unique hash ID, key to the filename set and the string
name and hash ID of the subdirectories.

Directory size The size of each directory is reported by the du (disk usage)
system call. This reports the size of the directory including all subdirectories.
The directory size is added to the metadata hash.

Modified date The modified date for each directory is supplied by the
Python function os.path.getmtime(). The function returns a timestamp that
the system can transform into a local date with the Python function date-
time.datetime.fromtimestamp(). The modified date is added to the metadata
hash.

File formats For each file we get the file ending of the file. The file ending
is defined as everything after the last period. This means that if a file has no
period in the filename, the whole filename will be defined as the file format.
The file ending is checked against a file format dictionary. A new entry is
created if the file format does not exists in the dictionary. If the file format
exists in the dictionary the entry is incremented. The dictionary is added to
Redis as an sorted set where the name is the file format and the score is the
number of occurrences.

6.5 TECHNOLOG IES 31

Dataset size The dataset size is calculated by adding the size of each file.
The dataset size is added to Redis as an sorted set where the name is the
dataset size and the score is the date.

File names All filenames that are in a directory is added to Redis in a
set.

6.4.3 Unique hash ID
The systems uses a hash ID to identify each directory and to identify the
filename sets. The hash operation uses the hashlib Python library to create a
hex value with SHA224 encryption. See the function in listing 6.5. The SHA-
224 encryption was chosen because it creates the shortest string of the SHA2
encryptions. SHA-224 string length is 57 characters compared to SHA-256 string
length of 65 characters. The encryption is not important except for creating a
theoretical big enough key space. SHA-224 supports 264 − 1 keys.

name = pla in_s t r ing_name
hash = hash l i b . sha224 (name) . hexd iges t ()

Listing 6.5: hash function

6.5 Technologies
Python 2.7, Python 3.6, Django 1.11.6, Redis 4.0.2, Gunicorn 19.7.1, nginx
1.10.3.

npm 5.5.1, React 16.0, Redux 3.7.2, React-Redux 5.0.6, Treebeard 2.1, React-
Google-Charts 1.5.5. jQuery 3.3.1, Treant.js 1.0, Redis-py 2.10.6.

The hardware and OS is listed in table 6.1.

6.6 File creation
To check that the system works as intended we need a structured method to
create files and directories. In Python the os library has functions that the
prototype used:

• chdir() - change directory

32 CHAPTER 6 IMPLEMENTAT ION

Hardware
Vendor Lenovo
CPU Intel Core i5-6400T @ 2.20GHz
Ram 16 GiB
Hard disk ATA model MZ7LN512HMJP

Operating system
OS Mint 18.2 ("Sonya")
Kernel Linux 4.10.0

Filesystem
Test partition 495 GB Linux filesystem
Filesystem ext4
I/O Scheduler noop deadline cfq

Table 6.1: Computer specifications

• mkdir() - create a new directory

• remove() - remove a file

The prototype also used the Python file object. The file object has the following
functions:

• open() - create a new file if it does not exist

• write() - writes a string or bytes to the file

• close() - close the file

The file creation prototype pseudo code can be seen in listing 6.6. The prototype
creates a new directory and file in the current directory. Inside the new directory
it creates ten files. It does this forever. After ten iterations the prototype changes
the current directory to one of the new directories that was created.

import os
i = 10
k = 0
while (True) :

c r e a t e _ f i l e (unique_f i lename)
new_directory = c r e a t e _d i r e c t o r y (unique_directoryname)
change_to_new_directory ()
for range (0 , i) :

c r e a t e _ f i l e (unique_f i lename)
change_ to_prev ious_d i rec to ry ()
k = k + 1

6.6 FILE CREAT ION 33

i f k > 10:
change_cur ren t_d i rec to ry ()

Listing 6.6: File creation

7
Experiments
The experiments are focused on the four distinct parts of the system and the
system as a whole. We include two experiments that highlights potential issues.
This section will outline what we focus on for each part and define the metric
we use for the experiments. The next section explains the benchmarking tools
that we use for the experiments. The following sections details each of the
experiments.

All experiments are executed on the same computer, listen in table 6.1.

Metrics
• Memory utilization - the physical memory that the target process has

allocated.

• CPU utilization - the percentage of capacity on a single CPU core a target
process uses.

• Requests per second - the amount of network requests a target process
sends and gets a response to per second.

• Latency - the round-trip time. The round-trip time is the time in mil-
liseconds from a request is sent from a client, the server processes the
requests and sends a response, and the client receives the response.

35

36 CHAPTER 7 EXPER IMENTS

• # requests - total number of request sent by a target process.

• Elapsed time - the time in seconds a target process uses from a start
point to a stop point.

• Data transferred - the amount of bytes the target process has either sent
or received.

Web browser client For the web browser client we measure the memory
footprint, # requests, elapsed time and data transferred.

Web server For the web server we measure the CPU utilization of the two
web servers, Gunicorn and Nginx. We want to measure the requests per second
and latency for the two web server together.

Dataset server For the dataset server we measure the requests per second,
CPU utilization and memory utilization. We also want to analyze the keys in
the dataset.

Metadata extractor For the metadata extractor we measure the CPU uti-
lization, memory utilization and the elapsed time of each extraction.

System We measure the CPU utilization and memory utilization of all the
parts of the system when everything executes at the same time.

os.walk We measure the execution time of the os.walk function in both
Python2.7 and Python3.6. Python3.6 includes a new implementation of the
function.

Reported disk usage We measure the reported disk usage of the GUI file
explorer Nemo, the system call du and manually calculating the disk usage
with os.walk.

7.1 Benchmarking tools
7.1.1 wrk
The program wrk 1 is used to benchmark the web server. wrk is an open source
HTTP benchmarking tool. It generates load for the web server. Wrk send a

1. https://github.com/wg/wrk

7.1 BENCHMARK ING TOOLS 37

Figure 7.1: wrk sample output

request to the url and waits for the url to execute the request, and receives the
response. This means that wrk measures the round-trip time of a request. The
wrk command is given in listing 7.1:

$ wrk −t4 −c10 −d60s −−t imeout 15s "URL"

Listing 7.1: wrk command

The command line options used for this benchmark are:

• -t : Number of threads, default 4

• -c : Number of concurrent HTTP connections, no default

• -d : Duration, default 60 seconds

• –timeout : Timeout (how long each requests waits before timeout error),
default 15 seconds

The number of concurrent HTTP connections is the option we change for the
benchmarks. All experiments uses a duration of 60 seconds unless otherwise
stated in the experiment.

The output from wrk can be seen in fig. 7.1. The relevant metrics for our
experiments are:

• Average latency

• Standard deviation

• Requests per second

38 CHAPTER 7 EXPER IMENTS

7.1.2 psutil
psutil (process and system utilities) 2 is a cross-platform Python library for
retrieving information on running processes and system utilization. It natively
implements functionality offered by UNIX command line tools.

CPU usage psutil has a function cpu_percent that returns a float representing
the process CPU utilization as a percentage. The percentage can be more that
100.0 in the case of a process running multiple threads on different CPUs.
The cpu_percent function is used on independent target processes with the
parameter interval=1. This means that the psutil process will monitor the target
process for one seconds and report the cpu utilization.

memory utilization psutil has a function memory_info [18] that returns a
named tuple with variable fields. One field is rss aka “Resident Set Size”. rss is
the non-swapped physical memory a target process uses.

7.1.3 Redis benchmark
Redis includes a benchmarkutility, redis-benchhmark [19]. The redis-benchmark
simulates running commands done by a number of clients at the same time,
sending a total number of queries. The tool sends requests to the Redis server
and waits for a response. Measuring the round trip time. Before the benchmark
is started the database is flushed. The redis-benchmark command can be seen
in listing 7.2.

$ red i s−benchmark −q
Listing 7.2: Redis benchmark command

The -q option is for running the benchmark in quite mode, this only shows the
query per seconds values. The default values for redis-benchmark is to create
50 parallel connections to the Redis server. The total number of commands are
100,000.

7.2 Experiment dataset
The experiments needs datasets to extract metadata from. For the experi-
ments the main dataset is a selection of COAT directories. The directories are
"fotoboks2011" and "fotoboks2012".

2. https://github.com/giampaolo/psutil - version 5.4.5

7.3 WEB BROWSER CL IENT 39

Big Medium Small
Size 122.93 GB 5.05 GB 0.41 GB
Files 513,550 18,058 236
Directories 126 2252 48

Table 7.1: Dataset differences

• fotoboks2011 - 249,691 items, totaling 59,7 GB

• fotoboks2012 - 263,978 items, totaling 63,3 GB

• total - 513,551 files in 127 directories. Totaling 122 GB

This dissertation uses three different datasets and they are given a common
identifying name, defined in table 7.1. The two COAT directories are classified
as a Big dataset. The Big dataset consist mostly of .jpg files. The experiments
uses the "Documents" directory of the experiment computer, as a Medium
dataset. The Medium dataset consist of an arbitrary mix of file formats and
file sizes. The Small dataset is created by a consistent loop by the file creation
prototype. All files in the Small dataset are one mb in size.

7.3 Web browser client
The experiment uses two different web browser clients: Google Chrome and
Mozilla Firefox. The measurements are measured by the developer tools in-
cluded in both web browsers [20] [21].

For this experiment the web server processes and the dataset server is running.
The metadata extractor is not running during the experiment. Before the
experiment we run the metadata extractor 16 times, this means that there are
16 historic metadata hash tables. The dataset is the Big dataset defined in table
7.1.

The experiment measures three different web pages. The three different web
pages uses different technology and libraries.

• Home - uses React, Redux and Google Charts.

• /chart - uses Google Charts.

• /overview - uses Treant.js.

40 CHAPTER 7 EXPER IMENTS

7.4 Web browser client - memory footprint
7.4.1 Methodology
The experiment measures the memory footprint of the web browser client when
visiting different web pages. The developer tools includes a memory snapshot
tool which reports the total memory footprint of the current page. The snapshot
of the memory footprint is taken after a page is finished loading.

7.4.2 Metrics
• Firefox memory footprint

• Chrome memory footprint

7.5 Web browser client - network usage
7.5.1 Methodology
The experiment measures the network usage of the web browser client when
visiting different web pages. The developer tools include a network panel which
gives insight into resources requested and downloaded over the network. The
browser cache is disabled for all measurements.

7.5.2 Metrics
• # requests

• Elapsed time

• Data transferred

7.6 Web server
The performance metrics measured for the web server are:

• Requests per second for web pages

7.6 WEB SERVER 41

• Latency for web pages

• Requests per second for commands

• Latency for commands

• Gunicorn CPU utilization

• Nginx CPU utlization

For all the web server experiments the web server and the dataset server is
running. The metadata extractor is not running during the experiment. Before
the experiment we run the metadata extractor 10 times, this means that there
are 10 historic metadata hash tables. The experiments use the Big dataset
defined in table 7.1.

NOTE: the experiment is done on localhost, this means that the web server
and the measurement tool is running on the same physical machine.

Web pages The web server delivers three web pages that we want to exam-
ine. Each of the web pages requests different types of information.

• Home page - requests two sorted sets from the dataset server.

• /chart - requests one metadata hash from the dataset server.

• /overview - requests the current metadata hash for all directories.

Commands The web server has a list of commands that requests metadata
from the dataset server.

• history - gets a list of historic data for a target directory. For each entry
in the list, gets the metadata for the specific measurement

• metadata - gets metadata for a target directory

• files - gets a set with all filenames for a target directory

• historicsize - gets a sorted set with historic measurements of the dataset
size

• numfiles - gets a sorted set with historic measurements of the total
number of files in the dataset

42 CHAPTER 7 EXPER IMENTS

7.7 Web server - requests per second
7.7.1 Methodology
The wrk command (section 7.1.1) is used to create GET requests for the web
pages and the commands. The wrk command is run five times for each number
of connections. The number of connections are 10, 20, 30, 40, 50. We parse the
output from wrk to get the Requests/sec number.

7.7.2 Metrics
• Home page requests per second

• /chart page requests per second

• /overview page requests per second

• history command requests per second

• metadata command requests per second

• files command requests per second

• historicsize command requests per second

• numfiles command requests per second

7.8 Web server - latency
7.8.1 Methodology
The wrk command (section 7.1.1) is used to create GET requests for the web
pages and the commands. The wrk command is run five times for each number
of connections. The number of connections are 10, 20, 30, 40, 50. We parse the
output from the wrk command to get the average latency and the standard
deviation numbers.

7.8.2 Metrics
• Home page latency and standard deviation

7.9 WEB SERVER - CPU USAGE 43

• /chart page latency and standard deviation

• /overview page latency and standard deviation

• history command latency and standard deviation

• metadata command latency and standard deviation

• files command latency and standard deviation

• historicsize command latency and standard deviation

• numfiles command latency and standard deviation

7.9 Web server - CPU usage
7.9.1 Methodology
The CPU usage measurements are done by using psutil (section 7.1.2) to get the
cpu_percent number for each process. The pseudo code for the measurements
can be seen in listing 7.3.

import subprocess , p su t i l , t ime

command = [" pgrep " , "− f " , " name"]
process_p id = subprocess . check_output (command)
cpu_usage = []
time = 0
s t a r t = time . time ()
while (e lapsed < 60 seconds) :

s top = time . time ()
e laspsed = f l oa t (s top − s t a r t)
curr_cpu = process_p id . cpu_percent (i n t e r v a l=1)
cpu_usage . append(curr_cpu)

Listing 7.3: psutil capture of CPU usage

To create load for the web server we use the wrk command (section 7.1.1).
We check the CPU usage for 10 and 50 concurrent connections. We check the
/chart page and the /overview page.

44 CHAPTER 7 EXPER IMENTS

Gunicorn Gunicorn runs four processes. One parent process, which only
does light work distribution. Three worker processes that does all computation.
We get the CPU utilization for all four processes. This means that one process
should use close to 0% CPU at all times.

Nginx Nginx runs five processes. One parent and four workers. We get the
CPU utilization for the workers.

7.9.2 Metrics
• Gunicorn CPU utilization

• Nginx CPU utilization

7.10 Dataset server - keys
7.10.1 Methodology
Redis includes a key space analyzer. The key space analyzer command can be
seen in listing 7.4.

$ red i s− c l i −−bigkeys

Listing 7.4: Redis bigkeys command

The key space analyzer provides information about the data stored in Redis.
The information includes which data types are used and the size of each of
the data types. It also provides some aggregate information, including total
number of keys. It gives us the total and average key length in bytes. The key
space analyzer is run on a Redis dataset that does not change.

To measure the size of individual keys we use a script found on Github which is
included in Appendix B. It uses built-in Redis functionality and CLI commands
to list all keys and their size.

This experiment uses the Big dataset defined in table 7.1. Before the experiment
we run the metadata extractor 24 times, this means that there are 24 historic
metadata hash tables.

7.11 DATASET SERVER - MEMORY UT IL IZAT ION 45

7.10.2 Metrics
• Number of keys

• Type of keys

• Size of keys

7.11 Dataset server - memory utilization
7.11.1 Methodology
The experiment measures the memory utilization of the in-memory database.
To measure the memory utilization we must add keys to the database. Adding
10,000 keys to Redis over TCP is slowed down by the need to use a TCP
connection. Redis has a tool which pipes commands directly to Redis. This
allows commands to go directly to Redis. This is designed for mass insertion
operations [22].

By creating a large number of similar keys, we can determine the growth of
memory utilization based on the number of keys. This is a synthetic test without
any of the data structures that the system actually uses.

We create a small Python script that can create a file with a number of com-
mands. The commands are "SET unique key - value". The script creates five files
with increasing number of commands.

• 10,000

• 100,000

• 1,000,000

• 10,000,000

• 100,000,000

The command files is then given to a mass insertion Python script. The mass
insertion script is found on github, and can be seen in appendix C. The script
transforms the basic commands into Redis command strings. The output from
the mass insertion script is piped into Redis, see command 7.5.

46 CHAPTER 7 EXPER IMENTS

$ python red i s−mass . py input . t x t | red i s− c l i −−pipe

Listing 7.5: Mass insertion command

7.11.2 Metrics
• Redis memory utilization

7.12 Dataset server - CPU utilization
7.12.1 Methodology
The CPU utilization measurements are done by using psutil (section 7.1.2) to
get the cpu_percent number for the Redis server process. The pseudo code for
the measurements are the same as used for the web server and can be seen in
listing 7.3.

For this experiment we use the Big dataset defined in table 7.1. We create two
scenarios where we measure the CPU utilization.

Idle The Idle status of the system is that the web server, dataset server and
the metadata extractor are running.

Load The web server, dataset server and the metadata extractor are running.
To create load for the dataset server we run the redis-benchmark utility (section
7.1.3). The redis-benchmark utility is run with the default options, 50 parallel
connections and total 100,000 commands. The redis-benchmark is started
manually from the command line. We wait 10 seconds before we start the
redis-benchmark. It runs for about 30 seconds.

7.12.2 Metrics
• Dataset server CPU usage Idle

• Dataset server CPU usage Load

7.13 DATASET SERVER - REQUESTS PER SECOND 47

7.13 Dataset server - requests per second
7.13.1 Methodology
The experiment measures the requests per seconds for the dataset server. To
measure specifically the requests per second for the Redis server, we use the
redis-benchmark utility (section 7.1.3). The redis-benchmark is run with the
command seen in listing 7.6.

$ red i s−benchmark −q −r 100000 −n 100000
Listing 7.6: Redis benchmark command

The -n specified the number of commands to perform. The -r specifies the
keyspace. Setting the keyspace to the same number as the commands means
that we get a unique key for every command. The default is to use the same
key for every command.

7.13.2 Metrics
• Requests per second for each command

7.14 Metadata extractor - execution time
7.14.1 Methodology
This experiment measures the metadata extractor execution time. The meta-
data extractor is run on a root directory without any changes to the directory
structure. This is because we don’t want any extra CPU usage because of dataset
changes. The experiment will use three different datasets, Big, Medium and
Small. The datasets are defined in table 7.1.

The metadata extractor reports statistics for each iteration, the metadata ex-
tractor code can be seen in listing 7.7. For this experiment we save the elapsed
time for ten iterations and then plot the results in a separate program. This is
to get three different root directories in the same plot.

import time
s t a r t = time . time ()
e x c t r a c t _ a l l _ i n f o rma t i on ()
send_ in fo rmat ion_ to_red i s ()
s top = time . time ()

48 CHAPTER 7 EXPER IMENTS

elapsed = f l oa t (s top − s t a r t)

Listing 7.7: Metadata extractor execution time

7.14.2 Metrics
• Execution time

7.15 Metadata extractor - resource usage
7.15.1 Methodology
This experiment measures the resource usage of the metadata extractor. We use
psutil (section 7.1.2) to measure the resource ussage. The metadata extractor
runs for 1 minute, with 5 seconds delay between each iteration. The pseudo
code implementation can be seen in listing 7.8. Note that thememory_info().rss
function returns the memory utilization in bytes, and we convert it to mb.

To avoid extra memory utilization or CPU load the experiment is run on a
static dataset. The three dataset are defined in table 7.1. The Redis database is
flushed before the first iteration.

import time , subprocess , p s u t i l

pid = ex t r a c t o r _p id
process = p s u t i l . P rocess (pid)
cpu_array = []
mem_array = []
s t a r t = time . time ()
e lapsed = 0
while (e lapsed < 60 seconds) :

s top = time . time ()
e lapsed = f l oa t (s top − s t a r t)
cpu = p . cpu_percent (i n t e r v a l=1)
mem = p . memory_info () . r s s
mem = mem / 1000000 #ge t mb
cpu_array . append(cpu)
mem_array . append(mem)

Listing 7.8: Metadata extractor resources usage

7.16 SYSTEM - RESOURCE USAGE 49

7.15.2 Metrics
• Metadata extractor memory utilization

• Metadata extractor CPU usage

7.16 System - Resource usage
7.16.1 Methodology
This experiment measures the resource usage of all parts of the system. The
two main resources that the system uses is CPU and memory. There are four
distinct prototype parts that we can measure. The prototype parts are:

• Metadata extractor

• Dataset server

• Gunicorn

• Nginx

The metadata extractor and the dataset server both use one process. Gunicorn
has three worker processes, for the CPU measurements we use the average of
the three individual processes. Nginx has four worker processes, for the CPU
measurements we use the average of the four individual processes.

The CPU usage measurements are done by using psutil (section 7.1.2) to get the
cpu_percent number for each process. The memory measurements are done
by using psutil to get the rss number for each process. This experiment uses
the Big dataset that is defined in table 7.1.

Wemeasure the state of the system in two different scenarios. For both scenarios
the dataset server and the web server is running.

Idle The Idle status of the system is that the web server processes, dataset
server and the metadata extractor is running. The metadata extractor runs
with a delay of ten seconds between iteration, this is to get a better view of
when it’s running and not.

50 CHAPTER 7 EXPER IMENTS

Load The system status is identical to the Idle status. To create a load on the
system we use wrk (section 7.1.1). We measure both with 10 and 50 concurrent
connections. We use the /chart web page as the target for this experiment. The
/chart page involves all of the parts of the system.

We start wrk manually from the command line. wrk stops after 60 seconds,
then we wait for 10 seconds before we start it again. The delay is because we
want to identify when it stops in the graphs.

7.16.2 Metrics
• System CPU usage Idle

• System CPU usage Load

• System memory utilization Idle

• System memory utilization Load

7.17 os.walk
7.17.1 Methodology
The experiment measures the execution time of the function os.walk. We want
to measure the the execution time in both Python 2.7 and Python 3.6. The
experiment code is identical for both Python versions and is listen in listing
7.9.

Themeasurements uses the Big dataset, defined in table 7.1, as the root directory.
The measurements are run 10 times and we measure the execution time for
each iteration.

7.17.2 Metrics
• Execution time for Python 2.7

• Execution time for Python 3.6

import os , time
i t e r a t i o n s = 10

7.18 REPORTED D ISK USAGE 51

for range (0 , i t e r a t i o n s) :
t e s t_ t ime , num_fi les , num_dirs = run_ te s t ()
cummulative_time = cummulative_time + te s t _ t ime

average_t ime = cummulative_time / i t e r a t i o n s

def run_ te s t () :
num_f i les = 0
num_dirs = 0
s t a r t = time . time ()
for path , d i r s , f i l e s in os . walk (’ . / ’) :

num_f i les = num_f i les + in t (len (f i l e s))
num_dirs = num_dirs + in t (len (d i r s))

s top = time . time ()
e lapsed = f l oa t (s top − s t a r t
return elapsed , num_fi les , num_dirs

Listing 7.9: os.walk experiment

7.18 Reported disk usage
7.18.1 Methodology
The experiment measures the reported disk usage of a directory including
subdirectories. We want to measure the reported disk usage of three different
utilities: os.walk, du -s and Nemo. os.walk is a Python function that iterates
through all directories and allows us to measure the disk usage of each directory
and file. du -s [23] is a Linux system call that calculates the disk usage of the
current folder. Nemo [24] is a GUI file explorer that is used in Linux Mint.

The primary goal of this experiment is to identify differences between os.walk
and du -s. Nemo is included as a reference point for the measurements.

The experiment is run once per directory. The calculations does not change as
long as there are no changes to the files or directories. The experiment is run
on three different directories. Each of the directories include different directory
structures and a mix of file formats. The composition of the directories are
discussed with the result.

7.18.2 Metrics
• Reported disk usage for: os.walk

52 CHAPTER 7 EXPER IMENTS

• Reported disk usage for: du -s

• Reported disk usage for: Nemo

import os , subprocess
from os . path import j o in , g e t s i z e
walk_s ize = 0
for path , d i r s , f i l e s in os . walk (’ . / ’) :

for name in f i l e s :
f i l e _ p a t h = jo i n (path , name)
f i l e _ s i z e = ge t s i z e (f i l e _ p a t h)
walk_s ize = walk_s ize + f i l e _ s i z e

for name in d i r s :
d i r_path = jo i n (path , name)
d i r _ s i z e = ge t s i z e (d i r_path)
walk_s ize = walk_s ize + d i r _ s i z e

du_s ize = subprocess . check_output ([’ du ’ , ’−s ’ , path])
du_s ize = du_s ize . s p l i t () [0] . decode (’ ut f −8 ’)

Listing 7.10: Disk usage measurement

8
Results
All of the raw experiment data is available in the source code zip file, in the
"benchmarks/raw_data" directory.

8.1 Web browser client - memory footprint
Table 8.1 shows the memory footprint of two web browsers, Chrome and Firefox.
From the table we can see that the Home page uses 13.7 mb in Chrome and 9.3
mb in Firefox. The /chart page uses 10.1 mb in Chrome and 11.1 mb in Firefox.
The /overview page uses 6.0 mb in Chrome and 6.9 mb in Firefox.

The memory footprint of the Home page and the /chart page can partly be
explained by both web pages using the Google Charts library. The Google
Charts library is a library with a lot of functionality. The Home page includes
React and Redux, but from the memory footprint this does not seem to increase

Page Chrome Firefox
Home 13.7 mb 9.3 mb
/chart 10.1 mb 11.1 mb
/overview 6.0 mb 6.9 mb

Table 8.1: Web client memory footprint

53

54 CHAPTER 8 RESULTS

Requests Time Data transferred
Chrome
Home 12 419 ms 2.1 mb
/chart 17 417 ms 432 kb
/overview 136 1.38 s 332 kb
Firefox
Home 12 460 ms 2.13 mb
/chart 19 582 ms 446 kb
/overview 263 5 s 495 kb

Table 8.2: Web client network usage

the memory footprint significantly.

The /overview page uses a library with one main functionality, and a lot fewer
functionalities than Google Charts. This results in the /overview page using
less memory than the other two pages.

Considering that Firefox and Chrome uses over 100 mb of memory just by run-
ning, and is widely known to use many hundred mb of memory. Having a web
page that uses 10-15 mb of memory doesn’t impact the system negatively.

The raw experiment data is available in the file:

"benchmarks/raw_data/web_browser_client.ods".

8.2 Web browser client - network usage
Table 8.2 shows the network usage of the two web browsers, Chrome and
Firefox. From the table we can see that the Home page and the /chart page
create almost the same number of requests and uses the same amount of time
for both web browsers. The interesting thing about the Home page and the
/chart page is that the Home page downloads over 2 mb of data, while the
/chart page downloads under 500 kb.

The difference between these two pages are that Home uses React and Redux.
React and Redux in them self should be around 140 kb [25]. To create the
React application the development environment is set up to use Webpack 1 as
a bundler for all the JavaScript files and libraries. The default configuration of
Webpack bundles all libraries into one "bundle.js" file. When Webpack creates

1. https://webpack.js.org/

8.3 WEB SERVER - WEB PAGES 55

the "bundle.js" file, it reports the size of the file. For this prototype the "bundle.js"
file was 1.86 mb.

For development, Webpack bundles the libraries "as is". A common practice
for JavaScript is to use minification [26], which is a process that removes all
unnecessary characters from source code without changing the functionality.
Webpack was configured to minify all the source files [20]. This reduced the
size of the "bundle.js" from 1.86 mb to 449 kb. This results in the Home page
reducing the amount of data it downloads from over 2 mb to 800 kb.

Looking at the /overview page in table 8.2, we can see that the amount of data
downloaded is similar in both web browsers. Firefox uses double the amount
of time compared to Chrome. The time is explained by the number of requests,
and it seems like Firefox reports a 301 HTTP response for each request we
send to the dataset server. The 301 HTTP response is "Moved Permanently"
which indicates that it’s a redirect. Chrome doesn’t give a warning about the
redirect. All the requests are redirected from Nginx to Gunicorn. The fact that
Firefox gives us the warning points to something wrong with the configuration
of Nginx.

In section 9.2 there is an discussion about how we could utilize Redis and
improve the way we request information.

The raw experiment data is available in the file:

"benchmarks/raw_data/web_browser_client.ods".

8.3 Web server - web pages
The fig. 8.1 shows us the requests per second that the web server can deliver
web pages to a client. The figure also shows the latency and standard deviation
for the requests. From the figure we can see that all three web pages are similar
for both metrics. Figure 8.1b shows us that requests per second is stable at
around 2500 requests per seconds for all three web pages. The requests per
second is stable for the different number of concurrent connections.

The fact that the requests per second is the same for 10 and 50 concurrent
connections indicates that the web server has an upper limit of 2500-3000
requests per second for this prototype. If the upper limit for the web server
was higher, we should have seen a higher number of requests per second for
10 concurrent connections, and then an decrease of requests per second as the
number of concurrent connections increase.

56 CHAPTER 8 RESULTS

(a) Latency (b) Requests per second

Figure 8.1: Web server requests per second and latency for delivering web pages

This is most likely because of the configuration of Nginx and Gunicorn. For this
prototype both of the web servers are configured with the default values. For
example Nginx has a default value [27] of 100 requests a client can make over
a single connection. This would directly impact this experiment as wrk sends
a large number of requests from a single client.

Figure 8.1a shows us that the latency is similar for all three web pages. All
three web pages has a similar increase of latency. All three web pages sees an
increase in the standard deviation as the number of concurrent connections
increase.

This experiment shows that the system delivers all web pages in a consistent
way. There is no web page that is different from the others. This is because of
the web server commands they use, and if we would have used the "history"
command in one of the web pages, we would have seen a different result. As
we will see in the "web server - commands" experiment.

The raw experiment data is available in the file:

"benchmarks/raw_data/web_server_data.py".

8.4 Web server - Commands
The fig. 8.2 shows us the requests per second that the web server can respond
to a command request from a client. The figure also shows the latency and
standard deviation for the requests. The web server commands are the list of
commands that sends a request to the dataset server and returns the information

8.4 WEB SERVER - COMMANDS 57

(a) Latency (b) Requests per second

Figure 8.2: Web server requests per second and latency for responding to commands

as JSON objects.

Figure 8.2b shows us that four out of five commands achieve 2500-3000 requests
per second. From the figure we can see that the "history" command achieves
fewer requests per second compared to the other commands. The "history"
command services around 800 requests per second.

Figure 8.2a shows us the that four out of five commands has similar latency
and standard deviation. At best the commands has a latency of 2.5 ms with
a standard deviation of 0.3 ms. At worst the commands has a latency of 18
ms with a standard deviation of 1.1 ms. From the figure we can see that the
"history" command has higher latency and standard deviation compared to the
other commands. The "history" command at best has a latency of 9.7 ms with
a standard deviation of 1.7 ms. At worst the "history" command has a latency
of 63.8 ms with a standard latency of 10.6 ms.

The way the "history" command works is that it first requests a list of historic
measurements. Then for each measurement in the list, it requests the metadata
for that measurement. The list contains ten measurements, this means that
each "history" command request is one request for the list and ten requests for
metadata. Compared to all the other commands that sends one request to the
dataset server.

Most of the commands are consistent with each other. But the "history" com-
mand is much worse both in terms of requests per second and latency. This
means that any client that would use this command could have a negative
experience. In section 9.2 there is an discussion about how we could improve
the "history" command.

58 CHAPTER 8 RESULTS

The raw experiment data is available in the file:

"benchmarks/raw_data/web_server_commands_data.py".

8.5 Web server - CPU utilization
Figure 8.3 shows us the CPU utilization of the Gunicorn processes. The master
process is a blue line that is constant at 0%. The Gunicorn worker processes
are at around 90% CPU utilization. The experiment computer has four cores,
and each of the Gunicorn process uses 90% of each of the CPU cores. Figure
8.4 shows us the CPU utilization of the Nginx processes. We can see that the
Nginx processes doesn’t exceed 20% CPU utilization.

Gunicorn handles the communication between the web server and the dataset
server. While Nginx only forwards the requests from the web browser client
to Gunicorn. This explains some of the reasons why Gunicorn uses more CPU
than Nginx. The measurements shows that Gunicorn uses most of the resources
the computer can give to it, while Nginx has free capacity.

The raw experiment data is available in the files:

• "benchmarks/raw_data/gunicorn_history_10c.py"

• "benchmarks/raw_data/gunicorn_history_50c.py"

• "benchmarks/raw_data/gunicorn_metadata_10c.py"

• "benchmarks/raw_data/gunicorn_metadata_50c.py"

• "benchmarks/raw_data/nginx_history_10c.py"

• "benchmarks/raw_data/nginx_history_50c.py"

• "benchmarks/raw_data/nginx_metadata_10c.py"

• "benchmarks/raw_data/nginx_metadata_50c.py"

8.5 WEB SERVER - CPU UT IL IZAT ION 59

Figure 8.3: Gunicorn CPU utilization

Figure 8.4: nginx CPU utilization

60 CHAPTER 8 RESULTS

Data type Items Total size Description
set 8500 107.91 kb A set of filenames
hash 26 1.41 kb Metadata for a directory
list 24 1 kb List of historic measurements
zset 24 1 kb Sorted set of dataset size over time

Table 8.3: Biggest data types

Data type # data types # items in data type Average size
hash 3150 31475 10 b
list 126 3024 24 b
set 123 513548 4175 b
zset 8 173 22 b

Table 8.4: Aggregate data type information

8.6 Dataset server - keys
Table 8.3 shows the biggest data type of each data type. Sets are the biggest
with 8500 items. This size will not change as we only have one set with the
current set of filenames.

Table 8.4 shows aggregate information about each data type. Hashes are the
interesting one here, as we will create a new hash for every directory for
each iteration of the metadata extractor. The average size of each hash is 10
bytes.

Table 8.5 shows the summary for the dataset. 3407 keys uses a total of 149
kb.

The table shows that for 24 measurements the overall memory footprint is less
than 1 mb. Considering that most modern computers at the time of writing
this paper, has 16 GB of memory, 1 mb is very low. The only data type that uses
more than a few byte is the sets with filenames, but the sets do not increase in
size without adding more files to the dataset.

These measurements in these tables are discussed further in section 9.4.

The raw experiment data is available in the files:

• "benchmarks/raw_data/bigkeys_output.txt"

• "benchmarks/raw_data/redis_key_sizes.txt"

8.7 DATASET SERVER - MEMORY UT IL IZAT ION 61

Total keys 3407
Total size 149327 b 149 kb
Average size 44 b

Table 8.5: Total keyspace information

(a) Logarithmic scale (b) Linear scale

Figure 8.5: Dataset sever memory utilization

8.7 Dataset server - memory utilization
Figure 8.5 shows the memory utilization for an increasing number of keys.
The number of keys measured begins with ten thousand and increases with an
order of magnitude up to 100 million. The values are from 15 mb to 9 GB.

In fig. 8.5a both scales are logarithmic because the x-axis increases with an
order of magnitude for each measurement.

In fig. 8.5b both scales are linear. Here we can see that the overall scaling of
the memory utilization is linear.

The experiment shows us that the memory footprint increases linear with the
amount of keys. There are no unexpected jumps in the memory footprint. This
allows us to reason about and calculate the memory footprint of the system. It
also shows us that 100 million key-value pairs uses 9 GB of memory, which is a
good result.

The raw experiment data is available in the file:

"benchmarks/raw_data/dataset_server_keys_data.py".

62 CHAPTER 8 RESULTS

Figure 8.6: Dataset server CPU utilization

8.8 Dataset server - CPU utilization
Figure 8.6 shows the CPU utilization for the dataset server under load and
at idle state. For the idle state we can see that there are spikes up to around
5% CPU utilization. When the dataset server experiences load it utilizes up to
100% CPU and depending on the workload it uses between 60% and 100%
CPU.

During the idle state, the metadata extractor is sending data to the dataset
server, this explains the small peaks to around 5%CPU utilization. This indicates
that the amount of requests the metadata extractor sends, does not reach the
capacity of the dataset server.

The load numbers shows us that the benchmarking tool can create a load heavy
enough for the dataset server to use 100% CPU. But not all the commands
that the benchmarking tool sends to the dataset server creates 100% CPU use.
Which benchmarking commands creates the different CPU utilization is outside
the scope of this experiment.

The raw experiment data is available in the files:

"benchmarks/raw_data/dataset_server_cpu_usage_data.py".

8.9 DATASET SERVER - REQUESTS PER SECOND 63

8.9 Dataset server - requests per second
Table 8.6 shows the sorted output from the Redis benchmark. The table shows
us that most of the commands can service about 170,00 requests per second.
These are simple requests that either push one value or gets one value from
the database.

The lrange commands achieves less requests per second compared to the other
commands. What the command does, is fetch the specified number of first
items from a list. The table shows us that getting the first 600 items from a list
is really expensive compared to other operations.

The measurements are the time it takes for a request to be sent from a client
to the dataset server, the dataset server does some computation, and for the
request to be received by the client. We also tried to use 16 pipelines for this
experiment. Then the measurements reaches almost one million requests per
second. These number can be seen in the raw experiment data. Pipelines
combines several commands into one requests, and so this helps for commands
with short computation time. Getting the first x number of items from a list
does not benefit from using pipelines.

The redis-benchmark is a synthetic benchmark. It does not represent real-
world scenarios. The Redis developer believes that with proper optimization
the request per second numbers can be much higher than the redis-benchmark
can achieve 2.

The experiment shows that the prototype does not come close to utilizing the
full capacity of Redis.

The raw experiment data is available in the files:

• "benchmarks/raw_data/redis_bencmark.txt"

• "benchmarks/raw_data/redis_benchmark_pipeline.txt"

8.10 Metadata extractor - execution time
Figure 8.7 shows the execution time of the metadata extractor for three sizes
of datasets. For the Small dataset the metadata extractor uses around 200 ms
for each measurement. For the Medium dataset the metadata extractor uses

2. https://redis.io/topics/benchmarks

64 CHAPTER 8 RESULTS

GET: 172,117.05 Requests/s
PING_BULK: 171,232.88 Requests/s
SPOP: 169,204.73 Requests/s
LPUSH: 168,067.22 Requests/s
RPOP: 167,785.23 Requests/s
SADD: 167,785.23 Requests/s
SET: 167,504.19 Requests/s
RPUSH: 167,504.19 Requests/s
LPOP: 167,504.19 Requests/s
LPUSH 166,666.66 Requests/s
PING_INLINE: 166,112.95 Requests/s
HSET: 163,934.42 Requests/s
INCR: 161,030.59 Requests/s
MSET 88,339.23 Requests/s
LRANGE_100 70,422.54 Requests/s
LRANGE_300 26,082.42 Requests/s
LRANGE_500 18,552.88 Requests/s
LRANGE_600 14,027.21 Requests/s

Table 8.6: Requests per second from Redis benchmark

around 4 seconds for each measurement. For the Big dataset the metadata
extractor uses around 8 seconds.

The datasets that are used for this experiment is named Small, Medium and Big.
These names are arbitrary names that are meant to reflect the ratio between the
datasets. The ratio of the datasets are not accurately represented, for instance
the Medium dataset uses 4% of the storage space of the Big dataset. But the Big
dataset has 5% of the number of directories compared to the Medium dataset.
Figure 8.7 shows that the Medium dataset uses 50% of the time the Big dataset,
from this we could infer that the Medium dataset is 50% of the Big dataset,
which is not the case for this experiment.

The reason why the metadata extractor uses 4 seconds on the Medium dataset
and 8 seconds on the Big dataset is explained by system calls. The metadata
extractor traverses the directory structure and all the files within the directory
structure. The Medium dataset has 2252 directories compared to the Big dataset
with 126 directories. For each directory the metadata extractor must make a
system call to read from the physical hard disk. Each of the system calls are
expensive.

The metadata extractor does two operations that increases the execution time.
System call to the hard disk, and iteration on lists of files. Looking at fig 8.7 we

8.11 METADATA EXTRACTOR - RESOURCE USAGE 65

Figure 8.7: Metadata extractor execution time for Small, Medium and Big datasets

can see that the execution time is linked more to the number of system calls
than the storage size of the dataset.

The raw experiment data is available in the file:

"benchmarks/raw_data/dataset_extractor_execution_time_data.py".

8.11 Metadata extractor - resource usage
Figure 8.8 shows us the resource usage for the metadata extractor. Figure 8.8a
shows us the CPU utilization for the metadata extractor. The Small dataset
has spikes of around 15% CPU utilization. The Medium dataset has spikes of
around 75% CPU utilization. The Big dataset has spikes of around 90% CPU
utilization.

Figure 8.8b shows us the memory utilization of the metadata extractor. The
Small dataset uses around 16.8 mb memory for all measurements. The Medium
dataset varies between 20 mb and 21 mb memory for all measurements. The
Big dataset has peaks of around 50 mb and then falls to around 35 mb.

The metadata extractor runs a full iteration of gathering metadata and sending
it to the dataset server. Then the metadata extractor waits for some time before
the next iteration. This can be seen as the spikes in the figures. The peaks in
CPU utilization is explained by the system calls and list iteration. The peaks
of memory footprint is because the metadata extractor temporarily saves the
metadata in memory before sending it to the dataset server.

66 CHAPTER 8 RESULTS

(a) CPU utilization (b) Memory utilization

Figure 8.8: Metadata extractor CPU utilization and memory utilization

The drop in the memory utilization for the Big dataset is explained by the
Python garbage collector. The Python garbage collector is automatically freeing
unused memory, and that is what we are seeing in fig. 8.8b.

This experiment shows us that the metadata extractor uses a lot of the CPU
capacity and has a lot of memory that it leaves to the garbage collector. In
section 9.8 we discuss how we can optimize the CPU utilization and memory
footprint of the metadata extractor.

The raw experiment data is available in the file:

"benchmarks/raw_data/dataset_extractor_resource_usage_data.py".

8.12 System - CPU utilization
Figure 8.9 shows the CPU utilization of all parts of the system in an Idle state.
The figure shows that Nginx and Gunicorn uses 0% CPU. Redis has spikes to
5% CPU utlization. The metadata extractor varies between 0% CPU utlization
to spikes of around 90% and 40% CPU utilization.

The Redis CPU spikes are explained by Redis writing the in-memory database
to disk. Nginx and Gunicorn does not use the CPU as long as they don’t receive
any requests.

The figure shows shows that the metadata extractor is running iterations and
using between 40% and 90% CPU. Then it waits between each iteration,
using 0% CPU. There are large differences in CPU utilization for the metadata

8.12 SYSTEM - CPU UT IL IZAT ION 67

Figure 8.9: System - CPU utilization in an idle state

extractor. The reason is unknown.

Figure 8.10 shows the CPU utilization of all parts of the system during two
different workloads. The system generates about the same CPU utilization
pattern for both 10 and 50 connections. The figures shows that Redis has a
consistent CPU utilization of around 10%. Nginx uses between 3% and 8% CPU.
Gunicorn has around 90% CPU utilization under load. The metadata extractor
has the same CPU utilization pattern as in the Idle state, with spikes between
40% and 90% CPU utilization.

We can see from the figure that Gunicorn uses around 90% CPU when there
are load on the system. Considering that both of the systems that interact with
Gunicorn uses around 10% CPU, this points to Gunicorn being the bottleneck
in this system. Gunicorn uses the default configuration, with three worker
processes. There has been no effort to optimize the way Gunicorn handles
requests.

The experiment shows that the two parts of the system that uses the CPU ca-
pacity is Gunicorn and the metadata extractor. If we reduce the CPU utilization
of these two parts we would have free CPU capacity.

The raw experiment data is available in the files:

• "benchmarks/raw_data/system_cpu_idle_data.py".

• "benchmarks/raw_data/system_cpu_load_10connections_data.py".

• "benchmarks/raw_data/system_cpu_load_50connections_data.py".

68 CHAPTER 8 RESULTS

(a) 10 connections (b) 50 connections

Figure 8.10: System - CPU utilization under load

8.13 System - memory footprint
Figure 8.11 shows the memory footprint of all parts of the system. The memory
footprint is almost identical for the system in an Idle state and during load.
The figure only shows one of the workloads.

Redis starts at a few mb of memory footprint and increases to 40 mb of
memory footprint. Nginx uses 17 mb memory through the whole experiment.
The metadata extractor varies between 30 mb and 50 mb of memory footprint.
Gunicorn consistently uses 120 mb of memory. We can see that the memory
footprint for Redis increases for the first iteration of the metadata extractor. This
is expected as the Redis database goes from being empty to having metadata
supplied by the metadata extractor.

The experiment shows us that the memory footprint of the system is stable,
and we will most likely only get an increase of the memory footprint of Redis
as the database increases.

The raw experiment data is available in the files:

• "benchmarks/raw_data/system_memory_usage_data_50c.py".

• "benchmarks/raw_data/system_memory_usage_data_10c.py".

• "benchmarks/raw_data/system_memory_usage_data_idle.py".

8.14 OS .WALK 69

Figure 8.11: System memory utilization

8.14 os.walk
Figure 8.12 shows the execution time of os.walk in both Python 2.7 and Python
3.6. The figure shows Python 2.7 has an execution time around 1.5 seconds for
each iteration. Python 3.6 has an execution time of aroun 0.5 seconds for each
iteration.The result of the benchmark is that Python 3.6 uses 33% less time
compare to Python 2.7.

The os.walk() function in Python 2.7 uses os.listdir() to get each entry in
a directory. os.listdir() does fetch additional information for each entry but
discards the additional information. For each entry it will then call os.stat() to
determine if the entry is a file or directory. To get the size of a file you have
to make another call to os.stat() for each entry. This gives a minimum of two
system calls for each directory.

Having to make at least two system calls for each entry is expensive. That’s why
os.scandir() was created. 3 It removes the system call to os.stat() to determine
if the entry is a file or directory.

For Python 2.7 you need to install os.scandir() as a standalone module. But
from Python 3.5 and forwards the standard library os.walk() function uses the
os.scandir() function directly.

The raw experiment data is available in the file:

"benchmarks/os_walk_plot.py"

3. The development of scandir: http://benhoyt.com/writings/scandir/

70 CHAPTER 8 RESULTS

Figure 8.12: os.walk execution time in both Python 2.6 and Python 3.6

8.15 Reported disk usage
Table 8.7 shows the reported disk usage of os.walk, du -s and Nemo. From
the table we can see that the experiment measures the reported disk usage of
650,608, 4139 and 1453 items. The items are both directories and files. os.walk
reports 154 GB disk usage for 650,608 items. 114 mb disk usage for 4139 items.
255 mb disk usage for 1453 items.

du -s reports 152 GB disk usage for 650,608 items. 138 mb disk usage for 4139
items. 252 mb disk usage for 1452 items. Nemo reports 154 GB disk usage for
650,608 items. 114 mb disk usage for 4139 items. 255 mb disk usage for 1453
items.

Nemo reports identical disk usage as os.walk, and therefor we will not include
Nemo in the following discussion. The reported disk usage for 650,608 items is
152 GB for du -s and 154 GB for os.walk. The difference is 2.31 GB or 1.5%. The
reported disk usage for 4139 items is 138 mb for du -s and 114 mb for os.walk.
The difference is 24 mb or 19%. The reported disk usage for 1453 items is 252
mb for du-s and 255 mb for os.walk. The difference is 2.88 mb or 1.1%.

With 650,608 items and 1453 items the difference between du -s and os.walk
is around 1-2%, with os.walk reporting more disk usage. With 4139 items the
difference between du -s and os.walk is 19%, with du -s reporting more disk
usage. The reason for these differences may be in what the dataset includes. If
there are a lot of small files, zip files and so on. This problem is not researcher
in depth in this paper.

One explanation for this difference can be how a file system works, and how du

8.15 REPORTED D ISK USAGE 71

Items 650,608 4139 1453
os.walk() 154.68 GB 114.23 mb 255.83 mb
du -s 152.37 GB 138.24 mb 252.94 mb
Difference 2.31 GB -24.01 mb 2.88 mb
Nemo 154.7 GB 114.2 mb 255.8 mb

Table 8.7: Reported disk usage

-s reports the disk usage. du -s reports the allocation space and not the absolute
file space. This means that if a file is deleted but their block is not yet freed.
Since du -s only is an estimate, the way the file system handles allocation and
freeing of blocks are important for the estimate. The ext4 [28] filesystem uses
delayed allocation which may have an impact on the estimate.

This experiment shows that there are differences in the reported disk usage
for different utilities.

9
Discussion
9.1 Thesis
The idea includes the abstract concept of Information. Chapter 3 defines the
concept of Information as organized and processed metadata. A researcher
wants to analyze metadata about a dataset. The system organizes and pro-
cesses the metadata before creating a visualization. We wanted to create an
abstraction of the concept of organizing and processing metadata. We choose
to call the abstract concept: Information. We assume that the reader under-
stands when we are refering to information (generalized) and Information as
an abstract concept.

The architecture for the project isolates each part of the prototype into systems.
The Instrument extracts metadata from any dataset and deliver metadata to
any client. The Visualization abstraction in this prototype is dependent on
specific types of metadata to be able to create visualizations.

The design of the system realizes the architecture into one out of several possible
systems. For example the web server is just the functionality of requesting
metadata from the dataset service and delivering the metadata as information
to the Visualization.

The implementation of the prototype uses Python for every part of the system.
This allowed us to quickly create working solutions to each part of the system.
Python is a interpreted language [29] and is executed step-by-step at runtime.

73

74 CHAPTER 9 D ISCUSS ION

Compared to a compiled language [30] that compiles to machine code and in
the compile process can optimize code execution. This means that in many
cases Python perform slower than a compiled language [31][32][33].

The experiment shows that we implemented a system that can execute together.
We observe around 90% CPU utilization for the metadata extractor and Guni-
corn. The other parts have below 20% CPU utilization. The experiment show
that Redis has a predictable memory footprint that allows for calculations of the
future memory footprint. The other parts of the system has a stable memory
footprint with Gunicorn having the biggest footprint of 120 mb. Giving us free
memory capacity that Redis can utilize.

9.2 Optimizing Redis
For this prototype we store most of the metadata for a directory in a Redis
hash. We did this because it is logical to have a hash that represents a directory,
and all the associated metadata contained within the hash. The COAT dataset
structure has directories that are structured first by year, then location and
date. This gives us possibilities to "tag" information and sort them into sets.
Redis sets support unions, intersections and differences. A set is a collection of
unique strings. For example we could create a set for each location per year.
The set includes all the dates when the location has had measurements. This
would allow us to create complex queries such as "has this location had any
measurements on these specific dates the last few years?".

We can optimize the way we store metadata collected over time. We can use
one sorted set for each type of metadata. The score is the measurement time
and the value is the metadata. This would give us a way to request metadata
for a directory over time, such as the number of files in a directory over time.
We have the ability to get that metadata now, but it involves as many requests
as there are measurements for each directory.

The "/overview" page creates a new request for each directory just to get the
modified date. If we store the modified date in one sorted set, this would
enable the /overview page to use one requests to get the modified date for
all directories. Storing metadata over time in sorted sets enables the system
to use Redis commands for sorted sets such as requesting a specified range of
metadata.

Another solution for the /overview page is to reduce the number of requests it
sends. Utilizing Redis pipelines (see section 6.3.3) we could bundle together
several requests. If the web server bundles together every 100th request in a

9.3 SCALE 75

pipeline, the experiment results from table 8.2 would reduce Firefox network
requests from about 260 requests to around 10 requests.

The "history" command that the web server offers can service around 800
requests per second compare to the other commands that can service 2500-
3000 requests per second, as seen in figure 8.2b. The command gets a list of
historic metadata entries from the dataset server. For each entry in the list, the
web server must request the metadata from the dataset server. We can reduce
the "history" cost by utilizing both sorted sets and pipelines.

9.3 Scale
How we scale the capability of a computer system has been researched for
a long time and there are several solutions to the problem. We can scale
vertically, horizontally, distribute, replicate and so on. This is not the case
with visualization. Most visualizations [9] show one metric, such as value or
occurrences. For one or more items such as people, companies or different rates
(unemployment, obesity, army movement). The visualization may also include
the relation of the items such as time, hierarchy or geographical relation.

The human user must understand and be able to navigate the visualization. If
the user understands the visualization, the user can create conclusions based
on the understanding. When we create the prototype, do we focus our work on
a users first time experience or do we assume that the user has prior knowledge
of the system. Creating a new way of visualizing information involves learning
how to interpret the visualization. Most human users know how to interpret
visualization techniques that are used today.

There is a visual information-seeking mantra[13]:

Overview first, zoom and filter, then details-on-demand.

Creating an overview can be difficult if there are many items that we want
to visualize. We can reduce the number of items by filtering the information
that the visualization application uses to create the visualization. But if the
visualization application filters the information before the user can see it, how
can the visualization application determine if it filtered the correct information?
The human user still wants to analyze all of the information. And the user may
need an overview of the information to understand what to filter out.

There are examples of big data visualization that accomplish big scale visual-
ization. The examples are space visualizations [34] [35] [36]. They have one

76 CHAPTER 9 D ISCUSS ION

1 hour 1 year
Average size 44 b 196 mb
Worst size 4175 b 18.6 GB

Table 9.1: Calculated memory utilization

thing in common, the sun. The visualizations uses the sun as an anchor point,
and it helps the human user to navigate the visualizations.

9.4 The amount of keys
9.4.1 One year of measurements
If we use the numbers from the "Dataset server - keys" experiment in section
8.6 we can calculate the memory usage for a year of measurements. One year
is 8760 hours, and if we do a measurement once every hour it gives us 8760
measurements for a year. The worst case scenario is that each time we do a
measurement we create all new keys, which is not the case in the prototype.
Running the metadata extractor once using the Big dataset creates 509 keys,
the keys are both sets, hashes, lists and sorted sets.

The worst case scenario would create 509 new keys every hour for 8760
measurements, giving a total of 4,458,840 keys. If we use the average size of
all keys from table 8.5 and the worst average size from table 8.4 we can create
the table 9.1. Table 9.1 shows that if take the average size of all types of keys
and creates over four million keys we get a total size of 196 mb. If we take the
worst average size of a set and create over four million keys we get a total size
of 18.6 GB.

Since there is such a big difference between the worst size and the average
size, we can look closer at a specific data types. One measurement of the Big
dataset creates 252 hashes and for each measurement we create a new hash.
252 hashes 8760 times, gives us a total of 2,207,520 hashes for a year. Each hash
has an average size of 10 bytes, which gives us a total size of 22 mb.

Looking at the theoretical numbers that is presented here, we can see that
the prototype is well suited to save metadata. The average size of 44 bytes
gives a worst case scenario of 196 mb for a year of metadata. The worst size
calculation would mean that we saved all filenames 8760 times. The prototype
visualization doesn’t actually use the filename sets, and we could remove it
from the prototype. This would give us an lower calculated size.

9.4 THE AMOUNT OF KEYS 77

Data type # types Average size 1000 iter. 9000 iter.
list 126 1000 b 126 kb 1.1 mb
set 123 4175 b 513 kb 0.5 mb
hash 126126 10 b 1261 kb 11.3 mb
zset 8 785 b 6 kb 0.05 mb
Total 1907 kb 13 mb

Table 9.2: Theoretical memory footprint of Big dataset

9.4.2 Dataset growth
In order to better understand how the Big dataset would evolve over time, we
let the metadata extractor run for 1000 measurements. Note that the dataset
was static for every measurement, meaning that there are no new files. After
1000 measurements there are a total of 126,383 keys with a total size of 5.6 mb.
Based on the measurements we can do some calculations to find the memory
footprint after one year and around 9000 measurements.

Table 9.2 shows the number of each data type after 1000 iterations and the
average size of each data type. Comparing these numbers with the experiment
measurements in table 8.4, we can see that the list has the same number of
items, but the average size has increased. Meaning that there are the same
number of lists, but each list has more elements. Zset (sorted set) also has
the same number of items with an increase of average size, meaning that
each sorted set has more elements. The sets have not changed, they have the
same number of items, each item has the same number of elements and the
average size is the same. This is because this prototype only stores filenames
in the sets, and there are no change in the amount of filenames. For hashes
there are 126,126 items after 1000 iterations compared to 3150 hashes in table
8.4. The increase is because we create new hashes for each directory for each
measurement. The average size is the same in both instances.

This gives us a calculated size of 13 mb for one year of metadata measurements.
It will take over 690 years to reach 9 GB of memory footprint for Redis. This
means that we have free capacity to utilize Redis data structures as discussed
in section 9.2.

The raw experiment data for 1000 measurements is available in the file:

"benchmarks/rar_data/theory/Big_dataset_1000_iterations".

78 CHAPTER 9 D ISCUSS ION

9.5 Prototype bottleneck
Table 8.6 shows the requests per second that Redis could service. Redis serviced
around 170,000 requests per second for the experiment and the worst case for
the experiment was 14,000 requests per second. Figure 8.1 shows the requests
per second that the web server could serve through Nginx. The web server
served around 2500 requests per second. Figure 8.2 shows the requests per
second that Gunicorn could service. Gunicorn serviced around 2500 requests
per second. Figure 8.10 shows the CPU utilization of all parts of the system.
Gunicorn uses around 90% CPU compared to Redis and Nginx that uses around
10%.

Based on these numbers we can conclude that Gunicorn is the bottleneck in the
system. Removing Nginx from the requests chain did not change the requests
per second measurement. And sending requests directly to Redis shows a much
higher worst case result. From the CPU utilization experiment we can see that
Gunicorn uses most of the CPU capacity available.

9.6 React, abstractions and Google charts
React is based on encapsulated components and the principle of creating
abstraction layers. When we are in a learning phase, creating abstractions for
something you don’t understand is difficult. When the abstraction is made by
someone else, this makes it even harder to learn. This means you have to learn
the underlying system and how the abstraction works.

The Google Charts library is a library with support for 18 native chart types,
18 additional chart types and five types of controls. Google Charts has an
abstraction layer that allows the user to bundle together several types of charts
and controls.

React is set up in a way that encourages the use of components. Compo-
nents are abstractions that are meant to make it easier for developer to reuse
parts of the application. For example, if you have a main view for the ap-
plication, the main view is split into components. An example main view is
<Header><Text><Table><Chart>. Each of these parts points to a compo-
nent. Each of the components can include new views (which includes new or
reused components). Looking at the <Chart> component from the example
main view, this component can consist of <Text><LineChart><Text>. The
component<LineChart> is the component that "directly" uses the react-google-
charts component. Which itself is an abstraction layer.

9.7 EXTRACT METADATA ON DATASET CHANGE 79

The original Google Charts library is developed by Google. react-google-charts
is developed by one independent developer. At the time of using the react-
google-charts component, all of the Google Charts functionality was not sup-
ported. This gave me the option to either write support for additional func-
tionality or use the Google Charts library directly. I ended up with using the
Google Charts library directly.

9.7 Extract metadata on dataset change
The prototype runs the metadata extractor as a process that starts a new
iteration on a set interval. Another solution that was considered was having
the metadata extractor execute when there is a change in the filesystem.
This solution involves monitoring every directory that we want to extract
metadata from for changes. Linux has a system, Inotify [37], that can monitor
the filesystem and notify if there are changes to the filesystem. The reason we
can not use Inotify for this system is that Inotfy does not support recursively
watching directories. Meaning that a separate Inotify watch must be created
for every subdirectory.

Inotify has a default configuration "max user watches" limit of 8192 files you
can monitor. And each watcher for Inotify opens a file descriptor, and therefore
Inotify is limited by the max number of files the file system allows a user to have.
That limit is defined by ulimit which is a Linux system call that limits the use of
system-wide resources. For example on the development machine the default
maximum number of open files are 1024. The ulimit default configuration can
be changed, but for this prototype we did not choose to do it.

9.8 Metadata extractor resource usage
Figure 8.8 shows the CPU utilization and memory utilization of the metadata
extractor. The Small dataset has a unrealistic size, so for this discussion we
will ignore the Small dataset. Figure 8.8a shows a CPU utilization of 60-
90% for both the Big and Medium dataset. The metadata extractor uses
a sequential extraction process and is a single-threaded process. The CPU
utilization measurements in fig. 8.8a are for one CPU core. If we could split
the workload to several threads, we could utilize the CPU cores and reduce the
peaks of CPU utilization. For example use 20% CPU on four cores rather than
80% on one core.

If we define that the metadata extractor will collect metadata once every hour,

80 CHAPTER 9 D ISCUSS ION

we could increase the execution time of the metadata extractor. This can be
achieved either by having the extractor wait at certain points, or by setting a
limit on the CPU utilization. Python has a resource module [38] that can set a
maximum amount of processor time that a target process can use.

Figure 8.8b shows a memory footprint of 20 mb for the Medium dataset and up
to 50 mb for the Big dataset. The memory footprint of the metadata extractor
is not problematic, but we could reduce the memory footprint by sending the
collected data as it is collected. The current prototype collects and stores all
metadata before sending it all in one operation. Sending metadata when it is
collected would reduce the memory footprint, but it would create more requests
for the dataset server.

10
Contributions
We contribute an architecture and design of a system that enables human users
to interact with and visualize information. The visualization can request new
information and change how the visualization is created based on input from
the human user.

We contribute an architecture and design of a system that uses in-memory
storage to store information about the history of a dataset. The system extracts
metadata about a dataset and stores it in-memory. The system enables access
to the stored information.

We implement an artifact prototype system that validates the design of the
system. The implementation utilizes Redis as an in-memory data structure
store. The data structures enables the information to be logically mapped and
stored.

We evaluate the system and observe that we can reduce the CPU utilization of
the metadata extractor and Gunicorn. The evaluation show that Redis has a
predicable memory footprint.

We contribute a validation of the idea of using in-memory storage to store
dataset information over time. Redis allows us to use data structures that
enables logically mapping information. Our calculations indicate that Redis
can store over 690 years of metadata with a memory footprint of 9 GB.

81

11
Summary and Conclusion
The goal of this Master’s thesis is to enable researchers to visualize information
about a dataset with the purpose of looking for trends and identify changes over
time. The information is organized and processed metadata about a dataset
that is collected over time. This thesis describes how we design, implemented
and test a solution that achieves the goal.

We have implemented ametadata extractor in Python that can extractmetadata
from a dataset and send it to a dataset sever that stores the metadata. The
dataset server is realized utilizing Redis as an in-memory database. We have
implemented a web server using Django, Gunicorn and Nginx. The web server
can request metadata from the dataset server and transform metadata into
information that is supplied to the visualization application. The visualization
application is a JavaScript web application that creates visualizations based
on the information supplied by the web server. The researchers uses the
visualization application to access, monitor and analyze historic information
about the dataset.

Our experiments shows us that the web server can serve about 2500 web pages
to 10 concurrent connections with a latency below 5 ms. And the web server
can server about 2500 web pages to 50 concurrent connections with a latency
below 30 ms. This would stress the Gunicorn web server and it would use
around 90% CPU. The experiments show that Redis has free capacity both in
regards to the number of requests it can serve, but also the CPU utilization.
The memory footprint of Redis is dependent on the amount of information

83

84 CHAPTER 11 SUMMARY AND CONCLUS ION

that we store. Our experiments show that the hash data type, which is the
main method that we store metadata, has an average size of 10 bytes. One
experiment shows that storing 100 million key-value pairs in Redis uses 9 GB
of memory. The key-value pairs has an average size of 8.5 bytes.

The thesis contributes an architecture and design that enables and supports the
creation of visualizations of organized and processed metadata. The artifact
validates using in-memory storage to store the historic metadata.

12
Future work
In section 9.5 we have identified the Gunicorn web server as a bottleneck for
information requests. We could try to change from a Python based web server
to another technology such as Golang 1. The web server does not need to
support complex routing logic or support database migrations, and Golang
offers a simple and effective HTTP package.

We have identified that the metadata extractor utilizes most of the CPU capacity
of the CPU core it is using. We have detailed that we could try to parallelize the
workload and limit the CPU utilization of the prototype. Themetadata extractor
defines the minimum time between each measurement of the dataset, as the
execution of the metadata extractor must complete before a new measurement
can begin. If the time between each measurement is longer than the execution
time of the metadata extractor, this means that the resource utilization can be
lowered and have a longer execution time.

In this prototype the metadata extractor is a process that a human user must
manually execute and monitor. If the metadata extractor crashes a human
user must notice it and restart the process. The metadata extractor could be a
service that the OS executes and monitor. The metadata extractor could have
a interface for users to input a different measurement interval.

The communication with Redis from the metadata extractor uses pipelines, this

1. https://golang.org/

85

86 CHAPTER 12 FUTURE WORK

optimizes the communication between them. The communication between the
web server and Redis does not use pipelines, and for some of the information
requests pipelines can drastically improve the communication overhead. The
information extraction from Redis could also be improved if we improve the
way we store information in Redis. By utilizing sorted sets for more information,
we can improve the number of requests needed for certain types of information.
This would also enable the system to create complex queries that involves
several sets of information.

The visualization application shows that it is possible to visualize the informa-
tion, and gives examples of visualization techniques that is appropriate. There
is a lot of possibility for future work with the visualization application. For each
web page we could add more controls both for controlling the visualization
but also changing the way the visualizations are created. Currently there are
no styling for the visualization application.

The current system implements one dataset server, the design of the system is
to have multiple dataset servers. We could implement support for more dataset
servers in the web server and add options to query the additional dataset
servers in the visualization application. The whole system would run on each
machine, and the web server and visualization application is aware of the other
dataset servers.

A
The Road Towards theArtifact
This chapter details the approach used and issues seen while progressing
towards the described prototype. The idea of our approach was to create a
system that allowed us to iteratively try different visualization approaches. The
system has three components; Visualizer, Instrument and Dataset.

Visualizer The visualizer displays visual information to the user. The visu-
alizer will not use common visualization techniques such as charts and tables.
The visualizer uses the information that is collected by the instrument to create
a visualization.

Instrument The instrument extracts information from the dataset. This
includes information about the dataset and information about each element in
the dataset. The instrument stores the extracted information.

Dataset The dataset that we use for our approach is a file system. A file
system includes directories and files. The dataset includes metadata that the file
system has stored about the files and directories. The metadata include:

• Size of file system

87

88 APPEND IX A THE ROAD TOWARDS THE ART IFACT

Name Size Quota
Directory1 600 40%
Directory2 200 13%
Directory3 700 47%
Total 1500 100%

Table A.1: Directory size quota

• Name of each directory

• Name of each file

• Last modified time

• File type

• Total number of directories

• Total number of files

• Size of a directory

• Size of a file

A.1 Approach 1
For approach 1 we focused on visualizing metadata as a visual object. We
arbitrarily chose a square shape. The square represents one piece of metadata.
The size of the square is based on the value of the metadata. If we directly
translate the value of the metadata to the size of the square, we can have
squares that are larger than the screen area. The solution we used for this
problem was to create a value quota. For example the directory size can be
300,000 kb, which can’t be directly assigned as the size of a visual object on
screen. Table A.1 shows how we created a quota of the directory size. All
directories add up to 100%, and we can use the percentage as the on screen
size of a directory.

Figure A.1a shows our first attempt to place the square shapes on the screen.
The squares are placed randomly on the screen. This is a simple placement
algorithm that only needs to check if the square is inside the screen area
and does not overlap any other square. In our opinion this does not aid us to

A .2 APPROACH 2 89

(a) Random placement (b) Fixed placement

Figure A.1: Version 1 square placement

visually compare items. We determined that comparing items is important for
the visualization.

Our second attempt to place the squares on the screen can be seen in fig. A.1b.
The squares are organized and sorted on the screen. The placement algorithm
precisely calculates the placement of each square. We found that it’s important
to have padding around each square. The squares are sorted by value, and in
our opinion this approach allows us to compare items. But the figure shows us
that several squares have the same size even though the value is different. This
is because the quota of the squares are skewed towards the biggest squares.
In fig. A.1b the biggest squares has a quota of around 90% and the smallest
squares are under 1%. This means that we cannot visually differentiate the
smallest squares even if their value are different.

A.2 Approach 2
For approach 2 we focused on sorting the square visual objects. To sort the
objects we determine that we want an overview of all objects. The overview
has each square representing the value of the metadata as a quota, similar to
approach 1. In addition to the overview we want to sort all the objects into
smaller groups. The groups are sorted with the biggest squares in one group,
and the smaller squares in their own group. Each square inside the groups have
the same visual size, but they are sorted based on the value. The size difference
between squares inside a group is visualized by having the biggest items blink.
How much and how quickly they blink is based on the value. The biggest
squares blink faster. To identify the groups in the overview, we use a unique
color for each group and use that color for those squares in the overview.

Figure A.2 shows our first attempt to create an overview and place the squares

90 APPEND IX A THE ROAD TOWARDS THE ART IFACT

Figure A.2: Version 2 static placement

(a) 4 horizontal areas (b) 8 horizontal areas

Figure A.3: Version 2 dynamic placement

in groups. The placement of the overview and the groups needs to calculate
both the vertical and horizontal placement. Having to consider both the vertical
and horizontal placement made the placement algorithm complex. A problem
with this approach is that it’s not immediately obvious how a user should read
the visual information.

Our second attempt is seen in fig. A.3. Placing the overview and groups vertically
means that each group fills the whole width, and we only need to consider
the horizontal placement. It makes the placement algorithm less complex
compared to our first attempt. Having a less complex placement algorithm
allows us to give the user the ability to change the number of groups to sort the
squares into. Figure A.3a shows the squares sorted into three groups. Figure
A.3b shows the squares sorted into seven groups. We feel that having more
groups allows us to identify smaller size differences between the squares. But
at the same time we feel it makes the visualization cluttered.

A .3 APPROACH 3 91

Figure A.4: Circular placement

A.3 Approach 3
For our third approach we focused on visualizing how directories are con-
nected. The visualization will recreate the directory hierarchy based on a circle
placement algorithm, seen in fig. A.4. The main root of the hierarchy is placed
in the middle of the screen. All subdirectories of the root is placed on the
circumference of a circle around the root. Each subdirectory of the current
root is the root of a new circle pattern. The main root has a unique color. Each
subdirectory and it’s subdirectories are given a unique color.

Storing information about how directories are connected allows the user to
click on a subdirectory to focus on that directory. This makes the selected
directory the new main root of the visualization. This functionality allows the
user to navigate the directory hierarchy.

We created an option for the user to filter which directories are visualized.
The filter is based on the last modified time metadata. This allows the user
to only visualize the directories that has a last modified time before a certain
time.

In our opinion this approach achieves most of what it wanted to achieve. We
manage to visualize how directories are connected. We allow the user to use
the visualization to navigate the directory hierarchy. But this approach also
highlights the problems that are associated with visualizations. If there are
more than a hundred directories, we feel that the visualization looses it’s clarity.
And it makes it hard to identify and differentiate the different directories. There
is also a problem visualizing more than 4-5 layers of subdirectories.

92 APPEND IX A THE ROAD TOWARDS THE ART IFACT

A.4 Conclusion
The idea of this research was to give a human user the ability to view visual
information about a data volume. A part of the idea was to not use any conven-
tional visualization techniques such as charts, diagrams and tables. During the
iterations of this research we tried using squares that represent information
in different ways. Either as a representation of the underlying information or
as a part of a bigger picture. We also tried using a circular approach, with
circles representing information, and each circle having a circle of related
information. The technical creation of the visualizations was successful, but
we learned something about the creation and practical use of a new type of
visualization.

We tried several visualization approaches both fancy and basic to see what
was needed from the Instrument. The Instrument is the system that enables
other systems to gather and visualize information. It is important that the
Instrument supports flexibility. The problem statement is therefore not how
do we visualize the information, but how do we support the creation of the
visualization.

B
Redis key size
human_size () {

awk −v sum="$1 "
’ BEGIN {hum[1024^3]="Gb" ;
hum[1024^2]="Mb" ; hum[1024]= "Kb " ;
for (x=1024^3; x>=1024; x/=1024){

i f (sum>=x) {
pr in t f "%.2 f %s \n " ,sum/x ,hum[x] ;
break ;

}
}
i f (sum<1024) p r i n t " 1kb " ; } ’

}

redis_cmd=’ red i s−c l i ’

ge t keys and s i z e s
for k in ‘ $redis_cmd keys " * " ‘ ;
do key_s i ze_by te s=‘$redis_cmd
debug ob j e c t $k |
pe r l −wpe ’ s/^.+s e r i a l i z e d l e n g t h : ([\ d]+).+$/$1/g ’ ‘ ;
s i z e _ k e y _ l i s t=" $ s i z e _k ey_ l i s t $ k e y_ s i z e _by t e s $k\n " ;
done

s o r t the l i s t

93

94 APPEND IX B RED IS KEY S IZE

s o r t e d _ k e y _ l i s t =‘echo −e " $ s i z e _ k e y _ l i s t " | s o r t −n ‘

pr i n t out the l i s t with human readab l e s i z e s
echo −e " $ s o r t ed_key_ l i s t " | while read l ; do

i f [[−n " $ l "]] ; then
s i z e =‘echo $l | pe r l −wpe ’ s/^(\d+).+/$1/g ’ ‘ ;
h s i ze=‘human_size " $ s i ze " ‘ ;
key=‘echo $l | pe r l −wpe ’ s/^\d+(.+)/$1/g ’ ‘ ;
pr in t f "%−10s%s \n " " $hs ize " " $key " ;

f i
done

Listing B.1: https://gist.github.com/epicserve/5699837

C
Redis mass-insertion
import sys

def proto (l i n e) :
r e s u l t = "*%s\ r \n$%s \ r \n%s \ r \n " % (s t r (len (l i n e)) ,

s t r (len (l i n e [0])) , l i n e [0])
for arg in l i n e [1 :] :

r e s u l t += "$%s \ r \n%s \ r \n " % (s t r (len (arg)) , arg)
return r e s u l t

i f __name__ == " __main__ " :
t ry :

f i lename = sys . argv [1]
f = open(f i lename , ’ r ’)

except IndexError :
f = sys . s t d i n . r e ad l i n e s ()

for l i n e in f :
print proto (l i n e . r s t r i p () . s p l i t (’ ’)) ,

Listing C.1: https://github.com/TimSimmons/redis-mass-insertion

95

Bibliography
[1] A. Inc., “How to check the storage on your iPhone, iPad, and iPod touch.”

https://support.apple.com/en-us/HT201656. [Online; accessed 09-May-
2018].

[2] W. contributors, “Disk Usage Analyzer — Wikipedia, The Free Ency-
clopedia.” https://en.wikipedia.org/w/index.php?title=Disk_Usage_
Analyzer&oldid=839026927. [Online; accessed 09-May-2018].

[3] J. Liu, T. Tang, W. Wang, B. Xu, X. Kong, and F. Xia, “A Survey of Schol-
arly Data Visualization.” In: 1IEEE Access, vol. 6, (2018), pp. 19205-
19221. DOI: 10.1109/ACCESS.2018.2815030 URL: http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=8314667&isnumber=8274985. [On-
line; accessed 12-May-2018].

[4] N. T. X. Qin, Y. Luo and G. Li, “DeepEye: An automatic
big data visualization framework.” In: Big Data Mining and
Analytics, vol. 1, no. 1, (2018), pp. 75-82. DOI: 10.26599/B-
DMA.2018.9020007 URL: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=8268737&isnumber=8268729 . [Online; accessed 12-
May-2018].

[5] A. Figueiras, “Towards the Understanding of Interaction in In-
formation Visualization.” In: 19th International Conference on
Information Visualisation, Barcelona, (2015), pp. 140-147. DOI:
10.1109/iV.2015.34 URL: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=7272592&isnumber=7272518. [Online; accessed 12-
May-2018].

[6] A. Holupirek and M. H. Scholl, “Implementing filesystems by
tree-aware DBMSs.” In: Implementing filesystems by tree-aware
DBMSs. Proc. VLDB Endow. 1, 2, (2008), pp. 1623-1630. DOI:
http://dx.doi.org/10.14778/1454159.1454237 URL: https://dl.acm.org/
citation.cfm?id=1454237. [Online; accessed 25-April-2018].

97

https://support.apple.com/en-us/HT201656
https://en.wikipedia.org/w/index.php?title=Disk_Usage_Analyzer&oldid=839026927
https://en.wikipedia.org/w/index.php?title=Disk_Usage_Analyzer&oldid=839026927
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8314667&isnumber=8274985
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8314667&isnumber=8274985
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8268737&isnumber=8268729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8268737&isnumber=8268729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7272592&isnumber=7272518
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7272592&isnumber=7272518
https://dl.acm.org/citation.cfm?id=1454237
https://dl.acm.org/citation.cfm?id=1454237

[7] G. Hackl, W. Pausch, S. Schönherr, G. Specht, and G. Thiel, “Syn-
chronous metadata management of large storage systems.” In: Syn-
chronous metadata management of large storage systems. In Proceed-
ings of the Fourteenth International Database Engineering & Applica-
tions Symposium (IDEAS ’10). pp. 1-6. DOI: 10.1145/1866480.1866481
http://doi.acm.org/10.1145/1866480.1866481 URL: https://dl.acm.org/
citation.cfm?id=1866481. [Online; accessed 25-April-2018].

[8] P. Mundkur, V. Tuulos, and J. Flatow, “Disco: a computing plat-
form for large-scale data analytics.” In: Disco: a computing plat-
form for large-scale data analytics. In Proceedings of the 10th
ACM SIGPLAN workshop on Erlang (Erlang ’11). pp. 84-89. DOI:
https://doi.org/10.1145/2034654.2034670 URL: https://dl.acm.org/
citation.cfm?id=2034670. [Online; accessed 25-April-2018].

[9] J. Heer, M. Bostock, and V. Ogievetsky, “A tour through the visualization
zoo.” In: A tour through the visualization zoo. Commun. ACM 53, 6,
(2010), pp. 59-67. DOI: https://doi.org/10.1145/1743546.1743567 URL:
https://dl.acm.org/citation.cfm?id=1743567. [Online; accessed 06-
April-2018].

[10] M. Kyritsis, S. R. Gulliver, S. Morar, and R. Stevens, “Issues and
benefits of using 3D interfaces: visual and verbal tasks.” In: Issues
and benefits of using 3D interfaces: visual and verbal tasks. In Pro-
ceedings of the Fifth International Conference on Management of
Emergent Digital EcoSystems (MEDES ’13), (2013), pp. 241-245. DOI:
http://dx.doi.org/10.1145/2536146.2536166 URL: https://dl.acm.org/
citation.cfm?id=2536166. [Online; accessed 06-April-2018].

[11] K. Z. Quang Vinh Nguyen, Mao Lin Huang and I.-L. Yen, “A Visualization
Model for Web Sitemaps.” In: International Conference on Computer
Graphics, Imaging and Visualisation (CGIV’06), Sydney, Qld., (2006), pp.
12-17. DOI: 10.1109/CGIV.2006.14 URL: http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=1663761&isnumber=34835. [Online; ac-
cessed 05-April-2018].

[12] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of Large Hier-
archical Data by Circle Packing.” In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, (2006), pp. 517-
520. DOI: 10.1145/1124772.1124851 URL: http://doi.acm.org/10.1145/
1124772.1124851. [Online; accessed 05-April-2018].

[13] B. Shneiderman, “The eyes have it: a task by data type tax-
onomy for information visualizations.” In: Proceedings 1996 IEEE

https://dl.acm.org/citation.cfm?id=1866481
https://dl.acm.org/citation.cfm?id=1866481
https://dl.acm.org/citation.cfm?id=2034670
https://dl.acm.org/citation.cfm?id=2034670
https://dl.acm.org/citation.cfm?id=1743567
https://dl.acm.org/citation.cfm?id=2536166
https://dl.acm.org/citation.cfm?id=2536166
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1663761&isnumber=34835
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1663761&isnumber=34835
http://doi.acm.org/10.1145/1124772.1124851
http://doi.acm.org/10.1145/1124772.1124851

Symposium on Visual Languages, Boulder, CO, (1996), pp. 336-343.
DOI: 10.1109/VL.1996.545307 URL: http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=545307&isnumber=11360. [Online; accessed 05-
April-2018].

[14] W. contributors, “Web Server Gateway Interface — Wikipedia, The
Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=
Web_Server_Gateway_Interface&oldid=837620822. [Online; accessed 30-
April-2018].

[15] B. Chesneau, “Deploying Gunicorn – Gunicorn 19.8.0 documentation.”
http://docs.gunicorn.org/en/latest/deploy.html. [Online; accessed
30-April-2018].

[16] S. Sanfilippo, “An introduction to Redis data types and abstractions.”
https://redis.io/topics/data-types-intro. [Online; accessed 30-
April-2018].

[17] S. Sanfilippo, “Using pipelining to speedup Redis queries.” https://redis.
io/topics/pipelining. [Online; accessed 04-May-2018].

[18] G. Rodola, “psutil documentation.” http://psutil.readthedocs.io/
en/latest/index.html?highlight=memory%20info#psutil.Process.
memory_info. [Online; accessed 01-May-2018].

[19] S. Sanfilippo, “How fast is Redis?.” https://redis.io/topics/benchmarks.
[Online; accessed 02-May-2018].

[20] Google, “Chrome DevTools Overview.” https://developer.chrome.com/
devtools. [Online; accessed 01-May-2018].

[21] Mozilla, “Firefox Developer Tools.” https://developer.mozilla.org/
son/docs/Tools. [Online; accessed 01-May-2018].

[22] S. Sanfilippo, “Redis Mass Insertion.” https://redis.io/topics/mass-
insert. [Online; accessed 01-May-2018].

[23] T. L. I. Project, “The du Command.” http://www.linfo.org/du.html. [On-
line; accessed 12-May-2018].

[24] W. contributors, “Nemo (file manager) — Wikipedia, The Free Ency-
clopedia.” https://en.wikipedia.org/w/index.php?title=Nemo_(file_
manager)&oldid=834287030. [Online; accessed 12-May-2018].

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=545307&isnumber=11360
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=545307&isnumber=11360
https://en.wikipedia.org/w/index.php?title=Web_Server_Gateway_Interface&oldid=837620822
https://en.wikipedia.org/w/index.php?title=Web_Server_Gateway_Interface&oldid=837620822
http://docs.gunicorn.org/en/latest/deploy.html
https://redis.io/topics/data-types-intro
https://redis.io/topics/pipelining
https://redis.io/topics/pipelining
http://psutil.readthedocs.io/en/latest/index.html?highlight=memory%20info#psutil.Process.memory_info
http://psutil.readthedocs.io/en/latest/index.html?highlight=memory%20info#psutil.Process.memory_info
http://psutil.readthedocs.io/en/latest/index.html?highlight=memory%20info#psutil.Process.memory_info
https://redis.io/topics/benchmarks
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://redis.io/topics/mass-insert
https://redis.io/topics/mass-insert
http://www.linfo.org/du.html
https://en.wikipedia.org/w/index.php?title=Nemo_(file_manager)&oldid=834287030
https://en.wikipedia.org/w/index.php?title=Nemo_(file_manager)&oldid=834287030

[25] Restuta, “Sizes of JS frameworks.” https://gist.github.com/Restuta/
cda69e50a853aa64912d. [Online; accessed 02-May-2018].

[26] W. contributors, “Minification (programming) — Wikipedia, The
Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=
Minification_(programming)&oldid=836196003. [Online; accessed 02-
May-2018].

[27] R. Nelson, “Tuning NGINX for Performance - NGINX.” https://www.nginx.
com/blog/tuning-nginx/. [Online; accessed 08-May-2018].

[28] W. contributors, “Ext4 — Wikipedia, The Free Encyclopedia.” https://
en.wikipedia.org/w/index.php?title=Ext4&oldid=835235234. [Online;
accessed 12-May-2018].

[29] W. contributors, “Interpreted language — Wikipedia, The Free Encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=Interpreted_
language&oldid=839980144. [Online; accessed 11-May-2018].

[30] W. contributors, “Compiled language — Wikipedia, The Free En-
cyclopedia.” https://en.wikipedia.org/w/index.php?title=Compiled_
language&oldid=836186637. [Online; accessed 11-May-2018].

[31] I. Gouy, “Python 3 programs versus Go.” https://benchmarksgame-team.
pages.debian.net/benchmarksgame/faster/python3-go.html. [Online;
accessed 11-May-2018].

[32] kostya, “Some benchmarks of different langugages.” https://github.
com/kostya/benchmarks. [Online; accessed 11-May-2018].

[33] P. S. Foundation, “Why is Python slower than the xxx lan-
guage.” https://wiki.python.org/moin/Why%20is%20Python%20slower%
20than%20the%20xxx%20language. [Online; accessed 11-May-2018].

[34] I. Webster, “3D Interactive Asteroid Space Visualization.” http://www.
asterank.com/3d/. [Online; accessed 04-May-2018].

[35] G. D. A. Team, “100,000 stars.” http://stars.chromeexperiments.com/.
[Online; accessed 04-May-2018].

[36] INOVE, “Solar System Scope - Online Model of Solar System and Night
Sky.” https://www.solarsystemscope.com/. [Online; accessed 04-May-
2018].

https://gist.github.com/Restuta/cda69e50a853aa64912d
https://gist.github.com/Restuta/cda69e50a853aa64912d
https://en.wikipedia.org/w/index.php?title=Minification_(programming)&oldid=836196003
https://en.wikipedia.org/w/index.php?title=Minification_(programming)&oldid=836196003
https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/
https://en.wikipedia.org/w/index.php?title=Ext4&oldid=835235234
https://en.wikipedia.org/w/index.php?title=Ext4&oldid=835235234
https://en.wikipedia.org/w/index.php?title=Interpreted_language&oldid=839980144
https://en.wikipedia.org/w/index.php?title=Interpreted_language&oldid=839980144
https://en.wikipedia.org/w/index.php?title=Compiled_language&oldid=836186637
https://en.wikipedia.org/w/index.php?title=Compiled_language&oldid=836186637
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/python3-go.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/python3-go.html
https://github.com/kostya/benchmarks
https://github.com/kostya/benchmarks
https://wiki.python.org/moin/Why%20is%20Python%20slower%20than%20the%20xxx%20language
https://wiki.python.org/moin/Why%20is%20Python%20slower%20than%20the%20xxx%20language
http://www.asterank.com/3d/
http://www.asterank.com/3d/
http://stars.chromeexperiments.com/
https://www.solarsystemscope.com/

[37] W. contributors, “Inotify — Wikipedia, The Free Encyclopedia.” https://
en.wikipedia.org/w/index.php?title=Inotify&oldid=838189851. [On-
line; accessed 08-May-2018].

[38] P. S. Foundation, “resource – Resource usage information.” https://docs.
python.org/3/library/resource.html. [Online; accessed 10-May-2018].

https://en.wikipedia.org/w/index.php?title=Inotify&oldid=838189851
https://en.wikipedia.org/w/index.php?title=Inotify&oldid=838189851
https://docs.python.org/3/library/resource.html
https://docs.python.org/3/library/resource.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Listings

	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Challenges
	1.2 Main contributions
	1.3 Outline

	2 Related work
	3 Idea
	4 Architecture
	4.1 Human user abstraction
	4.2 Visualization abstraction
	4.2.1 Interact with human user
	4.2.2 Request metadata
	4.2.3 Transform metadata
	4.2.4 Visualize information for user

	4.3 Instrument
	4.3.1 Locate metadata dataset
	4.3.2 Collect and return metadata
	4.3.3 Metadata dataset
	4.3.4 Extract metadata

	4.4 Dataset

	5 Design
	5.1 Visualization
	5.1.1 Visualization application
	5.1.2 Web browser client

	5.2 Web server
	5.3 Dataset service
	5.4 Dataset server
	5.5 Metadata extractor

	6 Implementation
	6.1 Visualization
	6.1.1 Technologies
	6.1.2 Information types
	6.1.3 Directory names

	6.2 Web server
	6.2.1 Commands
	6.2.2 Response

	6.3 Dataset server
	6.3.1 Commands
	6.3.2 Redis data structures
	6.3.3 Redis pipelines

	6.4 Metadata extractor
	6.4.1 File system iteration
	6.4.2 Metadata extraction
	6.4.3 Unique hash ID

	6.5 Technologies
	6.6 File creation

	7 Experiments
	7.1 Benchmarking tools
	7.1.1 wrk
	7.1.2 psutil
	7.1.3 Redis benchmark

	7.2 Experiment dataset
	7.3 Web browser client
	7.4 Web browser client - memory footprint
	7.4.1 Methodology
	7.4.2 Metrics

	7.5 Web browser client - network usage
	7.5.1 Methodology
	7.5.2 Metrics

	7.6 Web server
	7.7 Web server - requests per second
	7.7.1 Methodology
	7.7.2 Metrics

	7.8 Web server - latency
	7.8.1 Methodology
	7.8.2 Metrics

	7.9 Web server - CPU usage
	7.9.1 Methodology
	7.9.2 Metrics

	7.10 Dataset server - keys
	7.10.1 Methodology
	7.10.2 Metrics

	7.11 Dataset server - memory utilization
	7.11.1 Methodology
	7.11.2 Metrics

	7.12 Dataset server - CPU utilization
	7.12.1 Methodology
	7.12.2 Metrics

	7.13 Dataset server - requests per second
	7.13.1 Methodology
	7.13.2 Metrics

	7.14 Metadata extractor - execution time
	7.14.1 Methodology
	7.14.2 Metrics

	7.15 Metadata extractor - resource usage
	7.15.1 Methodology
	7.15.2 Metrics

	7.16 System - Resource usage
	7.16.1 Methodology
	7.16.2 Metrics

	7.17 os.walk
	7.17.1 Methodology
	7.17.2 Metrics

	7.18 Reported disk usage
	7.18.1 Methodology
	7.18.2 Metrics

	8 Results
	8.1 Web browser client - memory footprint
	8.2 Web browser client - network usage
	8.3 Web server - web pages
	8.4 Web server - Commands
	8.5 Web server - CPU utilization
	8.6 Dataset server - keys
	8.7 Dataset server - memory utilization
	8.8 Dataset server - CPU utilization
	8.9 Dataset server - requests per second
	8.10 Metadata extractor - execution time
	8.11 Metadata extractor - resource usage
	8.12 System - CPU utilization
	8.13 System - memory footprint
	8.14 os.walk
	8.15 Reported disk usage

	9 Discussion
	9.1 Thesis
	9.2 Optimizing Redis
	9.3 Scale
	9.4 The amount of keys
	9.4.1 One year of measurements
	9.4.2 Dataset growth

	9.5 Prototype bottleneck
	9.6 React, abstractions and Google charts
	9.7 Extract metadata on dataset change
	9.8 Metadata extractor resource usage

	10 Contributions
	11 Summary and Conclusion
	12 Future work
	A The Road Towards the Artifact
	A.1 Approach 1
	A.2 Approach 2
	A.3 Approach 3
	A.4 Conclusion

	B Redis key size
	C Redis mass-insertion
	Bibliography

